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1. Introduction and framework

In all this paper E represents a Polish space with metric d. We denote by BðEÞ
the s-algebra of all Borel subsets of E and by PðEÞ the set of all probability
measures defined on ðE;BðEÞÞ. Moreover, BbðEÞ, CbðEÞ, UCbðEÞ is the Banach
space of all real bounded functions, which are Borel measurable, continuous, uni-
formly continuous, respectively, endowed with the norm kjk0 ¼ supx AE jjðxÞj.

Let T > 0 be fixed. While in Sections 1–3 of this paper T is assumed to be
finite and we consider the interval ½0;T �, in Section 4 we work on all of R. We
say that p ¼ ps; tð� ; �Þ, 0a sa taT , is a Markovian transition probability on E, if

(i) ps; tðx; �Þ is a probability measure on ðE;BðEÞÞ for each 0a sa taT ,
x a E.

(ii) ps; tð�;GÞ belongs to BbðEÞ for each 0a sa taT , G a BðEÞ.

(iii) ps; tðx;GÞ ¼
Z
E

ps; rðx; dyÞpr; tðy;GÞ, for each 0a sa taT , G a BðEÞ.

(iv) ps; sðx;GÞ ¼ 1GðxÞ, for each x a E, G a BðEÞ.
(v) p is called forward continuous, if for all u a CbðEÞ, x a E, 0a sa taT

lim
r!t; r A ½s;T �

Z
E

uðyÞps; rðx; dyÞ ¼
Z
E

uðyÞps; tðx; dyÞ:

(vi) p is called parabolic Feller, if for all u a Cbð½0;T � � EÞ, t > 0

ðs; xÞ 7!
Z
E

uðs; yÞps; sþtðx; dyÞ:

is uniformly continuous on ½0;T � � E.



Any Markovian transition probability p on E defines a family of linear operators
Ps; t, 0a sa taT ; on the space BbðEÞ, by the formula

Ps; tjðxÞ ¼
Z
E

jðyÞps; tðx; dyÞ; 0a sa taT ; x a E; j a BbðEÞ:ð1:1Þ

Ps; t, 0a sa taT , is called the Markovian transition evolution operator associ-
ated to the transition function p. By (1.1) it follows that

Ps; t ¼ Ps; rPr; t; E0a sa ra taT ; Ps; s ¼ I ; Es a ½0;T �:ð1:2Þ

Remark 1.1. Clearly (vi) implies that Ps; tðUCbðEÞÞHUCbðEÞ for all 0a sa
taT . For the time homogeneous case this is even equivalent to (vi). Indeed, sup-
pose p is time homogeneous, i.e. ps; sþt ¼ p0; t for all s a ½0;T �, t a ½0;T � s�.
Then p is parabolic Feller (see property (vi) above) if and only if

P0; tðUCbðEÞÞHUCbðEÞ; Etb 0:

That (vi) implies the latter is obvious. The converse follows by Lemma A.1 in the
Appendix.

Example 1.2. Let us consider the stochastic di¤erential equation

dXðtÞ ¼ ðAXðtÞ þ F ðt;X ðtÞÞ dtþ BdWðtÞ; t a ½s;T �
XðsÞ ¼ x a L2ðW;Fs;P;HÞ;

�
ð1:3Þ

on a separable real Hilbert space H, where A : DðAÞHH ! H is the infini-
tesimal generator of a strongly continuous semigroup etA in H, B a LðHÞ and
F : DðF ÞH ½0;T � �H ! H is measurable possibly nonlinear. We assume that
for any t > 0 we have TrQt < þl where

Qtx ¼
Z t

0

esABB�esA
�
x ds; x a H:

To express the dependence on s, x, we denote a solution of (1.3) by

Xðt; s; xÞ; tb s:

Concerning F we assume that problem (1.3) is well-posed. Define the correspond-
ing transition evolution operator

Ps; tjðxÞ :¼ E½jðX ðt; s; xÞÞ�; j a CbðHÞ:ð1:4Þ

Then denoting by ps; tðx; dyÞ the law of X ðt; s; xÞ it is clear that ps; tð� ; �Þ,
0a sa taT , is a Markovian transition probability, which is forward con-
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tinuous, if t 7! X ðt; s; xÞ is P-a.s. continuous. Note that for u a Cbð½0;T � � EÞ,
ðs; xÞ a ½0;T � � E and t > 0

E½uðsþ t;X ðsþ t; s; xÞÞ� ¼
Z
E

uðsþ t; yÞps; sþtðx; dyÞ:

Hence p is parabolic Feller if the law of the space time process

Zðt; ðs; xÞÞ :¼ ðsþ t;X ðsþ t; s; xÞÞ; tb 0;

depends uniformly continuously on its initial condition ðs; xÞ. To ensure this we
need corresponding conditions on F in assumptions (1.3), as e.g. that DðFÞ ¼
½0;T � �H, F : ½0;T � �H ! H is uniformly continuous and there exists a con-
stant K > 0 such that

jFðt; xÞ � F ðt; yÞjaK jx� yj

for a x:y a H, t a ½0;T �.

2. The transition semigroup on Cb;Tð½0;T � � EÞ

We fix T > 0 and a Markovian transition probability p ¼ ps; t, 0a sa taT ,
satisfying (v) and (vi), with corresponding Markovian transition evolution opera-
tors ðPs; tÞ0asataT . Define a semigroup S ðTÞ

t , tb 0, of linear operators on

Cb;Tð½0;T � � EÞ :¼ fu a UCbð½0;T � � EÞ : uðT ; xÞ ¼ 0; Ex a Eg

as follows

ðS ðTÞ
t uÞðt; xÞ ¼ ðPt; tþtðuðtþ t; �ÞÞÞðxÞ; if 0a taT � t; x a E;

0; if T � ta taT ; x a E:

�
ð2:1Þ

To show that S ðTÞ
t u a Cb;Tð½0;T � � EÞ, by (vi) and Lemma A.1 in the Appendix

we have only to check that

½0;T � C t 7! Pt; tþtðuðtþ t; �ÞÞ a UCbðEÞ;

is left continuous in t :¼ T � t. So, let tn a ½0;T � t�, tn ! T � t, as n ! l.
Then since u is uniformly continuous on ½0;T � � E and uðt; xÞ ¼ 0 for x a E we
have limn!lkuðtn þ t; �Þk0 ¼ 0, where k � k0 denotes the supremum norm. But

kPtn; tnþtuðtn þ t; �ÞÞk0 a kuðtn þ t; �Þk0;

so, in UCbðEÞ

lim
n!l

Ptn; tnþtuðtn þ t; �ÞÞ ¼ 0 ¼ PT�t;TðuðT ; �ÞÞ:
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Furthermore, we note that obviously for all f a Cb;Tð½0;T � � EÞ

S
ðTÞ
0 f ¼ f

and

S ðTÞ
t f ðt; xÞ ¼ 1½0;T�tÞðtÞS ðTÞ

t f ðt; xÞ; Eðt; xÞ a ½0;T � � E:

If, in particular uðt; xÞ ¼ aðtÞjðxÞ, t a ½0;T �, x a E, we have

ðS ðTÞ
t uÞðt; xÞ ¼ aðtþ tÞðPt; tþtjÞðxÞ; t a ½0;T �; x a E:ð2:2Þ

By (1.2) it follows that S ðTÞ
t , tb 0, is a semigroup of linear operators on

Cb;Tð½0;T � � EÞ. However, it is not strongly continuous in general as is well
known from the literature on Markov semigroups, see e.g. [11], [12], [5], [19],
[10], [14], [15], [16] and [18].

Let us introduce the notion of p-convergence following [19]. Let ðunÞH
Cb;Tð½0;T � � EÞ and u a Cb;Tð½0;T � � EÞ. We say that ðunÞ is p-convergent to u
and write un !

p
u if

(i) lim
n!l

unðt; xÞ ¼ uðt; xÞ, Eðt; xÞ a ½0;T � � E.

(ii) sup
n AN

kunk0 < l, (with k � k0 denoting the supremum norm).

We call an operator S on Cb;Tð½0;T � � EÞ p-continuous if un !
p
u implies

Sun !
p
Su for u; un a Cb;Tð½0;T � � EÞ.

Proposition 2.1. S ðTÞ
t is p-continuous for all tb 0.

Proof. Obviously,

sup
n AN

kS ðTÞ
t unk0 a sup

n AN
kunk0 < l:

Moreover if 0a taT � t, we have

jðS ðTÞ
t uÞðt; xÞ � ðS ðTÞ

t unÞðt; xÞja ðPt; tþtjuðtþ t; �Þ � unðtþ t; �ÞjÞðxÞ:

Now the conclusion follows from the dominated convergence theorem. r

Proposition 2.2. Let u a Cb;Tð½0;T � � EÞ. Then whenever t; tn a ½0;lÞ,
n a N, such that limn!l tn ¼ t, we have

S ðTÞ
tn

u !p S ðTÞ
t u; as n ! l:

Proof. Case 1. Consider ðt; xÞ a ½0;T � tÞ � E. Then for large enough n, also
ðt; xÞ a ½0;T � tnÞ � E. Hence
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jðS ðTÞ
tn

uÞðt; xÞ � ðS ðTÞ
t uÞðt; xÞj

¼ jðPt; tþtnðuðtþ tn; �ÞÞÞðxÞ � ðPt; tþtðuðtþ t; �ÞÞÞðxÞj ! 0 as n ! l;

since

lim
n!l

kuðtþ tn; �Þ � uðtþ t; �Þk0 ¼ 0:

Case 2. Consider ðt; xÞ a ðT � t;T � � E.
Since then for large n also ðt; xÞ a ðT � tn;T � � E we have

ðS ðTÞ
tn

uÞðt; xÞ ¼ 0 ¼ ðS ðTÞ
t uÞðt; xÞ:

Case 3. Consider ðT � t; xÞ a ½0;T � � E.
Then if tn b t we have

ðS ðTÞ
tn

uÞðT � t; xÞ ¼ 0 ¼ ðS ðTÞ
t uÞðT � t; xÞ:

So, we may assume tn < t for all n a N.
Then

jðS ðTÞ
tn

uÞðT � t; xÞj ¼ jðPT�t;T�tþtnðuðT � tþ tn; �ÞÞÞðxÞj
a kuðT � tþ tn; �Þk0 ! 0 as n ! l;

hence

lim
n!l

ðS ðTÞ
tn

uÞðT � t; xÞ ¼ 0 ¼ ðS ðTÞ
t uÞðT � t; xÞ: r

2.1. The infinitesimal generator of S ðTÞ
t , tb 0

Definition 2.3. We say that u a Cb;Tð½0;T � � EÞ belongs to the domain of
KðTÞ if

(i) For each ðt; xÞ a ½0;T � � E there exists the limit

lim
e!0

1

e
ððS ðTÞ

e uÞðt; xÞ � uðt; xÞÞ ¼: ðKðTÞuÞðt; xÞ

and KðTÞu a Cb;Tð½0;T � � EÞ.

(ii) sup
e A ð0;1�

1

e
kS ðTÞ

e u� uk0 < þl.

KðTÞ is called the infinitesimal generator of S ðTÞ
t .

In the following we set

De :¼
1

e
ðS ðTÞ

e � 1Þ:
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Proposition 2.4. Let u a DðKðTÞÞ and let tb 0. Then S ðTÞ
t u a DðKðTÞÞ and

we have

KðTÞS ðTÞ
t u ¼ S ðTÞ

t KðTÞu:ð2:3Þ

Moreover, for each ðt; xÞ a ½0;T � � E, ðS ðTÞ
t uÞðt; xÞ is di¤erentiable at each tb 0

and

d

dt
ðS ðTÞ

t uÞðt; xÞ ¼ ðKðTÞS ðTÞ
t uÞðt; xÞ ¼ ðS ðTÞ

t KðTÞuÞðt; xÞ:ð2:4Þ

Proof. Let u a DðKðTÞÞ and ðt; xÞ a ½0;T � � E. Then we have

ðDeS
ðTÞ
t uÞðt; xÞ ¼ ðS ðTÞ

t DeuÞðt; xÞ:

Since Deu !p KðTÞu, by Proposition 2.1 it follows that as e ! 0

ðDeS
ðTÞ
t uÞðt; xÞ !p ðS ðTÞ

t KðTÞuÞðt; xÞ:

So, S ðTÞ
t u a DðKðTÞÞ and KðTÞS ðTÞ

t u ¼ S ðTÞ
t KðTÞu. On the other hand,

ðDþ
t S

ðTÞ
t uÞðt; xÞ ¼ lim

e!0þ
ðS ðTÞ

t DeuÞðt; xÞ ¼ ðS ðTÞ
t KðTÞuÞðt; xÞ:

Since ðS ðTÞ
t KðTÞuÞðt; xÞ is continuous in t by Proposition 2.2, we have, by

an elementary result, that ðS ðTÞ
t uÞðt; xÞ is continuously di¤erentiable and

ðDtS
ðTÞ
t uÞðt; xÞ ¼ S ðTÞ

t Kuðt; xÞ. r

We shall denote by rðKðTÞÞ the resolvent set of KðTÞ, i.e. the set of all l a R
such that

l�KðTÞ : DðKðTÞÞ ! Cb;Tð½0;T � � EÞ

is bijective and its resolvent Rðl;KðTÞÞ :¼ ðl�KðTÞÞ�1 is p-continuous.

Proposition 2.5. rðKðTÞÞ ¼ R. Moreover, for any l a R and any f a
Cb;Tð½0;T � � EÞ we have for ðt; xÞ a ½0;T � � E

ðRðl;KðTÞÞ f Þðt; xÞ ¼
Z l

0

e�ltðS ðTÞ
t f Þðt; xÞ dtð2:5Þ

¼
Z T�t

0

e�ltðS ðTÞ
t f Þðt; xÞ dt:

Proof. Let f a Cb;Tð½0;T � � EÞ and for any l a R, ðt; xÞ a ½0;T � � E set, fol-
lowing [5]

ðFðlÞ f Þðt; xÞ ¼
Z l

0

e�ltðS ðTÞ
t f Þðt; xÞ dt:
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It is easy to see that FðlÞ f a Cb;Tð½0;T � � EÞ and that F ðlÞ is p-continuous.
Now we show that l a rðKðTÞÞ. We write

ðDeFðlÞ f Þðt; xÞ

¼ 1

e
ele

Z T�t

e

e�ltðS ðTÞ
t f Þðt; xÞ dt�

Z T�t

0

e�ltðS ðTÞ
t f Þðt; xÞ dt

� �

¼ 1

e
ðele � 1Þ

Z T�t

e

e�ltðS ðTÞ
t f Þðt; xÞ dt� 1

e

Z e

0

e�ltðS ðTÞ
t f Þðt; xÞ dt:

Therefore,

lim
e!0

ðDeFðlÞ f Þðt; xÞ ¼ lðFðlÞ f Þðt; xÞ � f ðt; xÞ:ð2:6Þ

On the other hand,

kDeF ðlÞ f k0 a
� ele � 1

el
þ 1

�
k f k0 maxf1; e�ltg:

and therefore F ðlÞ f a DðKðTÞÞ and

KðTÞFðlÞ f ¼ lFðlÞ � f :ð2:7Þ

It remains to show that

F ðlÞðl�KðTÞÞj ¼ j; Ej a DðKðTÞÞ;ð2:8Þ

which then implies that l a rðKðTÞÞ. Let us prove (2.8). If j a DðKðTÞÞ taking
into account Proposition 2.4, we have

ðF ðlÞKðTÞjÞðt; xÞ ¼
Z l

0

e�ltðS ðTÞ
t KðTÞjÞðt; xÞ dt

¼
Z T�t

0

e�lt d

dt
ðS ðTÞ

t jÞðt; xÞ dt

¼ �jðt; xÞ þ lðFðlÞjÞðt; xÞ; Eðt; xÞ a ½0;T � � E:

which implies (2.8). r

Remark 2.6. The domain DðKðTÞÞ of KðTÞ is not dense in Cb;Tð½0;T � � EÞ in
general; however, it is easy to check that it is p-dense in Cb;Tð½0;T � � EÞ, that
is for any u a Cb;Tð½0;T � � EÞ there exists ðunÞHDðKðTÞÞ such that un !

p
u.

(See the proof of Proposition 2.8 below.)

367well posedness of fokker–planck equations for generators



Remark 2.7. By (2.5) it follows that for l > 0

kRðl;KðTÞÞ f k0 a
1

l
k f k0; E f a Cb;Tð½0;T � � EÞ:

Therefore KðTÞ is m-dissipative in Cb;Tð½0;T � � EÞ.

Proposition 2.8. DðKðTÞÞ is p-dense in Cb;Tð½0;T � � EÞ, i.e., for every
f a Cb;Tð½0;T � � EÞ there exist un a DðKðTÞÞ, n a N, such that un !

p
f .

Proof. Let f a Cb;Tð½0;T � � EÞ and define un :¼ nRðn;KðTÞÞ f , i.e. for ðt; xÞ a
½0;T � � E

unðt; xÞ :¼ n

Z l

0

e�ntðS ðTÞ
t f Þðt; xÞ dt

¼
Z l

0

e�tðS ðTÞ
t=n f Þðt; xÞ dt

! ðS ðTÞ
0 f Þðt; xÞ ¼ f ðt; xÞ;

by Proposition 2.2. Now the assertion follows by Remark 2.7. r

3. Fokker–Planck equations

A probability kernel on ½0;T � � E is a mapping

½0;T � ! PðEÞ; t 7! mt

such that for any I a BðEÞ the mapping

½0;T � ! R; t 7! mtðIÞ

is measurable.
We shall identify a probability kernel ðmtÞt A ½0;T � with the Borel measure on

½0;T � � E defined by

mðAÞ ¼
Z
½0;T ��E

1Aðt; xÞmtðdxÞ dt; A a Bð½0;T � � EÞ:

Definition 3.1. We say that a probability kernel m is a solution of the Fokker–
Planck equation if

Z
½0;T ��E

ðKðTÞuÞðt; xÞmtðdxÞ dt ¼ �
Z
E

uð0; xÞm0ðdxÞ; Eu a DðKðTÞÞ:ð3:1Þ
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Remark 3.2. Let u a DðKðTÞÞ and tb 0. Then by (3.1), replacing u by S ðTÞ
t u

we deduce

Z
½0;T ��E

ðKðTÞS ðTÞ
t uÞðt; xÞmtðdxÞ dt ¼ �

Z
E

ðS ðTÞ
t uÞð0; xÞm0ðdxÞ:

By Proposition 2.4 integrating with respect to t, yields

Z
½0;T ��E

ðS ðTÞ
t uÞðt; xÞmtðdxÞ dt�

Z
½0;T ��E

uðt; xÞmtðdxÞ dtð3:2Þ

¼ �
Z t

0

dt

Z
E

ðP0; tuðt; �ÞÞðxÞm0ðdxÞ:

Therefore, if m a Pð½0;T � � EÞ is a solution to the Fokker–Planck equation
(3.1), then (3.2) holds for any u a Cb;Tð½0;T � � EÞ, because DðKðTÞÞ is p-dense
in Cb;Tð½0;T � � EÞ. Conversely, it is easy to see that if (3.2) holds for any
u a Cb;Tð½0;T � � EÞ, then (3.1) is fulfilled. So, (3.1) and (3.2) are equivalent.

There are in general several solutions to (3.1); to select one of them one has to
specify the initial value m0.

Theorem 3.3. For any z a PðEÞ there exists a unique solution m to (3.1) such
that m0 ¼ z.

Proof. Existence. Let z a PðEÞ and for any t a ð0;T � set mt ¼: P�
0; tz (where P

�
0; t

is the dual operator of P0; t in the dual space C �
b ðEÞ of CbðEÞ), that is

Z
H

jðxÞmtðdxÞ ¼
Z
E

ðP0; tjÞðxÞzðdxÞ; Ej a CbðEÞ:

We claim that mðdt; dxÞ :¼ mtðdxÞ dt is a solution to (3.1). For this it is enough to
check (3.2). We have in fact

Z T�t

0

dt

Z
E

ðPt; tþtuðtþ t; �ÞÞðxÞmtðdxÞ

¼
Z T�t

0

dt

Z
E

ðP0; tPt; tþtuðtþ t; �ÞÞðxÞzðdxÞ

¼
Z T�t

0

dt

Z
E

ðP0; tþtuðtþ t; �ÞÞðxÞzðdxÞ

¼
Z T

t

dt

Z
E

ðP0; tuðt; �ÞÞðxÞzðdxÞ

and (3.2) follows.
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Uniqueness. Assume that m1 and m2 are two solutions of (3.1) such that
m1
0 ¼ m2

0 ¼ z. We claim that m1 ¼ m2. In fact from (3.1) it follows that

Z
½0;T ��E

ðKðTÞuÞðt; xÞðm1
t ðdxÞ � m2

t ðdxÞÞ dt ¼ 0;

for all u a DðKðTÞÞ. On the other hand, the range of KðTÞ is Cb;Tð½0;T � � EÞ be-
cause 0 is in the resolvent set of KðTÞ. So, m1 ¼ m2. r

Remark 3.4. For time homogeneous Markov semigroups Theorem 3.3 has
been proved in [18].

Proposition 3.5. Let z a PðEÞ, mt ¼: P�
0; tz for any t a ð0;T � and mðdt; dxÞ ¼

mtðdxÞ dt. Then S ðTÞ
t , t > 0, is uniquely extendable to a strongly continuous semi-

group of contractions S ðT ;mÞ
t , t > 0, in L1ðH � ½0;T �; mÞ. By KðT ;mÞ we shall denote

its infinitesimal generator.

Proof. We claim that

Z
½0;T ��E

jS ðT ;mÞ
t uj dma

Z
½0;T ��E

juj dm; Eu a Cb;Tð½0;T � � EÞ:ð3:3Þ

It is enough to show (3.3) for any ub 0. In this case (3.3) follows from (3.2). r

Remark 3.6. It is clear that DðKðTÞÞ is a core for KðT ;mÞ.

3.1. Comparison with other notions of Fokker–Planck equations

Let E be a separable Hilbert space with inner product 3� ; �4. In the literature
one is generally concerned with a di¤erent concept of Fokker–Planck equations.
Namely, one considers a concrete di¤erential operator

Nuðt; xÞ ¼ Dtuðt; xÞ þ
1

2
½BB�D2

xuðt; xÞ� þ 3Axþ F ðt; xÞ;Dxuðt; xÞ4;

defined in some space DðNÞ of smooth functions. Then, given a suitable
z0 a PðEÞ, one looks for a probability kernel mtðdxÞ dt such that

Z
½0;T ��E

Nuðt; xÞmtðdxÞ dt ¼ �
Z
E

uð0; xÞmð0ÞðdxÞ; u a DðNÞ:ð3:4Þ

To explain the di¤erence, let us go back to Example 1.2 assuming again that
problem (1.3) is well posed. In this case the well posedness of the problem is
equivalent to saying that DðNÞ is a core for KðT ;mÞ for every solution of (3.4).

It is important to consider the case when it is not known that the SDE corre-
sponding to N is well posed. In this case solving the Fokker–Planck equation
will produce a kind of weak solution. See [7], [1], [2], [3], [4].

370 g. d. prato and m. röckner



4. Asymptotic behavior

We are here concerned with a Markovian transition probability p ¼ ps; tðx; �Þ on
E, with �l < sa t < þl satisfying (i)–(vi) from Section 1 with R replacing the
interval ½0;T �. In this case we can define a semigroup in CbðR� EÞ setting

ðStuÞðt; xÞ ¼ ðPt; tþtuÞðtþ t; �ÞÞðxÞ; u a CbðR� EÞ:ð4:1Þ

It is easy to prove several properties for St similar to those seen for S ðTÞ
t . In par-

ticular, we can define the infinitesimal generator K of St through its resolvent.
We prove again that K is m-dissipative, however, we can only say that its resol-
vent set contains ½0;þlÞ.

Following [8], [9], we say that a family nt, t a R, is an evolution system of
measures if

Z
E

Ps; tj dns ¼
Z
E

j dnt; Ej a CbðEÞ; �l < sa t < þl:ð4:2Þ

(4.2) is equivalent to

P�
s; tns ¼ nt; �l < sa t < þl:ð4:3Þ

Note that from property (v) it follows from (4.3) that nt, t a R, is continuous in
the sense that

t 7!
Z
E

j dnt

is continuous on R for all j a CbðEÞ (or, equivalently, for all j a UCbðEÞ).
Evolution systems of measures are naturally connected to invariant measures

of St, tb 0, as the following proposition shows.

Proposition 4.1. Let nt, t a R, be continuous. Then nt, t a R, is an evolution
system of measures if and only if we have

Z
R�E

Stu dn ¼
Z
R�E

u dn; Eu a CbðR� EÞBL1ðR� E; nÞ; t > 0;ð4:4Þ

where nðdt; dxÞ ¼ ntðdxÞ dt.1

Proof. Assume that nt, t a R, is an evolution system of measures. It is enough
to show (4.4) when

uðt; xÞ ¼ aðtÞjðxÞ; t a R; x a E;

1n is not a probability measure on R� E.
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where a a CbðRÞBL1ðRÞ and j a CbðEÞ. In this case we have, taking into ac-
count that nt ¼ P�

s; tnsZ
R�E

Stu dn ¼
Z
R

aðtþ tÞ
Z
E

Pt; tþtjðxÞntðdxÞ dt

¼
Z
R

aðtþ tÞ
Z
E

Ps; tPt; tþtjðxÞnsðdxÞ dt

¼
Z
R

aðtþ tÞ
Z
E

Ps; tþtjðxÞnsðdxÞ dt

¼
Z
R

aðtÞ
Z
E

Ps; tjðxÞnsðdxÞ dt

¼
Z
R

Z
E

aðtÞjðxÞntðdxÞ dt;

and (4.4) follows.
Conversely, assume that

Z
R�E

Stu dn ¼
Z
R

aðtþ tÞ
Z
E

Pt; tþtjðxÞntðdxÞ dt ¼
Z
R�E

u dn;

for all t > 0, where uðt; xÞ ¼ aðtÞjðxÞ and a and j are as before. Then we have

Z
R

aðtÞ
Z
E

jðxÞntðdxÞ dt ¼
Z
R

aðtþ tÞ
Z
E

Pt; tþtjðxÞntðdxÞ dt

¼
Z
R

aðtþ tÞ
Z
E

jðxÞP�
t; tþtntðdxÞ dt

¼
Z
R

aðsÞ
Z
E

jðxÞP�
s�t; sns�tðdxÞ ds:

By the arbitrariness of a it follows that

Z
E

jðxÞntðdxÞ ¼
Z
E

Pt�t; tjðxÞnt�tðdxÞ; for dt-a:s: t a R:

To complete the proof we have to show that this holds for every t a R. Since the
left hand side is continuous in t by assumption, it remains to show that for all
tb 0

R C s 7!
Z
E

Ps; sþtj dns

is continuous. But this is an immediate consequence of the continuity of ns, s a R,
and property (vi) of p. r
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4.1. Asymptotic behavior

Concerning the asymptotic behavior of Ps; t both for s ! �l and t ! þl there
are interesting situations where there is a unique evolution system of measures nt,
t a R, which, in addition, enjoys the following properties

lim
s!�l

Ps; tjðxÞ ¼
Z
E

j dnt; Ej a CbðEÞ; t a R;ð4:5Þ

and

lim
t!þl

Ps; tjðxÞ �
Z
E

j dnt

� �
¼ 0; Ej a CbðEÞ; s a R:ð4:6Þ

Equations (4.5) and (4.6) were first proved in [8] for reaction-di¤usion equations,
then in [7] and [13] for Ornstein–Uhlenbeck semigroups with time dependent co-
e‰cients and in [6] for the 2D Navier–Stokes equation, see also [17].

(4.6) gives also some information about the Fokker–Planck equation (3.1).
Namely if mðt; dxÞ ¼ mtðdxÞ dt is the solution of (3.1) with m0 ¼ z, we have

lim
t!þl

Z
E

j dmt �
Z
E

j dnt

� �
¼ 0; Ej a CbðEÞ:ð4:7Þ

This shows that asymptotically for t ! l, mt is close to nt independently of m0.

A. Appendix

Lemma A.1. We have

Cð½0;T �;UCbðEÞÞ ¼ UCbð½0;T � � EÞ;

with the same norms.

Proof. ‘‘I’’ Let u a UCbð½0;T � � EÞ and let d denote the metric in E. Then for
any e > 0 there exists d > 0 such that

jt� sj þ dðx; yÞ < d ) juðt; xÞ � uðs; yÞj < e

) juðt; xÞ � uðs; xÞj < e

) kuðt; �Þ � uðs; �Þk0 < e

) u a Cð½0;T �;UCbðEÞÞ:

‘‘H’’ Let u a Cð½0;T �;UCbðEÞÞ. Then for any e > 0 there exists d > 0 such that

jt� sj < d ) kuðt; �Þ � uðs; �Þk0 < e:
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Furthermore, fuðs; �Þ : s a ½0;T �g as a continuous image of the compact set ½0;T �
is compact in UCbðEÞ. Hence for any e > 0 there exists s1; . . . ; sn a ½0;T � such
that

fuðs; �Þ : s a ½0;T �gH
[n
i¼1

fv a UCbðEÞ : kv� uðsi; �Þk0 < eg:

Claim. fuðs; �Þ : s a ½0;T �g is uniformly equicontinuous.

Proof of the claim (see proof of Ascoli–Arzelà).
Let e > 0 and choose d > 0 such that

dðx; yÞ < d ) juðsi; xÞ � uðsi; yÞj <
e

3
; i ¼ 1; . . . ; n:

Then for any s a ½0;T � there exists i a f1; . . . ; ng such that

kuðs; �Þ � uðsi; �Þk0 <
e

3
:

Hence we have

juðs; xÞ � uðs; yÞja juðs; xÞ � uðsi; xÞj
þ juðsi; xÞ � uðsi; yÞj
þ juðsi; yÞ � uðs; yÞj < e;

provided dðx; yÞ < d, which proves the claim.
Now let e > 0. Then there exists d > 0 such that

jt� sj < d ) kuðt; �Þ � uðs; �Þk0 <
e

2
; i ¼ 1; . . . ; n

and (by Claim)

dðx; yÞ < d ) juðs; xÞ � uðs; yÞj < e

2
Es a ½0;T �:

Therefore

jt� sj þ dðx; yÞ < d ) juðt; xÞ � uðs; yÞj
a juðt; xÞ � uðs; xÞj

þ juðs; xÞ � uðs; yÞja e: r
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[8] G. Da Prato - M. Röckner, Dissipative stochastic equations in Hilbert space with

time dependent coe‰cients, Rend. Lincei Mat. Appl. 17, 397–403, 2006.
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