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Partial Differential Equations — Double Ball Property for non-divergence hori-
zontally elliptic operators on step two Carnot groups, by GIULIO TRALLI, commu-
nicated on 20 April 2012.

ABSTRACT. — Let % be a linear second order horizontally elliptic operator on a Carnot group of
step two. We assume % in non-divergence form and with measurable coefficients. Then, we prove
the Double Ball Property for the nonnegative sub-solutions of #. With our result, in order to solve
the Harnack inequality problem for this kind of operators, it becomes sufficient to prove the so
called ¢-Critical Density.
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1. INTRODUCTION

As it is well known, in the theory of fully nonlinear elliptic equations a cru-
cial role is played by the Krilov-Safonov’s Harnack inequality for nonnega-
tive solutions to the linear equations in non-divergence form and measurable
coeflicients.

However, in several research areas, such as Complex or CR Geometry, there
are fully nonlinear equations characterized by an underlying sub-Riemannian
structure which are not elliptic at any point, see e.g. [8], [11], [9], [10], [2], [3],
[7]. The existence theory for viscosity solutions to such equations is quite well
settled, mainly thanks to the papers [11], [9], [3]. On the contrary, the problem
of the solutions regularity is still widely open. This is mainly due to the lack of
pointwise estimates for solutions to linear sub-elliptic equations with rough coef-
ficients. In this context, a long standing open problem is the invariant Harnack
inequality for positive solutions to horizontally elliptic equations on Lie groups,
in non-divergence form and rough coeflicients.

Di Fazio, Gutiérrez and Lanconelli in [4] found an axiomatic procedure to
establish the scale invariant Harnack inequality in very general settings like dou-
bling Holder quasimetric spaces. Homogeneous Lie groups and, more generally,
Carnot-Carathéodory spaces are remarkable examples of settings where their
procedure applies. Di Fazio, Gutiérrez and Lanconelli proved that the double-
ball property and the e-critical density are sufficient conditions for the Harnack
inequality to hold. Recently, this general approach has been used by Gutiérrez
and Tournier to prove the Harnack inequality for a class of horizontally elliptic
operators with measurable coefficients in the Heisenberg group.
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In this paper, we establish the double ball property for non-divergence linear
second order operators which are elliptic with respect to the generators of a step
two Carnot group. To be precise, let us fix some definitions. Let (R, x,6;) be an
homogeneous Carnot group of step two and X1, ..., X,, be the vector fields gen-
erating the Lie algebra. The dilations {0}, are defined by d;(x, ) = (1x, 1*t)
for all (x,#) e R™™ = R". Consider the second order differential operator

0 7= 3" a0

i,j=1

where A(x, 1) = (a;(x,1)); ;,, 1s @ m X m symmetric matrix with measurable en-
tries. We say that . is horizontally elliptic on R" if there exist A > A > 0 such
that

Aol* < <A(x, v, vy < Alfv])?

for all v € R™ and for all (x,7) € RY.

Here || - || stands for the Euclidean norm on R™, but we shall use the same no-
tation for all the Euclidean norms. Moreover, we denote with Bg(po) the homo-
geneous open ball of radius R centered at py, i.e.

Br(po) = {po* (x,1) € R ¢ [x|* + [ld)* < R*}.

Following Di Fazio, Gutiérrez and Lanconelli, in the present context we can state
the double ball property as follows.

DOUBLE BALL PROPERTY 1.1. Let R be a positive constant and py € RY. We
set

K={ue C2(B3R(p0)) cu>0and Pu<0on Bsgp(po),u=10n Br(po)}-

We say that & satisfies the Double Ball Property on Bsg(po) if there exists a pos-
itive constant y depending only on the ellipticity constants A, A such that

u>y on Br(po)

forallu e K.

In [5] Gutiérrez and Tournier proved this property for the Heisenberg group.
In this paper we prove that it holds for a general Carnot group of step two. We
first recognize that, via weak Maximum Principle, the double ball property is a
consequence of a kind of solvability of the Dirichlet problem for . in the exte-
rior of any homogeneous ball Bg(pg). As a matter of fact, our main tool is the
existence of suitable barrier functions in the interior of Bg(py) at any point of
the boundary. In Section 2 we show that, indeed, the existence of such kind of
barriers implies the double-ball property. In Section 3 we find explicit barriers at
every boundary point of the homogeneous balls. At the non-characteristic points
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(i.e. where the horizontal gradient does not vanish) we use some standard argu-
ments, whereas at the characteristic points our construction requires the explicit
knowledge of the vector fields X7, ..., X;, and of the composition law for groups
of step two.

ACKNOWLEDGMENT. We are indebted to Ermanno Lanconelli not only for the introduction to this
topic, but most of all for several helpful discussions.

2. INTERIOR BARRIERS
We start by recalling the weak maximum principle for the operator % in (1).

WEAK MAXIMUM PRINCIPLE 2.1. Let Q be an open bounded subset of RY and
u,v e C(Q) N C*HQ) such that u > v on 0Q and Lu < Lv in Q. Then, u > v in Q.

A proof of this principle for this kind of operators can be found in [6], Corol-
lary 1.3.
We now give the definition of interior .#-barrier function.

DEFINITION 2.2. Let Q be an open set of RY with non-empty boundary. Fix
p € 0Q. A function h is an interior ¥ -barrier function for Q at p if

e /iis a C? function defined on an open bounded neighborhood U of p,
® hand U depend only on A, / and the vector fields X;’s,

e Yh<0onU,

* h(p) =0,

e {(x,n) e U:h<0}\{p} =Q

We are going to prove some lemmas.

LEMMA 2.3. Let T be a compact subset of an open set O = RY. There exists
vo > 1 such that

0,T =< O
Sor all v € [1, v).

PrOOF. The sets 7 and R\ O are close and disjoint. Therefore, their distance d
is a positive number. If (x,7) € T and 4 > 0, we have

dist(3:(x, 1), T) < dist(@:(x, 0, (x,0) < 2~ Il 4+ G D2
Since T is bounded, it is easy to choose vy > 1 such that

sup dist(d,(x,1),T) <d
(x,0)eT

for all v € [1, ). 0
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We set

Ko = Ko(¥) = {u € C*(B35(0)

) :u>0and Zu <0 on B;);(0),
u>1onB(0)}.

The next lemma is an application of the weak maximum principle for the opera-
tor &Z.

LemMA 2.4. Suppose that, for every p € 0B;(0), there exists an interior £-barrier

function for By(0) at p. Then, there exists v € (1,3) (not depending on the coeffi-
cients of the matrix A) such that

on B,(0)

N —

u=>

for all u € K.

ProoOF. Fix p € 0B(0) and consider the barrier function / = h, defined on
U= U, If we set V= (Un B;3(0))\B1(0), we have that >0 and £h <0
on V. Let us now consider the boundary 0V =T ul,, where I'y =0V n
0B1(0) and I'; = dV\I'. The number m = infr, & is strictly positive because
{(x,7) € OV : h(x,t) = 0} = {p}. So, the function w=1—Lp is well defined.
We get

1
@?w:—%iphzo on V, w<1l onl} and w<0 onlj.

If u € Ky, we deduce
Lu<Lw onl, u>w ondVl.

By the Weak Maximum Principle for ., u > w on V. Since w(p) = 1, there exists
an open neighborhood W), of p contained in U N B3;»(0) where w > 1. The sets
W, depend only on the barrier functions and so on the ellipticity constants.

The compact set 0B (0) is contained in the open set O = (J, .3, o) Wp- By the
previous lemma, there exists v > 1 such that (B,(0)\B(0)) < O. Therefore, we
deduce

for all u € K. O

We are now ready to prove the double ball property under the assumptions of
the previous lemma.

PROPOSITION 2.5. Suppose that there exists an interior £-barrier function for
By (0) at every point of 0B1(0). Then, the Double Ball Property 1.1 on B3gr(po) is
satisfied for all R > 0 and p, € R".
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Proor. Fix pp =0 and R=1. If u € K, in particular u € K. By the previous

lemma, u > 1 on B,(0) for a fixed 1 < v < 3. Let us consider the function
v=2uo0,.

It is a non-negative function of class C? defined on B, (0) = B;;(0) (since
v <2). We have that v>1 on By(0). By setting & =3, 4; ;(p)X;X; where
A(p) = A(0:(p)), we get

ZLo(p) = 20*(Lu)(6,(p)) <0

because of the homogeneity of the vector fields. This means that v € Ko(#), but
A(p) have the same ellipticity constants of 4(p) and v depends only on these. So
v > 1 on B,(0), that implies u > 1 on B,2(0). If v* > 2, we have just proved the
statement. If it is not, the argument can be reapplied. Since v > 1, there exists an
integer 1y such that v > 2. Therefore, we get

1
Uz o=y on B>(0)

forall u € K.
If pp and R are arbitrary, we can argue in the same way. As a matter of fact,
we consider the function

u(p) = u(po *or(p))
for u € C*(Bsr(po)). The homogeneity and the left-invariance of % imply that

> Aij(po * Sr(p) XiXji(p) = R*(Lu)(po * Sr(p)).
ij
So, the argument above works with the same constant 7. O

3. EXPLICIT BARRIERS

It is known (see, e.g. [1]) that the m vector fields generating an N-dimensional
Carnot group of step two are, up to isomorphism, of the form

1 :
A/I(x7 l) — ax[ +§Z(ka)latk7
k=1

where B! ..., B" are suitable m x m linearly independent skew-symmetric
matrices.

In order to apply Proposition (2.5), we have to prove that there exists an inte-
rior #-barrier function for B;(0) at every point of dB;(0). We are going to give a
sufficient condition for the existence of these barriers.

LeEMMA 3.1. Let Q be a bounded domain defined by

Q= {(x,1) e RN : F(x,1) < 0},
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where F is a real-valued function. Fix p = (xo,ty) € 0Q. Suppose that F is smooth
near p and

VxF :=(XiF,...,X,F)#0
at p. Then, there exists an interior L-barrier function for Q at p.

PROOEF. Let us denote by B.((&y,70),/) the euclidean ball centered at (&, 7o)
with radius . We choose

_ , VFE(p)
o) =P =P

and S small enough such that B,((&, 79), f) is tangent to dQ at p and contained
in Q. Let us now consider the function

h(x, 1) = e~ — =lx=cl +=n]*)
The positive constant o will be fixed later on. This function is strictly positive out

of B,((&y,70),p) and vanishing on the sphere. An easy computation shows that,
forj=1,...,m,

th(x, £) = ae—a(”x—ioH2+HT—TOHZ) (Z(X _ fo)j + Z(ka)j(t . TO)k)
k=1

" 2 2
— ge—lx=éol +t=o]| >vj(x, 1).
We have

m
—a(||x—&|? .
gh(_)C’ l‘) = oe ([lx=&o | +l[t=707) Z aij(x7 [)

i,j=1
n 1 n
X (25,7 + Zbﬁ(l —70), + EZ(ka)j(ka)i — o (x, H)vj(x, t))
k=1 =1
The product of a symmetric matrix and a skew-symmetric matrix has zero trace,

so Tr(A(x,t)B¥) = 0 and we get

1 n
ZLh(x,t) = s~ xS0l +Hllr=7o %) (2 Tr(A(x, 1)) + 52 (A(x,t)B*x, B x)
Je=1

— alA(x, t)v(x, 1), v(x, t)>>

p AL
< e Gl (2 4 25 BA — afo(x, )
k=1

=: H(x,1).
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We stress that the function H depends on 4, A, but it does not depend on the
coefficients of the matrix 4. We also remark that

o
") = wrgpy Y E @) # 0

Therefore, if we choose

A 1< VF(p)|?
P e Lo
4 P 4B~ Vx F(p)|l

we obtain H(p) < 0. Then, there exists an open bounded neighborhood U of p
(depending only on the function H, namely on p, F, A, A and on the matrices
defining the vector fields) where #h < H < 0. The function /4 has all the proper-
ties required to be an interior #-barrier function for Q at p. O

REMARK 3.2. If we denote with N the defining function of B;(0), i.e. N(x,?) =
llx]|* + ||2]|* = 1, we have

VN(x, 1) =4||x|*x + > 1B x.
k=1

Since the matrices B¥’s are skewsymmetric, the vectors x and B¥x are orthogonal
for every k = 1,...,n. So, we can state that

VxN(x,t)=0 < x=0.

PRrOPOSITION 3.3. For every p € 0B;(0), there exists an interior L-barrier func-
tion for B1(0) at p.

ProoOF. By Lemma 3.1 and the last remark, it remains only to prove the exis-
tence of a barrier at the points (0,1) € 0B1(0). So, let us fix o = (¢),...,1%)
with [|7y|| = 1. Denote with P the orthogonal projector on Range(>";_, 1) B*) =
Ker(>;_, #0B¥)" and with Q the orthogonal projector on Ker(3"}_, tVB¥). We
remark that x = Px + Qx and

n
0 pk
Z 1, B*x
k=1

for all x € R”™. Since the matrices BX’s are linearly independent, the matrix P has
got a positive rank Nj, 0 < N; < m. Moreover, we put M = max||B¥||. For a
fixed

> o Px||, o>0,

>é(5_m+15+m—N1+5nM2)
7= 7 2N, N 16N,
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m—N)
Ny

Sty = Ix]* + ([lox))? —VHPXH )2+ (121 + <t 10,

where ¢’ =t — {t, 1y »1,. Finally, for a positive constant 8 to be fixed later on, we
put

(in particular we note that y > 2 and y > 2 A ), we set

h(x,t) = eF — e H0,

The function / vanishes at (0, 7)) and it is negative if and only if < 1. So, we
have

{(x,1) e R : h(x,1) <0,{t,1> > 0}\{(0, )} = By(0).

A straightforward calculation shows that

Xjh(x, 1) = pe 0 (4IIXI|2xj +4(110x(1* = 7| Px|I*)(Qx — 7Px);

+ sz(B" Z ) pe DX £ (x. 1),

21z
Then we get

Lh(x, 1) = e P (4||x||2 Tr(A(x, 1)) + 8{A(x, t)x, x)

+4(0x|1 = 7| Px|?)(Tr(A(x, 1) Q) — y Tr(A(x, 1) P))
+ 8<A(x,1)(Qx — yPx), Ox — yPx)

+ % i {A(x,)B*x, B x) — <A(x, 1) i t,?ka, i t,?ka>
k=1 k=1 k=1
- ﬂ<A(xa t)va(x7 [)a VXf(xa [>>)
< e 0 (4A|x||2(m +2) + 8A(|Qx]* + 77 [1Px]|?)

+4(1 017 = 7|1 Px|*)(Tr(A(x, )Q) — y Tr(A(x, 1)P))

2
A k(12 0 pk
+5;||B x||* = 2 ;lka

, we have

— AV S (x, ,)”2) :

>Am Ny

Since ¥,

Tr(A(x,1)Q) — yTr(A(x,t)P) < (m — N1)A — yN1A < 0.
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If | Px|* < yiz||Qx||2, then in particular ||Qx|* — || Px||* > %HXH2 (since y > 2)
and so we deduce

x 8 M?
Lh(x, 1) < ﬂe’ﬂf(*”)||x||2(4m/\ +24A + < ((m— NDA = 7N 2) + AnT) <0
because of our choice of y. Otherwise, if |Px]|> >yl2||QxH2, then || Px|* >

e [|x||* and we have

VxS (x, 0l =

1 n
4|x]1%x + 4(10x[1* = 711 Px]|*)(Qx = yPx) +§Z 0B x
k=1

1
> —
2

n n
Z t, B*x Z 1) B x
=1 k=1

ag
> 2P| = |1 InM]jx] =

n
= 1711 1B x|
k=1

g /
— ||t nM) x||.
NVITST 12"l M) || x|
Here we used the fact that the vector Y /_, 12B¥x is orthogonal to Px and Qx.
e . , ”
Hence, if in addition ||| < YA T then
ag
Vif(x, 0| > ———]||x
IVxf (0l = 5 1+y2\| I

and so we deduce

Lh(x,t) < pe M0

¥l (4A0m +2) + (NI A = (m = N)2)

M? o2 a2
2 ~ s
+ 16Ay*> + An yi ﬁ/116(1+y2))'

2 1+92
By choosing £ big enough, we obtain ¥k < 0. Summing up, the function 4 is an
interior #-barrier function for B;(0) at (0, ) if we consider it on the domain

{(x,0) : <t 00> > 0, [|7']| < W@}

We stress that, if m = N; (that is Q = 0), we can choose a simpler barrier like

e P — o BUNIPHIE 1P+t 1))

The condition m = N; for all (0,#) € 0B;(0) means exactly that the group is an
H-group in the sense of Metivier (in particular the groups of Heisenberg type sat-
isfy this condition). O
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