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Abstract. — In this paper, a complete classification of subsets of points of PGð3; qÞ of type

ð3; qþ 3Þ with respect to planes is given.
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1. Introduction

A subset K of PGð3; qÞ is a two character ðm; hÞ-set, m, h integers such that
0am < h, with respect to planes if it intersects every plane either in m or h
points. If there exist both an m-secant plane and an h-secant plane, then K is of
type ðm; hÞ.

Subsets in PGð3; qÞ with two intersection numbers with respect to planes
have been studied by many Authors but they have not yet been completely
classified.

The interest in their study is also motivated by the well known equivalence
between two-character sets, two-weight codes and some strongly regular graphs;
see [3]. In our setting, let K be a set of n points in PGð3; qÞ with characters
ðm; hÞ with respect to the planes, and consider the code C whose generator ma-
trix contains as columns the coordinates of the points of K . Then, C is an ½n; 4�q
linear code whose non-zero words have either weight w2 ¼ n�m or w1 ¼ n� h.
Denote now by dðx; yÞ the usual Hamming distance and fix i a f1; 2g. We say
that two codewords x; y a C are adjacent if, and only if dðx; yÞ ¼ wi. The graph
Gi with the elements of C as vertices and adjacency defined as above for turns
out to be strongly regular, see [6, 12] and to sport several further properties.
Some of the papers in the references, see [6, 3, 12], contain further details on
this topic.

The subsets of PGð3; qÞ of type ð1; hÞ and ð2; hÞ with respect to planes have
been completely determined in [11] and [8], respectively.

In this paper, we consider the case ð3; hÞ, that is we consider sets in PGð3; qÞ
which are intersected by every plane either in 3 or in h-points, h > 3.

All two character ð3; hÞ-sets for q ¼ 2 are described in Section 3. If q > 2, then
we prove that h� 3 divides q so ha qþ 3.
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By running a computer programme for admissible values of h < qþ 3 results
were obtained which led the Authors to think that sets of type ð3; hÞ corre-
sponding to such values of h, if they do exist, they have to be considered spo-
radic. Thus, the Authors study sets in PGð3; qÞ of type ð3; qþ 3Þ with respect to
planes.

The following two theorems are proved.

Theorem I. Let K be a subset of PGð3; 2Þ intersected by every plane either in 3
or in h points, then either h ¼ 7 or h ¼ 5 and K is either a plane, or the whole space
PGð3; 2Þ or the set of points on three pairwise skew lines.

Theorem II. Let K be a subset of PGð3; qÞ ðq > 2Þ of type ð3; qþ 3Þ with respect
to planes. Then,

(i) If q ¼ 3, then K is the set of points on three pairwise skew lines, or one of the
three sets described in Examples 4:1, 4:2 and 4:3.

(ii) If q ¼ 4, then K is either the set of points on three pairwise skew lines or
PGð3; 2Þ embedded in PGð3; 4Þ.

(iii) If q > 4, then K is the set of points on three pairwise skew lines.

2. First properties and examples

Throughout the paper K will denote a subset of PGð3; qÞ of size k intersecting
every plane of PGð3; qÞ either in 3 or in h points.

Let l be a line of PGð3; qÞ, l is external if it intersects K in the empty set, l is
tangent if it intersects K in exactly one point and l is s-secant if it intersects K in
exactly s-points, sb 2.

A plane of PGð3; qÞ is a 3-secant plane if it intersects K in exactly 3 points, and
a plane is a h-secant plane if it meets K in exactly h points.

An example of k-set in PGð3; qÞ of type ð3; qþ 3Þ with respect to the planes is
the following.

Example I. Let l, m, n be three pairwise skew lines of PGð3; qÞ. The set
K ¼ lAmA n is intersected by every plane either in 3 or in qþ 3 points.

Let us recall some known properties on sets in PGð3; qÞ with two intersection
numbers with respect to planes [10].

Let t3 and th denote the number of 3-secant and h-secant planes, respectively.
The following equations hold.

t3 þ th ¼ q3 þ q2 þ qþ 1(i)

3t3 þ hth ¼ kðq2 þ qþ 1Þ(ii)

6t3 þ hðh� 1Þth ¼ kðk � 1Þðqþ 1Þ:(iii)

396 v. napolitano and d. olanda



From (i), (ii) and (iii) it follows that:

k2ðqþ 1Þ � k½ðhþ 3Þðq2 þ qþ 1Þ � q2� þ 3hðq3 þ q2 þ qþ 1Þ ¼ 0ð2:1Þ

t3 ¼
hðq3 þ q2 þ qþ 1Þ � kðq2 þ qþ 1Þ

h� 3
ð2:2Þ

th ¼
kðq2 þ qþ 1Þ � 3ðq3 þ q2 þ qþ 1Þ

h� 3
:ð2:3Þ

Let p be a point of K , denote with v3ðpÞ and with vhðpÞ the numbers of
3-secant and h-secant planes on p, respectively.

Then,

v3ðpÞ ¼
hðq2 þ qþ 1Þ � kðqþ 1Þ

h� 3
� q2

h� 3
ð2:4Þ

vhðpÞ ¼
kðqþ 1Þ � 3ðq2 þ qþ 1Þ

h� 3
þ q2

h� 3
:ð2:5Þ

Let p be a point not in K , denote with u3ðpÞ and with uhðpÞ the numbers of
3-secant and h-secant planes on p, respectively. We have that

u3ðpÞ ¼
hðq2 þ qþ 1Þ � kðqþ 1Þ

h� 3
ð2:6Þ

uhðpÞ ¼
kðqþ 1Þ � 3ðq2 þ qþ 1Þ

h� 3
:ð2:7Þ

Thus, the integers v3ðpÞ, vhðpÞ, u3ðpÞ, uhðpÞ are independent from p and compar-
ing Equation (2.4) and Equation (2.6) gives

ðh� 3Þ j q2:ð2:8Þ

3. Two character ð3; hÞ-sets in PGð3; 2Þ

Let K be a subset of points of PGð3; 2Þ intersected by every plane either in 3 or in
h points. By Equation (2.8) it follows that h a f4; 5; 7g.

For h ¼ 4, q ¼ 2 Equation (2.1) has no solution. When h ¼ 5 or h ¼ 7 the cor-
responding values of k are 7, 15, 9. It follows that at least one plane is h-secant,
otherwise ka 5.

For h ¼ 7, q ¼ 2 Equation (2.1) gives k ¼ 7 or k ¼ 15.
If k ¼ 7, the set K is a plane. If k ¼ 15 the set K is PGð3; 2Þ.
Next, assume that h ¼ 5. From Equation (2.1) it follows that k ¼ 9. In such a

case, we are going to prove that K is the union of three pairwise skew lines. The
proof will proceed by steps.
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Step 1. Every point of K belongs to at least one line contained in K.
This is clear, since k ¼ 9.

Step 2. Through every point of K there are at most two lines contained in K.
Assume to the contrary that it there exists a point p of K on three lines, say l1,

l2, l3 contained in K . Namely such lines are not coplanar, and they contain seven
points of K . Let p 0 and p 00 be the other two remaining points of K , and let p1, p2,
p3 be the three distinct planes obtained by connecting each of the lines l1, l2, l3
with the point p 0. Each of these planes has to contain a fifth point which is p 00,
necessarily.

Thus, p 00 belongs to the line pp 0 and so there are four lines containing p and
contained in K . A plane p not containing p does contain none of those four lines,
and so it has exactly four points of K , a contradiction.

Step 3. K is the union of three pairwise skew lines.
Let l be a line contained in K and let p1, p2, p3 be the three planes passing

through l. Each of such planes is 5-secant, and so besides l it contains another
line. Let l1, l2, l3 be the lines di¤erent from l and contained in p1, p2, p3, respec-
tively.

By Step 2 the lines l1, l2 and l3 meet l in distinct points. Thus, they are three
pairwise skew lines and they contain all the points of K . r

4. k-sets in PGð3; qÞ, q > 2, of type ð3; hÞ

From now on, by Section 2, we may assume that q > 2.
Equation (2.8) implies that ha q2 þ 3 and so K cannot contain planes.

Proposition 4.1. There are both 3-secant planes and h-secant planes.

Proof. Assume by way of contradiction that all the planes are h-secant. Let l
be a s-secant line. Clearly, s < h, otherwise K should be the set of s collinear
points, and so not of type ð3; hÞ. Computing the size of K via the planes through
l gives

jK j ¼ ðqþ 1Þðh� sÞ þ s:ð4:1Þ

Counting in double way the incident point-plane pairs ðx; pÞ, with x a K,
gives

jK jðq2 þ qþ 1Þ ¼ hðqþ 1Þðq2 þ 1Þ:ð4:2Þ

Comparing equations (4.1) and (4.2) it follows that

ðqþ 1Þðh� sÞ þ s ¼ hðq2 þ 1Þðqþ 1Þ
q2 þ qþ 1
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and so

h� sþ s

qþ 1
¼ hðq2 þ 1Þ

q2 þ qþ 1

h� hðq2 þ 1Þ
q2 þ qþ 1

¼ s� s

qþ 1

h

q2 þ qþ 1
¼ s

qþ 1

hðqþ 1Þ � sðqþ 1Þ ¼ sq2

ðh� sÞðqþ 1Þ ¼ sðq2 � 1Þ þ s

from which it follows that qþ 1 j s and so s ¼ qþ 1. Since K is of type ð3; hÞ it
cannot be a line, thus there is at least one point p of K outside the line l. The
plane connecting p and l is contained in K since all the lines px, with x a l, are
secant lines and so they are contained in K . Since K does not contain planes, we
have a contradiction.

Finally, we prove that there is at least one h-secant plane.
Assume to the contrary that all the planes are 3-secant. Let x and y be two

distinct points of K , and let l be the line containing both x and y. Such a line is
a 2-secant line, otherwise K should be the set of three collinear points. It follows
that, jK j ¼ qþ 3. Being q > 2 it there exists an external line, let E be such a line.
Computing jK j via the planes on E gives jK j ¼ 3qþ 3, a contradiction. r

Proposition 4.2. h� 3 divides q and so ha qþ 3.

Proof. Since there are 3-secant planes and q > 2, it follows that there are both
external lines and tangent lines. Let E be an external line, computing the size k of
K via the planes on E gives

k ¼ 3aþ ðqþ 1� aÞh ¼ ðqþ 1Þh� hða� 3Þ;

where a denotes the number of 3-secant planes through E.
Now, let t be a tangent line, computing k via the planes on t gives

k ¼ 1þ 2mþ ðqþ 1� mÞðh� 1Þ ¼ ðqþ 1Þh� q� mðh� 3Þ

where m denotes the number of 3-secant planes on t. Comparing the two above
values of k one gets that ðh� 3Þ j q. r

Consider the discriminant

D ¼ ½q2 � ðhþ 3Þðq2 þ qþ 1Þ�2 � 12hðqþ 1Þðq3 þ q2 þ qþ 1Þ

of Equation (2.1).
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Fixed q ¼ pt, p prime, and chosen h ¼ 3þ d, with 1a d < q and d j q, run-
ning a computer programme the Authors have checked the possible values of D
allowing p and t to assume the following values:

p prime 1a pa 30011 1a ta 100

p prime 1a pa 1979 1a ta 200

p prime 1a pa 1699 1a ta 500:

The only values of q and h that make D a perfect square are q ¼ 8 and h ¼ 7.
Hence, it seems that sets of type ð3; hÞ with respect to the planes with

h < qþ 3 and such that h� 3 j q, if they do exist they are very rare.
Therefore, from now on we will assume h ¼ qþ 3.

Proposition 4.3. If K contains no line then either q ¼ 3 or q ¼ 4. If q ¼ 4, then
K is PGð3; 2Þ. If q ¼ 3 then K is determined.

Proof. When h ¼ qþ 3, Equation 2.1 gives k ¼ 3qþ 3 or q ¼ 3 and k ¼ 12 ¼
3qþ 3 or k ¼ 15.

Assume k ¼ 3qþ 3. Since there are 3-secant planes, then at least one external
line exists. Let E be an external line, and let a be the number of ðqþ 3Þ-secant
planes passing through E. Then,

k ¼ aðqþ 3Þ þ ðqþ 1� aÞ3 ¼ 3qþ 3

from which it follows that a � q ¼ 0 and so a ¼ 0. Let p be a ðqþ 3Þ-secant plane
and let B ¼ pBK . By the previous argumentation, the set B has no external line
and since by assumptions it contains no line, it is a blocking set of p.

From the results contained in [2] it follows that

jBj ¼ qþ 3b qþ ffiffiffi
q

p þ 1

from which it follows that either q ¼ 3 or q ¼ 4. If q ¼ 4, k ¼ 3qþ 3 ¼ 15 and B
is a Baer subplane. Let r be a line containing two points, say p and p 0 of K . At
least one plane, through the line r is ðqþ 3Þ-secant otherwise ka qþ 3. Let p
be such a plane. The set KBp is a Baer subplane and so r has three points in
common with K . Thus, on every 3-secant plane p, the three points of K in p are
collinear. If any plane intersects K either in three collinear points or in a Baer
subplane then K ¼ PGð3; 2Þ, (cf e.g. [13]).

If q ¼ 3, as already remarked, the set K has size either 12 or 15. The sets K of
PGð3; 3Þ not containing lines and intersecting every plane in either 3 or 6 points
have been determined with the help of a computer. Using a package in MAGMA
similar to that contained in [9] an exhaustive search provided an unique 12-set
and two 15-sets in PGð3; 3Þ, not projectively equivalent and with the required
properties. Below, such sets are described via the homogeneous coordinates
ðx; y; z; tÞ.
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Example 4.1. k ¼ 12

Að1; 0; 0; 0Þ;Bð0; 1; 0; 0Þ;Cð0; 1; 1; 1Þ;Dð0; 0; 1; 0Þ;Eð0; 1; 0; 1Þ;Fð0; 0; 0; 1Þ
Gð1; 0; 0; 1Þ;Hð1; 1; 0; 1Þ; Ið1; 0; 2; 0Þ;Lð1; 2; 2; 0Þ;Mð1; 0; 2; 1Þ;Nð0; 1; 1; 0Þ:

Example 4.2. k ¼ 15

Að1; 1; 2; 1Þ;Bð1; 0; 0; 0Þ;Cð0; 1; 0; 0Þ;Dð0; 0; 1; 0Þ;Eð0; 0; 0; 1Þ;
F ð0; 0; 1; 2Þ;Gð1; 1; 1; 1Þ;Hð1; 1; 1; 2Þ; Ið1; 0; 2; 0Þ;Lð1; 2; 2; 0Þ;
Mð0; 1; 2; 2Þ;Nð0; 1; 1; 0Þ;Oð1; 0; 2; 2Þ;Pð1; 2; 1; 1Þ;Qð1; 2; 1; 2Þ:

Example 4.3. k ¼ 15

Að1; 0; 0; 0Þ;Bð0; 1; 1; 0Þ;Cð0; 1; 0; 0Þ;Dð0; 0; 1; 0Þ;Eð0; 0; 0; 1Þ;
F ð1; 1; 2; 1Þ;Gð1; 1; 1; 1Þ;Hð1; 0; 1; 2Þ; Ið1; 1; 1; 2Þ;Lð1; 2; 2; 0Þ;
Mð0; 1; 2; 2Þ;Nð1; 1; 2; 2Þ;Oð0; 1; 2; 1Þ;Pð1; 0; 1; 1Þ;Qð1; 0; 2; 0Þ:

5. The characterization theorem

In view of the previous Sections we may assume that q > 2, h ¼ qþ 3 and K con-
tains at least one line.

Proposition 5.1. If q > 2 and K contains at least one line, then K is the point-
set of the union of three pairwise skew lines.

Proof. Let L1 denote a line contained in K. Being q > 2 every plane passing
through L1 is a ðqþ 3Þ-secant plane, and so counting k ¼ jKj via the planes on
L1 gives:

k ¼ qþ 1þ 2ðqþ 1Þ ¼ 3qþ 3:

Put K 0 ¼ K � L1 and let p be a plane. If p contains L1, then it is a ðqþ 3Þ-secant
plane and hence it intersects K 0 in exactly two points. If p does not contain L1,
then it meets K 0 in exactly two points if it is a plane meeting K in three points and
it meets K 0 in qþ 2 points if it is a plane meeting K in qþ 3 points. Hence every
plane meets K 0 either in two or in qþ 2 points. From results contained in [5] it
follows that K 0 is the union of two pairwise skew lines L2 and L3. Hence K ¼
L1 AL2 AL3 and the assertion is proved. r

6. Final remarks

The aim of this last section is to analyse some properties of the linear codes
related to the subsets of PGð3; 3Þ described in examples 4.1, 4.2, 4.3 of Sec-
tion 4.
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The set of PGð3; 3Þ described in Example 4.1 gives rise to a linear ½12; 4; 6�3-
code with second weight 9. This code is the subcode generated by the first 4
rows of

G ¼

1 0 0 0 1 0 1 1 0 1 1 0

0 1 0 0 0 1 1 0 1 0 1 1

0 0 1 0 1 0 0 2 0 2 1 1

0 0 0 1 0 2 1 0 1 1 1 0

0 0 0 0 1 0 2 1 2 2 0 2

0 0 0 0 0 2 0 2 1 2 2 2

0
BBBBBBBB@

1
CCCCCCCCA
:

Observe that G generates a ½12; 6; 6�3 code, equivalent to the usual ternary ex-
tended Golay code.

The strongly regular graphs arising from the sets in examples 4.2 and 4.3 have
di¤erent automorphism groups. More in detail, the automorphism group of the
graph from Example 4.2 has order 5832, while that from Example 4.3 has order
116640. In view of this latter property, we can compare the structure here ob-
tained with that described in [4] and the code with that of [12]. In particular, the
two linear ½15; 4; 9�3-codes with second weight 12 associated to the sets of exam-
ples 4.2 and 4.3 are di¤erent.
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