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ABSTRACT. — The aim of this paper is to study existence and uniqueness for Fokker—Planck equa-
tions for operators being generators of time-inhomogeneous Markovian transition probabilities.

KEey worps:  Fokker—Planck equations, Markovian transition probabilities, differential stochastic
equations.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 35Q84, 60J35, 47D07.

1. INTRODUCTION AND FRAMEWORK

In all this paper E represents a Polish space with metric d. We denote by %(E)
the g-algebra of all Borel subsets of E and by #(E) the set of all probability
measures defined on (E, Z4(E)). Moreover, By(E), Cy(E), UC,(E) is the Banach
space of all real bounded functions, which are Borel measurable, continuous, uni-
formly continuous, respectively, endowed with the norm ||¢||, = sup,.. z|@(x)]|.
Let T > 0 be fixed. While in Sections 1-3 of this paper T is assumed to be
finite and we consider the interval [0, 7], in Section 4 we work on all of R. We
say that m = 7, ,(-,-), 0 < s < ¢t < T, is a Markovian transition probability on E, if

(1) 7 (x,-) is a probability measure on (E,#(E)) for each 0 <s<t<T,
xeklL.
(i) 7y (-,T") belongs to By(E) foreach0 <s<t< T, T € #(E).

si(x, ) = / s (x,dy)m. (y,T), foreach 0 <s <t < T, T € #(E).
E

)

)

) n”(x I =1p(x), foreach x e E, T € #(E).

v) n is called forward continuous, if for allu € Cp(E), x e E,0<s<t<T

(iii

(v
(

2!

im [ u(y)m,(x.dy) = / u(y)y o dy).

r—trels, T J g
(vi) =z is called parabolic Feller, if for all u € Cp([0,T] x E), t >0
(8,x) = /E u(s, y)g, s (x, dy).

is uniformly continuous on [0, 7] x E.
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Any Markovian transition probability 7 on E defines a family of linear operators
P, 0 <s<t<T,on the space By(E), by the formula

(1.1) P p(x) = / o(V)7msi(x,dy), 0<s<t<T,xekE, ¢peBy(E).
E

Py, 0<s<t<T,is called the Markovian transition evolution operator associ-
ated to the transition function 7. By (1.1) it follows that

(1.2) Py, =P,P,;, YVO<s<r<t<T, Py;=1 Vsel0,T]
REMARK 1.1. Clearly (vi) implies that P, ,(UCy(E)) < UC(E) for all 0 < s <
t < T. For the time homogeneous case this is even equivalent to (vi). Indeed, sup-

pose 7 is time homogeneous, i.e. 7y = m . for all s€[0,7], t€[0,T —s].
Then 7 is parabolic Feller (see property (vi) above) if and only if

P07T(Ucb(E)) [ UCb(E), vVt > 0.

That (vi) implies the latter is obvious. The converse follows by Lemma A.1 in the
Appendix.

ExXAMPLE 1.2. Let us consider the stochastic differential equation

(13) dX(t) = (AX(t) + F(t,X(2))dt + BdW (t), tes,T]
‘ X(s) = x € L(Q, %, P; H),

on a separable real Hilbert space H, where A4 : D(4A) € H — H is the infini-

tesimal generator of a strongly continuous semigroup e’ in H, B e L(H) and

F:D(F)c[0,T] x H— H is measurable possibly nonlinear. We assume that
for any ¢ > 0 we have Tr Q; < +00 where

t
th:/ e BB*e* ' xds, x¢eH.
0

To express the dependence on s, x, we denote a solution of (1.3) by
X(t,8,x), t=s.

Concerning F we assume that problem (1.3) is well-posed. Define the correspond-
ing transition evolution operator

(1.4) Py p(x) := Elp(X (2,5, x))], ¢ € G(H).

Then denoting by 7, ,(x,dy) the law of X(¢,s,x) it is clear that m,,(-,-),
0<s<t<T, is a Markovian transition probability, which is forward con-
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tinuous, if 7 +— X (z,s5,x) is P-a.s. continuous. Note that for u € C,([0, T] x E),
(s,x)€[0,T] x Eand t >0

Elu(s + 7, X (s + 7,5,x))] = /Eu(s + 7, V)75 o (X, dy).

Hence 7 is parabolic Feller if the law of the space time process
Z(t,(s,x)) = (s+ 7, X(s+1,5x)), =0,

depends uniformly continuously on its initial condition (s, x). To ensure this we
need corresponding conditions on F in assumptions (1.3), as e.g. that D(F) =
[0, 7] x H, F:[0,T] x H— H is uniformly continuous and there exists a con-
stant K > 0 such that

[F(2,x) = F(2, )] < K|x — y|

foraxye H,tel0,T].

2. THE TRANSITION SEMIGROUP ON Cp ([0, T| x E)

We fix 7> 0 and a Markovian transition probability 7 =mn,,, 0 <s<t< T,
satisfying (v) and (vi), with corresponding Markovian transition evolution opera-
tors (Ps,1)g< << 7~ Define a semigroup S!7), r > 0, of linear operators on

Cor([0,T] X E) :={ue UCy([0, T] x E) : u(T,x) = 0,Vx € E}
as follows

(Pripc(u(t+7,)(x), if0<r<T—-1,x€ekE,

2.1)  (SDu)(1,x) =
(2.1)  (S:"u)(1,x) {0, if T—t<t<T,xekE.

To show that S"u e C, 7([0, T] x E), by (vi) and Lemma A.1 in the Appendix
we have only to check that

0,73t P (u(t+7,-)) € UG(E),
is left continuous in r:=T7 —7. So, let 1, € [0,T —1], t, — T —t, as n — 0.

Then since u is uniformly continuous on [0, 7| x E and u(t,x) = 0 for x € E we
have lim,,_ . ||u(t, + 7, -)||, = 0, where || - ||, denotes the supremum norm. But

1P, b ztt(tn £+ 7, )l < [Jutn + 7)o
so, in UCy(E)

hm P;mtn+ru(tn + T, )) - O - PTff’T(u(T, ))

n—oo
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Furthermore, we note that obviously for all f € Cp ([0, T] X E)
S0 f =1
and
SUF(t,x) =10, 70y (1) ST (1,x),  V¥(t,x) € [0,T] x E.
If, in particular u(z, x) = a(t)p(x), t € [0, T], x € E, we have

(2.2) (STu)(t,x) = a(t + 1) (Prroep)(x), 1[0, T, x € E.
By (1.2) it follows that S!"), £>0, is a semigroup of linear operators on
Gy, 7([0,T] x E). However, it is not strongly continuous in general as is well
known from the literature on Markov semigroups, see e.g. [11], [12], [5], [19],
[10], [14], [15], [16] and [18].

Let us introduce the notion of n-convergence following [19]. Let (u,) <
Cp.7([0,T] x E) and u € Cp ([0, T] x E). We say that (u,) is n-convergent to u
and write u, — u if
(1) lim u,(t,x) = u(t,x), V(t,x) € [0,T] x E.

n—oo

(i) sup [juy]|, < oo, (with || - ||, denoting the supremum norm).
neN

We call an operator S on Cp ([0, T] x E) z-continuous if u, — u implies
Su, = Su for u,u, € Cy,7([0, T] x E).

PropoSITION 2.1. ST is n-continuous for all T > 0.
PrROOE. Obviously,

sup S uy |y < sup [lunly < oo.
neN

neN
Moreover if 0 < ¢t < T — 7, we have

|(S<T)u)(l, x) - (ngT)un)(lva < (Pf,t+r|u(l+ 7, ) - un(l_'_ 7, )|)(x)

T
Now the conclusion follows from the dominated convergence theorem. O

ProposiTION 2.2, Let ue Cpr([0,T] % E). Then whenever t,t, € [0,c0),
n e N, such that lim,_, ., t, = t, we have

STy 5 sy

. u, asn— 0.

PrOOF. Case 1. Consider (z,x) € [0, T — 7) x E. Then for large enough n, also
(t,x) € [0,T —1,) x E. Hence
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|<S(T)u)(ta x) - (Sng)u)(t? x)|

Tn

= (P, 42, @t 4+ 0y ) (x) = (Prrc(u(t +7,)))(x)] = 0 asn — oo,
since

nango ||1/l(t + Tn, ) - u([ + T, )”0 =0.

Case 2. Consider (2,x) € (T — 7, T] x E.
Since then for large n also (¢,x) € (T — 1,, T| x E we have

(SDu)(1,x) = 0 = (SDu) (1, x).

Tn

Case 3. Consider (T —7,x) € [0,T] x E.
Then if 7, > = we have

(SDu)(T —7,x) =0 = (SDu)(T — 7, x).

Tn

So, we may assume 7, < 7 for all n € N.

Then
(Su)(T = 7,%)] = [(Pr—e, 7—e1e, (T — T+ 70, -))) ()]
<|u(T -1+ 1,)|[p =0 asn— oo,
hence
lim (ST(”T)u)(T—r,x) =0=(SDu)(T —7,x). O

2.1. The infinitesimal generator of S, © > 0

DE(FgNITION 2.3. We say that u € Cp r([0,T] x E) belongs to the domain of
a0 if

(i) For each (t,x) € [0, T| x E there exists the limit

lim ((STu) (1, ) — ut, ) =: (4 D)1, )

and A"V e Cy (0, T) x E).

.. 1
(i) sup ~[|S\ 7w —ul, < +oo.
£€(0,1 €

A1) is called the infinitesimal generator of S,

In the following we set

1
A, ::E(SgT) —1).
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PROPOSITION 2.4. Let u e D(A\")) and let © = 0. Then SMu e DA D) and
we have

(2.3) A NSy = 8T 4Ty,

T T

Moreover, for each (t,x) € [0, T] x E, (STu)(t,x) is differentiable at each v > 0
and

(2.4) %(Sgﬂu)(z, x) = (A DS u)(t,x) = (ST Du)(1, x).

PrOOF. Let u e D(A# 7)) and (1,x) € [0, T] x E. Then we have
(AS D) (1, x) = (SO A2, x).
Since A,u — # D, by Proposition 2.1 it follows that as & — 0
(ASTu) (1, x) S (ST Duy (1, x).
So, STNu e D(#' ") and # 7SNy = ST Ty, On the other hand,

(DFSTu)(2,x) = lim (S Au) (2, x) = (S D) (1, x).

e—07F
Since (") Du)(1,x) is continuous in 7 by Proposition 2.2, we have, by
an elementary result, that (STu)(¢,x) is continuously differentiable and
(DSDu)(t,x) = SO A u(t, x). O

We shall denote by p(#"(") the resolvent set of #"(7), i.e. the set of all 1 € R
such that

A—A'D DTy — Cpr([0,T] x E)
is bijective and its resolvent R(Z, # 7)) := (4 — 4" ")~ is z-continuous.

PROPOSITION 2.5. p(A# )y =R. Moreover, for any ieR and any f €
Cy. 7([0, T] x E) we have for (t,x) € [0,T] x E

(2.5) mmxmmmM—KQWMmem

- [ s e
0

Proor. Let f e Cp 1([0,T] x E) and for any 4 € R, (¢,x) € [0, T]| x E set, fol-
lowing [5]

(F(A))(t,x) = /0 ) e (SDf) (1, x) dx.
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It is easy to see that F(A)f € Cp ([0, T] x E) and that F(A) is m-continuous.
Now we show that 4 e p(#"")). We write

(AFO)f)(0,)
T—1t T—t
1 {e’“/ e (STf) (1, x) dr — /0 e (STf) (1, x) dr]

&

L / e (s 1 x) de - L / " (D) (1, x) de.
e €Jo

Therefore,

26) fim(AP()(1,) = HF()1)(1.3) = £(1,5).

On the other hand,

e’ — 1

IAF) flly < (S——+ 1) I/ ly max{1,e 7).

and therefore F(2)f € D(# (7)) and

(2.7) A DFQG)f = IF(A) —f.

It remains to show that

(2.8) F)(—Aap=9, VpeDx'T),

which then implies that /4 € p(#"")). Let us prove (2.8). If ¢ € D(#"")) taking
into account Proposition 2.4, we have

(FO)A D) (1, x) = / e (ST D) (1, x) de
0

T—t ; d (1)
= (S t,x)d
| e s ar
= —(t,x) + A(F(A)p)(1,x), V(t,x) €[0,T] x E.
which implies (2.8). O
REMARK 2.6. The domain D(# 7)) of (7 is not dense in Gy 7([0,7T] x E) in
general; however, it is easy to check that it is z-dense in C, ([0, T] x E), ;hat

is for any u e C ([0, T] x E) there exists (u,) = D(A#" 7)) such that u, - u.
(See the proof of Proposition 2.8 below.)
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REMARK 2.7. By (2.5) it follows that for 2 > 0
1
HML%“WﬂbSﬂV%,VfGQJWJTXD-

Therefore #(7) is m-dissipative in C, ([0, T] x E).

ProposITION 2.8. D(A#'")) is n-dense in C, r([0,T] x E), Le., for every
f € Cy7([0,T] x E) there exist u, € D(A#'D), n e N, such that u, > f.

PROOF. Let f € Cy ([0, T] x E) and define u, := nR(n, # 7)) f, ie. for (1,x) €
0,7T] x E

uy(1,x) := n/OC e (ST (1, x) dr
0

= /w e*T(ST(/Tny)(t,x) dt
0
— (S§"1)(0,x) = f(1,),

by Proposition 2.2. Now the assertion follows by Remark 2.7. a

3. FOKKER—PLANCK EQUATIONS
A probability kernel on [0, T| x E is a mapping
0,T] = 2(E), t—p
such that for any I € %4(F) the mapping
0. 7] =R, t— u()
is measurable.

We shall identify a probability kernel (u,)

0,77 With the Borel measure on
[0, T] x E defined by '

te|

n(A) —/ Ta(t, x)p,(dx)dt, Ae B([0,T] x E).
[0, T|xE

DEFINITION 3.1. We say that a probability kernel u is a solution of the Fokker—
Planck equation if

(3.1) AHMMWMWJmummz—AMQﬂwMW Yu e D(A"D).
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REMARK 3.2. Letue D(%m) and 7 > 0. Then by (3.1), replacing u by S{7u
we deduce

/ (D ST (1, X, (d) dt = — / (STu) (0, ) ().
[0, T|xE E

By Proposition 2.4 integrating with respect to 7, yields

(T)M X X — u X X
(3.2) /[ S0 @) a / (1)1, (dx)

[0, T]xE
—— [Car [ ot Dol

Therefore, if ue 2([0,T] x E) is a solution to the Fokker—Planck equation
(3.1), then (3.2) holds for any u € C, 7([0, T] x E), because D(# D) is n-dense
in Gy 7([0,T] x E). Conversely, it is easy to see that if (3.2) holds for any
ue Cpr([0,T] x E), then (3.1) is fulfilled. So, (3.1) and (3.2) are equivalent.

There are in general several solutions to (3.1); to select one of them one has to
specify the initial value y,,.

THEOREM 3.3. For any { € P(E) there exists a unique solution u to (3.1) such
that py = .

PROOF. Existence. Let { € 2#(E) and for any 7 € (0, T] set 4, =: P ( (where P,
is the dual operator of Py, in the dual space C; (E) of Cy(E)), that is

/H ()11 (dx) = / (Po.g)(x)C(dx), Vg € Co(E).

We claim that u(dt, dx) := p,(dx) dt is a solution to (3.1). For this it is enough to
check (3.2). We have in fact

|t [(Pureates v ) mtan
_ /0 o /E (Po.iPrprei(t +7,))(x)C(d)
T—1
_ / i / (Po.crct(t 47, ) (x)(d)
0 E

- / L / (Po,u(t, ) (x)C ()

and (3.2) follows.
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Uniqueness. Assume that u' and u? are two solutions of (3.1) such that
1y = 1 = ¢ We claim that g' = . In fact from (3.1) it follows that

[ o M0 @) — ) di = o
[0, T|xE

for all u € D(# (7)). On the other hand, the range of %" is C;, 7([0, T] x E) be-
cause 0 is in the resolvent set of # (7). So, u' = u?. 0

REMARK 3.4. For time homogeneous Markov semigroups Theorem 3.3 has
been proved in [18].

PrOPOSITION 3.5. Let { € Z(E), p, =: P§ ( for any t € (0, T| and u(dt,dx) =
w,(dx)dt. Then S\T), © > 0, is uniquely extendable to a strongly continuous semi-
group of contractions S\T®, t > 0, in L'(H x [0, T], ). By AT e shall denote
its infinitesimal generator.

PrOOF. We claim that
(3.3) / 1STPu| du < / lu|dp, Vue Cpr([0,T] x E).
0, T|xE [0, T|xE
It is enough to show (3.3) for any u > 0. In this case (3.3) follows from (3.2). O

REMARK 3.6. It is clear that D(#"(7)) is a core for (74
3.1. Comparison with other notions of Fokker—Planck equations

Let E be a separable Hilbert space with inner product <-,->. In the literature
one is generally concerned with a different concept of Fokker—Planck equations.
Namely, one considers a concrete differential operator

Nu(t,x) = Du(t, x) + % [BB*D)ZCu(t, X)] + {Ax + F(t,x), Dyu(t, x)>,

defined in some space D(.4") of smooth functions. Then, given a suitable
(o € P(E), one looks for a probability kernel z,(dx) dt such that

(3.4) /[OAT]XE N u(t, x)p,(dx) dt = —/Eu(O,x),u(O)(dx), ue D).

To explain the difference, let us go back to Example 1.2 assuming again that
problem (1.3) is well posed. In this case the well posedness of the problem is
equivalent to saying that D(.4") is a core for .# (7*#) for every solution of (3.4).

It is important to consider the case when it is not known that the SDE corre-
sponding to ./ is well posed. In this case solving the Fokker—Planck equation
will produce a kind of weak solution. See [7], [1], [2], [3], [4]-
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4. ASYMPTOTIC BEHAVIOR

We are here concerned with a Markovian transition probability 7 = 7, ,(x,-) on
E, with —o0 < 5 < t < +o0 satisfying (i)—(vi) from Section 1 with R replacing the
interval [0, 7']. In this case we can define a semigroup in Cy(R x E) setting

(4.1) (S;u)(t,x) = (P ryt)(t+7,-))(x), ue Cp(RxE).

It is easy to prove several properties for S, similar to those seen for S!7). In par-
ticular, we can define the infinitesimal generator #° of S; through its resolvent.
We prove again that 7" is m-dissipative, however, we can only say that its resol-
vent set contains [0, 400).

Following [8], [9], we say that a family v,, # € R, is an evolution system of
measures if

(4.2) /Ps,,(pdvs = / pdv,, Vpe Cy(E), —o0 <5<t < 4o0.
E E

(4.2) is equivalent to
(4.3) P;tvs:v,, —0<s<t<+oo.

Note that from property (v) it follows from (4.3) that v, ¢ € R, is continuous in

the sense that
t— / pdv,
E

is continuous on R for all ¢ € C,(FE) (or, equivalently, for all p € UC,(E)).
Evolution systems of measures are naturally connected to invariant measures
of S;, 7 > 0, as the following proposition shows.

PrOPOSITION 4.1. Let v,, t € R, be continuous. Then v;, t € R, is an evolution
system of measures if and only if we have

(4.4) / S,udv:/ udv, Yue Cy(Rx E)nL'(Rx E;v), 7> 0,
RxE RxE

where v(dt,dx) = v,(dx) dt.*

PrOOF. Assume that v, € R, is an evolution system of measures. It is enough
to show (4.4) when

u(t,x) =o(t)p(x), teR,xekE,

'y is not a probability measure on R x E.
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where o € C,(R) N L'(R) and ¢ € Cy(E). In this case we have, taking into ac-
count that v; = Py s

/ Sfudv:/oc(t—l—r)/P,7,+f(/)(x)v,(dx)dt
RxE R E

_ /R (i +7) /E Py Prrsp() () di
_ /R ot +7) /E Py oo (x)vs(dx) dt

_ /R «(f) / Py o)y (dx) di

- / / (0)p(x)vi(d) db,
RJE
and (4.4) follows.

Conversely, assume that

/ Srudv:/oc(t—l—r)/P,‘tHgo(x)v,(dx) dt:/ udv,
RxE R E RxE

for all = > 0, where u(, x) = a(?)p(x) and o and ¢ are as before. Then we have

/Ra(t)/Ego(x)v,(dx) dt:/Roc(t+r)/EP,,,+T§0(x)v,(dx) dt

= [ate+7) [ p(oP; ol de

= / o(s) / p(x)P;_, vs—(dx)ds.
R E '
By the arbitrariness of « it follows that
/ @(x)v(dx) = / P, p(x)vi_(dx), fordt-as.teR.
E E

To complete the proof we have to show that this holds for every ¢ € R. Since the
left hand side is continuous in ¢ by assumption, it remains to show that for all
7>0

Ros— /Px,s+f¢dvs
E

is continuous. But this is an immediate consequence of the continuity of vy, s € R,
and property (vi) of 7. O
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4.1. Asymptotic behavior
Concerning the asymptotic behavior of P, ; both for s — —oo and t — +o0 there

are interesting situations where there is a unique evolution system of measures v;,
t € R, which, in addition, enjoys the following properties

(4.5) lim Pyp(x) = / pdvi, Vpe Go(E), 1€ R,
S§——00 E
and
(4.6) lim {ngo(x) — / godvt] =0, Vpe Cy(E),seR.
=+ £

Equations (4.5) and (4.6) were first proved in [8] for reaction-diffusion equations,
then in [7] and [13] for Ornstein—Uhlenbeck semigroups with time dependent co-
efficients and in [6] for the 2D Navier—Stokes equation, see also [17].

(4.6) gives also some information about the Fokker—Planck equation (3.1).
Namely if (2, dx) = u,(dx) dt is the solution of (3.1) with g, = {, we have

(4.7) lim {/E(pd,ut—/Egodv,} =0, VYpe Cy(E).

t—+o0

This shows that asymptotically for 1 — oo, g, is close to v, independently of .

A. APPENDIX
LemMa A.1. We have
C([0, T}; UCH(E)) = UGK([0, T] x E),
with the same norms.

Proor. “2” Letu € UC(]0, T] x E) and let d denote the metric in E. Then for
any ¢ > 0 there exists 0 > 0 such that

[t —s| +d(x,y) <o=|u(t,x) —u(s,y)| <e
= |u(t,x) —u(s, x)| <e
= [lu(z, ) —uls,)llp <e
=ue C([0,T]; UCK(E)).

“c” Letu e C([0,T]; UCK(E)). Then for any ¢ > 0 there exists 6 > 0 such that

[t =5 <= [lu(t,) —uls, )l <e
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Furthermore, {u(s,-) : s € [0, T]} as a continuous image of the compact set [0, 7]
is compact in UC,(E). Hence for any ¢ > 0 there exists sy,...,s, € [0, 7] such
that
{u(s,) :5€[0,T]} = U{v € UCK(E) : [J[v—u(si, )]y < &}
i=1

CramM. {u(s,-):s e [0, T]} is uniformly equicontinuous.

PROOF OF THE CLAIM (see proof of Ascoli-Arzeld).
Let ¢ > 0 and choose J > 0 such that

d(x,y) <0 = |uls,x) —ulsi, )| <5, i=1...m

Then for any s € [0, T there exists i € {1,...,n} such that

&

Juts, ) = utsi o < 3

Hence we have

|u(s, x) = u(s, p)| < |u(s, x) — u(s;, )|
+ [ulsi, x) — ulsi, p)l
+ Julsis y) —uls, y)| <,

provided d(x, y) < d, which proves the claim.
Now let ¢ > 0. Then there exists 0 > 0 such that

1= o] <= flult.) = uls, Yo < 5
and (by Claim)

d(x,y) <o = |u(s,x) —u(s, y)] <§ Vs e [0, T1.
Therefore

[t —s| +d(x,y) <o = |u(t,x) —u(s, y)|
< |u(t,x) — u(s, x)|

+ Juls, x) —u(s, y)| <. O



WELL POSEDNESS OF FOKKER—PLANCK EQUATIONS FOR GENERATORS 375
REFERENCES

[1] V. BOGACHEV - G. DA PRATO - M. ROCKNER, Parabolic equations for measures on
infinite-dimensional spaces, Doklady Math., 78, no. 1, 544-549, 2008.

[2] V. BOGACHEYV - G. DA PRATO - M. ROCKNER, Fokker—Planck equations and maximal
dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert
spaces, J. Functional Analysis, 256, 1269-1298, 20009.

[3] V. BOGACHEV - G. DA PrRATO - M. ROCKNER, Existence and uniqueness of solu-
tions for Fokker—Planck equations on Hilbert spaces, J. Evol. Equ. 10, no. 3, 487-509,
2010.

[4] V. BOGACHEV - G. DA PrRATO - M. ROCKNER, Uniqueness for solutions of Fokker—
Planck equations on infinite dimensional spaces, Comm. Partial Diff. Eq., 36: 925-939,
2011.

[5] S. CErRRAL, A Hille-Yosida theorem for weakly continuous semigroups, Semigroup
Forum, 49, 349-367, 1994.

[6] G. DA PrRATO - A. DEBUSSCHE, Asymptotic behavior of stochastic PDEs with random
coefficients, Discrete Contin. Dynam. Systems A, 27, n.4, 1553-1570, 2010.

[7] G. Da PrATO - A. LUNARDI, Ornstein—Uhlenbeck operators with time periodic coeffi-
cients, J. Evol. equ., 7, 587-614, 2007.

[8] G. DA PrATO - M. ROCKNER, Dissipative stochastic equations in Hilbert space with
time dependent coefficients, Rend. Lincei Mat. Appl. 17, 397-403, 2006.

[9] G. DA PRATO - M. ROCKNER, 4 note on evolution systems of measures for time depen-
dent Kolmogorov operators, Progress in Probability, vol. 59, 115-122, 2007.

[10] G. DA PRATO - J. ZABCZYK, Second Order Partial Differential Equations in Hilbert
Spaces, London Math. Soc. Lecture Note Ser., vol. 293, Cambridge University Press,
Cambridge, 2002.

[11] E. B. DYNKIN, Markov processes and semigroups of operators, Theory of Probability
and its Appl., 1, no. 1, 2233, 1956.

[12] S. N. ETHIER - T. KUrRTZ, Markov processes. Characterization and convergence, Wiley
series in probability and mathematical statistics, 1986.

[13] M. GEISERT - A. LUNARDI, Asymptotic behavior and hypercontractivity in non autono-
mous Ornstein—Uhlenbeck equations, J. London Math. Soc. (2), 79, no. 1, 85-106, 2009.

[14] B. GoLDpYSs - M. KocCAN, Diffusion semigroups in spaces of continuous functions with
mixed topology, J. Diff. Equations, 173, 1739, 2001.

[15] F. KUHNEMUND, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup
Forum, 67, no. 2 (2003), 205-225, 2003.

[16] L. LoreENZI - M. BERTOLDI, Analytical methods for Markov semigroups, Chapman &
Hill/CRC, 2006.

[17] L.LORENZI - A. LUNARDI - A. ZAMBONI, Asymptotic behavior in time periodic para-
bolic problems with unbounded coefficients, J. Diff. Equations, 249, 3377-3418, 2010.

[18] L. MANCA, Kolmogorov operators in spaces of continuous functions and equations for
measures, Theses of Scuola Normale Superiore di Pisa (New Series)], 10. Edizioni della
Normale, Pisa, 2008.

[19] E. PrIOLA, On a class of Markov type semigroups in spaces of uniformly continuous and
bounded functions, Studia Math., 136, 271-295, 1999.

Received 14 March 2012,
and in revised form 17 April 2012.



376

G. D. PRATO AND M. ROCKNER

Giuseppe Da Prato

Scuola Normale Superiore

Piazza dei Cavalieri 7, 56126 Pisa, Italy
g.daprato@sns.it

Michael Rockner

University of Bielefeld

Universitétsrasse 25, 33615 Bielefeld, Germany
roeckner@math.uni-bielefeld.de



	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mkEnd-page

