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Partial Di¤erential Equations — Double Ball Property for non-divergence hori-
zontally elliptic operators on step two Carnot groups, by Giulio Tralli, commu-
nicated on 20 April 2012.

Abstract. — Let L be a linear second order horizontally elliptic operator on a Carnot group of

step two. We assume L in non-divergence form and with measurable coe‰cients. Then, we prove
the Double Ball Property for the nonnegative sub-solutions of L. With our result, in order to solve

the Harnack inequality problem for this kind of operators, it becomes su‰cient to prove the so
called e-Critical Density.
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1. Introduction

As it is well known, in the theory of fully nonlinear elliptic equations a cru-
cial role is played by the Krilov-Safonov’s Harnack inequality for nonnega-
tive solutions to the linear equations in non-divergence form and measurable
coe‰cients.

However, in several research areas, such as Complex or CR Geometry, there
are fully nonlinear equations characterized by an underlying sub-Riemannian
structure which are not elliptic at any point, see e.g. [8], [11], [9], [10], [2], [3],
[7]. The existence theory for viscosity solutions to such equations is quite well
settled, mainly thanks to the papers [11], [9], [3]. On the contrary, the problem
of the solutions regularity is still widely open. This is mainly due to the lack of
pointwise estimates for solutions to linear sub-elliptic equations with rough coef-
ficients. In this context, a long standing open problem is the invariant Harnack
inequality for positive solutions to horizontally elliptic equations on Lie groups,
in non-divergence form and rough coe‰cients.

Di Fazio, Gutiérrez and Lanconelli in [4] found an axiomatic procedure to
establish the scale invariant Harnack inequality in very general settings like dou-
bling Hölder quasimetric spaces. Homogeneous Lie groups and, more generally,
Carnot-Carathéodory spaces are remarkable examples of settings where their
procedure applies. Di Fazio, Gutiérrez and Lanconelli proved that the double-
ball property and the e-critical density are su‰cient conditions for the Harnack
inequality to hold. Recently, this general approach has been used by Gutiérrez
and Tournier to prove the Harnack inequality for a class of horizontally elliptic
operators with measurable coe‰cients in the Heisenberg group.



In this paper, we establish the double ball property for non-divergence linear
second order operators which are elliptic with respect to the generators of a step
two Carnot group. To be precise, let us fix some definitions. Let ðRN ; �; dlÞ be an
homogeneous Carnot group of step two and X1; . . . ;Xm be the vector fields gen-
erating the Lie algebra. The dilations fdlgl>0 are defined by dlðx; tÞ ¼ ðlx; l2tÞ
for all ðx; tÞ a Rmþn ¼ RN . Consider the second order di¤erential operator

L ¼
Xm
i; j¼1

aijðx; tÞXiXjð1Þ

where Aðx; tÞ ¼ ðaijðx; tÞÞi; jam is a m�m symmetric matrix with measurable en-
tries. We say that L is horizontally elliptic on RN if there exist L > l > 0 such
that

lkvk2 a 3Aðx; tÞv; v4aLkvk2

for all v a Rm and for all ðx; tÞ a RN .
Here k � k stands for the Euclidean norm on Rm, but we shall use the same no-

tation for all the Euclidean norms. Moreover, we denote with BRðp0Þ the homo-
geneous open ball of radius R centered at p0, i.e.

BRðp0Þ ¼ fp0 � ðx; tÞ a RN : kxk4 þ ktk2 < R4g:

Following Di Fazio, Gutiérrez and Lanconelli, in the present context we can state
the double ball property as follows.

Double Ball Property 1.1. Let R be a positive constant and p0 a RN. We
set

K ¼ fu a C2ðB3Rðp0ÞÞ : ub 0 and Lua 0 on B3Rðp0Þ; ub 1 on BRðp0Þg:

We say that L satisfies the Double Ball Property on B3Rðp0Þ if there exists a pos-
itive constant g depending only on the ellipticity constants l, L such that

ub g on B2Rðp0Þ

for all u a K.

In [5] Gutiérrez and Tournier proved this property for the Heisenberg group.
In this paper we prove that it holds for a general Carnot group of step two. We
first recognize that, via weak Maximum Principle, the double ball property is a
consequence of a kind of solvability of the Dirichlet problem for L in the exte-
rior of any homogeneous ball BRðp0Þ. As a matter of fact, our main tool is the
existence of suitable barrier functions in the interior of BRðp0Þ at any point of
the boundary. In Section 2 we show that, indeed, the existence of such kind of
barriers implies the double-ball property. In Section 3 we find explicit barriers at
every boundary point of the homogeneous balls. At the non-characteristic points

352 g. tralli



(i.e. where the horizontal gradient does not vanish) we use some standard argu-
ments, whereas at the characteristic points our construction requires the explicit
knowledge of the vector fields X1; . . . ;Xm and of the composition law for groups
of step two.

Acknowledgment. We are indebted to Ermanno Lanconelli not only for the introduction to this
topic, but most of all for several helpful discussions.

2. Interior barriers

We start by recalling the weak maximum principle for the operator L in (1).

Weak Maximum Principle 2.1. Let W be an open bounded subset of RN and
u; v a CðWÞBC2ðWÞ such that ub v on qW and LuaLv in W. Then, ub v in W.

A proof of this principle for this kind of operators can be found in [6], Corol-
lary 1.3.

We now give the definition of interior L-barrier function.

Definition 2.2. Let W be an open set of RN with non-empty boundary. Fix
p a qW. A function h is an interior L-barrier function for W at p if

• h is a C2 function defined on an open bounded neighborhood U of p,

• h and U depend only on L, l and the vector fields Xj’s,

• Lha 0 on U,

• hðpÞ ¼ 0,

• fðx; tÞ a U : ha 0gnfpgJW.

We are going to prove some lemmas.

Lemma 2.3. Let T be a compact subset of an open set OHRN. There exists
n0 > 1 such that

dnT HO

for all n a ½1; n0�.

Proof. The sets T and RNnO are close and disjoint. Therefore, their distance d
is a positive number. If ðx; tÞ a T and l > 0, we have

distðdlðx; tÞ;TÞa distðdlðx; tÞ; ðx; tÞÞa jl� 1j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kxk2 þ ðlþ 1Þ2ktk2

q
:

Since T is bounded, it is easy to choose n0 > 1 such that

sup
ðx; tÞ aT

distðdnðx; tÞ;TÞ < d

for all n a ½1; n0�. r
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We set

K0 ¼ K0ðLÞ ¼ fu a C2ðB3=2ð0ÞÞ : ub 0 and Lua 0 on B3=2ð0Þ;
ub 1 on B1ð0Þg:

The next lemma is an application of the weak maximum principle for the opera-
tor L.

Lemma 2.4. Suppose that, for every p a qB1ð0Þ, there exists an interior L-barrier
function for B1ð0Þ at p. Then, there exists n a

�
1; 32

�
(not depending on the coe‰-

cients of the matrix A) such that

ub
1

2
on Bnð0Þ

for all u a K0.

Proof. Fix p a qB1ð0Þ and consider the barrier function h ¼ hp defined on
U ¼ Up. If we set V ¼ ðU BB3=2ð0ÞÞnB1ð0Þ, we have that hb 0 and Lha 0
on V . Let us now consider the boundary qV ¼ G1 AG2, where G1 ¼ qV B
qB1ð0Þ and G2 ¼ qVnG1. The number m ¼ infG2

h is strictly positive because
fðx; tÞ a qV : hðx; tÞ ¼ 0g ¼ fpg. So, the function w ¼ 1� 1

m
h is well defined.

We get

Lw ¼ � 1

m
Lhb 0 on V ; wa 1 on G1 and wa 0 on G2:

If u a K0, we deduce

LuaLw on V ; ubw on qV :

By the Weak Maximum Principle for L, ubw on V . Since wðpÞ ¼ 1, there exists
an open neighborhood Wp of p contained in U BB3=2ð0Þ where wb 1

2 . The sets
Wp depend only on the barrier functions and so on the ellipticity constants.

The compact set qB1ð0Þ is contained in the open set O ¼
S

p A qB1ð0Þ Wp. By the

previous lemma, there exists n > 1 such that ðBnð0ÞnB1ð0ÞÞHO. Therefore, we
deduce

ub
1

2
on Bnð0Þ

for all u a K0. r

We are now ready to prove the double ball property under the assumptions of
the previous lemma.

Proposition 2.5. Suppose that there exists an interior L-barrier function for
B1ð0Þ at every point of qB1ð0Þ. Then, the Double Ball Property 1.1 on B3Rðp0Þ is
satisfied for all R > 0 and p0 a RN.
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Proof. Fix p0 ¼ 0 and R ¼ 1. If u a K , in particular u a K0. By the previous
lemma, ub 1

2 on Bnð0Þ for a fixed 1 < n < 3
2 . Let us consider the function

v ¼ 2u � dn:

It is a non-negative function of class C2 defined on B3=nð0ÞKB3=2ð0Þ (since
n < 2). We have that vb 1 on B1ð0Þ. By setting ~LL ¼

P
i; j

~AAi; jðpÞXiXj where
~AAðpÞ ¼ AðdnðpÞÞ, we get

~LLvðpÞ ¼ 2n2ðLuÞðdnðpÞÞa 0

because of the homogeneity of the vector fields. This means that v a K0ð ~LLÞ, but
~AAðpÞ have the same ellipticity constants of AðpÞ and n depends only on these. So
vb 1

2 on Bnð0Þ, that implies ub 1
4 on Bn2ð0Þ. If n2 b 2, we have just proved the

statement. If it is not, the argument can be reapplied. Since n > 1, there exists an
integer n0 such that nn0 b 2. Therefore, we get

ub
1

2n0
¼: g on B2ð0Þ

for all u a K .
If p0 and R are arbitrary, we can argue in the same way. As a matter of fact,

we consider the function

~uuðpÞ ¼ uðp0 � dRðpÞÞ

for u a C2ðB3Rðp0ÞÞ. The homogeneity and the left-invariance of L imply that

X
i; j

Ai; jðp0 � dRðpÞÞXiXj~uuðpÞ ¼ R2ðLuÞðp0 � dRðpÞÞ:

So, the argument above works with the same constant g. r

3. Explicit barriers

It is known (see, e.g. [1]) that the m vector fields generating an N-dimensional
Carnot group of step two are, up to isomorphism, of the form

Xiðx; tÞ ¼ qxi þ
1

2

Xn

k¼1

ðBkxÞiqtk ;

where B1; . . . ;Bn are suitable m�m linearly independent skew-symmetric
matrices.

In order to apply Proposition (2.5), we have to prove that there exists an inte-
rior L-barrier function for B1ð0Þ at every point of qB1ð0Þ. We are going to give a
su‰cient condition for the existence of these barriers.

Lemma 3.1. Let W be a bounded domain defined by

W ¼ fðx; tÞ a RN : F ðx; tÞ < 0g;
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where F is a real-valued function. Fix p ¼ ðx0; t0Þ a qW. Suppose that F is smooth
near p and

‘XF :¼ ðX1F ; . . . ;XmF ÞA 0

at p. Then, there exists an interior L-barrier function for W at p.

Proof. Let us denote by Beððx0; t0Þ; bÞ the euclidean ball centered at ðx0; t0Þ
with radius b. We choose

ðx0; t0Þ ¼ p� b
‘F ðpÞ
k‘F ðpÞk

and b small enough such that Beððx0; t0Þ; bÞ is tangent to qW at p and contained
in W. Let us now consider the function

hðx; tÞ ¼ e�ab2 � e�aðkx�x0k2þkt�t0k2Þ:

The positive constant a will be fixed later on. This function is strictly positive out
of Beððx0; t0Þ; bÞ and vanishing on the sphere. An easy computation shows that,
for j ¼ 1; . . . ;m,

Xjhðx; tÞ ¼ ae�aðkx�x0k2þkt�t0k2Þ
�
2ðx� x0Þj þ

Xn

k¼1

ðBkxÞjðt� t0Þk
�

¼: ae�aðkx�x0k2þkt�t0k2Þvjðx; tÞ:

We have

Lhðx; tÞ ¼ ae�aðkx�x0k2þkt�t0k2Þ
Xm
i; j¼1

aijðx; tÞ

�
�
2dij þ

Xn

k¼1

bk
ji ðt� t0Þk þ

1

2

Xn

k¼1

ðBkxÞjðBkxÞi � aviðx; tÞvjðx; tÞ
�
:

The product of a symmetric matrix and a skew-symmetric matrix has zero trace,
so TrðAðx; tÞBkÞ ¼ 0 and we get

Lhðx; tÞ ¼ ae�aðkx�x0k2þkt�t0k2Þ
�
2TrðAðx; tÞÞ þ 1

2

Xn

k¼1

3Aðx; tÞBkx;Bkx4

� a3Aðx; tÞvðx; tÞ; vðx; tÞ4
�

a ae�aðkx�x0k2þkt�t0k2Þ
�
2mLþL

2

Xn

k¼1

kBkxk2 � alkvðx; tÞk2
�

¼: Hðx; tÞ:
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We stress that the function H depends on l, L, but it does not depend on the
coe‰cients of the matrix A. We also remark that

vðpÞ ¼ 2b

k‘FðpÞk‘XF ðpÞA 0:

Therefore, if we choose

a >
L

l

�
2mþ 1

2

Xn

k¼1

kBkx0k2
� k‘FðpÞk2

4b2k‘XFðpÞk2
;

we obtain HðpÞ < 0. Then, there exists an open bounded neighborhood U of p
(depending only on the function H, namely on p, F , l, L and on the matrices
defining the vector fields) where LhaH < 0. The function h has all the proper-
ties required to be an interior L-barrier function for W at p. r

Remark 3.2. If we denote with N the defining function of B1ð0Þ, i.e. Nðx; tÞ ¼
kxk4 þ ktk2 � 1, we have

‘XNðx; tÞ ¼ 4kxk2xþ
Xn

k¼1

tkB
kx:

Since the matrices Bk’s are skewsymmetric, the vectors x and Bkx are orthogonal
for every k ¼ 1; . . . ; n. So, we can state that

‘XNðx; tÞ ¼ 0 , x ¼ 0:

Proposition 3.3. For every p a qB1ð0Þ, there exists an interior L-barrier func-
tion for B1ð0Þ at p.

Proof. By Lemma 3.1 and the last remark, it remains only to prove the exis-
tence of a barrier at the points ð0; t0Þ a qB1ð0Þ. So, let us fix t0 ¼ ðt01 ; . . . ; t0nÞ
with kt0k ¼ 1. Denote with P the orthogonal projector on Rangeð

Pn
k¼1 t

0
kB

kÞ ¼
Kerð

Pn
k¼1 t

0
kB

kÞ? and with Q the orthogonal projector on Kerð
Pn

k¼1 t
0
kB

kÞ. We
remark that x ¼ PxþQx and

Xn

k¼1

t0kB
kx

�����
�����b skPxk; s > 0;

for all x a Rm. Since the matrices Bk’s are linearly independent, the matrix P has
got a positive rank N1, 0 < N1 am. Moreover, we put M ¼ maxkkBkk. For a
fixed

g >
L

l

� 5m

2N1
þ 15þm�N1

N1
þ 5nM 2

16N1

�
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(in particular we note that g > 2 and g > L
l

m�N1

N1
), we set

f ðx; tÞ ¼ kxk4 þ ðkQxk2 � gkPxk2Þ2 þ kt 0k2 þ 3t; t04;

where t 0 ¼ t� 3t; t04t0. Finally, for a positive constant b to be fixed later on, we
put

hðx; tÞ ¼ e�b � e�bf ðx; tÞ:

The function h vanishes at ð0; t0Þ and it is negative if and only if f < 1. So, we
have

fðx; tÞ a RN : hðx; tÞa 0; 3t; t04 > 0gnfð0; t0ÞgHB1ð0Þ:

A straightforward calculation shows that

Xjhðx; tÞ ¼ be�bf ðx; tÞ
�
4kxk2xj þ 4ðkQxk2 � gkPxk2ÞðQx� gPxÞj

þ
Xn

k¼1

t 0kðBkxÞj þ
1

2

Xn

k¼1

t0kðBkxÞj
�
¼ be�bf ðx;tÞXj f ðx; tÞ:

Then we get

Lhðx; tÞ ¼ be�bf ðx; tÞ

0
@4kxk2 TrðAðx; tÞÞ þ 83Aðx; tÞx; x4

þ 4ðkQxk2 � gkPxk2ÞðTrðAðx; tÞQÞ � gTrðAðx; tÞPÞÞ
þ 83Aðx; tÞðQx� gPxÞ;Qx� gPx4

þ 1

2

Xn

k¼1

3Aðx; tÞBkx;Bkx4� Aðx; tÞ
Xn

k¼1

t0kB
kx;

Xn

k¼1

t0kB
kx

* +

� b3Aðx; tÞ‘X f ðx; tÞ;‘X f ðx; tÞ4

1
A

a be�bf ðx; tÞ

0
@4Lkxk2ðmþ 2Þ þ 8LðkQxk2 þ g2kPxk2Þ

þ 4ðkQxk2 � gkPxk2ÞðTrðAðx; tÞQÞ � gTrðAðx; tÞPÞÞ

þL

2

Xn

k¼1

kBkxk2 � l
Xn

k¼1

t0kB
kx

�����
�����
2

� blk‘X f ðx; tÞk2
1
A:

Since g > L
l

m�N1

N1
, we have

TrðAðx; tÞQÞ � gTrðAðx; tÞPÞa ðm�N1ÞL� gN1l < 0:
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If kPxk2 a 1
g2
kQxk2, then in particular kQxk2 � gkPxk2 b 2

5 kxk
2 (since g > 2)

and so we deduce

Lhðx; tÞa be�bf ðx; tÞkxk2
�
4mLþ 24Lþ 8

5
ððm�N1ÞL� gN1lÞ þLn

M 2

2

�
< 0

because of our choice of g. Otherwise, if kPxk2 > 1
g2
kQxk2, then kPxk2 b

1
1þg2

kxk2 and we have

k‘X f ðx; tÞkb 4kxk2xþ 4ðkQxk2 � gkPxk2ÞðQx� gPxÞ þ 1

2

Xn

k¼1

t0kB
kx

�����
�����

�
Xn

k¼1

t 0kB
kx

�����
�����b 1

2

Xn

k¼1

t0kB
kx

�����
������ kt 0k

Xn

k¼1

kBkxk

b
s

2
kPxk � kt 0knMkxkb

� s

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p � kt 0knM
�
kxk:

Here we used the fact that the vector
Pn

k¼1 t
0
kB

kx is orthogonal to Px and Qx.
Hence, if in addition kt 0k < s

4nM
ffiffiffiffiffiffiffiffi
1þg2

p , then

k‘X f ðx; tÞkb s

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p kxk

and so we deduce

Lhðx; tÞa be�bf ðx; tÞkxk2
�
4Lðmþ 2Þ þ 4gðgN1L� ðm�N1ÞlÞ

þ 16Lg2 þLn
M 2

2
� l

s2

1þ g2
� bl

s2

16ð1þ g2Þ

�
:

By choosing b big enough, we obtain Lh < 0. Summing up, the function h is an
interior L-barrier function for B1ð0Þ at ð0; t0Þ if we consider it on the domain�
ðx; tÞ : 3t; t04 > 0; kt 0k < s

4nM
ffiffiffiffiffiffiffiffi
1þg2

p �
.

We stress that, if m ¼ N1 (that is Q ¼ 0), we can choose a simpler barrier like

e�b � e�bðkxk4þkt 0k2þ3t; t04Þ:

The condition m ¼ N1 for all ð0; t0Þ a qB1ð0Þ means exactly that the group is an
H-group in the sense of Metivier (in particular the groups of Heisenberg type sat-
isfy this condition). r
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