Rend. Lincei Mat. Appl. 23 (2012), 319–323 DOI 10.4171/RLM/630

Algebraic Geometry — Points of order two on theta divisors, by VALERIA ORNELLA MARCUCCI and GIAN PIETRO PIROLA, communicated on 9 March 2012.

ABSTRACT. — We give a bound on the number of points of order two on the theta divisor of a principally polarized abelian variety A. When A is the Jacobian of a curve C the result can be applied in estimating the number of effective square roots of a fixed line bundle on C.

KEY WORDS: Abelian variety, theta divisor, torsion points.

MATHEMATICS SUBJECT CLASSIFICATION: 14K25 (primary); 14H40 (secondary).

INTRODUCTION

In this paper we give an upper bound on the number of 2-torsion points lying on a theta divisor of a principally polarized abelian variety. Given any principally polarized abelian variety A of dimension g and symmetric theta divisor $\Theta \subset A$, Θ contains at least $2^{g-1}(2^g - 1)$ points of order two, the odd theta characteristics. Moreover, in [Mum66] and [Igu72, Chapter IV, Section 5] it is proved that Θ cannot contain all points of order two on A.

In this work we use the projective representation of the theta group to prove the following:

Given a principally polarized abelian variety A, any translated $t_a^*\Theta$ of a theta divisor $\Theta \subset A$ contains at most $2^{2g} - 2^g$ points of order $2(2^{2g} - (g+1)2^g)$ if $t_a^*\Theta$ is irreducible and not symmetric).

Our bound is far from being sharp. In [SM94] Salvati Manni proved that there are at least g(2g + 1) points of order two outside an irreducible theta divisor. This gives a better bound for g < 7. We conjecture that the right estimate should be $2^{2g} - 3^{g}$ as in the case of a product of elliptic curves.

When A is the Jacobian of a curve C the result can be applied in estimating the number of effective square roots of a fixed line bundle on C (cf. Section 2).

This work has been partially supported by 1) FAR 2012 (PV) "Varietà algebriche, calcolo algebrico, grafi orientati e topologici" 2) INdAM (GNSAGA) 3) PRIN 2009 "Moduli, strutture geometriche e loro applicazioni".

1. MAIN RESULT

In this section we prove our main result.

THEOREM 1.1. Let A be a principally polarized abelian variety of dimension g and let Θ be a symmetric theta divisor.

- 1. For each $a \in A$ there are at most $2^{2g} 2^g$ points of order two lying on $t_a^* \Theta$.
- 2. Let $a \in A$ and assume that Θ is irreducible and $t_a^*\Theta$ is not symmetric with respect to the origin. Then there are at most $2^{2g} (g+1)2^g$ points of order two lying on $t_a^*\Theta$.

PROOF. Denote by $(K, \langle \cdot, \cdot \rangle)$ the group of 2-torsion points on A with the perfect pairing induced by the polarization. Let

$$\{a_1,\ldots,a_g,b_1,\ldots,b_g\}$$

be a basis of K over the field of order two such that

$$\langle a_i, b_j \rangle = \delta_{ij}, \quad \langle a_i, a_j \rangle = 0, \quad \langle b_i, b_j \rangle = 0,$$

and let

(1)
$$H := \langle a_1, \dots, a_q \rangle$$

be the subgroup of K generated by the elements a_1, \ldots, a_g . Consider the projective morphism $\varphi : A \to \mathbb{P}^{2^g-1}$ associated to the divisor 2 Θ . By the construction of the projective representation of the theta group $K(2\Theta)$ (see [Mum66], [Kem91, Chapter 4] and [Kem89]), we know that the elements of $\varphi(H)$ are a basis of the projective space. In the same way, the images of the elements of a coset H_b of H in K generate the projective space \mathbb{P}^{2^g-1} .

Suppose by contradiction that there exists a subset $S \subset K$ such that all points of S lie on $t_a^* \Theta$ and $|S| > 2^{2g} - 2^g$. By the previous argument, since $H_b \subset S$ for some b, the points of $\varphi(S)$ generate the entire projective space \mathbb{P}^{2^g-1} . On the other hand, by the Theorem of the Square (Mum08, Chapter II, Section 6, Corollary 4]),

$$t_a^*\Theta + t_{-a}^*\Theta \equiv 2\Theta.$$

It follows that the points of $\varphi(S)$ lie on an hyperplane of \mathbb{P}^{2^g-1} . This proves (1).

Now we prove the second part. Suppose by contradiction that there exists a subset $S \subset \hat{K}$ such that all points of \hat{S} lie on $t_a^* \Theta$ and $|S| > 2^{2g} - (g+1)2^g$. We claim that

the points in $\varphi(S)$ lie on a $2^g - g - 2$ -plane in $\mathbb{P}^{2^g - 1}$.

Given a point $\varepsilon \in S$, it holds also $\varepsilon \in t^*_{-a}\Theta$. Thus $S \subset t^*_a \Theta \cap t^*_{-a}\Theta$. If $t^*_a\Theta$ is not symmetric and irreducible, $t^*_a \Theta \cap t^*_{-a}\Theta$ has codimension 2 in A and we can consider the natural exact sequence

$$0 \to \mathcal{O}_A(-2\Theta) \to \mathcal{O}_A(-t^*_{-a}\Theta) \oplus \mathcal{O}_A(-t^*_{a}\Theta) \to I_{t^*_a\Theta \cap t^*_{-a}\Theta} \to 0;$$

by tensoring it with $\mathcal{O}_A(2\Theta)$ we get

$$0 \to \mathcal{O}_A \to \mathcal{O}_A(t_a^*\Theta) \oplus \mathcal{O}_A(t_{-a}^*\Theta) \to I_{t_a^*\Theta \cap t_{-a}^*\Theta} \otimes \mathcal{O}_A(2\Theta) \to 0.$$

Passing to the corresponding sequence on the global sections, we have

(2)
$$0 \to H^0(A, \mathcal{O}_A) \to H^0(A, \mathcal{O}_A(t^*_a \Theta)) \oplus H^0(A, \mathcal{O}_A(t^*_{-a} \Theta)) \to H^0(I_{t^*_a \Theta \cap t^*_{-a} \Theta} \otimes \mathcal{O}_A(2\Theta)) \to H^1(A, \mathcal{O}_A) \to 0,$$

since, by the Kodaira vanishing theorem (see e.g. [GH94, Chapter 1, Section 2]),

$$H^1(A, \mathcal{O}_A(t_a^*\Theta)) = H^1(A, \mathcal{O}_A(t_{-a}^*\Theta)) = 0.$$

It follows that

$$\dim H^0(I_{t^*_a \Theta \cap t^*_{-a} \Theta} \otimes \mathcal{O}_A(2\Theta)) = g + 1.$$

Thus the points in $\varphi(t_a^* \Theta \cap t_{-a}^* \Theta)$ lie on a $2^g - g - 2$ -plane of $\mathbb{P}^{2^g - 1}$ and the claim (*) is proved.

To conclude the proof of (2) we notice that if $|S| > 2^{2g} - (g+1)2^g$ then $|S \cap H_b| > 2^g - (g+1)$ for some coset H_b of H (see (1)). Then it follows that $\varphi(S)$ contains at least $2^g - g$ independent points and we get a contradiction.

REMARK 1.2. One might expect the right bound to be $2^{2g} - 3^g$ and that this is realized only in the case of a product of elliptic curves.

REMARK 1.3. The argument of Theorem 1.1 can be also used to obtain a bound on the number of *n*-torsion points (with n > 2) lying on a theta divisor.

2. Applications

In this section we apply Theorem 1.1 to the case of Jacobians. This gives a generalization of [MP, Proposition 2.5].

PROPOSITION 2.1. Let C be a curve of genus g and M be a line bundle of degree $d \le g - 1$. Given an integer $k \le g - 1 - d$, for each $L \in \text{Pic}^{2k}(C)$ there are at least 2^g line bundles $\eta \in \text{Pic}^k(C)$ such that $\eta^2 \simeq L$ and $h^0(\eta \otimes M) = 0$.

PROOF. We prove the statement for $M \simeq \mathcal{O}_C$ and k = g - 1. The general case follows from this by replacing *L* with $M^2 \otimes L \otimes \mathcal{O}_C(p)^{2n}$, where *p* is an arbitrary

point of C and n := g - 1 - k - d. Denote by Θ the divisor of effective line bundles of degree g - 1 in Pic^{g-1}(C). Given the morphism

$$m_2: \operatorname{Pic}^{g-1}(C) \to \operatorname{Pic}^{2g-2}(C)$$

 $\eta \mapsto \eta^2,$

we want to prove that $|m_2^{-1}(L) \cap \Theta| \leq 2^{2g} - 2^g$. Let $\alpha \in m_2^{-1}(L)$, we have

$$m_2^{-1}(L) = \{ \alpha \otimes \sigma \text{ s.t. } \sigma^2 = \mathcal{O}_C \}.$$

If $|m_2^{-1}(L) \cap \Theta| > 2^{2g} - 2^g$, then there are more than $2^{2g} - 2^g$ points of order two lying on a translated of a symmetric theta divisor of J(C) and, by (1) of Theorem 1.1, we get a contradiction.

REMARK 2.2. If we apply Proposition 2.1 to $M = \mathcal{O}_C$, $L = \omega_C$, we get that on a curve of genus g there are at most $2^{2g} - 2^g$ effective theta characteristics. We notice that when g = 2 they are the 6 line bundles of type $\mathcal{O}_C(p)$ where p is a Weierstrass point. When g = 3 and C is not hyperelliptic, they correspond to the 28 bi-tangent lines to the canonical curve.

COROLLARY 2.3. Let C be a curve of genus g and M_1, \ldots, M_N be a finite number of line bundles of degree $d \le g - 1$. Given an integer $k \le g - 1 - d$, if η is a generic line bundle of degree k such that $h^0(\eta^2) > 0$, then

$$h^0(\eta \otimes M_i) = 0 \quad \forall i = 1, \dots, N.$$

PROOF. Let

$$\Lambda := \{ \eta \in \operatorname{Pic}^{k}(C) : h^{0}(\eta^{2}) > 0 \},\$$

and, for each i = 1, ..., N, consider its closed subset

$$\Lambda_i := \{ \eta \in \Lambda : h^0(M_i \otimes \eta) > 0 \}.$$

We remark that Λ is a connected 2^{2g} -étale covering of the image of the 2k-th symmetric product of C in $\operatorname{Pic}^{2k}(C)$. By Proposition 2.1, for each effective $L \in \operatorname{Pic}^{2k}(C)$ there exists $\eta \in \Lambda \setminus \Lambda_i$ such that $\eta^2 \simeq L$. It follows that Λ_i is a proper subset of Λ . Since Λ is irreducible, also the set

$$\bigcup_{i=1}^{N} \Lambda_{i} = \{\eta \in \operatorname{Pic}^{k}(C) : h^{0}(M_{i} \otimes \eta) > 0 \text{ for some } i\}$$

is a proper closed subset of Λ .

ACKNOWLEDGEMENTS. We would like to thank Riccardo Salvati Manni for his valuable comments and remarks.

References

- [GH94] P. GRIFFITHS J. HARRIS, *Principles of algebraic geometry*, Wiley Classics Library. John Wiley & Sons Inc., New York, 1994. Reprint of the 1978 original.
- [Igu72] J. IGUSA, *Theta functions*, Springer-Verlag, New York, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 194.
- [Kem89] G. R. KEMPF, The addition theorem for abstract theta functions, in Algebraic geometry and complex analysis (Pátzcuaro, 1987), volume 1414 of Lecture Notes in Math., pages 1–14. Springer, Berlin, 1989.
- [Kem91] G. R. KEMPF, Complex abelian varieties and theta functions, Universitext, Springer-Verlag, Berlin, 1991.
- [MP] V. MARCUCCI G. P. PIROLA, *Generic Torelli theorem for Prym varieties of ramified coverings*, Compositio Math., to appear, arXiv:1010.4483v3.
- [Mum66] D. MUMFORD, On the equations defining abelian varieties, I, Invent. Math. 1:287– 354, 1966.
- [Mum08] D. MUMFORD, *Abelian varieties*, volume 5 of Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay, 2008.
- [SM94] R. SALVATI MANNI, Modular varieties with level 2 theta structure, Amer. J. Math. 116(6):1489–1511, 1994.

Received 10 February 2012, and in revised form 14 February 2012.

Valeria Ornella Marcucci Dipartimento di Matematica "F. Casorati" Università di Pavia via Ferrata 1, 27100 Pavia Italy valeria.marcucci@unipv.it

Gian Pietro Pirola Dipartimento di Matematica "F. Casorati" Università di Pavia via Ferrata 1, 27100 Pavia Italy gianpietro.pirola@unipv.it