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ABSTRACT. — Ternary fluid mixtures saturating horizontal porous layers with large pores, uni-
formly rotating around the vertical axis, are investigated. The layers are heated from below, salted
from above and from below by two salts. The stabilizing effects of both the rotation and Brinkman
terms on the conduction solution are analyzed.

SoMMmARIO. — Vengono studiate miscele fluide ternarie saturanti uno strato poroso orizzontale uni-
formemente rotante attorno all’asse verticale, nell’ipotesi che i pori siano sufficientemente grandi da
tener conto della viscosita di Brinkman. Si ammette inoltre che lo strato sia riscaldato dal basso e
salato dal basso e dall’alto da due diversi sali. Si studia la stabilita non lineare (globale) della solu-
zione di conduzione, mettendo in evidenza gli effetti stabilizzanti della rotazione e del termine di
Brinkman, al variare dei numeri di Prandtl.
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1. INTRODUCTION

Because of their relevance in the real world phenomena (geophysical applica-
tions, artificial porous materials used for insulating purposes and in heat transfer
devices . . .), multicomponent fluid mixtures in porous layers have attracted, in the
past as nowadays, the interest of many authors {cfr. [1]-[32]}. Recently, in [27],
the case of porous rotating layers, heated from below and salted from above by
two salts (the most destabilizing case), has been analyzed under the assumption of
the validity of the Brinkman model (large pores) [2]. Through suitable scalings,
the linear operator of the model has been symmetrized and a necessary and suffi-
cient condition ensuring the global, nonlinear, asymptotic L>-stability of the con-
duction solution, has been found for any values of the Prandtl numbers. In the
present paper we consider porous rotating layers with large pores, heated from
below, salted from below by one salt and from above by another salt, and apply
the methodology recently introduced by Rionero [32]. Although we generalize the
Rionero procedure to the case of rotating porous layers with large pores, uni-
formly heated from below and salted from below and from above by two salts,
our main scope is to analyze and evaluate—in finite forms—the stabilizing effects
of rotation and Brinkman viscosity either when act separately or when they act
together. Precisely our aim is to show that the global nonlinear stability of the
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conduction solution is guaranteed by

(1.1) RP<R—R}+ 4", forP <1, Py=>1,
R? R?
(1.2) RP<=L 24 4% forPi>1,P<I,
P, P,
R2
(1.3) R2<R]2—P—2+A*, for Py <1, P, <1,
2
R2
(1.4) R2<?1—R§+A*, for Py >1, P, > 1,
1

where R%, R? (i = 1,2), are the thermal Rayleigh number and the solutal Ray-
leigh numbers respectively, P; (i =1,2), are the Prandtl numbers and 4* =
A*(Dy, 7)) > 0, with D,(> 0) and 7 (> 0) the Darcy and the Taylor-Darcy num-
bers (cfr. Sect. 2) linked to the Brinkman viscosity and uniform rotation respec-
tively. It is to remark that

1) A%(0,0) = 47 and (1.1)—(1.4), in absence of rotation and Brinkman terms, re-
duce to the conditions found in [32];

2) A*(D,, 7 ) > 0, is a measure of the stabilizing effects of rotation and Brink-
man terms {cfr. Sect. 6}.

The plan of the paper is as follows. Section 2 is devoted to the introduction of the
mathematical model. In Section 3 the main boundary value problem at stake is
resolved and the independent fields involved in the model are reduced only to
three. In the subsequent Section 4, new fields and positive scalings are introduced,
in order to write the system in a suitable way. Sections 5 regards the global non-
linear stability of the conduction solution. It is shown that, for {P; < 1, P, > 1},
the linear operator of the model can be symmetrized and (1.1), which is a neces-
sary and sufficient condition for the nonlinear stability, is obtained. For the other
values of the Prandtl numbers (the partial skew-symmetric cases) the conditions
(1.2)—(1.4) are proved to be only sufficient to guarantee the global nonlinear
stability of the conduction solution. Some numerical estimation of the stability
thresholds are furnished in Section 6, on showing the stabilizing effects of both
Brinkman and rotation terms. The paper ends with an Appendix (Section 7) in
which an uniqueness theorem is proved.

2. MATHEMATICAL MODEL

We consider fluid mixtures saturating an horizontal porous layer, uniformly
rotating around the vertical axis. We denote by d the depth of the layer, by
S; (i =1,2) two chemical species (or salts) dissolved in the fluid and by Oxyz an
orthogonal frame of reference with fundamental unit vectors i, j, k (k pointing
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vertically upwards). The equations governing the motion of the fluid, in the
Darcy-Oberbeck-Boussinesq scheme, according to the Brinkman law, are:

Hy

VP:—Ev+u2AV—2PoC‘)kXV_gpf’

V'V:())
oT
il VT = K+AT

) py +v-V TAL,
0§1+V-VC1 :KlAclu
Uact'Z +v- VC2 = KZAC27

where

P=p—"wxx,

Py = poll —a(T — To) + B, (C1 — V) + o (Cr = )],

(2.2)

with

p = pressure field, o = wk = angular velocity, x = (x,y,z),

py = fluid mixture density, p, = reference density,

o = thermal expansion coefficient, f5; = solutal expansion coefficients, (i = 1,2),
T = temperature field, 7T, = reference temperature,

C; = solutal concentrations, C? = reference solutal concentrations, (i = 1,2),
v = seepage velocity, u; = viscosity coefficients, (i = 1,2),

K = permeability, K7y = thermal diffusivity,

K; = solute diffusivity, (i =1,2).

To (2.1) we append the boundary conditions

T(xvyvovl) = T/a T(x7y7d7t): Tm
(23) Ci(xay703t):Cila Ci(x,yada[):Ciua I = 1727
v-k=0, onz=0,d,
where T}, T,,Cy,Cy (i=1,2), are positive constants such that 7;> T,

Cll > Clu, and Cz] < Czu.
The conduction solution is

o0C,

B oT - oC
V=0,T=T -z C=Cy-— —z
oT=T,—T,,0C, = Cy;— Ciy, 0Cy = Cyy — Cyy,

g BT 00 6

P = Po+ pogz 2d + B °d + B, d

— pogz[l — a(T; — Ty) + 1 (Cy — C?) + Bo(Co — Cg)]a

z, Co = Cy +




408 F. CAPONE AND R. DE LUCA
with p(z = 0) = py = const. Setting
(25) v=v+u, p=p+n, T=T+0, C=C+y (i=12),

with u = (u, v, w), introducing the dimensionless variables:

= KT x* X u* d * K *
(2.6) 2 Ay
' Kd\1/2 B.pogKd \1/2
0 = 1%, T = (2 = (0 =1,2
’ ( KT5T) O (ulKTP,éC,») (i=1,2),

K
with P; = ?T Prandtl number for the solute S; (i = 1,2) and omitting all the
stars, (2.1) becomes:

Vn=—-u+ D,Au+ Zuxk+ (RO — Ry, — Ry, )k,

V-u=90
?—Fu VO = Rw + Ab,
(2.7)

,\

P1(;II+U'VV1> = Riw+ Ay,

0
P> (ﬁ +u- Vy2> = —Row + Ay,,

ot
where
K 2powK
D, = /% (Darcy number), 7 = % (Taylor-Darcy number),
1 1
KdoT\1/2 .
R= (M) (thermal Rayleigh number),
mKr
PogKdP;oC\1/2 . .
R, = (ﬁ,pog—) (solute Rayleigh numbers), (i =1,2).
mKr

0 (2.7), in view of (2.3), the boundary conditions:

(2.8) u=v.=w=0=y=9=0, onz=0,1,

are appended.
In the sequel we shall assume that:

i) the solutions of (2.7)—(2.8) are periodic in the x and y directions of period a—n,
2 . x
o respectively;

dy
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. 2 2 . C
i) Q= {0 _n] {0 a_n] x [0, 1], is the periodicity cell;
x y
iii) u,0,y;,7, € L*(Q), where L*(Q) is the set of the functions belonging to
W22(Q), verifying 1), such that all their first derivatives and second spatial
derivatives can be expanded in Fourier series absolutely, uniformly conver-

gent in Q, Vr e R™.

3. THE BOUNDARY VALUE PROBLEM
This Section is devoted to solve the boundary value problem

Vrn=—-u+ D,Au+ 7u x k+ (RO — Ry, — Ry, )k,
(3.1) V-u=0,
w=0=y,=9=0, onz=0,1.

Since the set {sinnnz}, _y, is a complete orthogonal system for L>(0, 1), then

neN

o0

0
(3.2) r= Zrn Iy(x, p,0)sin(naz), VI € {w,0,9,,7,}.

n=1 n=1

On the other hand, by virtue of the periodicity in the x and y directions, one
obtains:

(3.3) To(x, y, 1) = Ti(r)el@+a),
and hence
(3:4) AT, = —a’T,, AT, =-&T,,
with
or @ o2
(3.5) a*=a;+a;, A :@4-@, A=A += £, = a* + n’n.

LEMMA 3.1. Let (u,0,7,,7,) € [L*(Q)]® be a solution of (3.1). Then (u,0,y,,7,)
is a solution of the boundary value problem

(DyA — 1)*Aw + T 2w.. + (DyA — 1)A[ (RO — Ryy, — Ryy,) =0,
(36) V-u:(),
w=0=y,=93=0, onz=0,1.

PROOF. On setting

(3.7) {=(Vxu)-K,
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from (3.1), one obtains

2
Alu:—aw—%,
(3.8) 0x0z 0y
' Ay Ow
= 0ylz  0x’

On the other hand, the third component of the curl of (3.1); and the third com-
ponent of the double curl of (3.1);, are respectively:

(3.9) DAL~ + Tw. =0,
(310) —Aw + DaAAW — 9—{: + (RAlg — R1A1V1 — RZAI')Q) =0.

From (3.10), on applying the operator (D,A — 1), one obtains

(3.11) (DA —1)*Aw — (DA — 1)T .+ (DyA — 1)A[ (RO — Ryy; — Ryp,) = 0,
moreover, since (3.9), it follows that

(3.12) (DA —-1V)T( = —T w....

Hence, substituting (3.12) in (3.11), one has that a solution of (3.1) is also a solu-
tion of (3.6).

THEOREM 3.1. Let (tn, Uy, Wn, Op, V1> 7)€ [L*(Q)]® verifving (3.6)s. Then, the
solutions of the boundary value problem (3.6) are given by

(3.13) u= Z[unl + vnj + wik],
n=1
where
o i azw,, L T ﬁzwn
" a? oxdz  a®(1 + D,¢E,) dyoz’
o l *w, B T 0%,
(3.14) " a2 0yoz  a*(1 + D,E,) 0x0z’

Wn = nn(Rgi’l - Rlyln - R2y2n)7
N a2<1 +Daén)
E(1+ D) +n2n2 72

M

PRrROOF. In view of (3.8) one obtains

2
(Duh — DA = —(DoA — 1) — (DA - 1),
0x0z oy
(3.15)
(DuA — 1)A10 = —(DoA — 1) Gl + (DA —1)E
“ = “ 0yoz “ ox’
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moreover, by virtue of (3.9), since (D,A —1){, = =T w,. and (D,A—-1){, =

—T Wy, system (3.15) becomes

2 2
(DuA — DA = —(Dyh— 1) 2 7 8
0x0z 0yoz
(3.16) 2 2
_ - — _ — g
(DA~ DA = ~(DA 1) 52~ 7 5 2

In view of (3.2)—(3.4), one has that the first two components of u, are given by

0 0
= Zun = Z iy (x, y,t) sin(nnz),
n=1 n=1

(3.17)
o0 o0
v= ZU” Z X, y,t)sin(nnz),
where
o i 0*w, T 0*w,
(3.18) " a2 0x0z  a*(1 + D,E,) 0yoz’
' 1 0%, 7 Pw,
Uy = — - .
a? 0yoz  a*(1 + D,¢&,) 0xiz

Hence the solution of (3.6), (3.16) is

0
(3.19) [Und + vnj + wikK],
n=1
with
Wy = ”n(Ran - Rlyln - R2y2n>7
(3.20) (1 + D,é,)

T e (L4 D) 2T

One can easily verify that u, given in (3.19), satisfies also (3.6), and hence the
thesis is hold.

REMARK 3.1. In view of Theorem 3.1, it follows that the independent fields of
(2.7) are reduced to the three fields 0, y,, y,.
4. INTRODUCTION OF NEW FIELDS AND SCALING

By virtue of Remark 3.1, in order to study the fluid motion, we can confine our-
selves to consider the last three equations in (2.7), i.e
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0 &

E - Z[(Rznn - fn)en — RRnyy1, — RR27’/,,72,,,] —u- Vo,
n=1
1 ~~[RRin Rin, + &, Ri Ry
) v _ ng n - n R
(4 l) ot ; |: P1 n Pl Y1n Pl Yon u Vyl)
3y _~~[ RRom, ,  RiRoy R3n, — &,
Y _ _ n 0, n n R ’
ot ; [ P, * p, + e Vi
which on setting
R277n - én _RRli//n _RRZnn
RRlnn . R%r/n + fn . R1R277n
(42) Ln = P1 Pl P1
B RR27]n R1R277n R%nn - &n
P, P, P,
become
AN u- Vo
(43) a 71 = Z L,, V1n — | u- Vyl )
% n=1 Von u- Vyz
ie.
o0 a 071 o0 0}1 0 u- VO,,
(44) Za Yin | = Z L, Yin | — Z u- Vyln )
= V2n n=1 Von n=1 u- VyZn

under the initial-boundary conditions

(4 5) (eil)t:O = ‘90117 (yin)t:O = Y0in> = la 27
' Op=w,=79,=0, (i=12), onz=0,1,

Oo = >0 1 Oons Vio = Dy Viows (i =1,2), being the initial values of ¢ and y,,
(i=1,2).

REMARK 4.1. Let us consider the “nonlinear evolution system of the n-th Fourier

’

component (0,1, V2n) 0f the perturbation (0,y,,7,)" [32], i.e.

011 0,1 u- V@,,
(46) & Y1in = Ln Y1n — | u- Vyln
Von V2n u- VVZn

Since the uniqueness theorem for (4.4)—(4.5) (cfr. Appendix) implies, as particular
case, the uniqueness theorem for (4.6)—(4.5) (cfr. [26] for details)—by inspection of
(4.4) and (4.6)—it follows that the global nonlinear stability of the null solution of
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(4.3) is guaranteed if exist conditions—independent of n—guaranteeing the global
nonlinear stability of (4.6).

On introducing the two new fields:
(47) D = R0 — P]Ryl, Dy, = R0+ PQRVZ,

system (4.4) becomes

w A f On - 0, w [ u-Vo,
o
(48) a (I)ln = § % (I)ln - § u'V(Dln ;
n=1 (O n=1 D, =1\ u- Vi,
with
R, R,
Ry, — e
}7;1 én P] ;/In P2 n
Rl fn
4.9 L=| - Sp -1, —= 0 |,
(49) (P =D -2
R2 én
~22p, R
PZ( 2 )én P2
and
R} R3
4.10 rrop R R
(4.10) 7 P

To (4.8)—(4.9) we append the initial-boundary conditions

(4 11) (Hn),:() = 90"7 (q)in)zzo - q)Oim = 1727
' 0, =w,=0;,=0, (i=1,2), onz=0,1.

Setting

1
mn

with

n n
4.13 fy = |11 = P12 gy = [ 1P2— 1|22,
(4.13) | | 1|nn > P> Inn

and omitting the stars, the nonlinear evolution system of the n-th Fourier compo-
nent of (4.8) is given by

5 011 071 u- Ve”'

(4.14) 5 | @w =% @, |- u-vo, |,
D05, @y, u-Vd,,
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under the i.b.c. (4.11) and %, given by

Rl R2
Ry, — &, LN =Py, — 2P — 1[G,
My ¢ P, | 1|€ My P, | 2 |é My
415 Déﬂ B Rl(l_Pl>\/én7/n _é 0
(. ) ne P]\/ll—P1| Pl
_RZ(P2_1)\/ énnn 0 _é

P2\/|P2—1| P2

5. GLOBAL NONLINEAR STABILITY OF THE CONDUCTION SOLUTION

Setting
(51) A" = inf éa E:zoo:Ena
(a,n)eRTxN1, P
with
(52> En = /(05 + q)%n 211) dQ
Q
in view of
(53) / u- V<(pn) dQ = 0 »y € {gm chl’la (D2n}7
Q
. . dEn . .
it follows that, along the solutions of (4.14), ;1S given by
dE,
5.4 n dQY,
(54) = [me
where

1) in the case {P; < 1, P, > 1}, Q, reduces to

(e G\ e 2R
(55) 0, = (R —”—n)en —Zn P~q)"2”+Pmn

i=1 "In"1

(1 - Pl)énnn n

\/ én”ng (D2n7
2) in the case {P; > 1, P, < 1}, Q, reduces to

1 1
én) 92 én (D]n _ én
My Py 1, Py 1,

Pzn

(5.6) 0, = (R~ =13
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3) in the case {P; < 1, P, < 1}, O, reduces to

« S 1 ¢, 1<,
(5.7) Q,,:(R —,]—)95—1)—1,7—@12;1—’#2’7—@%”

ZR
1 \/ 1 - Pl énnng q)lm
Pl n,

4) in the case {P; > 1, P, > 1}, Q, reduces to

1 1
*-f—*f)ez-—%a-—%;n
nn Py, Py,

(5.8) 0, = (R

\/ énﬂne Dyy.

REMARK 5.1. On accounting for (5.1),—(5.3), it follows that, along the solutions

of

Pzn

a0 . 0, u-vo
(5.9) 5| @ => | @, || u-VO |,
D, n=1 D, u-vVo,

(5.10) aE_ 5~

dE
Hence, zf % is negative definite along the solutions of (4.14), Yn € N, then 0 is

negative deﬁnlle along the solutions of (5.9).

We begin by analyzing the stability in the case {P; <1, P, > 1}, i.e. when the
matrix %, is symmetric. The following theorem holds.

THEOREM 5.1. The conduction solution is linearly stable and nonlinearly, glob-
ally, asymptotically stable, if and only if (1.1) holds.

PrOOF. In view of (4.15), it follows that if and only if {P, < 1,P, > 1}, &, is
symmetric and it is given by

R1 RZ
Ry, — L Ja=p ~22 /(P 1
M n P, ( l)én”/n P, ( 2 )én’]n
=~ Rl én
1) %= ZL/(1-P)e, -
(5.11) & 2 (1—-P)ém, 2 0
R, Sn
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Introducing the L?(Q)-norm E, given in (5.2), it follows that, along the solution

dE,
of (4.14), — o is given by (5.4) with Q, given by (5.5). Hence Q, is negative defi-
nite Vn € N if and only if
(5.12) R*< Q, detAsy; >0, det%, <0, V(a*,n)eR" xN,
n
with
R
~ R*nn - én P_1 (1 - Pl)énnn
(5.13) Ay = :
Py i Py
In view of Remark 5.1 and
i énnn * R 2 én
det Az = — P, (R —l—Fl—R n),
(5.14) 2y R OR ¢
7 _ Salln (pe p2_p2_Po  KP_ n
detc%l P]P2< * 2 ! P] +P1 }’]n)’

one has that (5.12) are implied by (1.1);. It remains to show that (1.1) is also nec-
essary. This follows immediately since det %, < 0 is one of the Routh-Hurwitz
conditions [33] requested for all eigenvalues of %, have negative real part.

Now we prove that the conditions (1.2)—(1.4) are sufficient to ensure the global,
nonlinear, asymptotic stability of the conduction solution in the partial skew-

symmetric cases.

THEOREM 5.2. The global nonlinear stability of the conduction solution is guaran-
teed by (1.2)—(1.4).

PROOE. In the case {P; > 1,P, < 1}, %, becomes

R R
R*ﬂn - én F]l V (Pl - l)énr/n _Fj (1 _P2)én’7n

~ R
(515 % =| 3P - T, 2 0
R, &
— 1-P 0

Hence, the temporal derivative of E,, along the solution of (4.14) is given by (5.4)
with Q, given by (5.6). It is easy to prove that Q, is negative definite, Vn € N,
when (1.2); holds.
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In the case {P; < 1,P, < 1}, %, reduces to

R R
R*r]n - én Pi (1 - Pl)énﬂn - Pj (1 - PZ)énr/n
> Rl én
516) %= | SL/0=P)E )
(516) %= | 5 VT= P&, - 0
R, S
R JA_p _5n
P2 ( 2)5117771 0 PZ

and hence the temporal derivative of E, along the solutions of system (4.14) is
given by (5.4) with Q, as in (5.7). Then, the condition (1.3); guarantees that Q,
is negative definite Vn € N.

In the last case {P; > 1, P, > 1}, one has that

R R
Ry, ¢, P—i\/m —1)ém, —,f\/wz — D,

~ R "
G G= | B En, 3 0
R, Cn
_2 Py _5n

and hence the temporal derivative of E, along the solutions of system (4.14) is
given by (5.4) with Q, given by (5.8). Therefore (1.4); assures that Q, is negative
definite Vn € N.

REMARK 5.2. For any values of the Prandtl numbers, it follows that
(5.18) det %, <0, YneN& R — R} +R3 < A"

Since (5.18) is one of the Routh-Hurwitz conditions, necessary for all eigenvalues of
%, have negative real part, then it follows that

(5.19) R*< R} —R; + 47,

is necessary for the linear stability of the conduction solution, for any values of the
Prandtl numbers.

6. ESTIMATES OF THE STABILITY THRESHOLDS

Setting
E(1+ D&, i n*n’7 %,
a? a*(1+ Dy&,)’

by virtue of (3.5)4, (3.20),, it follows that 4* in (5.1) is given by
(6.2) A*= inf  A(n*a* D, T).

(a?,n)eRTxN

(6.1) oA (n?,a* Dy, T ) =
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REMARK 6.1. We remark that:

1) since
GL+D&) & Dy &
(6.3) oA (n*,a*, Dy, T) > % = a—g aZ” > a—;,
ie.
(6.4) A* > min.o/(n?,a*,0,0) = 47,

either rotation or Brinkman terms have stabilizing effect on the conduction
solution,
i) in view of

0o/

(6.5) Fi 0,

one has that

(6.6) A" = min .o/,

with

a® + 7)1 + D,(a* + 2
(6.7) ot =4 (1,a*, Dy, T) _ )l > ( )
N (a® + n*)n2T?
a?[1 + D,(a? + 7?)]

iil) since

2 2N\2 g
(6.8) 0.7, _ 2(a* + n*)n* T -0,
07  a’[l + D,(a* + n?)]

o/ is an increasing function of 7 .
REMARK 6.2. We remark that

1) in view of

oty (@47, T
(6.9) D= (a ot )

it follows that | for

(6.10) D,>Di="—"—

is an increasing function of D,.
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ii)

iii)

iv)

T

= 0) and of

In the absence of Brinkman term, i.e. D, = 0, .o/| reduces to

_ (a*+ )T 4 (a® + n?)? '

(6.11) Ay = o (a*,0,T) = a2 ;
and the minimum is reached for
(6.12) @ = (a%), = (1 + 7)),

and it is given by
(6.13) Ay =1+ V1472

Hence, the global stability of the conduction solution is guaranteed by (1.1)—
(1.4) with (6.13) at the place of A*.
In the absence of rotation, i.e. I =0, ./ is given by

Dy(a® +72)* + (a® + 72)°

(6.14) oty = (a®,D,,0) = —

Since

3D, % — 1+ \/(3Dan2 — 1)2 + 1672D,

A X
(6.15) > ,

minimizes /3, the global stability of the conduction solution is guaranteed by
(1.1)—(1.4) with

. (X)(1+DX)
(6.16) Ap, ="

at the place of A*.

Evaluating, together and in closed form, both the stabilizing effects of rotation
and Brinkman terms, in the case 7 < 1, the global stability of the conduction
solution is guaranteed by (1.1)—(1.4) with

Al + A
(6.17) %

at the place of A* (for the proof see [27)).

In Tables 1-3 some numerical values of A7 (when D, =0), A} (when
A}+ABU

7 (when 7 < 1) are, respectively, listed. In Figures 1 and

2, the graphics of A% and A}, are showed.
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7 | D, | 43
0 4n? A
1200¢
0.1 0 | 39.6756
1000f
02| 0 | 40.2641
800 -
05| 0 | 44.2757 sool
1.2 | 0 | 64.7851 200l
1.5 0 | 77.5312 s00k
2 0 | 103.356 ‘ ‘ ‘ ‘ L
2 4 6 8 10
Table 1. Numerical values of 4. Figure 1. Graphic of 47 as function of 7~
T | D, | 4p,
00 4n?
0 [ 0.1 108.573 o,
0 | 0.5 372.722 ook
0 1 | 701.689 5000¢
0 | 15103052 o
3000
0| 2 | 135931 2000
0 | 2.5 | 1688.09 1000
. . . . _ Da
0| 3 |2016.87 oot e s
Figure 2. Graphic of 4} as function
Table 2. Numerical values of 4}, . of D,
7 | p, | 22140,
a 2
0 0 4n?

0.1 | 0.1 ] 74.1243
0.2 05| 206.493
0.510.5 | 208.499
03| 1 371.462
0.7 15| 539.595
09 | 1.5 | 542.405
09| 2 706.8

*

) Ay + A4
Table 3. Numerical values of f when 7 < 1.

We furnish here some new estimates of A* not present in [27].
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LEMMA 6.1. Let

(6.18) 1<7 <1+ D,

Setting

(Y")’[1+D; Y]

(6.19) Ap, =

with D} given by (6.10) and Y* given by (6.15) (with D, = D), then the global sta-
bility of the conduction solution is guaranteed by (1.1)—(1.4) with

(6.20) max{A4;;A4j.},
at the place of A*.

PROOF. In view of (6.9) it easily follows that when 7 < 1, ./; is an increasing
function of D,(> 0) and takes the minimum at D} given by (6.10). Hence by vir-
tue of (6.14), one obtains

(6.21) ot (a*, Dy, T) > oti(a*, D}, T) > o (a*,D;,0)
Di(a*+ 1)’ + (a® + 7%)°

= o/3(a®,D},0) = —

In view of

(622) FrE g

2D;Y*+ (1 -3D;n*)Y — 277,

with Y = a? + 72, it follows that the minimum of .</;(a?, D}, 0) is reached for

3D;7% — 1 +1/(3Dn> - 1) + 1622D;
B 4D ’

(6.23) Y

and it is given by

(Y)’[1+ Dy Y]
Y * —77,'2 :

(6.24) A, =

In view of 7 < 1 + D,n* and ii) of Remark 6.2, it follows that

(6.25) oA (a* Dy, T) > o (a*,0,T) > oty > Ay
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Collecting (6.21) and (6.25), (6.20) immediately follows.

The graphics of A% and A4j,., as functions of 7, are showed in Fig. 3.
Denoting with ‘

(6.26) Ty =~ 1.60013, T, ~3.38337,

it follows that

T <Th = Ay > Ap.,
(6.27) <7 <Th = A, >Aj,
T >T, = Az > Ap..

Hence, in view of Lemma 6.1 and (6.27), the following theorems hold true.

250 |

200

50 -

Figure 3. Graphics of 4 (continue line) and 4,. (dashed line).

THEOREM 6.1. Let either

(6.28) 1< 7 <T <1+D,;°
or
(6.29) Ty <7 <1+ D,

Then the global stability of the conduction solution is guaranteed by (1.1)—(1.4)
with A% at the place of A™.

In Table 4 some numerical values of 47, either in the case (6.28) or in the case
(6.29), are listed.
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7 | D, D; A
1.1 0.5 | 0.0101321 | 61.0259
1.2 | 1 |0.0202642 | 64.7851
1.4 | 2.5 | 0.0405285 | 73.0443
1.5 | 3.5 | 0.0506606 | 77.5312
34| 4 | 0243171 | 203.788
35| 55| 0253303 | 212.49%4
4 | 8 | 0303964 | 259.04
45|10 | 0354624 | 310.592

Table 4. Numerical values of 47 either in the case (6.28) or in the case (6.29).

THEOREM 6.2. Let

(6.30) T < T < Ty <1+ D,n*

423

Then the global stability of the conduction solution is guaranteed by (1.1)—(1.4)

with Aj},. at the place of A™.

7 | D, D; A5,
1.61 | 0.5 | 0.0618059 | 82.9319
1.8 | 1.5 | 0.0810569 | 95.8946
2 | 1.7 0.101321 | 109.456
25 | 2 | 0151982 | 143.152
27 | 3 | 0.172246 | 156.581
30135 0202642 | 176.695
3.1 | 4 | 0212774 | 183.393
33 | 5 | 0233039 | 196.781

Table 5. Numerical values of 4;,. in the case (6.30).

In Table 5 some numerical values of 4},., in the case (6.30), are listed.

7. APPENDIX

In this Section we prove an uniqueness theorem for system (2.7) with the initial-

boundary conditions (7.2).
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THEOREM 7.1 (Uniqueness Theorem). The problem

Vi =—u+ D,Au+ 7ux k+ (RO — Ry, — Rayy)k,

V-u=0,
%—l-wVH:Rw—l-AH,
(1) N
Pl(a—;—l—wal) = Riw+ Ay,
ay
P2<6—t2+u . Vy2> = —Ryw+ Ay,,

with the initial-boundary conditions

u(x,0) =uy(x), 7(x,0)=mnp(x), 0(x,0)=0(x),
(72) {yi(x70) = '})i()(X), i = 13 25
u.=v.=w=0=y,=9=0, onz=0,1,

can admit an unique solution (u,0,y,,7,,7) € [L*(Q)]".

PRrOOE. Even if the proof of the theorem can be obtained following, step by step,
the procedure used in [23], for the sake of completeness, we give here a sketch of
the proof. Let (u,,y,,y,,7) and (u,8,7,,%,,7) be two solutions of (7.1)—(7.2).
Setting

(73) Y=0-0, U=a—u, II'=0-10, ¥, =5 -y, (i=12),

it follows that
vil* = -U+ D,AU + 7 U x k + (RLP — RY, — qujz)k,
V-U=0,

(7.4) Y, +u-V¥+U-VO=U- k+ AY,
Pl(‘PU—I—ﬁ-V‘I’l +U~Vy1) = RiU -k + AY,,
Py(¥y+u-V¥, +U-Vy,) = —R,U -k + AY,,

with U= (U, V, W) and

(7.5) U.=V.=W=¥Y=¥=¥,=0, z=0,1.

From (7.4), one obtains that

1d

S LI < W I+ <UL 0) — [V

Lo L < W) ]+ UV, 5, — [V
(76) B ldl 1 = 1 1,71 1 )

1 d

EPzEH‘PzHZ < ||W] - ||¥a]| + U - V¥2,7,> — [V, |7,

IUI] <R[ + Ri[|¥1]] + R[]l
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Setting
1 e w2 w2
(7.7) E=S(II1° + P + P2[F2]%),
one has
dE
(7.8)  — < [IWI- (I¥] + I¥1 ] + [[F2[]) + <U- VE, 05 + KU - VEL 705

+ U V2,700 — (V] + [V ])* + [V ]).
Since
I -] < U] - [12] < RIPIZ + (Ri||P1 ]| + Ra|| |1

1 1
< [R5 (R4 R)| 112 4 5 (R + Ref]P),
1
79 LIVl < 101 < R+ (R R 1l

1
+§ (R|[P||* + Ra||P2||%),

1 1
W1 192l < [R5 (R RO I2IP 45 (RIVIE + R4

then

dE
(7.10) 250 < (AR + R+ Ro) W1 + (R+ 4Ry + R[4

+ (R4 Ry +4Ry)||¥2||* + [<U - V¥, 0|
+ [KU- V¥, D) + KU - V¥,, 5]
—2(IV]]* + [VH1]* + [V ]?).

425

But in view of the boundedness of the solutions of (7.1)—(7.2) (see [27] for details),

there exists a positive constant m; such that

(7.11) sup (|6], | 1], [D2]) < m,
QxRT

and hence one has that

1 u|’
U-.05] < miu], V) < 3 (100 4 ovw),
1 u|?
(7.12) [KU- V¥, @) < §m1<u+elllv‘l’1||2),
€1
Iu|?

1 2
KU - V¥, @) < §m1< o + & Va2 )
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Choosing
(7.13) e=¢ =&,

from (7.10), by virtue of (7.12), it turns out that

(7.14) c;—f <qE,

and hence

(7.15) E < Epe?, g = const. > 0.
From (7.15), it follows that

(7.16) Ey=0=E(1)=0, VieR",

and uniqueness is proved.
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