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Introduction

It is classical to study quotients of surfaces by automorphism groups in order to
obtain new surfaces. For example, Godeaux obtained one of the first surfaces of
general type with vanishing geometric genus by taking the quotient of a quintic
hypersurface in P3 by an order 5 fixpoint free action.

In this paper, we study quotients of Fano surfaces. These surfaces are by def-
inition modular varieties: they parametrize the lines on smooth cubic threefolds.
This modular property allows to understand them very well. In fact, we can han-
dle the Fano surface S of a cubic threefold F ,! P4 almost like a hypersurface in
P3: we can think of F as giving the equation of S from which we can read of the
properties of the irregular surface S. In particular, we can obtain the classification
of the automorphism groups of these surfaces. In the present paper we study the
minimal desingularisation of the quotients of these surfaces by some subgroups
of automorphisms. We compute their Chern numbers c21 , c2, irregularity q and
geometric genus pg, their minimality and their Kodaira dimension k.

Using the classification of cyclic groups of prime order acting on cubic three-
folds done in [11], we give in the following table the classification of the minimal
desingularisation of the quotients of Fano surfaces by groups of prime order, and
we give examples of quotients by some automorphisms of order 4 and 15:



O Type c21 c2 q pg w g Singularities Min k

2 I 18 54 1 6 6 3 27A1 yes 2

2 II 12 12 3 4 2 A1 yes 2

3 III(1) 15 9 3 4 2 yes 2

3 III(2) 15 33 1 4 4 4 9A2 yes 2

3 III(3) 6 54 0 4 5 27A3;1 yes 2

3 III(4) �3 3 2 1 0 no 0

4 IV(1) 6 18 1 2 2 4 6A1 þ A3 yes 2

4 IV(2) 0 36 1 3 3 1 12A1 þ 3A3 yes 1

5 V 9 15 1 2 2 4 2A4 yes 2

11 XI �5 17 0 0 1 5A11;3 no �l

15 XV �4 16 0 0 1 5A3;1 þ 2A15;4 no �l

The first and second column give the order and type of the automorphism, the
column g is the genus of the fibration onto the Albanese variety when it is an
elliptic curve, the column Singularities gives the number and type of singularities
on the quotient surface, Min indicates if the minimal desingularisation surface
is minimal. For the surfaces which are quotient by the following groups G, we
obtain:

G c21 c2 q pg w g Singularities Min k

ðZ=2ZÞ2 (type I) 5 43 0 3 4 24A1 yes 2

S3 (type I) 3 45 0 3 4 27A1 yes 2

ðZ=3ZÞ2 5 19 1 2 2 2 6A2 yes 2

D2 (type II) �3 3 2 1 0 no 0

D3 (type II) 0 12 1 1 1 1 A1 þ 3A2 yes 1

D5 (type II) �2 2 1 0 0 0 A1 no �l

S3 � Z=3Z 1 23 0 1 2 9A1 þ 3A2 yes 2

Where Dn is the dihedral group of order 2n. In each of the cyclic and non-
cyclic cases, we obtain surfaces of all Kodaira dimensions: rational, abelian, min-
imal elliptic and of general type.

The rather exceptional fact that Fano surfaces are modular varieties enables
us know exactly which singularities are on the quotient surface. Moreover, the
situation is so good that we can determine the four invariants c21 , c2, q, pg sepa-
rately and then double-check our computations by using the Noether formula.
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We use intersection theory on singular normal surfaces as defined by Mumford in
[14]. In particular this intersection theory is applied in Propositions 20 and 22 in
order to find the Kodaira dimension of some surfaces, and we think that this has
independent interest.

Although there are a lot of papers on the subject, the fine classification of sur-
faces of general type with small birational invariants in not achieved, in particu-
lar for the irregular ones. Let us discuss the place of the surfaces we obtain in the
geography of surfaces of general type.

The surfaces of type I are discussed in [20]. Some examples of irregular sur-
faces with pg ¼ 4 and birational canonical map are discussed in [6]. Our type II,
III(1), III(2), III(3) surfaces have pg ¼ 4 too. The surfaces of type II is discussed
in [6], the surface III(3) is described in [13], but our examples III(1) and III(2) are,
to our knowledge, new. We think also that the surfaces of type IV(1) and V are
new.

The surface coming from the group G ¼ S3 is a Horikawa surface [12]. The
moduli space of surfaces coming from the group G ¼ ðZ=3ZÞ2 has recently be
work out in [9].

Our last example is a surface with K 2 ¼ pg ¼ 1. In [4] and [5], Catanese study
the moduli of such surfaces, obtaining counter examples to the global Torelli
Theorem.

The paper is divided as follows: in the first section, we remind classical re-
sults from intersection theory and computation of invariants of quotient sur-
faces, in the second we recall the known facts about Fano surfaces and in the
third and fourth, we compute the invariants of the resolutions of the quotient
surfaces.

Acknowledgements. Part of this research was done during the author stay in Strasbourg Uni-

versity, the Max-Planck Institute of Bonn and the Mathematisches Forschungsintitut Oberwolfach.
The author wishes to thank the referee for its careful reading of the paper and its comments.

1. Generalities on quotients and intersection theory

Let us recall, mainly without proof, some well-known Lemmas for computing the
invariants of the minimal resolution of the quotient of a surface S by an automor-
phism group G.

We will use intersection theory of Q-Cartier divisors on compact normal
surfaces as defined by Mumford [14], a good reference on that topic is Fulton’s
book [8]. Let Y be a normal surface and let g : Z ! Y be a resolution of the
singularities of Y . We denote by Ci, i a I the irreducible reduced components
of the exceptional curves of g. The intersection matrix ðCiCjÞi; j is negative
definite. For a divisor C on Y let C be the strict transform on Z of C. Let g�C
and ai, i a I be the Q-divisor and the positive rational numbers uniquely defined
by:

C ¼ g�C �
X

aiCi
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and the relations Cig
�C ¼ 0 for all i. The intersection number CC 0 a Q of C and

C 0 is defined by g�Cg�C 0. It is bilinear and independent of g. Let KY be the
canonical Q-divisor on Y , then KZ ¼ KY and:

Lemma 1. Let KZ ¼ g�KY �
P

aiCi be the canonical divisor of Z. Then:

K 2
Z ¼ K 2

Y þ
�X

aiCi

�2
:

If all the components Ci of an exceptional divisor of the resolution Z ! Y are
ð�2Þ-curves, then ai ¼ 0 for all of those Ci.

Let us suppose that there exists a smooth surface S and a finite automorphism
group G such that Y is the quotient of S by G and let p : S ! S=G ¼ Y be the
quotient map. For each reduced divisor R on the surface S, let HR be the isotropy
group of R:

HR ¼ fg a G=gjR ¼ IdRg:

Let jEj denote the order of a set E; jHRj is the ramification index of the quotient
map p : S ! S=G over R. For a curve C on S=G, we have p�C ¼

P
RHp�1C jHRjR

and for another divisor C 0, we have:

CC 0 ¼ 1

jGj p
�Cp�C 0:

We say that the divisor C on Y ¼ S=G is nef if CC 0 b 0 for all curves C 0. We
have:

Lemma 2. Let KS=G be the canonical Q-divisor on S=G. Then:

KS ¼ p�KS=G þ
X
R

ðjHRj � 1ÞR

in particular:

K 2
S=G ¼ 1

jGj

�
KS �

X
R

ðjHRj � 1ÞR
�2
:

If KS �
P

RðjHRj � 1ÞR is nef, then KS=G is nef. If KS=G is nef and KZ ¼ g�KS=G,
then KZ is nef.

For any integer nb 1, we define the stratum on S:

Sn ¼ fs=jStabGðsÞj ¼ ng;

where StabGðsÞ is the stabilizer of the point s in S. Using the inclusion-exclusion
principle and the multiplicativity property of étale maps for the Euler number e,
we obtain:
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Lemma 3. The Euler number of S=G is given by the formula:

eðS=GÞ ¼
X
nb1

n

jGj eðSnÞ ¼
1

jGj

�
eðSÞ þ

X
nb2

ðn� 1ÞeðSnÞ
�
:

The Euler number of the minimal resolution Z ! S=G is the sum of eðS=GÞ and
the number of irreducible components of the exceptional curves of Z ! S=G.

Let W i
X be the bundle of holomorphic i-forms on a smooth variety X and let

oX ¼ 5dimX
WX . We denote the irregularity by qX and the geometric genus by

pgðXÞ.

Lemma 4. Let Z be the minimal resolution of the surface S=G. We have:

H 0ðZ;W i
ZÞUH 0ðS;W i

SÞ
G:

In particular: pgðZÞ ¼ dimH 0ðS;oSÞG and qZ ¼ dimH 0ðS;WSÞG.

Proof. In [10], pp. 349–354, Gri‰ths gives a definition of di¤erential forms for
singular varieties. This notion coincide with the usual one when the variety X is
smooth and we have H 0ðZ;W i

ZÞUH 0ðX ;W i
X Þ for any resolution of singularities

Z of X . Moreover, by [10] formula (2.8), we have H 0ðS=G;W i
S=GÞ ¼ H 0ðS;W i

SÞ
G,

therefore: H 0ðZ;W i
ZÞ ¼ H 0ðS;W i

SÞ
G. r

2. Generalities on Fano surfaces

Here we recall the known facts about Fano surfaces. We use mainly the results of
Clemens-Gri‰ths [7], Tyurin [21], [22], Bombieri Swinnerton-Dyer [2] and also
[16], [17], [18] and [19].

Let S ,! Gð2; 5Þ be the Fano surface parametrizing the lines on a smooth
cubic threefold F ,! P4. The Chern numbers of S are c21 ¼ 45 and c2 ¼ 27. For
a point s in S, we denote by Ls ,! F the corresponding line on F . There are 6
lines through a generic point of F . The closure Cs of the incidence:

ft j sA t; Lt cuts Lsg

is an ample connected divisor of genus 11 on S, with at most nodal singularities.
It has the property that if a plane cuts F into three lines Ls þ Lt þ Lu, then
Ct þ Cs þ Cu is a canonical divisor KS. In particular 3Cs is numerically equiva-
lent to KS and C2

s ¼ 5.
The 5 dimensional space H 0ðWSÞ� is the tangent space of the Albanese variety

AlbðSÞ of S. As the Albanese map of S is an embedding, we therefore consider
the tangent space TS; s (for s in S) as a subspace of H 0ðWSÞ�. We have:
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Theorem 5 ([7], Tangent Bundle Theorem 13:37). There exists an isomorphism
of vector spaces:

f : H 0ðWSÞ� ! H 0ðF ;Oð1ÞÞ

such that for all s in S we have: H 0ðLs;Oð1ÞÞ ¼ fðTS; sÞ.

In words: the tangent space to the point s, translated to the point 0 of AlbðSÞ,
is identified by the linear map f to the plane subjacent to the line Ls ,! P4. This
powerful Theorem has many important consequences:

Theorem 6 ([18], [19]). Let s be an automorphism of S, let ds denotes its action
on H 0ðWSÞ�. The element ds acts naturally on the cubic F and a point s of S is a
fixed point of s if and only if the line Ls is stable under the action of ds.

If a point s is a fixed point of s, the action of dss : TS; s ! TS; s is given by the
restriction of ds to the 2 dimensional vector space H 0ðLs;Oð1ÞÞ.

The map s ! ds is an isomorphism between the automorphism groups of S
and F.

The following Lemma enables us to compute the geometric genus and irregu-
larity of the quotient surfaces:

Lemma 7 ([7], (10.14)). The natural map 52
H 0ðWSÞ ! H 0ðS;oSÞ is an isomor-

phism.

Let us fix some notations that we will use thereafter:

Definition 8. Let s be an automorphism of S and let a1; . . . ; ak, ka 5 the
eigenvalues of ds. We denote by Vai the eigenspace in H 0ðF ;Oð1ÞÞ ¼ H 0ðWSÞ�
with eigenvalue ai, and by PðVaiÞ ,! P4 its projectivisation.

Now we can read on the cubic F which points are fixed by s: they are the sta-
ble lines L in F under the action of ds. Let n be the order of the automorphism s.
In general, we know the action of ds on F ,! P4, thus we know its action on
H 0ðWSÞ� only up to a nth root of unity. But in our previous papers we computed
these actions. Let us give an example. There is an obvious order two automor-
phism s acting on the Fano surface of the cubic:

F ¼ fx2
1x2 þ Gðx2; x3; x4; x5Þ ¼ 0g:

The lines which are stable by s are:

i) the lines in the cone intersection of fx2 ¼ 0g and F , parametrized by a smooth
plane cubic curve E ,! S,

ii) the 27 lines on the smooth intersection of F by fx1 ¼ 0g.

The automorphism ds acting on H 0ðWSÞ� is:

f : x ! ðx1;�x2;�x3;�x4;�x5Þ
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or �f . Let s be one of the 27 isolated points of s. We have TS; s H fx1 ¼ 0g and
as s is an isolated point of s, dss acts by x ! �x on TS; s, therefore ds ¼ f . Such
kind of order 2 automorphisms are called of type I; their trace on H 0ðWSÞ is �3.
Let us recall:

Proposition 9 ([18], Thm. 13). There is a natural bijection between the set of
elliptic curves E ,! S on S and the set of involutions sE of type I. The intersection
number of the curves E, E 0 is given by the formula:

EE 0 ¼
�3 if E ¼ E 0

0 if oðsEsE 0 Þ ¼ 3

1 if oðsEsE 0 Þ ¼ 2

8<
:

where oðgÞ denotes the order of an automorphism g.
If s is a point on E, then Cs ¼ E þ Fs where Fs is the fiber over s of a fibration

gE : S ! E invariant by sE, and such that the lines Lt, LsEt, LgEt in F are coplanar
for all t in S.

There is another class of involutions acting on Fano surfaces, called of type II.
The trace of their action on H 0ðWSÞ equals 1. An involution that is the product of
two involutions of type I has type II.

Proposition 10 ([17], Thm. 3). The fixed point set of an involution of type II is
the union of an isolated point t and a smooth genus 4 curve Rt. There exists a genus
2 curve Dt on S such that

Ct ¼ Dt þ Rt

The curve Dt is smooth or sum of two elliptic curves which intersect in t. Let
s; s 0; . . . be involutions of type II generating a group such that all involutions have
type II. The intersection number of the curves Rt;Rt 0 . . . is given by the formula:

RtRt 0 ¼

�3 if s ¼ s 0

1 if oðss 0Þ ¼ 2 or 6

3 if oðss 0Þ ¼ 3

2 if oðss 0Þ ¼ 5

8>>><
>>>:

where oð f Þ is the order of the element f . For the intersection DtDt 0 , we have:
DtDt 0 ¼ RtRt 0 � 1.

We denote by x1; . . . ; x5 a basis of the space H 0ðWSÞ of global sections of the
cotangent sheaf and by e1; . . . ; e5 the dual basis.

3. Quotients by cyclic groups

Let s be an automorphism of a Fano surface S. We denote by p : S ! S=s the
quotient map and by g : Z ! S=s the minimal resolution of S=s.
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9 Let E ,! S be an elliptic curve and let s ¼ sE be the corresponding type I
involution. The fixed point set of s is the union of the smooth elliptic curve E and
27 points.

Proposition 11. The surface S=s contains 27A1 singularities. The resolution Z
of S=s is minimal and has invariants:

c21 ¼ 18; c2 ¼ 54; q ¼ 1; pg ¼ 6:

The Albanese variety of Z is E and the natural fibration Z ! E has genus 3 fibers.

Proof. There is a natural fibration g : S ! E invariant under sE such that
for all s in E, we have Cs ¼ E þ Fs with Fs the fiber of g at s. The divisor
p�KS=s ¼ KS � E ¼ Cs þ Css þ Fgs is ample, therefore KZ ¼ g�KS=s is nef and

K 2
Z ¼ K 2

S=s ¼
1

2
ðKS � EÞ2 ¼ 18:

The invariant sub-spaces of H 0ðWSÞ and H 0ðS;oSÞ by sE have dimension 1 and
6, that implies that c2 ¼ 54.

A fiber Fs of g has genus 7; as FsE ¼ 4, the quotient fiber Fs=sE has genus 3.
r

The fibers of the Albanese fibration of Z are genus 3 curves. In [20], Takahashi
prove that surfaces with q ¼ 1, K 2 ¼ 3pg b 12 and Albanese fibers of genus 3 are
canonical i.e. their canonical map is birational.

9 Let s an involution of S of type II. The fixed point set of s is the union of a
point t and a smooth genus 4 curve Rt.

Proposition 12. The minimal resolution Z of the quotient surface S=s is mini-
mal and has invariants:

c21 ¼ 12; c2 ¼ 12; q ¼ 3; pg ¼ 4; h1;1 ¼ 14:

Proof. The image of t on the surface Z=s is a node. We have:

eðZÞ � 1 ¼ 1

2
ðeðSÞ þ 1þ eðRtÞÞ:

As eðRtÞ ¼ �6, we get eðZÞ ¼ 12. Moreover, we have:

K 2
Z ¼ K 2

S=s ¼
1

2
ðKS � RtÞ2 ¼

1

2
ð45� 2 � 9� 3Þ ¼ 12:

The other invariants are easily computed. Let Dt be the residual divisor such that
Ct ¼ Dt þ Rt. Let C denotes the numerical equivalence. As KS � RtC 2Ct þDt

is nef, KS=s is nef and KZ C g�KS=s is nef, therefore Z is minimal. r
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A smooth polarisation Y of type ð1; 1; 2Þ on an Abelian Threefold has the
same invariants as the surface Z, see [6].

9 Let a be a primitive third root of unity. Let s be an order 3 automorphism
of S such that the eigenvalues of ds acting on H 0ðWSÞ are a2, a, 1, 1, 1 (automor-
phism of type III(1)).

Proposition 13. The automorphism s has no fixpoints. The quotient surface
S=s ¼ Z is smooth, minimal, and has invariants:

c21 ¼ 15; c2 ¼ 9; q ¼ 3; pg ¼ 4:

Proof. Up to a change of coordinates, the cubic can be written as:

F ¼ fx3
1 þ x3

2 þ ax1x2x3 þ Cðx3; x4; x5Þ ¼ 0g

with C a cubic form. As F is smooth, there are no lines into the intersection of F
and the plane PðV1Þ. Moreover, there are no lines in F going through the points
PðVaÞ and PðVa2Þ, therefore the automorphism s has no fixed points and the
surface S=s ¼ Z is smooth. We have moreover: p�KZ ¼ KS, thus KZ is ample.
As p is étale K 2

Z ¼ 1
3K

2
S and c2ðZÞ ¼ 1

3 c2ðSÞ. Since the action of s on H 0ðWSÞ is
known, we can compute the other invariants. r

In view of [6], where Catanese and Schreyer discuss about irregular surfaces
with pg ¼ 4, we collect further informations on the surface Z.

Let w1;w2 a H 0ðWSÞ be two linearly independent 1-forms on S. Recall that by
the Tangent Bundle Theorem, the canonical divisor associated to the form w1bw2

parametrizes the lines on F ,! P4 that cut the plane fw1 ¼ w2 ¼ 0g ,! P4.
A basis of the s-invariant canonical forms on S is x1bx2, x3bx4, x3bx5,

x4bx5. Thus, a point s in S is a base point of the corresponding 3 dimensional lin-
ear system if the line Ls cuts the 4 planes: x1 ¼ x2 ¼ 0, x3 ¼ x4 ¼ 0, x3 ¼ x5 ¼ 0,
x4 ¼ x5 ¼ 0. But this is impossible, therefore the system is base point free and the
canonical system of Z too.

The Albanese map of Z is not a fibration (by [7], there is no fibration of a
Fano surface onto a curve of genus > 1). It would be interesting to study
deeper Z in the spirit of [6], in particular we can ask if the canonical map is
birational.

9 Let s be an order 3 automorphism of S such that the eigenvalues of ds
acting on H 0ðWSÞ are ða2; a2; a; a; 1Þ (automorphism of type III(2)).

Proposition 14. The 9 singularities of the quotient S=s are cusps A2. The min-
imal resolution Z of this surface has invariants:

c21 ¼ 15; c2 ¼ 33; q ¼ 1; pg ¼ 4; h1;1 ¼ 27

and is minimal. The fibers of the fibration onto the Albanese variety have genus 4.

Proof. Up to a change of coordinates, s acts on the cubic:

F ¼ fx3
1 þ x3

2 þ x3
3 þ x3

4 þ x3
5 þ l1ðx1; x2Þl2ðx3; x4Þx5 ¼ 0g:
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The lines PðVa2Þ and PðVaÞ and the point PðV1Þ are not contained on F . The
stable lines are the 9 lines on F that cut the disjoint lines PðVaÞ and PðVa2Þ. Let
s be one of the fixed points of s. The eigenvalues of ds acting on TS; s are a, a2,
therefore the image of s on the quotient surface S=s is a A2 singularity, resolved
by a chain of 2 ð�2Þ-curves. We have:

K 2
Z ¼ K 2

S=s ¼
45

3
¼ 15:

moreover eðZÞ � 9 � 2 ¼ 1
3 ð27þ 2 � 9Þ and eðZÞ ¼ 33.

Let us compute the genus of the fibers. By [16] Cor. 26, there is a fibration of S
onto an elliptic curve E, invariant by s and with fibers F of genus 10. Therefore
the quotient surface S=s has a fibration S=s ! E by fibers of genus 4. r

By using the same method as for surfaces of type III(1), we see that the canon-
ical system of Z has no has point. Again, it would be interesting to study deeper
Z in the spirit of [6].

9 Let s be an order 3 automorphism of S such that the eigenvalues of ds act-
ing on H 0ðWSÞ are ða2; a; a; a; aÞ (automorphism of type III(3)). The space PðVaÞ
is a hyperplane, PðVa2Þ is one point outside F . The hyperplane PðVaÞ cuts F into
a smooth cubic surface Y , therefore s fixes 27 isolated points.

Proposition 15. The quotient Y=s has 27A3;1 singularities. Its minimal resolu-
tion Z has invariants

c21 ¼ 6; c2 ¼ 54; q ¼ 0; pg ¼ 4; h1;1 ¼ 44:

Up to the change of coordinates, the cubic F has equation

F ¼ fx3
1 þ Gðx2; . . . ; x5Þ ¼ 0g;

with G a cubic form. The surface Z is studied by Ikeda [13]; it is the resolution of
the double cover of the smooth cubic surface Y ¼ fG ¼ 0g, ramified along the
intersection of Y with its Hessian. By [13], the surface Z is a minimal surface,
its canonical system is base point free and the image of the canonical map is Y .

Proof. The automorphism ds acts on the hyperplane Va by multiplication by a,
therefore it acts on the tangent space TS; s of an isolated fixed point s by multipli-
cation by a and the resulting singularity on S=s is a A3;1. We have:

K 2
S=s ¼

1

3
K 2

S ¼ 15

and KZ C g�KS=s � 1
3

P i¼27
i¼1 Ei with Ei the ð�3Þ-curves over the A3;1 singularities.

Therefore

K 2
Z ¼ 15þ 1

9
27 � ð�3Þ ¼ 6:

The computation of q ¼ 0 and pg ¼ 4 is immediate. r
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9 Let s be an order 3 automorphism of S such that the eigenvalues of ds are
ða; a; a; 1; 1Þ (automorphism of type III(4)). Then PðVaÞ is a plane and PðV1Þ is a
line. The family of lines going through the plane PðVaÞ and the line PðV1Þ is the
union of 3 disjoint elliptic curves.

Proposition 16. The quotient map p : S ! S=s is a triple cover branched over
3 elliptic curves of the blow-up in three points of an abelian surface.

Proof. See [16]. r

9 Let s be an order 4 automorphism of S such that the eigenvalues of ds
acting on H 0ðWSÞ� are �1, �1, 1, i, �i.

Proposition 17. The quotient surface contains 6 nodes and one A3 singularity.
The minimal resolution Z of S=s is minimal and has invariants:

c21 ¼ 6; c2 ¼ 18; q ¼ 1; pg ¼ 2; h1;1 ¼ 16:

The fibers of the natural fibration of Z onto its Albanese variety have genus 4.

Proof. Up to a change of coordinates, the automorphism

x ! ð�x4;�x1;�x2;�x3;�x5Þ
acts on the cubic:

F ¼ fx3
5 þ ax2

5s1 þ x5ðbs2
1 þ cs2Þ þ Pðs1; s2; s3Þ ¼ 0g;

where si ¼ xi
1 þ � � � þ xi

4 and P is a polynomial such that Pðs1; s2; s3Þ is homog-
enous of degree 3 in the variables xj. The basis of V�1, V�i, Vi and V1 are respec-
tively: e1 þ e2 þ e3 þ e4, e5, v�i ¼ e1 � ie2 � e3 þ ie4, vi ¼ e1 þ ie2 � e3 � ie4 and
v1 ¼ e1 � e2 þ e3 � e4. The line through Cv�i and Cvi is on F , this is also the
unique isolated stable line Lt of s

2, involution of type II. There are three lines
on F are going trough the line PðV�1Þ and the point vi and three other lines
through the line PðV�1Þ and the point v�i. These 6 lines correspond to the inter-
section points of Dt and Rt, where Ct ¼ Rt þDt are as in Proposition 10. Their
images on S=s are nodes.

As the eigenvalues of ds acting on Cv�i þ Cvi are ð�i; iÞ, the image of t on
S=s is an A3 ¼ A4;3 singularity, resolved by 3 ð�2Þ curves. Let us compute the
Euler number:

eðZÞ � 6� 3 ¼ 1

4
ðeðSÞ þ ðeðRtÞ � 6Þ þ 3 � 7Þ

thus eðZÞ ¼ 18. The quotient map p is ramified with index 2 over Rt, thus
KS ¼ p�KS=n þ Rt. The divisor KS � Rt ¼ 2Ct þDt is nef, therefore KS=s is nef
and KZ ¼ g�KS=s is nef, thus Z is minimal, moreover:

K 2
Z ¼ K 2

S=s ¼
1

4
ðKS � RtÞ2 ¼ 6:

It is immediate to check that q ¼ 1 and pg ¼ 2.
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By [16], Theorem 18, there exists a s-invariant fibration S ! E onto an ellip-
tic curve with generic fibers D of genus 13 and Rt is contained in a fiber, therefore
D ! D=s is étale and the fiber D=s has genus 4. r

In [20], Takahashi constructed all canonical surfaces with q ¼ 1 and K 2 ¼ 3pg
with pg b 4. The fibers of the Albanese fibration of such surfaces are genus 3
curves. As far as the author knows, the above surface Z seems new on the line
of surfaces with q ¼ 1 and K 2 ¼ 3pg (the fibers of the Albanese fibration of Z
have genus 4).

9 Let s be an order 4 automorphism of S such that the automorphism
s : x ! ðix1; ix2; ix3;�ix4; x5Þ acts on the cubic threefold F .

Proposition 18. The quotient surface S=s contains 12 nodes and 3 singularities
A3. The minimal resolution Z of S=s is a minimal properly elliptic surface with
invariants:

c21 ¼ 0; c2 ¼ 36; q ¼ 1; pg ¼ 3:

Proof. Up to a change of coordinates, the cubic is:

F ¼ fx2
5x4 þ x2

4x1 þ Cðx1; x2; x3Þ ¼ 0g:

The point Ce5 is the vertex of a cone in F whose basis is an elliptic curve E ,! S.
The automorphism s2 is a type I involution, fixing E and 27 isolated points. A
point s on E correspond to a line

Ls ¼ fðlx1 : lx2 : lx3 : 0 : mx5Þ=ðl : mÞ a P1;Cðx1; x2; x3Þ ¼ 0g;

and such a line is stable under s, therefore E is fixed by s. The space Ce5 is the
tangent space to E in the Albanese variety of S, therefore, as s fixes E, the auto-
morphism ds is equal to x ! ðix1; ix2; ix3;�ix4; x5Þ (the eigenvalues of ds acting
on H 0ðWSÞ� are i, i, i, �i, 1). The line through PðV1Þ and PðV�iÞ is not on F and
there are 3 lines going through PðV�iÞ and that cut the plane PðViÞ, these three
lines are among the 27 isolated fixed lines of s2 and give 3A3 singularities. The
images on S=s of the remaining 24 isolated fixed points of s2 are 12 nodes. We
have

eðZÞ � ð12þ 3 � 3Þ ¼ 1

4
ð27þ 24þ 3eðEÞ þ 3 � 3Þ ¼ 15

and eðZÞ ¼ 36. Let be gE : S ! E be the s2-invariant fibration, associated to E.
It is also s-invariant. Let Fs be the fiber over s. Then p�KS=s ¼ KS � 3E is numer-
ically equivalent to 3Fs, therefore K 2

S ¼ K 2
S=s ¼ 1

4 ð3FsÞ2 ¼ 0. Moreover, as Fs is
nef, KZ is nef and then Z is minimal. The invariants q ¼ 1, pg ¼ 3 are readily
computed. r

9 Let s be an order 5 automorphism of S such that the eigenvalues of ds
acting on H 0ðWSÞ� are ð1; x; x2; x3; x4Þ, with x a primitive 5 th root of unity.
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Proposition 19. The quotient surface S=s has 2A4 singularities. The minimal
resolution Z of S=s is minimal and its invariants are:

c21 ¼ 9; c2 ¼ 15; q ¼ 1; pg ¼ 2; h1;1 ¼ 13:

The general fiber of the Albanese map of Z has genus 4.

Proof. Up to a change of coordinates, the cubic is given by:

F ¼ fx2
1x3 þ x2

3x4 þ x2
4x2 þ x2

2x1 þ x5ðax1x4 þ bx2x3Þ þ x3
5 ¼ 0g;

and s acts by:

x ! ðxx1; xx2
2 ; x

3x3; x
4x4; x5Þ:

The eigenspace Vxk is generated by ek. The lines through two points Cek, Cek 0

and contained in F are the line Lw through Ce1 and Ce4 and the line Lw 0 through
Ce2 and Ce3. The eigenvalues of dsw : TS;w ! TS;w are x4 and x, the eigenvalues
of dsw 0 : TS;w 0 ! TS;w 0 are x3 and x2, therefore the images of w, w 0 on S=s are
2A4 singularities. We have:

eðZÞ � 2 � 4 ¼ 1

5
ðeðSÞ þ 4 � 2Þ

thus eðZÞ ¼ 15. As KS=s is ample, KZ is nef. Moreover K 2
Z ¼ 1

5K
2
S ¼ 9. By [17],

Thm. 3 D), there exists a fibration S ! E onto an elliptic curve E that is invariant
by s and with fibers of genus 16. We deduce that the general fiber of the Albanese
map of Z has genus 4. r

9 Let Z be the resolution of the quotient of the Fano surface S of the Klein
cubic:

F ¼ fx2
1x2 þ x2

2x4 þ x2
4x3 þ x2

3x5 þ x2
5x1 ¼ 0g

by the order 11 automorphism s acting on F by:

x ! ðxx1; x9x2; x3x3; x4x4; x5x5Þ

where x is a 11 th primitive root of unity (S is unique to have an order 11 auto-
morphism, see [19]).

Proposition 20. The invariants of the surface Z are:

c21 ¼ �5; c2 ¼ 17; q ¼ pg ¼ 0:

The surface S=s contains 5 singularities A11;3.

Proof. Let us denote by Lij the line xs ¼ xt ¼ xu ¼ 0 where fi; j; s; t; ug ¼
f1; 2; 3; 4; 5g. The lines on F that are stable by s are L13, L23, L25, L45, L14. The
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5 corresponding fix points sij on S give 5 singularities A11;3 on S=s resolved by
curves Aij, Bij with ðAijÞ2 ¼ �3, ðBijÞ2 ¼ �4 and AijBij ¼ 1. We have:

KZ ¼ g�KX � 1

11

X
ð6Aij þ 7BijÞ

with g�K 2
X ¼ K 2

X ¼ 45
11 , thus K

2
Z ¼ �5. The Euler number is:

e ¼ 1

11
ð27þ 10 � 5Þ þ 10 ¼ 17:

Moreover, we check immediately that the invariants subspaces of H 0ðS;WSÞ and
H 0ðS;oSÞ by s are trivial, therefore the quotient surface has q ¼ pg ¼ 0. r

Proposition 21. The surface Z is rational.

Proof. Let us prove the existence of a smooth rational curve C such that
C2 ¼ 0 on a blow-down of Z.

Let us denote by Cij the incidence divisor for the stable line Lij corresponding
to the fixed point sij. The automorphism s acts on Cij . Using the equation of F ,
we see that among the 5 fixed points of s, the curve C13 contains s14 and s23
and moreover, as the line L13 is double (there is a plane X such that XF ¼
2L13 þ L14), the point s13 is on C13.

The permutation t ¼ ð1; 2; 4; 3; 5Þ acts on the Klein cubic threefold and with
the order 11 automorphism s, it generates an order 55 group such that the group
generated by s is distinguished. By these order 5 symmetries, we therefore know
which fixed points of s are on the curve Cij (t acts on the indices of the Cij, sij
etc . . .). Any incidence divisor C is a double cover of a plane quintic G that can
be explicitly computed using [2], equation ð6Þ. For the divisor C13, the corre-
sponding quintic G has equation:

4x3
2x4x5 � x2x

4
4 � x5

5 ¼ 0

in the plane with coordinates x2, x4, x5. The curve G has only one nodal singular-
ity, and therefore by [2] Lemma 2, the curve C13 has only one nodal singularity.
By using the order 5 symmetry t, the same property holds for the all the Cij. Let
Dij be the reduced image by the quotient map p of Cij and let Dij the strict trans-
form of Dij in Z by the minimal resolution g : Z ! S=s. We can write:

D13 ¼ g�D13 �
1

11
ða13A13 þ b13B13 þ a23A23 þ b23B23 þ a14A14 þ b14B14Þ

for aij, bij rational. Let be M ¼ �3 1

1 �4

� �
, M�1 ¼ � 1

11

4 1

1 3

� �
. We have

D13Aij;D13Bij a Zþ, therefore ðaij; bijÞM a ð11Z�; 11Z�Þ, thus aij, bij are positive
integers. Using the order 5 symmetry, we get:

D25 ¼ g�D25 �
1

11
ða13A25 þ b13B25 þ a23A45 þ b23B45 þ a14A23 þ b14B23Þ:
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Moreover D13D25 a Zþ, thus

D13D25 ¼
1

112
55þ ða23; b23ÞM

a14

b14

� �� �
a Zþ:

Let us define ða23; b23ÞM ¼ ð�11u1;�11u2Þ with u1, u2 positive integers. We have:

1

112
ð55� 11ða14u1 þ b14u2ÞÞ a Zþ

as a14; b14 a Zþ, we get D12D25 ¼ 0 and a14u1 þ b14u2 ¼ 5. Taking care of
D13A13;D13B13 a Zþ, we get the following 8 possibilities for ða14; b14; u1; u2Þ:

ð4; 1; 1; 1Þ; ð1; 3; 2; 1Þ; ð5; 4; 1; 0Þ; ð5; 15; 1; 0Þ;
ð1; 3; 5; 0Þ; ð4; 1; 0; 5Þ; ð9; 5; 0; 1Þ; ð20; 5; 0; 1Þ:

Thus ða14; b14; a23; b23Þ is one of the following:

ð4; 1; 5; 4Þ; ð1; 3; 9; 5Þ; ð5; 4; 4; 1Þ; ð5; 15; 4; 1Þ;
ð1; 3; 20; 5Þ; ð4; 1; 5; 15Þ; ð9; 5; 1; 3Þ; ð20; 5; 1; 3Þ:

Using the order 5 symmetry t ¼ ð1; 2; 4; 3; 5Þ, we get:

D14 ¼ g�D14 �
1

11
ða13A14 þ b13B14 þ a23A13 þ b23B13 þ a14A45 þ b14B45Þ:

We have D13D14 a Zþ, therefore:

1

112
55þ ða13; b13ÞM

a14 þ a23

b14 þ b23

� �� �
a Zþ:

Moreover:

a14 þ a23

b14 þ b23

� �
¼ 9

5

� �
;

10

8

� �
;

21

8

� �
or

9

16

� �
:

As above, let us define ða14 þ a23; b14 þ b23ÞM ¼ ð�11w1;�11w2Þ with w1, w2

positive integers. We obtain:

ðw1;w2Þ ¼ ð2; 1Þ; ð2; 2Þ; ð5; 1Þ or ð1; 5Þ:

As a13w1 þ b13w2 ¼ 5, we get the following possibilities with respect to the 4
above pairs ðw1;w2Þ:

a13

b13

� �
¼ 2

1

� �
;

1

3

� �
;

0

5

� �
; j;

1

0

� �
;

0

5

� �
;

0

1

� �
;

5

0

� �
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but as D13A13b 0 is an integer, the only solution is ða13; b13Þ ¼ ð1; 3Þ, ðw1;w2Þ ¼
ð2; 1Þ and ða14; b14; a23; b23Þ equals ð4; 1; 5; 4Þ or ð5; 4; 4; 1Þ. We obtain that:

D2
13 ¼ �1 and KZD13 ¼ �1 and by symmetry, the curves Dij are 5 disjoint ð�1Þ-

curves. Let us suppose that ða14; b14; a23; b23Þ is ð5; 4; 4; 1Þ, then:

D13 ¼ g�D13 �
1

11
ðA13 þ 3B13 þ 4A23 þ B23 þ 5A14 þ 4B14Þ

D25 ¼ g�D25 �
1

11
ðA25 þ 3B25 þ 4A45 þ B45 þ 5A23 þ 4B23Þ

D14 ¼ g�D14 �
1

11
ðA14 þ 3B14 þ 4A13 þ B13 þ 5A45 þ 4B45Þ

D23 ¼ g�D23 �
1

11
ðA23 þ 3B23 þ 4A25 þ B25 þ 5A13 þ 4B13Þ

D45 ¼ g�D45 �
1

11
ðA45 þ 3B45 þ 4A14 þ B14 þ 5A25 þ 4B25Þ:

We have A13Dij ¼ 0; 0; 1; 1; 0 and B13Dij ¼ 1; 0; 0; 1; 0, moreover:

D14A13 ¼ D14A45 ¼ D23A13 ¼ D23A25 ¼ 1:

The images of A13 and A45 by the blow-down map of the five Dij are two ð�1Þ-
curves A 0

13 and A 0
45 such that A 0

13A
0
45 ¼ 1 therefore, as Z is regular, it is a rational

surface. In the same way, if we suppose that ða14; b14; a23; b23Þ is ð4; 1; 5; 4Þ, we
obtain that the surface Z is rational. r

9 Let S be the Fano surface of the cubic:

x2
1x3 þ x2

3x4 þ x2
4x2 þ x2

2x1 þ x3
5 ¼ 0:

The order 15 automorphism:

s : x ! ðmx1; m7x2; m
13x3; m

4x4; m
5x5Þ

(m15 ¼ 1) acts on S.

Proposition 22. The surface S=s contains 5A3;1 þ 2A15;4 singularities. The
minimal resolution Z of S=s has invariants:

c21 ¼ �4; c2 ¼ 16; q ¼ pg ¼ 0; h1;1 ¼ 14:

Proof. The automorphism s fixes 2 isolated points s14, s23 (corresponding to the
lines Ce1 þ Ce4 and Ce2 þ Ce3) and acts on their tangent spaces by the diagonal
matrix with diagonal elements ðm4; mÞ giving 2A15;4 singularities denoted by a and
b. The singularity a is resolved by two ð�4Þ-curves Ta, Ua such that TaUa ¼ 1,
the singularity B is resolved by Tb, Ub with the same configuration. The automor-
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phism s5 fixes 27 isolated points (lines in the hyperplane x5 ¼ 0) and acts on the
tangent space at these points by multiplication by m5. The points s14, s23 are
among theses 27 points. The other 25 fixed points of s5 gives 5A3;1 singular-
ities on S=G resolved by 5 ð�3Þ-curves Ti. We have: q ¼ pg ¼ 0. For the Euler
number:

eðS=GÞ ¼ 1

15
ð27þ ð3� 1Þ � 25þ ð15� 1Þ � 2Þ ¼ 7

and eðSÞ ¼ 7þ 5þ 2 � 2 ¼ 16. For the canonical bundle:

KZ ¼ g�KS=G � 1

3

�
2ðUa þ TaÞ þ 2ðUb þ TbÞ þ

Xi¼5

i¼1

Ti

�

thus K 2
Z ¼ �4. r

Proposition 23. The surface Z is rational.

Proof. In order to prove the Proposition, we will prove the existence of a
smooth rational curve C such that C2 ¼ 0 on a blow-down of Z. The 27 stable
lines under the action of s5 are on the cubic surface X ¼ F B fx5 ¼ 0g. Their cor-
responding points on S are denoted by:

e1; . . . ; e6; g1; . . . ; g6; fij ; 1a i < ja 6

and their configuration is as follows:
The two points e1 and g1 are fixed by s and the corresponding lines Le1

and Lg1 (Ce1 aCe4 and Ce2 aCe3) are skew. The images of e1 and g1 on S=G
are denoted by a and b. The other points ei and gi are such that Le1 ; . . . ;Le6 ;
Lg1 ; . . . ;Lg6 is a double six. The fg2; . . . ; g6g and fe2; . . . ; e6g are orbits of s
whose images on S=G are denoted by f and g.

Each point fij, 1a i < ja 6 on S is the isolated fixed point of a type II
involution that is the product of two type I involution, therefore each incidence
divisor Cfij splits:

Cfij ¼ E þ E 0 þ Rij

for E, E 0 the two elliptic curves that cut each other in fij and with Rij the residual
divisor. Each of the 10 elliptic curves E as above contains exactly 3 fixed points
and these points are among the fij (intersection of E by 3 other elliptic curves,
see [18]).

We denote by A and B the image of Ce1 . We can denote by Eij, 1a i < ja 5
the ten elliptic curves on S. Their configuration is given by EijEst ¼ 1 if
jfi; j; s; tgj ¼ 4, EijEst ¼ 0 if jfi; j; s; tgj ¼ 3, E2

ij ¼ �3. The divisors E1 ¼ E12 þ
E23 þ E34 þ E45 þ E15 and E2 ¼ E13 þ E24 þ E35 þ E14 þ E25 are two orbits of s
and we denote by H, L their images on S=G.
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We denote by m, n, p the images of the 15 points fij (3 orbits): m ¼
f f12; f13; f14; f15; f16g, n ¼ f f23; f34; f45; f56; f26g, p ¼ f f24; f35; f46; f25; f36g.

We have a; g;m a A, b; f ;m a B. On S=s, we have:

H 2 ¼ L2 ¼ 1

15
E2
1 ¼ 1

15
E2
2 ¼ � 1

3

and LH ¼ 1
15E1E2 ¼ 1

3 . The curve H (resp. L) is nodal in n, (resp. p) and H, L cut
each other in m transversally. Let Tm, Tn, Tp be the ð�3Þ-curves over m, n, p and
let H, L be the proper transform of H, L. Then:

H ¼ g�H � 1

3
ðTm þ 2TnÞ; L ¼ g�L� 1

3
ðTm þ 2TpÞ

therefore H 2 ¼ L2 ¼ �2 and HL ¼ 0. As KZH ¼ KZL ¼ 0, the curves H and L
are two ð�2Þ-curves. Since a; g;m a A and A is nodal in a, we have:

A ¼ g�A� 1

3
ðTa þUaÞ �

1

3
ðTg þ TmÞ

where Ta and Ua are the 2 ð�4Þ-curves over a. Therefore: A2 ¼ �1 and as
KZA ¼ �1, A is a ð�1Þ-curve. We have:

AH ¼
�
g�A� 1

3
ðTa þUaÞ �

1

3
ðTg þ TmÞ

��
g�H � 1

3
ðTm þ 2TnÞ

�
¼ 0:

In the same way:

B ¼ g�B� 1

3
ðTb þUbÞ �

1

3
ðTf þ TmÞ

is a ð�1Þ-curve and AB ¼ 0, moreover:

BH ¼
�
g�B� 1

4
ðTb þUbÞ �

1

3
ðTf þ TmÞ

��
g�H � 1

3
ðTm þ 2TnÞ

�
¼ 0:

Consider the curves A, B, Tm, H, L. They are smooth rational curves and their
intersection matrix is:

�1 0 1 0 0

0 �1 1 0 0

1 1 �3 1 1

0 0 1 �2 0

0 0 1 0 �2

0
BBBBBB@

1
CCCCCCA
:

By blowing down four times, we obtain a smooth rational curve C such that
C2 ¼ 0. As q ¼ 0, the surface Z is rational. r
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4. Quotients by non-cyclic groups

Let us now study quotients by non-cyclic groups G. We denote by p : S ! S=G
the quotient map and by g : Z ! S=G the minimal desingularisation.

9 Let E, E 0 be 2 genus 1 curves on S such that EE 0 ¼ 1 and let GU ðZ=2ZÞ2
be the group generated by the involutions of type I sE , sE 0 . We have:

Proposition 24. The quotient S=G has 24 nodes. The minimal resolution Z is
minimal and has invariants:

c21 ¼ 5; c2 ¼ 43; q ¼ 0; pg ¼ 3; h1;1 ¼ 35:

Proof. An equation of F is:

F ¼ fx2
1x3 þ x2

2x4 þ Gðx3; x4; x5Þ ¼ 0g:

The involution sEsE 0 has type II and fixes the intersection point t of E and E 0

and the divisor Rt such that Ct ¼ E þ E 0 þ Rt. The involution sE fixes E and 27
points, 3 of them are on E 0; the symmetric situation holds for sE 0 . The images
on S=G of these 1þ 2 � 3 ¼ 7 isolated fixed points of G are smooth points. The
24 singular points of S=G are nodes, and the quotient map is ramified with
order 2 over the curve Ct, therefore p

�KS=G ¼ KS � CtC 2Ct and KS=G is ample,
moreover:

K 2
Z ¼ K 2

S=G ¼ 1

4
ðKS � CtÞ2 ¼ 5:

The irregularity is 0 and pg ¼ 3, therefore c2 ¼ 43. r

9 Let s1, s2 be 2 involutions on type II such that s3 ¼ s1s2 is a third involu-
tion of type II. They generate a group G isomorphic to ðZ=2ZÞ2 ¼ D2.

Proposition 25. The surface Z ¼ S=G is smooth and has invariants:

c21 ¼ �3; c2 ¼ 3; q ¼ 2; pg ¼ 1; h1;1 ¼ 7:

The surface Z is the blow up in three points p1, p2, p3 of an abelian surface such
that there exist 3 genus 2 curves R 0

i that cuts each other in the three point pi. The
map p : S ! Z is a ðZ=2ZÞ2-cover, branched over the strict transform of the three
curves R 0

i .

Proof. An equation of F is:

F ¼ fx2
1x4 þ x2

2x5 þ x2
3lðx4; x5Þ þ ax1x2x3 þ Gðx4; x5Þ ¼ 0g:

Each involution si fixes an isolated point ti and a smooth genus 4 curve Ri and
we have RiRj ¼ 1, R2

i ¼ �3, KSRi ¼ 9.
The action of the group G on H 0ðWSÞ is generated by diagonal matrices

with diagonal elements ð�1;�1; 1; 1; 1Þ, ð1;�1;�1; 1; 1Þ. Therefore the invariant
subspaces H 0ðWSÞG and H 0ðS;oSÞG have dimension q ¼ 2 and pg ¼ 1.
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The lines x3 ¼ x4 ¼ x5 ¼ 0, x1 ¼ x4 ¼ x5 ¼ 0, x2 ¼ x4 ¼ x5 ¼ 0, corresponds
to the isolated fix points ti of the si. For iA j, the point ti is a non-isolated
fixed point of sj because the eigenvalues of dðsjÞti acting on TS; ti are ð�1; 1Þ.
That implies that the images on S=G of the 3 points ti are smooth points and
that S=G ¼ Z is smooth.

The quotient map S ! S=G is ramified only over the 3 curves Ri. Let Di be
the genus 2 curve such that Cti ¼ Di þ Ri. We have:

p�KZ ¼ KS � R1 � R2 � R3 ¼ D1 þD2 þD3

and:

K 2
Z ¼ 1

4
ðKS � R1 � R2 � R3Þ2 ¼

1

4

�X
Di

�2
¼ �3:

We deduce that c2 ¼ 3. As RiRj ¼ 1, the 3 divisors Ri are the edges of a triangle,
with ti the vertex opposite to the edge Ri. The involution si induces an involution
of Rj that fixes only two points ti, tk (fi; j; kg ¼ f1; 2; 3g). The quotient R 0

i ¼ Ri=G
has therefore genus 2.

As siðtjÞ ¼ tj, the involution si acts on the incident divisor Ci ¼ Di þ Ri. As
Di

P
Ri ¼ 10, the curve D 0

i ¼ Di=G has genus g such that:

2 ¼ 4ð2g� 2Þ þ 10

and g ¼ 0. Moreover 4ðD 0
i Þ

2 ¼ ðp�D 0
i Þ

2 ¼ D2
i ¼ �4 and D 0

i is a ð�1Þ-curve. As
KZ ¼

P
D 0

i and q ¼ 2, we see that the minimal model of Z is an Abelian surface.
r

9 Let us study the quotient of S by the group GU ðZ=3ZÞ2 generated by
automorphisms a, b such that the eigenvalues of da and db are respectively
ða2; a; 1; 1; 1Þ and ð1; 1; a2; a; 1Þ.

Proposition 26. The surface S=G contains 6 cusps. The minimal resolution Z of
the quotient surface S=G is minimal and has invariants:

c21 ¼ 5; c2 ¼ 19; q ¼ 1; pg ¼ 2; h1;1 ¼ 17:

The fibers of the fibration of Z onto its Albanese variety have genus 2.

Proof. An equation of F is:

F ¼ fx3
1 þ x3

2 þ x3
3 þ x3

4 þ x3
5 þ ux1x2x5 þ vx3x4x5 ¼ 0g:

The automorphisms a, a2, b, b2 have no fixed points. The automorphisms ab,
a2b2 fix 9 isolated points, and also a2b, ab2. That gives 6 cusps singularities on
S=G. As these singularities are resolved by ð�2Þ-curves, we have:

K 2
Z ¼ K 2

S=d ¼ K 2
S

9
¼ 5;
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moreover: eðZÞ � 6 � 3 ¼ 1
9 ð27� 18Þ, therefore eðZÞ ¼ 19. The invariant sub-

spaces H 0ðWSÞG and H 0ðS;oSÞG are easily computed.
By [17], there is a fibration g : S ! E of S onto an elliptic curve that is in-

variant by G and with fibers F of genus 10. Thus the Albanese fibration of Z
has fibers of genus 1

2
1
9 ðF 2 þ FKSÞ þ 1 ¼ 2.

As KS is ample, and KS ¼ p�KS=G, we see that KS=G is ample; as KZ ¼ g�KS=G,
the canonical divisor KZ is nef and Z is minimal. r

Recently the moduli space M of surfaces with c21 ¼ 5, q ¼ 1, pg ¼ 2 has been
studied by Gentile, Oliviero and Polizzi [9]. They give a stratification of M and
prove that M has at least 2 irreducible components. It would be interesting to
know in which component and strata the surface Z belongs.

9 Let G be the permutation group S3 generated by two involutions sE , sE 0

such that EE 0 ¼ 0. The order 3 automorphism t ¼ sEsE 0 has no fixed-points
(type III(1)). Let be E 00 ¼ sEðE 0Þ ¼ sE 0 ðEÞ. Let g : Z ! S=G be the minimal de-
singularisation of S=G.

Proposition 27. The surface Z is the resolution of the 27 nodes on S=G and has
invariants:

c21 ¼ 3; c2 ¼ 45; q ¼ 0; pg ¼ 3; h1;1 ¼ 31;

it is a minimal Horikawa surface with c2 ¼ 5c21 þ 30.

Proof. An equation of F is:

F ¼ fx3
1 þ x3

2 þ x1x2lðx3; x4; x5Þ þ Cðx3; x4; x5Þ ¼ 0g:

Each involution of type I fixes 27 isolated points and these points are not fixed by
the 2 other involutions, therefore the surface S=G contains 27 nodes. Let F , F 0,
F 00 be fibers of gE , gE 0 , gE 00 , then:

K 0 :¼ F þ F 0 þ F 00 ¼ KS � ðE þ E 0 þ E 00Þ

is nef; as K 0 ¼ p�KS=G, KS=G is nef thus KZ ¼ g�KS=G is nef. Moreover:

K 2
Z ¼ K 2

S=G ¼ 1

6
ðK 0Þ2 ¼ 3:

It is easy to check that q ¼ 0 and pg ¼ 3. Let us compute the Euler number:

eðS=GÞ ¼ 1

6
ðeðSÞ þ eðE þ E 0 þ E 00Þ þ 3 � 27Þ ¼ 18

As there are 27 nodes on S=G, eðZÞ ¼ 18þ 27 ¼ 45. r

9 Let S be a Fano surface and let s1, s2 be 2 involutions of type II acting
on S and generating a group G isomorphic to the dihedral group D3, with the
involution s1s2s1 of type II.
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Proposition 28. The minimal resolution Z of the quotient surface S=G has
invariants:

c21 ¼ 0; c2 ¼ 12; q ¼ pg ¼ 1; h1;1 ¼ 12:

It is a minimal properly elliptic surface. The surface S=G contain 3 cusps and one
node.

Proof. The representation of D3 on H 0ðWSÞ splits into the sum of twice the
unique 2 dimensional irreducible representation V1

3
and the trivial representation

T (see [17], Section 3.3 for an equation), therefore q ¼ 1. The representation of
D3 on H 0ðS;oSÞ is T þ 3Dþ 3V1

3
, where D is the determinantal representation,

thus pg ¼ 1.
The element s ¼ s1s2 is a type III(2) automorphism that fixes 9 points si.

There are 3 involutions of type II in G, each of them fixes a curve Ri and an
isolated point ti. The image of the ti is a A1 singularity on S=s. Let Di be the di-
visor on S such that Cti ¼ Di þ Ri. We have RiRj ¼ 3 for iA j. This gives 3 fixed
points, say s1, s2, s3, for the whole group G and the images of the points s4; . . . ; s9
are two cups on S=s. The representation of the group G on the tangent space of
points s1, s2, s3 is isomorphic to V1

3
, their images are smooth points on the surface

S=G. As S=G has only nodal singularities or cusps, we have K 2
Z ¼ K 2

S=s. By [17],
we have DiDj ¼ 2, R2

i ¼ �4, KSRi ¼ 6, and F ¼
P i¼3

i¼1 Di is a fiber of a fibration
g : S ! E onto an elliptic curve E. As

KS �
Xi¼3

i¼1

Ri ¼
Xi¼3

i¼1

Di ¼ F ;

we obtain that K 2
Z ¼ 1

6F
2 ¼ 0 and we deduce that c2 ¼ 12.

The fibration g is moreover invariant by D3, thus for a generic fiber Fs of g, the
curve Fs=D3 is a fiber of the Albanese map of Z. The quotient Fs ! Fs=D3 is
ramified over Fs

P
Ri ¼ FsðKS � FsÞ ¼ 18 points; as KS

P
Di ¼ 18, the genus of

F=D3 is equal to 1.
As there is a fibration by elliptic curves on S, it has Kodaira dimension less or

equal to 1, and since pg ¼ 1, c2 ¼ 12, it is a minimal properly elliptic surface. r

9 Let S be a Fano surface and let D5 be the dihedral group acting on it, such
that the order 2 elements have type II.

Proposition 29. The minimal resolution Z of the quotient surface S=D5 has
invariants:

c21 ¼ �2; c2 ¼ 2; q ¼ 1; pg ¼ 0; h1;1 ¼ 4

The surface S=D5 contains a unique nodal singularity. The surface Z is a ruled
surface of genus 1.
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Proof. We can take the group generated by the permutations a ¼ ð1; 2; 3; 4; 5Þ
and b ¼ ð1; 3Þð4; 5Þ acting on the basis vectors e1; . . . ; e5 of C

5 by permutation of
the indices.

The vectors vk ¼
Pk¼5

k¼1 x
kiei, 0a ka 4 are eigenvectors of a, moreover

v1bv4 and v2bv3 are a basis of eigenvectors for the eigenvalue 1 (resp �1) under
the action of a (resp. b). The lines corresponding to s1 ¼ Cv1bv4 and s2 ¼
Cv2bv3 are the only ones contained into the cubic F among the points Cvibvj
(1a i < ja 5) in the grassmannian Gð2; 5Þ. We deduce that s1 and s2 are fixed
points for the whole group D5. On the tangent space of s1 the action of D5 is
given by x ! ðxx1; x4x2Þ and x ! ðx2; x1Þ. The invariant ring by this action is
C½x5

1 þ x5
2 ; x1x2�, therefore the image of the si are smooth points. As the eigen-

values of dbs1 acting on TS; s1 are ð1;�1Þ, the fixed curve of b goes through it.
The representation of D5 on H 0ðWSÞ splits into the trivial representation

and the sum of two 2 dimensional non-isomorphic representations V1
5
and V2

5
,

therefore q ¼ 1. The representation of D5 on H 0ðS;oSÞ is 2Dþ 2V1
5
þ 2V2

5
,

where D is the determinantal representation, thus pg ¼ 0.
The group D5 contains 5 order 2 elements of type II, each fixes an isolated

point ti and a smooth genus 4 curve Ri, that gives one A1 singularity of S=D5.
As RiRj ¼ 2 for iA j, we deduce that the curves Ri cut each other in s1 and s2.
Moreover:

KS ¼ p�KS=G þ
X5

i¼1

Ri;

therefore:

10K 2
S=G ¼

�
KS �

X
Ri

�2
¼ �20

and as K 2
Z ¼ K 2

S=G, we obtain: K
2
Z ¼ �2.

Let us compute the Euler number:

eðS=GÞ ¼ 1

10
ðeðSÞ þ eðR1 þ � � � þ R5 � s1 � s2Þ þ 5þ 9 � 2Þ ¼ 1:

As we have only one A1 singularity: eðSÞ ¼ 2.
The divisor Ft ¼

P i¼5
i¼1 Di is a connected fiber of genus 16 of a fibration

g : S ! E onto an elliptic curve. This fibration is invariant by D5 (see [17], Theo-
rem 3). The quotient map Fu ! Fu=D5 for Fu a generic fiber is ramified over
Fu

P
Ri ¼ Ftð5Ct � FtÞ ¼ 50 points, thus the genus of the quotient curve Fu=D5

is 0. r

9 Let S be a Fano surface with automorphism group containing two involu-
tions of type I sE ; sE 0 with product of order 3 and commuting with a type III(1)
automorphism s.
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Proposition 30. The minimal resolution Z of the quotient surface S=G is mini-
mal and has invariants:

c21 ¼ 1; c2 ¼ 23; q ¼ 0; pg ¼ 1; h1;1 ¼ 21:

Proof. Up to a change of coordinates, the cubic can be written as:

F ¼ fx3
1 þ x3

2 þ x3
3 þ x3

4 þ x3
5 þ ax1x2x5 ¼ 0g:

The fixed points of the three involutions of type I are 3 disjoint elliptic curves E,
E 0, E 00 and 81 isolated points, divided into 9 orbits of 9 elements, giving 9A1 sin-
gularities. The 9 � 2 ¼ 18 isolated points of the 2 type III(2) automorphisms gives
3A2 singularities on S=G. We check easily that q ¼ 0 and pg ¼ 1, moreover:

K 2
S=G ¼ 1

18
K 02 ¼ 1

for K 0 ¼ KS � E � E 0 � E 00 and we deduce that c2 ¼ 23. As K 0 ¼ F þ F 0 þ F 00

(for F , F 0, F 00 fibers of gE , gE 0 , gE 00) is nef, Z is minimal. r
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