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ABSTRACT. — We give a bound on the number of points of order two on the theta divisor of
a principally polarized abelian variety A. When A is the Jacobian of a curve C the result can be
applied in estimating the number of effective square roots of a fixed line bundle on C.
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INTRODUCTION

In this paper we give an upper bound on the number of 2-torsion points lying on
a theta divisor of a principally polarized abelian variety. Given any principally
polarized abelian variety A of dimension g and symmetric theta divisor ® < 4,
O contains at least 2971(29 — 1) points of order two, the odd theta characteristics.
Moreover, in [Mum66] and [Igu72, Chapter IV, Section 5] it is proved that ®
cannot contain all points of order two on A.

In this work we use the projective representation of the theta group to prove
the following:

Given a principally polarized abelian variety A, any translated t;® of a theta
divisor ® < A contains at most 2% — 29 points of order 2 (2% — (g + 1)29 if t*©
is irreducible and not symmetric).

Our bound is far from being sharp. In [SM94] Salvati Manni proved that there
are at least g(2¢g + 1) points of order two outside an irreducible theta divisor. This
gives a better bound for g < 7. We conjecture that the right estimate should be
229 — 39 as in the case of a product of elliptic curves.

When A4 is the Jacobian of a curve C the result can be applied in esti-
mating the number of effective square roots of a fixed line bundle on C (cf. Sec-
tion 2).

This work has been partially supported by 1) FAR 2012 (PV) “Varieta algebriche, calcolo alge-
brico, grafi orientati e topologici” 2) INAAM (GNSAGA) 3) PRIN 2009 “Moduli, strutture geome-
triche e loro applicazioni”.
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1. MAIN RESULT
In this section we prove our main result.

THEOREM 1.1. Let A be a principally polarized abelian variety of dimension g and
let ©® be a symmetric theta divisor.

1. For each a € A there are at most 2°9 — 29 points of order two lying on t:®.

2. Let a € A and assume that © is irreducible and t;® is not symmetric with
respect to the origin. Then there are at most 2% — (g + 1)29 points of order
two lying on t;©.

PrOOF. Denote by (K, {-,-») the group of 2-torsion points on 4 with the perfect
pairing induced by the polarization. Let

{al,...,ag,bl,...,bg}
be a basis of K over the field of order two such that

<ai7bj>:5ij7 <ai7aj>:07 <blvb]>207

and let
(1) H:=<ay,...,a4)
be the subgroup of K generated by the elements a;,...,a,. Consider the projec-

tive morphism ¢ : 4 — P?'~! associated to the divisor 20. By the construction of
the projective representation of the theta group K(20) (see [Mum66], [Kem91,
Chapter 4] and [Kem89]), we know that the elements of ¢(H) are a basis of the
projective space. In the same way, the images of the elements of a coset H, of H
in K generate the projective space P2’ ~!.

Suppose by contradiction that there exists a subset S = K such that all points
of S lie on #:® and |S| > 2% —29. By the previous argument, since H, = S
for some b, the points of ¢(S) generate the entire projective space P>'~!. On
the other hand, by the Theorem of the Square ((Mum08, Chapter II, Section 6,
Corollary 4]),

0O+t ,0=20.

It follows that the points of ¢(S) lie on an hyperplane of P>’~!. This proves (1).

Now we prove the second part. Suppose by contradiction that there exists a
subset S = K such that all points of S lie on 7:® and |S| > 2% — (g + 1)29. We
claim that

() the points in ¢(S) lie on a 29 — g — 2-plane in P>'~!.
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Given a point ¢ € S, it holds also ¢ € t* ,©. Thus S = 1,0 n¢* ©. If ;0 is not
symmetric and irreducible, #® N ¢* O has codimension 2 in 4 and we can con-
sider the natural exact sequence

0 — 04(=20) = O4(—12,0) @ O4(—1,0) — I;:0ni:,0 — 0;
by tensoring it with (0 4(20) we get
0— O — O4(1,0) @ O4(t2,0) — Ironr,0 ® 04(20) — 0.
Passing to the corresponding sequence on the global sections, we have
(2) 0— H(A,04) — H(A,0,4(£;0)) @ H*(4, 04(t* ,©))
— H(I:0n,0 ® 04(20)) — H'(4,0,4) — 0,
since, by the Kodaira vanishing theorem (see e.g. [GH94, Chapter 1, Section 2),
HY(A4,04(1;0)) = H' (A4, 04(t* ,©)) = 0.
It follows that
dim H(I:0nr 0 ® 04(20)) = g + 1.
Thus the points in p(£:® N ¢* ©) lie on a 29 — g — 2-plane of P>'~! and the claim
(%) is proved.
To conclude the proof of (2) we notice that if |S| > 2% — (g4 1)29 then

|S N~ Hp| >29—(g+1) for some coset H, of H (see (1)). Then it follows that
@(S) contains at least 29 — g independent points and we get a contradiction. [

REMARK 1.2. One might expect the right bound to be 2%¢ — 39 and that this is
realized only in the case of a product of elliptic curves.

REMARK 1.3. The argument of Theorem 1.1 can be also used to obtain a bound
on the number of n-torsion points (with # > 2) lying on a theta divisor.
2. APPLICATIONS

In this section we apply Theorem 1.1 to the case of Jacobians. This gives a gen-
eralization of [MP, Proposition 2.5].

PROPOSITION 2.1. Let C be a curve of genus g and M be a line bundle of degree
d < g— 1. Given an integer k < g — 1 — d, for each L € PicZk(C) there are at least
29 line bundles n € Pic*(C) such that n* ~ L and h°(n ® M) = 0.

PrOOF. We prove the statement for M ~ (¢ and k = g — 1. The general case
follows from this by replacing L with M2 ® L ® O¢( p)zn, where p is an arbitrary
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point of C and n:=¢g—1—k —d. Denote by ® the divisor of effective line
bundles of degree g — 1 in Pic? ' (C). Given the morphism

my : Pic!”1(C) — Pic®2(C)
0,
we want to prove that |m; (L) n@®| <229 —29. Let o« € m; ' (L), we have
my (L) = {a® 0 s.t. 6 = Oc}.

If |m5 (L) n®| > 2% — 29, then there are more than 2% — 29 points of order
two lying on a translated of a symmetric theta divisor of J(C) and, by (1) of
Theorem 1.1, we get a contradiction. O

REMARK 2.2. If we apply Proposition 2.1 to M = O¢, L = w¢, we get that on
a curve of genus ¢ there are at most 2% — 29 effective theta characteristics. We
notice that when g = 2 they are the 6 line bundles of type O¢(p) where p is a
Weierstrass point. When g = 3 and C is not hyperelliptic, they correspond to
the 28 bi-tangent lines to the canonical curve.

COROLLARY 2.3. Let C be a curve of genus g and M, ... My be a finite number
of line bundles of degree d < g— 1. Given an integer k <g—1—d, if n is a
generic line bundle of degree k such that h°(n*) > 0, then

PhM)=0 Vi=1,...,N.
PRrROOF. Let

A = {n € Pick(C) : h°(5*) > 0},
and, for each i = 1,... N, consider its closed subset

A; = {77 eN: //lo(Ml' ®77) > O}

We remark that A is a connected 2%9-étale covering of the image of the 2k-th
symmetric product of C in Picy‘(C). By Proposition 2.1, for each effective
L € Pic**(C) there exists € A\A; such that 42 ~ L. It follows that A; is a proper
subset of A. Since A is irreducible, also the set

N
U A; = {n € Pick(C) : h°(M; ® ) > 0 for some i}
=1

is a proper closed subset of A. |
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