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Abstract. — We give the overview on a program leading to the proof of the Brody Theorem
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1. Introduction

In complex geometry the classic theorem of Brody [3] states that a compact com-
plex space is Kobayashi hyperbolic [9] if the only holomorphic maps from C to it
are constant. For the basic results in hyperbolicity, implications and conjectures
in complex geometry we refer to [9], [4]. The purpose of this paper is to provide
notions of hyperbolicity for analytic stacks and to outline the proof of Brody’s
Theorem for compact Deligne-Mumford analytic stack (see Section 7). These
objects generalize complex spaces and their existence can be motivated by the
need of using algebraic and geometric techniques on objects which lack a scheme
or complex space structure, such as moduli spaces or by keeping track of an
higher level of information attached to certain objects, like quotients by actions
of Lie groups. At the present state of knowledge, we necessarily have to begin by
setting the notions of Kobayashi and Brody hyperbolicity. We emphasize that
such notions ought at least to generalize the known ones for complex spaces and
be categorical equivalence invariant (thus presentation invariant). The classical
Brody hyperbolicity condition for a complex space Y , summarized in the bijec-
tivity of p� : HomholoðX ;Y Þ ! HomholoðC� X ;YÞ for all complex spaces X and
p : C� X ! X being the projection, can be extended to S-groupoids G in two
ways by requiring the bijectivity of p� : HomGrp=SðX;GÞ ! HomGrp=SðC�X;GÞ
for all complex spaces X ¼ X or for all groupoids X. In analogy with the classi-
cal definition we choose the latter; this explains why both the zeroth and first
holotopy presheaf (see Section 3) are involved in the Brody hyperbolicity condi-
tion, thus the same had to hold for the Kobayashi hyperbolicity. Already in the



paper [1] we have introduced the concept of Brody hyperbolicity for simplicial
presheaves of sets over the site of complex spaces with the strong topology. The
work in [6] enables us to use this definition in the context of S-groupoids and this
led us to the Definition 4.1. With some more work, we rephrased it in terms
of holotopy presheaves of the S-groupoid: Definition 4.3. In this form, the S-
groupoid equivalence invariance of Brody iperbolicity is evident as well as the
fact that it extends the same classical property for complex spaces. We point out
that contradicting Brody hyperbolicity of an analytic stack provides a way of
showing the existence of C parametrized families of objects in the moduli prob-
lem associated with the stack. Several definitions of Kobayashi hyperbolicity
have been considered for presheaves; the one we decided to use preserves the
metric ‘‘flavour’’ of the classical notion, and it is based on relative analytic discs
and chains of an analytic stack (see Subsection 4.2).

The proof of the Brody theorem mixes techniques from abstract homotopy
theory and complex variables, the interplay of these seemingly di¤erent fields
being possible by reducing many crucial arguments to a particularly nice model,
which we denote C½X��, associated to an analytic stack X ! Y. There is a set
QðYÞ whose elements are classes of an equivalence relation on the atlas X , the
geometrization of which is a key step to make all the parts work together. The
algebraization of the colimit of a similar diagram derived from algebraic stacks
has been an investigated topic (e.g. [8]). It is related to Brody hyperbolicity
by means of the main Theorem 7.2. In Section 6 we introduce the metric invari-
ants of an analytic stack necessary to bridge the Kobayashi hyperbolicity with
Brody hyperbolicity. We finish the paper outlining the proof of the analogue
of the Brody Theorem. Kobayashi hyperbolicity unconditionally implies Brody
hyperbolicity; this is almost immediate for complex spaces, but in this context
we have the added di‰culty of finding two di¤erent admissible sections of
p
simpl
0 ðY; yÞ whose pseudodistance is zero. In the opposite implication we exten-

sively used the compactness assumption (see beginning of Section 5) and the
existence and properties of the complex space structure of QðYÞ. We would like
to emphasise that the Kobayashi hyperbolicity mandated the introduction of
metric structures on analytic stacks which, in turn, revealed the connection be-
tween the hyperbolicity of a Deligne-Mumford analytic stack Y and the complex
space QðYÞ.

Some ideas appearing in this paper are the result of discussions with Gabriele
Vezzosi, whom we wish to thank.

2. Preliminaries

2.1. Notation and definitions.

• ST is the analytic site: the category S whose objects are complex spaces and
coverings those induced by the strong topology.

• Grp is the category of (set theoretic) groupoids and Grp=S the category of S-
groupoids, S a category, whose objects are categories fibered in groupoids. By
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PshðGrpÞ we will denote the category of presheaves of set-theoretic groupoids.
A stack is an S-groupoid satisfying two supplementary conditions (see [10,
Definition 3.1]).

• Dop PrshTðSÞJ is the category of simplicial presheaves of sets on the site ST

with a topology T and endowed by local, injective, simplicial model structure
on Dop PrshTðSÞ (cfr. Joyal’s model structure, [7, Section 5.1]). Hs (respectively
Hs�) is the homotopy category (respectively the pointed homotopy category)
associated.

• Let X be a groupoid. Then cX : X! CX is its stackification (cfr. [10, Lemma
3.2 and Observation 3.2.1 (3)]).

• The morphisms q0 and q1 will denote the face morphisms of a simplicial pre-
sheaf X� or, more frequently, of groupoids ½X�� and C½X�� from the presheaf
in degree 1 to presheaf.

An analytic stack is a diagram p : X ! Y comprising a complex space

X ¼ qþli¼1X
ðiÞ, where the X ðiÞ are connected complex spaces, and a stack Y over

the analytic site ST , such that the diagonal D : Y! Y�Y is representable, sep-
arated, quasi compact and with p smooth and surjective. The morphism
p : X ! Y is also called a presentation of the stack Y and X an atlas.

A stack Y with an étale presentation is called a Deligne-Mumford analytic
stack, DM stack for short.

We recall that an étale map f : X ! Y between complex spaces is a holomor-
phic map with di¤erential being an invertible linear map at each point. An étale
covering is a surjective étale holomorphic map such that for each y a Y there ex-
ists a uniformly covered open neighborhood, i.e. y a Uy such that f �1Uy ¼ qiVi

as topological space and fjVi
! Uy is a biholomorphism for all i.

Theorem 1.1 (see also Theorem 3.9) of [7] states that a groupoid F, seen as a
presheaf of groupoids, is a stack if and only if, for any covering qiUi ! U , the
canonical morphism

FðUÞ ! holimn

nY
FðUiÞ )

Y
FðUijÞV

Y
FðUijkÞ . . .

o

is an equivalence of categories for each complex space U , where Ui1;...; ik stands
for Ui1 � � � � �Uik .

2.2. Simplicial presheaves and groupoids. Before being able to state what we
think of as a (di¤erently flavoured) hyperbolic groupoid, we will expose the con-
nection between simplicial presheaves and groupoids. The concept of Brody hy-
perbolicity, in particular, is directly transposed from simplicial presheaves of sets
over the site of complex spaces with the strong topology, already introduced in
the paper [1]. Such a relation has been investigated in the papers [7] and [6]. While
the concept of groupoids in terms of categories fibered in set-theoretic groupoids
(S-groupoids) probably goes back to ideas of Grothendieck, only recently these
objects have been related to the homotopy theory of simplicial presheaves of sets
(cfr. [7, Theorem 5.4]).
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Theorem 2.1. There exists a Quillen equivalence between Grp=S and
ðS2Þ�1Dop PrshTðSÞJ , the S2-nullification of the model category studied in [1],
inducing an isomorphism between the ( full) subcategories of stacks and fibrant
simplicial presheaves.

Involved in the definition of this equivalence is the functor N, which will
later be used to define holotopy presheaves of groupoids and the hyperbolicity
of groupoids (see Definitions 4.1, 4.5). To an S-groupoid G, it associates the
simplicial presheaf NG with ðNGÞ0 ¼ ObðGÞ, ðNGÞ1 ¼ MorðGÞ and ðNGÞi ¼
ðNGÞ1�ðNGÞ0 � � �

i �ðNGÞ0 ðNGÞ1 with the following structural face morphisms:

q0; q1 : ðNGÞ1 ! ðNGÞ0 are the domain and codomain of the isomorphism, re-
spectively; the three morphisms ðNGÞ2 ! ðNG1Þ send ð f ; gÞ respectively in f ,
g � f e g; in the general case an n-tuple of composable isomorphisms are sent to
ðn� 1Þ-subtuples involving individual isomorphisms and compositions of them,
when applicable.

2.3. Analytic stacks. Let P be a presheaf of grupoids and F : P! G be a
1-morphism (functor) to a groupoid G. We build a groupoid out of it, de-
noted by ½P��. Its objects over a complex space U are the sections in PðUÞ
and Hom½P� �ðUÞð f ; gÞ are the sections f a P1ðUÞ :¼ PðUÞ �Y PðUÞ such that

q0ðfÞ ¼ f and q1ðfÞ ¼ g, where qi : P1 ! P, for i ¼ 0; 1, are the projections on
the factors, and the fiber product is taken in the category of groupoids. The
remaining structure making ½X�� a groupoid is inherited by the one of G and
it explained in [10, 2.4.3] and [10, Proposition 3.8]. If X ! Y is an analytic
stack (see Subsection 2.1), then the objects of ½X�� over a complex space U are
the holomorphic maps U ! X and qi : X1 ! X are holomorphic maps between
complex spaces.

Remark 2.1. Our notation is slightly di¤erent from the one in [10, 2.4.3]: the
groupoid ½X�� is denoted as ½X�� 0 there. Moreover, through this manuscript, we
will identify the S-espace en groupoı̈des and its associated groupoid.

We recall the following general result (cfr. [10, Prop. 3.8]): let F : P! Y be
a morphism (functor) between a presheaf and a stack. Then the canonical mor-
phism (functor) ½P�� ! Y is a monomorphism and is epi if and only if F is.

In the particular case p : X ! Y is an analytic stack, we get a simplicial com-
plex space ½X�� such that

X �Y � � � �iþ1 �Y X ¼ Xi ¼ X1�q0;X ;q1 � � �
i �q0;X ;q1 X1:

½X�� is a prestack, as explained in the example [10, 3.4.3] and is precisely Nð½P��Þ
with P ¼ X . To simplify the notation, we will drop the letter N and consider ½X��
indi¤erently as a S-groupoid or a simplicial complex space, according to the
needed properties. Notice that the stackification functor ½X�� ! C½X�� corresponds
to a fibrant resolution of simplicial presheaves. We conclude that
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Proposition 2.2. Let p : X ! Y be a analytic stack. Then p induces a groupoid
equivalence p : ½X�� ! Y and a stack equivalence C½X�� ! Y.

An immediate consequence of this proposition is that, to work with a simpli-
cial homotopy invariant, we can indi¤erently use any presentation and atlas
of Y:

Corollary 2.3. Let X ;Z ! Y be two presentations of an analytic stack.
Then ½X�� and ½Z�� are equivalent groupoids and C½X�� and C½Z�� are equivalent
stacks.

3. Simplicial parabolic holotopy presheaves

We recall that the parabolic n-th dimensional circle is the simplicial set S1
s :¼

D1=qD1, where D1 is the standard 1-dimensional simplex, seen as constant pre-
sheaf in the analytic site. As usual, in what follows, we letb be the monoidal
structure in Dop PrshTðSÞ and Sn

s :¼ S1
sb � � �

n bS1
s .

Let U be a complex space. Then for any simplicial presheaf X and any group-
oid G, we set

p
simpl
i ðX; xÞðUÞ :¼ HomHs�ðS

i
sbUþ; ðX; xÞÞ;

piðG; gÞðUÞ :¼ p
simpl
i ðNG; gÞðUÞ

respectively.
By definition, the presheaves p

simpl
i induce isomorphisms if applied to local

and global weak equivalences or groupoid equivalences. We know already how
to compute most of these presheaves for groupoids G: because of Theorem 2.1,
p
simpl
i ðG; gÞ are constant to 0 for all i greater or equal to 2. In general, it is hard

to compute psimpl
i of groupoids if i ¼ 0; 1. Using Proposition 2.2 we can prove the

following: if X ! Y is a presentation of an analytic stack, then

p
simpl
i ðY; yÞG p

simpl
i ð½X��; xÞG p

simpl
i ðC½X��; xÞ:

which provides the key reduction step of dealing with C½X�� rather than a general
analytic stack Y. Because of the relevance of the concept in the sequel, we explic-
itly recall the following. Let G be a groupoid, U a complex space and U ¼ fUigi
a covering of U for the strong topology. Then,

1) A relative to U descent datum in G is a pair ððAiÞ; ðhijÞÞ, also denoted ðAi; hijÞ,
with: Ai objects of GðUiÞ and hij : AijUij

! AjjUij
isomorphisms, called transi-

tion morphisms, satisfying the cocycle condition hjk � hij ¼ hik on Uijk. As al-
ways, Uij and Uijk stand for the double and triple intersections of the indicated
complex spaces. The set of descent data will be denoted by DisGðUÞ.

2) A descent data morphism between ðAi; hijÞ and ðBi; gijÞ in G and relative to
a covering U is a collection of isomorphisms ffi : Ai ! Big respecting the
relation gij � fi ¼ fj � fij on Uij for all i, j.
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Remark 3.1. In a covering U associated to a descent datum we will possibly
allow Ui ¼ Uj for iA j.

Given a complex space U , we will denote by CovU the set of all the count-
able, locally finite coverings such that Ui TU for all i. Any covering of U can be
refined to one in CovU . This set is filtering with respect to the relation U � U 0 if
U 0 ¼ fUigi is finer than U and U 0i TUtðiÞ, if t : N! N is the refining function.
If the groupoid G is C½X��, the notion of descent data may be expressed in terms
of holomorphic maps. Given a covering fUigi ¼ U a CovU , a descent datum r
(on U) in X relative to the covering U is a pair ððri : Ui ! X Þi; ð fij : Uij ! X1ÞijÞ
with ri and fij holomorphic maps such that:

ð?Þ rijUij
¼ q0 � fij, rjjUij

¼ q1 � fij su Uij;
ð??Þ fij : mð fij � fjkÞ ¼ fik su Uijk (cocycle relation)

and, like before,

lim�!
U ACovU

fððri : Ui ! XÞi; ð fij : Uij ! X1ÞijÞg ¼ lim�!
U ACovU

Dis½X� �ðUÞ ¼ ObðC½X��ÞðUÞ

We are ready now to describe the zeroth and first holotopy presheaves of an
analytic stack by means of the complex structure of any of its atlases:

Theorem 3.1. Let p : X ! Y be an analytic stack and U a complex space.
Then

p0ðY; yÞðUÞG lim�!
U ACovU

fððri : Ui ! XÞi; ð fij : Uij ! X1ÞijÞg=P0

where P0 is the equivalence relation generated by ðri; fijÞP0 ðsi; gijÞ if and only if
there exist holomorphic maps fi : Ui ! X1 such that

1) q0 � fi ¼ si e q1 � fi ¼ ri for all i;
2) mð fij � fjÞ ¼ mðfi � gijÞ.

An isomorphism f between two descent data r ¼ ðri; fijÞ, s ¼ ðsi; gijÞ is a collec-
tion of holomorphic maps fi : Ui ! X1 such that

1 0) q0 � fi ¼ ri and q1 � fi ¼ si for all i;
2 0) mð fij; fjÞ ¼ mðfi; gijÞ for all i, j.

Each collection ffigi determines a class in the filtered colimit, over the coverings
U of U , of isomorphisms between the descent data r and s. Representatives of
sections of psimpl

1 ðY; yÞðUÞ are (classes of ) automorphisms ðfÞi of r, for r ranging
in lim�!

U ACovU

Dis½X� �ðUÞ.
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Theorem 3.2. Let p : X ! Y an analytic stack and U be a complex space.
Then,

p1ðY; yÞðUÞG lim�!
U ACovU

ðfiÞi=P1

where f ¼ ðfiÞi is an automorphism of a descent datum r in ½X�� relative to U. If f e
c are automorphisms of descent data r and s, respectively, relative to U ¼ fUigi ,
then P1 is the equivalence relation generated by fP1 c if and only if there
exists and isomorphism between q0 � f ¼ s and q0 � c ¼ r, i.e. holomophic maps
Hi : Ui ! X �Y X such that q0 �Hi ¼ ri and q1 �Hi ¼ si satisfying the second of
the conditions listed in the Theorem 3.1.

As in the sequel we will mention about ‘‘constant’’ sections of holotopy pre-
sheaves, we introduce here such a notion.

Definition 3.3. Let P be a presheaf on ST . A section s a PðUÞ is constant if it
lies in the image of the map c� : PðptÞ ! PðUÞ, where c : U ! pt .

4. Hyperbolicity

The classical Brody’s Theorem claims that two notions of hyperbolicity for com-
plex spaces coincide. One is rooted in metric aspects of the complex space, the
other is defined in terms of certain holomorphic maps.

4.1. Brody hyperbolicity. In the paper [1] we have given the following definition:
a simplicial presheaf Y is Brody hyperbolic if

1) it is simplicially locally fibrant and
2) the projection pX : C�X! X induces set bijections

HomHs
ðX;YÞ !G HomHs

ðC�X;YÞð1Þ

for all X a PrshTðSÞ.

Since a groupoid can be seen as a simplicial presheaf by means of the functor N,
we will use the same definition:

Definition 4.1. A groupoid G is Brody hyperbolic if NG is a Brody hyperbolic
simplicial presheaf.

Notice that a Brody hyperbolic groupoid is necessarily a stack. This definition
can be rephrased in terms of holotopy presheaves:

Proposition 4.2. Let Y a locally fibrant simplicial presheaf. The following con-
ditions are equivalent:
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1) Y is Brody hyperbolic;
2) p�X : MapðX;YÞ ! MapðC�X;YÞ is a weak equivalence of simplicial sets for

any X a Dop PrshTðSÞ, where Map is the simplicial mapping space;
3) the simplicial holotopy presheaves are Brody hyperbolic, i.e. the projection

pU : C�U ! U induces isomorphisms

p�U : psimpl
i ðY; yÞðUÞ !G p

simpl
i ðY; yÞðC�UÞ

for each i and complex space U .

The notion of Brody hyperbolicity we will more frequently use is the 3) of the
previous proposition.

Definition 4.3. 1) A presheaf Y is Brody hyperbolic if the projection
pU : C�U ! U induces bijections p�U : YðUÞ ! YðC�UÞ for any complex
space U.

2) A groupoid G is Brody hyperbolic if the holotopy presheaves p
simpl
i ðG; gÞ (see

Section 3) are hyperbolic for all i, hence only for i ¼ 0; 1, because of Theorem
2.1.

4.2. Kobayashi hyperbolicity. In the previous subsection we defined Brody hy-
perbolicity of a groupoid by first giving the same notion for a presheaf and then
imposing that condition to the holotopy presheaves of the groupoid. The holo-
topy presheaves determine whether a groupoid is Kobayashi hyperbolic, as well.
Classically, complex spaces Kobayashi hyperbolicity is a notion arising in the
attempt to give complex spaces a biholomorphically invariant distance. In gen-
eral the best that can be done is endowing complex spaces of a biholomorphically
pseudodistance. When on a complex space X this happens to be a distance, X is
said to be Kobayashi hyperbolic.

The notion of Kobayashi hyperbolicity for groupoids is based upon the con-
cept of relative analytic disc.

Let D be the unitary open disc in C. We recall that for a complex space U , we
have denoted CovðUÞ the set of countable, locally finite, open coverings U ¼
fUigi of U such that Ui TU for all i. If U a CovU and D ¼ fDaga a CovðDÞ
let D�U be the covering fDa �Uigai of D�U . The set CovðDÞ � CovðUÞ is
filtering in CovðD�UÞ.

Let Y be a presheaf. A relative analytic disc of Y on a complex space U is an
object of F a YðD�UÞ. For any z a D, the same letter will refer to the inclusion
fzg �U ,! D�U . Let r; s a YðUÞ be two sections and suppose there exists a
relative analytic disc F and two points z1; z2 a D such that z�1F ¼ r and z�2F ¼ s.
The sections r and s are then said to be connected by F. A relative analytic chain
on U connecting r to s is the set Cðr; sÞ of the following data:

1) a collection r0 ¼ r; . . . ; rk ¼ s of sections;
2) 2k points a1; b1; . . . ; ak; bk in D;
3) k relative analytic discs F1; . . . ;Fk such that the analytic disc Fi connects the

sections ri�1 and ri, i.e. a
�
i Fi ¼ ri�1 and b�i Fi ¼ ri for all 1a ia k.
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If a relative analytic chain Cðr; sÞ connects the section r with the section s,
we call the pair ðr; sÞ admissible. If Y ¼ Y is a complex space, admissibility
of all section pairs in YðptÞ is equivalent to the topological connectedness
of Y .

Endow the unitary open disc D of the Poincaré metric

ds2 ¼ 1

ð1� jzj2Þ2
dzn dz

and denote with %
D
ðp; qÞ the associated distance function between two points a

and b in D. Then, for every chain Cðr; sÞ the nonnegative number

lðCðr; sÞÞ ¼ %
D
ða1; b1Þ þ � � � þ %

D
ðak; bkÞð2Þ

is, by definition, the (Kobayashi) length of the relative analytic chain Cðr; sÞ. If
ðr; sÞ is an admissible pair of sections, the nonnegative real number

dY
Kobðr; sÞ ¼ inf

Cðr; sÞ
lðCðr; sÞÞð3Þ

defines a pseudodistance function on all the admissible pairs of sections in YðUÞ
for all complex spaces U , called Kobayashi pseudodistance of Y.

It is immediately seen that morphisms of presheaves decrease the Kobayashi
pseudodistance.

Definition 4.4. A presheaf Y is said to be Kobayashi hyperbolic if its Kobaya-
shi pseudodistance is indeed a distance, hence if and only if dY

Kobðr; sÞA 0 for all
admissible pairs ðr; sÞ a YðUÞ with rA s and all complex spaces U.

The Kobayashi hyperbolicity for a groupoid is defined as follows:

Definition 4.5. A groupoid G is Kobayashi hyperbolic if the holotopy
presheaves p

simpl
0 ðG; gÞ and p

simpl
1 ðG; gÞ are Kobayashi hyperbolic.

These notions of Brody and Kobayashi hyperbolicity extend the classical ones
in the case the groupoid G is a complex space.

5. The auxiliary quotient space

Although the set lim�!
U ACovU

Dis½X� �ðUÞ is closely tied to the complex structure of an

atlas X of an analytic stack Y, it is unclear how to metrize it in a usable way and
arguments employing complex variables theory, such as those necessary to prove
Brody theorem, seem not possible. As we will see, this is possible for DM stacks
(see Subsection 5.1).

Let p : X ¼ qN
i¼1X

ðiÞ ! Y be a presentation of an analytic stack Y. We say
that Y is connected if given f ; g a YðptÞ with f ðptÞ a X i, gðptÞ a X j there exist
a; b a YðptÞ with aðptÞ a X i, bðptÞ a X j such that p � a ¼ p � b. This property
does not depend on the atlas.
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Two sections r; s a YðptÞ of a connected analytic stack Y are always
admissible.

An analytic stack Y is said to be compact if there exists two presentations
pX : X ¼ qN

i¼1X
ðiÞ ! Y, pZ : Z ¼ qN

i¼1Z
ðiÞ ! Y with ZðiÞ connected, such that

for each i ¼ 1; . . . ;N there exists an embedding fi : X
ðiÞTZðiÞ with relatively

compact image in ZðiÞ and such that pZ � fi ¼ pX ðiÞ .
If pZ is étale, X and X �Y X are embedded as open, relatively compact

subspaces of Z and Z �Y Z, respectively, (X TZ, X �Y X TZ �Y Z) and the
structural morphisms

X �Y X x
q0

q1

Xð4Þ

are étale and restrictions of their counterparts

Z �Y Z x
q0

q1

Z:ð5Þ

Notice that in a compact DM analytic stack, the fibres of the maps q0 and q1
are equifinite.

For a DM stack Y the following properties are equivalent:

1) Y is compact;
2) every atlas X has a finite subatlas, i.e. X is has finitely many connected com-

ponents.

Compactness implies the following: given a sequence fxng of an atlas X of Y with
no limit points, there exists a sequence fwmg in X1 ¼ X �Y X such that fq0ðwmÞg
is a subsequence of fxng and fq1ðwmÞg is convergent in X . The same conclusion
we have when exchanging q0 with q1.

5.1. Existence of the complex structure. Given an analytic stack p : X ! Y we
are interested in finding a complex space X 0 and a holomorphic map q making
the diagram

X1 ¼ X �Y X x
q0

q1

X !q X 0

commutative and preserving as much information about the diagram as possible.
Consider the following relation on the points of X :

xP y if and only if there exists a a X1 such that q0ðaÞ ¼ x and q1ðaÞ ¼ y:ð6Þ

The existence of a groupoid structure on ½X�� implies that this is a set theoretic
equivalence relation on X . Notice that the diagram

X �Y X x
q0

q1

Xð7Þ
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is not a categorical equivalence relation, hence we cannot apply a well known
result on the existence of its colimit in the category of complex spaces (see, for
instance, [10, Proposition 1.2]).

Denote by X=P the quotient set by the equivalence relation (6). When a fixed
presentation p : X ! Y is understood, for cosmetic reasons, we will denote X=P
as QðYÞ and q : X ! QðYÞ its projection. We list some noticeable properties of
the diagram X ! QðYÞ for a compact DM stack p : X ! Y.

Given x a X , let ½x� be the set of points in X equivalent to x: ½x� ¼ q1ðq�10 ðxÞÞ
is a finite set. Let

A ¼ fx a X : q�10 ðxÞB q�11 ðxÞA jg;

A is the projection through q0 or q1 of the closed analytic set

C ¼ w a X1 : q0ðwÞ ¼ q1ðwÞf g:

and we also let B ¼ qðAÞ.
The following properties hold true:

i) A is a closed analytic subset of X .
ii) q : X ! QðYÞ is a continuous open map with finite fibers.
iii) QðYÞ is a compact Hausdor¤ space and B is a closed subset of QðYÞ.
iv) q : X ! QðYÞ is locally proper, that is given x, there exist an open neighbor-

hoods N ¼ NðxÞ and V ¼ VðqðxÞÞ of x and qðxÞ, respectively, such that q is
proper from N to V .

Then, using Cartan’s Theorem [5] we prove a result analogue to the one in [8] but
for DM analytic stacks

Theorem 5.1. Let p : X ! Y be a compact DM stack. Then,

1) there exists a complex structure on QðYÞ making it a compact complex space of
the same dimension of X such that q : X ! QðYÞ is a holomorphic map;

2) B ¼ qðAÞ is a closed analytic subspace, q�1ðBÞ ¼ A and q : XnA! QðYÞnB is
étale;

3) two presentations pX : X ! Y, pX 0 : X
0 ! Y of Y determine isomorphic com-

plex spaces QðYÞ, Q 0ðYÞ, respectively.

Finally, we point out that a DM stack Y is connected if and only QðYÞ is con-
nected.

6. Topological and metric structures

6.1. Distances. For the time being, we will only consider connected, compact,
DM analytic stacks.

LetY one such analytic stack with atlases X TZ, X ¼ qN
i¼1X

ðiÞ, Z ¼ qN
i¼1Z

ðiÞ

(cfr. Section 5). We can assume Xi and Zi are Stein.
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Fix a di¤erentiable length function H on the quotient space QðYÞ and let
d : QðYÞ �QðYÞ ! Rb0 be the distance determined by H. Let q ¼ qX be the
projection X ! QðYÞ. Even though q�H is only a pseudolength function, a dis-
tance is associated to q�H on any connected component of X : this is because q
is locally proper and equifinite fibres. This is the same distance induced by the
restriction of q�ZH to X . These distances on the connected components can be
assembled together to a unique distance dX on all X in the following way. Fix
two points xA y a X ; a (piecewise di¤erentiable) path g through x and y is a
set fg1; g2; . . . ; gmg of paths ½0; 1� ! X such that:

(1) g1ð0Þ ¼ x and gmð1Þ ¼ y;
(2) qðgiþ1ð0ÞÞ ¼ qðgið1ÞÞ for all 1a iamþ 1.

If lðgiÞ denotes the length of gi with respect to the distance on the connected
component of X in which the image of gi lies, the positive real number lðgÞ ¼Pm

i¼1 lðgiÞ is the length of g by definition. We then set

dX ðx; yÞ ¼ inf
g

lðgÞ:

We proceed likewise for the complex space X1 ¼ X �Y X , considering on X1 the
length functions ðq � q0Þ�H, ðq � q1Þ�H which give rise to the same distance mak-
ing q0 and q1 into local isometries, since q � q0 ¼ q � q1. A similar argument ap-
plies to X2 :¼ X1 �q0;X ;q1 X1 and to the multiplication m : X2 ! X1 that becomes
a local isometry, as well.

The distance just introduced allows to metrize in a natural way the sets
Dis½X� �ðUÞ, p0ðY; yÞðUÞ e p1ðY; yÞðUÞ as follows. Let r ¼ ðri; fijÞA s ¼ ðsi; gijÞ
be two descent data in Dis½X� �ðUÞ, with U a CovU ; define

dðr; sÞ ¼ sup
u AUi

i AN

fdX ðriðuÞ; siðuÞÞg þ sup
u AUij

i; j AN

fdX1
ð fijðuÞ; gijðuÞÞg:ð8Þ

The distance function dðr; sÞ is invariant by restriction, that is dðr; sÞ ¼ dðrjU 0 ; sjU 0 Þ
for any U 0 	 U, thus it is defined for pairs of objects in ObðC½X��ðUÞÞ. In turn it

induces a distance function dp0;U on p
simpl
0 ðY; yÞðUÞ: for a; b a p

simpl
0 ðY; yÞðUÞ

dp0;U ða; bÞ ¼ inf
r A a; s A b

dðr; sÞ:ð9Þ

For p
simpl
1 ðY; yÞðUÞ we proceed similarly. Given U ¼ fUigi a CovU , the ele-

ments of p
simpl
1 ðY; yÞðUÞ are represented by pairs ½r; f� comprising a descent

datum r and f ¼ ffigi an automorphism of r (cfr. Theorem 3.2). The distance d
between two such pairs ðr; fÞ and ðs;cÞ is defined as

dððr; fÞ; ðs;cÞÞ ¼ dðr; sÞ þ sup
u AUi

i AN

fdX1
ðfiðuÞ;ciðuÞÞgð10Þ

388 s. borghesi and g. tomassini



and the distance between two classes a; b a p
simpl
1 ðY; yÞðUÞ is

dp1;U ða; bÞ ¼ inf
ðr;fÞ A a
ðs;cÞ A b

dððr; fÞ; ðs;cÞÞ:ð11Þ

Proposition 6.1. dp0;U e dp1;U are distances.

The proof, rather involved, is based on the following

Lemma 6.2. Given two descent data r ¼ ðri; fijÞA s ¼ ðsi; gijÞ relative to a cover-
ing U 0 ¼ fU 0i gi of a complex space U, such that q � r ¼ q � s, there is a refinement
U ¼ fUigi 	 U 0 and collection of holomorphic maps fi : Ui ! X1 ¼ X �Y X re-
lated to r and s by the equations q0 � fi ¼ ri and q1 � fi ¼ si.

Notice that the collection ðfiÞi does not need to be an isomorphism between
the descent data r and s, the classifying stacks BG providing an example of this.

6.2. The function cðYÞ. Let U be a complex space and

F ¼ FD�U ¼ ðFai : Da �Ui ! D�U ;Faibj : Dab �Uij ! X1Þ

be a relative analytic disc of Y on U . We associate a function D! Rb0 to F as
follows. Take z a D and a vector v a TD, the holomorphic tangent bundle on D,
and consider Da �Ui with z a Da. Then, denoting with dFai the di¤erential of the
holomorphic map Fai, dFaiðz; xÞv is a vector field tangent to X along the points
of the image of ðFaiÞz�Ui

, x ranging in Ui. Since the maps q0, q1 and m are
local isometries, by di¤erentiating with respect of the variable z the structural
equations of F, ð?Þ and ð??Þ of Section 3, we notice that the real number
jdFaiðz; xÞvj :¼ q�HðdFaiðz; xÞvÞ only depends on x, z, v and not on the open
subspaces Da �Ui1, so ðz; x; vÞ 7! jdFaiðz; xÞvj is a well defined real valued con-
tinuous function which will be occasionally written as jdFðz; xÞvj. Moreover, for
any ðz; xÞ a Dab �Uij we have that

jdFai;bjðz; xÞvj ¼ jdFaiðz; xÞvj:ð12Þ

Let

jdFðzÞjU ¼ sup
x AU

sup
v ATzD
vA0

jdFðz; xÞvj
jvjhyp

;ð13Þ

where jvjhyp is the length induced by the Poincaré metric on D, and

cðY;UÞ ¼ sup
F AYðD�UÞ

sup
z AD
jdFðzÞjU ¼ sup

F AYðD�UÞ
jdFð0ÞjU :ð14Þ

1We recall that H denotes a fixed length function on QðYÞ.
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because of the transitivity of the action of AutðDÞ and the invariance of the
Poincaré metric.

By considering the natural restriction maps YðD�UÞ ! F a YðD� fugÞ,
u a U , we see that cðY;UÞ is actually independent of U so we define

cðYÞ ¼ cðY; ptÞ:ð15Þ

Since q0 and q1 are local isometries, if the relative analytic disc

G ¼ GD�U ¼ ðGai : Da �Ui ! D� C;Gaibj : Dab �Uij ! X1Þð16Þ

is equivalent to F, i.e. they have the same class in p
simpl
0 ðY; yÞðD�UÞ, the func-

tions jdFðz; xÞvj and jdGðz; xÞvj coincide.
Given a pair ½F;F� representing a class of psimpl

1 ðY; yÞðD�UÞ, where F is a
relative analytic disc on U , and F ¼ fFaigai is an automorphism of F (see Sec-
tion 3) we have well defined functions jdFðzÞjU and jdFðzÞjU , as in equation (13).
Keeping in mind the Theorem 3.2, we deduce that jdFðzÞjU ¼ jdFðzÞjU . If ½G;C�
is a pair equivalent to ½F;F�, that is their images coincide in p

simpl
1 ðY; yÞðD�UÞ,

then

jdFðzÞjU ¼ jdFðzÞjU ¼ jdCðzÞjU ¼ jdGðzÞjU :ð17Þ

Remark 6.1. Because of the last observations, the vanishing of the H-norm
of the derivative of a descent data or of one of their isomorphisms along the
z-direction is equivalent to their relevant classes in p

simpl
0 or psimpl

1 being constant
(see Section 3).

Under the same notation as in the Subsection 6.1, we prove the following
fundamental

Lemma 6.3. Let a1; a2 a p
simpl
i ðY; yÞðUÞ, for i ¼ 0; 1 and Cða1;a2Þ be an analytic

chain through a1 and a2. Then

dpi ;Uða1; a2Þa 2cðYÞlðCða1;a2ÞÞð18Þ

(see the equation (2) for the definition of length of an analytic chain). In particular,

dKobða1; a2Þb
dp0;U ða1; a2Þ

2cðYÞ :ð19Þ

7. Brody’s theorem

7.1. Kobayashi hyperbolicity implies Brody hyperbolicity. We can now proceed
with the proof of the Brody theorem for stacks. Classically, that theorem refers
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to the implication ‘‘compactness and Brody hyperbolicity imply Kobayashi hy-
perbolicity’’, the converse being a simple consequence of non Kobayashi hyper-
bolicity of C. This is true for general analytic stacks too, even if the proof now is
not entirely obvious due to the di‰culty of determining two di¤erent admissible
sections in p

simpl
0 and p

simpl
1 :

Theorem 7.1. Let Y be a Kobayashi hyperbolic analytic stack. Then Y is Brody
hyperbolic.

Suppose that psimpl
0 ðY; yÞ is not Brody hyperbolic; then there exists a section

s a p
simpl
0 ðY; yÞðC�UÞ not in the image of

p� : psimpl
0 ðY; yÞðUÞ ! p

simpl
0 ðY; yÞðC�UÞ,

p being the projection. We wish to construct two sections, or objects,
r1 Z r2 a ObðC½X��ðVÞÞ for some complex space V , whose Kobayashi pseudo-
distance is zero. Take V ¼ C�U and consider the two sections: r1 ¼ s and
r2 ¼ p�ði�0 ðsÞÞ, where i0 : U ! C�U is the embedding in zero. By assumption,
r1 Z r2. To show that the Kobayashi pseudodistance between r1 and r2 is zero,
we construct relative analytic chains sln between them for n a N, where l a
D2 ¼ fz a C : jzj < 2g. For each n, sln is, in fact, a relative analytic disc and its
length tends to zero as n tends to infinity.

7.2. Compactness and Brody hyperbolicity imply Kobayashi hyperbolicity. Brody
and Kobayashi hyperbolicity of an analytic stack p : X ! Y are statements

concerning the holotopy presheaves psimpl
0 ðY; yÞ and p

simpl
1 ðY; yÞ, as conceived in

definitions 4.3 and 4.5. Surprisingly, it turns out that for DM (connected)

compact stacks, the Brody hyperbolicity content in the holotopy presheaf psimpl
0

absorbed the one of psimpl
1 , to the point of making the latter irrelevant, when deal-

ing with the hyperbolicity of compact DM stacks.

Theorem 7.2. Let Y be a compact, DM stack. If p
simpl
0 ðY; yÞ is Brody hyper-

bolic, then

i) cðYÞ < þl;

ii) p
simpl
i ðY; yÞ are Kobayashi hyperbolic, for i ¼ 0; 1.

The statement i) implies statement ii). Indeed, let a1A a2 a p
simpl
i ðY; yÞðUÞ

admissible sections. From i) and Lemma 6.3, we have

dKobða1; a2Þb
dpi ;U ða1; a2Þ

cðYÞ > 0

hence psimpl
i ðY; yÞðUÞ are Kobayashi hyperbolic.

The proof of the first assertion is rather long and comprises several technical
constructions, thus we restrict ourselves to underline its main points.

391hyperbolicity for deligne-mumford analytic stacks and brody’s theorem



Assume by contradiction that cðYÞ ¼ þl. Then there exists a sequence fUngn
of analytic discs fFngn, i.e. descent data, over D that limn!þl jdFnð0Þj ¼ þl
(see (14), (15)). This sequence descends to a sequence f f ngn of holomorphic
maps f n : D! QðYÞ (see Section 5) such that limn!þl jdf nð0Þj ¼ þl. Indeed,
for every complex space U there exists a commutative diagram

C½X��ðUÞ ������! p0ðYÞðUÞ

HolðU ;QðYÞÞ

ð20Þ  ��
�� ����!

f fQ

where the application f is defined by associating to a descent datum r ¼ ðri; fijÞ
on U ¼

S
i ANUi the holomorphic map fr : U ! QðYÞ defined for u a Ui as

frðuÞ ¼ qðriðuÞÞ.
Since QðYÞ is a compact complex space (see Theorem 5.1) the sequence of the

maps f n : D! QðYÞ may be reparametrized, by means of the classic ‘‘repara-
metrization Lemma’’ (cfr. [3]), to get a sequence of maps ~ff n : Dn ! QðYÞ, where
Dn ¼ fjzj < ng and jd~ff nð0Þj ¼ 1 for all n. By Ascoli-Arzelà Theorem, there exists
a subsequence f ~ff mg uniformly convergent on compacts to a holomorphic
map f : C! QðYÞ, which is not constant since jdf ð0Þj ¼ 1 (cfr. [3]). Then we
get a contradiction by proving that f lifts to a non constant descent datum
cð f Þ a p0ðYÞðCÞ.

The proof of the Theorem 7.2 has highlighted the connection between hyper-
bolicity of QðYÞ as a complex space and Y as DM analytic stack:

Corollary 7.3. Let X ! Y be a compact DM analytic stack. Then

1) if QðYÞ is hyperbolic Y is hyperbolic;
2) Y is hyperbolic if and only if the presheaf p

simpl
0 ðY; yÞ is hyperbolic if and only

if ObðC½X��Þð�Þ is an hyperbolic presheaf.

In a work in progress, we prove that the first assertion in the corollary is, in
fact, an equivalence.
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