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Calculus of Variations — A remark on optimal weighted Poincaré inequalities for
convex domains, by V. Ferone, C. Nitsch and C. Trombetti.

Abstract. — We prove a sharp upper bound on convex domains, in terms of the diameter alone,

of the best constant in a class of weighted Poincaré inequalities. The key point is the study of an
optimal weighted Wirtinger inequality.
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1. Introduction

It is well known that (see for instance [21]), for any given open bounded Lipschitz
connected set W, a Poincaré inequality holds true, in the sense that there exists a
positive constant CW;p such that

inf
t AR

ku� tkL pðWÞ aCW;pkDukL pðWÞ;ð1:1Þ

for all Lipschitz functions u in W.
The value of the best constant in (1.1) is the reciprocal of the first nontrivial

Neumann eigenvalue of the p-Laplacian over W. In [23] (see also [2]), it has been
proved that, if p ¼ 2, and W is convex, in any dimension

1

CW;2
¼ min

u aH 1ðWÞR
W
u¼0

ð
R
W jDuj2Þ1=2

ð
R
W juj2Þ1=2

b
p

d
;ð1:2Þ

where d is the diameter of W. Observe that the last term of (1.2) is exactly the
square root of the value achieved, in dimension n ¼ 1 on any interval of length
d, by the first nontrivial Laplacian eigenvalue (without distinction between the
Neumann and the Dirichlet conditions).

The proof of (1.2) in [23, 2] indeed relies on the reduction to a one dimen-
sional problem. At this aim, for any given smooth admissible test function u in
the Rayleigh quotient in (1.2), the authors show that it is possible to perform a
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clever slicing of the domain W in convex sets which are as tiny as desired in at
least n� 1 orthogonal directions. On each one of such convex components of
W, they are able to show that the Rayleigh quotient of u can be approximated
by a 1-dimensional weighted Rayleigh quotient. This leads the authors to look
for the best constants of a class of one dimensional weighted Poincaré-Wirtinger
inequalities. The result was later generalized to p ¼ 1 in [1] and only recently to
pb 2 in [13] and for any p > 1 in the framework of compact manifolds in [22,
31]. Other optimal Poincaré inequalities can be found in [4, 5, 6, 7, 12, 29, 32].

In this paper we consider a weighted Poincaré inequality, namely, for p > 1,
given a positive log-concave function o on an open bounded convex set W, there
exists a positive constant CW;p;o such that, for every Lipschitz function u

inf
t AR

ku� tkL p
oðWÞ aCW;p;okDukL p

o ðWÞ:ð1:3Þ

Here k � kL p
o
denotes the weighted Lebesgue norm. The best constant CW;p;o in

(1.3) is given by

1

CW;p;o
¼ inf

u LipschitzR
W
juj p�2uo¼0

ð
R
W jDuj poÞ1=p

ð
R
W juj poÞ1=p

:ð1:4Þ

Our main result is the following.

Theorem 1.1 (Main Theorem). Let WHRn be an open bounded convex set
having diameter d and let o be a positive log-concave function on W. For p > 1
and in any dimension we have

CW;p;o a
d

pp
ð1:5Þ

where

pp ¼ 2

Z þl

0

1

1þ 1
p�1 s

p
ds ¼ 2p

ðp� 1Þ1=p

pðsinðp=pÞÞ :ð1:6Þ

Other optimal weighted inequalities can be found in literature (see [21] and the
reference therein) but to our knowledge similar explicit sharp bounds were ob-
tained only for p ¼ 1 and p ¼ 2 (see for instance [8, 9]). We observe that when
o ¼ 1 estimate (1.5) is the optimal estimate already obtained in the unweighted

case in [1, 2, 13, 23, 31]. Indeed
d

pp
is the optimal constant of the one-dimensional

unweighted Poincaré–Wirtinger inequality on a segment of length d (see for in-
stance [3], [24]), namely:

pp

d
¼ inf

W
1; p
0

ð0;dÞ

ð
R d

0 ju 0j pÞ1=p

ð
R d

0 juj pÞ1=p
:
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Explicit expression for pp (as (1.6)) can be found for instance in [3, 20, 24, 27,
28]. The fact that p2 ¼ p is consistent with the classical Wirtinger inequality (see
[17]) and obviously also with (1.2).

In the spirit of the proof of (1.2) by Payne and Weinberger [23], our proof of
Theorem 1.1 is based on the following estimate on the best constant in a class of
weighted Wirtinger inequalities.

Proposition 1.1. Let f be a positive log-concave function defined on ð0;LÞ and
p > 1, then

inf
u aW 1; pð0;LÞR L

0
juj p�2

uf¼0

R L

0 ju 0ðxÞj pf ðxÞ dxR L

0 juðxÞj pf ðxÞ dx
b min

u aW 1; pð0;LÞR L

0
juj p�2

u¼0

R L

0 ju 0ðxÞj p dxR L

0 juðxÞj p dx
¼
�pp
L

� p

:ð1:7Þ

For an insight into generalized Wirtinger inequalities, and more generally into
weighted Hardy inequalities, we refer to [18, 21, 30], other results can be found
for instance in [10, 11, 14, 16, 25].

In Section 2, we prove Proposition 1.1, while in Section 3, we employ a
‘‘slicing argument’’ to pass from the n-dimensional to the one-dimensional
case.

2. Proof of Proposition 1.1

For the reader convenience we have split the claim in two Lemmata.
In [13] it has been proved the following lemma for which we include the proof

for the sake of completeness.

Lemma 2.1. Let f be a smooth positive log-concave function defined on ½0;L� and
p > 1. Then there exists k a R such that

inf
u aW 1; pð0;LÞR L

0
juj p�2uf¼0

R L

0 ju 0ðxÞj pf ðxÞ dxR L

0 juðxÞj pf ðxÞ dx
b inf

u aW 1; pð0;LÞR L

0
juj p�2uekx¼0

R L

0 ju 0ðxÞj pekx dxR L

0 juðxÞj pekx dx
:ð2:1Þ

Proof. By standard compactness argument (see [18, Theorem 1.5 page 28]) the
positive infimum on the left hand side of (2.1) is achieved by some function ul
belonging to

u a W 1;pð0;LÞ;
Z L

0

juðxÞj p�2
uðxÞ f ðxÞ dx ¼ 0

� �
:

As expected, such a minimizer is also a C1ð0;LÞ solution to the following Neu-
mann eigenvalue problem

ð�u 0ju 0j p�2Þ0 ¼ lujuj p�2 þ h 0ðxÞu 0ju 0j p�2
x a ð0;LÞ

u 0ð0Þ ¼ u 0ðLÞ ¼ 0:

(
ð2:2Þ
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Here hðxÞ ¼ log f ðxÞ is a smooth bounded concave function and l is the left
hand side of (2.1). We emphasize that the usual derivation of (2.2) as the Euler
Lagrange of a Rayleigh quotient is rigorous only to handle the case pb 2. A
refined technique similar to the one worked out in [11, Lemma 2.4] is necessary
when 1 < p < 2.

Since it is not di‰cult to prove that for all 0 < L1 < L

inf
u aW 1; pð0;LÞR L

0
juj p�2uf¼0

R L

0 ju 0ðxÞj pf ðxÞ dxR L

0 juðxÞj pf ðxÞ dx
< inf

u aW 1; pð0;L1ÞR L1
0

juj p�2uf¼0

R L1

0 ju 0ðxÞj pf ðxÞ dxR L1

0 juðxÞj pf ðxÞ dx
;

then ul vanishes in one and only one point namely xl a ð0;LÞ and without loss of
generality we may assume that ulðLÞ < 0 < ulð0Þ.

We claim that if k ¼ h 0ðxlÞ then

lb min
u aW 1; pð0;LÞR L

0
juj p�2

uekx¼0

R L

0 ju 0ðxÞj pekx dxR L

0 juðxÞj pekx dx
C l:

Arguing by contradiction we assume that l < l. Therefore there exists a func-
tion u

l
solution to

ð�u 0ju 0j p�2Þ0 ¼ lujuj p�2 þ h 0ðxlÞu 0ju 0j p�2
x a ð0;LÞ

u 0ð0Þ ¼ u 0ðLÞ ¼ 0:

(

Standard arguments ensure that u
l
is strictly monotone in ð0;LÞ and there-

fore vanishes in one and only one point namely x
l
a ð0;LÞ. We assume without

loss of generality that u
l
ðLÞ < 0 < u

l
ð0Þ. Since h 0 is non increasing in ½0;L�, a

straightforward consequence of the comparison principle applied to ul and u
l

on the interval ½0; xl� enforces xl < xl. On the other hand the comparison prin-
ciple applied to ul and u

l
on the interval ½xl;L� enforces xl > xl and eventually a

contradiction arises. r

Lemma 2.2. For all k a R and p > 1

min
u aW 1; pð0;LÞR L

0
juj p�2uekx¼0

R L

0 ju 0ðxÞj pekx dxR L

0 juðxÞj pekx dx
b

�pp
L

� p

:ð2:3Þ

Proof. If u minimizes the left hand side of (2.3) then it solves

ð�u 0ju 0j p�2Þ0 ¼ mujuj p�2 þ ku 0ju 0j p�2
x a ð0;LÞ

u 0ð0Þ ¼ u 0ðLÞ ¼ 0;

(

where

m ¼ min
u aW 1; pð0;LÞR L

0
juj p�2uekx¼0

R L

0 ju 0ðxÞj pekx dxR L

0 juðxÞj pekx dx
:
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As in the previous Lemma u 0 can not vanish inside ð0;LÞ and we may assume
without loss of generality that u is an increasing function such that uð0Þ < 0 <

uðLÞ. Then the function vðxÞ ¼ uðxÞ
u 0ðxÞ is the increasing solution to the following

problem

v 0 ¼ 1þ 1
p�1 ðmjvj

p þ kvÞ x a ð0;LÞ
lim
x!L

vðxÞ ¼ � lim
x!0

vðxÞ ¼ þl;

(
ð2:4Þ

where uniqueness and monotonicity come easily form the fact that the equation
in (2.4) is autonomous.

In particular we observe that mjyj p þ kyþ p� 1 ¼ 0 can not have solutions

y a R. The fact that v 0 is bounded away from zero allows us to integrate
1

v 0
with

respect to v obtaining

L ¼
Z þl

�l

1

v 0
dv ¼

Z þl

�l

1

1þ 1
p�1 ðmjvj

p þ kvÞ
dv

¼
Z þl

0

� 1

1þ 1
p�1 ðmv p þ kvÞ

þ 1

1þ 1
p�1 ðmv p � kvÞ

�
dv

b 2

Z þl

0

1

1þ 1
p�1 mv

p
dv;

and the proof is complete observing that rescaling s ¼ pp

L
v in (1.6) gives

L ¼ 2

Z þl

0

1

1þ 1
p�1

�pp
L

� p
v p

dv: r

When the function f is smooth, log-concave and bounded away from zero,
Proposition 1.1 is a consequence of Lemma 2.1 and Lemma 2.2. In the general
case Proposition 1.1 follows by approximation arguments.

3. Proof of Theorem 1.1

The aim of this section is to prove that Theorem 1.1 can be deduced from Prop-
osition 1.1. As we already mentioned the idea is based on a slicing method
worked out in [23] and proved in a slightly di¤erent way also in [1, 2, 8]. We out-
line the technique for the sake of completeness.

Lemma 3.1. Let W be a convex set in Rn having diameter d, let o be a
positive log-concave function on W, and let u be any function such thatZ
W

juðxÞj p�2
uðxÞoðxÞ dx ¼ 0. Then, for all positive e, there exists a decomposition

of the set W in mutually disjoint convex sets Wi (i ¼ 1; . . . ; k) such that
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[k
i¼1

Wi ¼ W

Z
Wi

juðxÞj p�2
uðxÞoðxÞ dx ¼ 0

and for each i there exists a rectangular system of coordinates such that

Wi J fðx1; . . . ; xnÞ a Rn : 0a x1 a di; jxlja e; l ¼ 2; . . . ; ng
ðdi a d; i ¼ 1; . . . ; kÞ

Proof. Among all the n� 1 hyperplanes of the form ax1 þ bx2 ¼ c, orthogonal
to the 2-plane P1;2 generated by the x1 and x2 directions, by continuity there ex-
ists certainly one that divides W into two nonempty subsets on each of which the
integral of ujuj p�2

o is zero and their projections on P1;2 have the same area. We
go on subdividing recursively in the same way both subset and eventually we stop

when all the subdomains W
ð1Þ
j ( j ¼ 1; . . . ; 2N1 ) have projections with area smaller

then e2=2. Since the width w of a planar set of area A is bounded by the trivial
inequality wa

ffiffiffiffiffiffi
2A

p
, each subdomain W

ð1Þ
j can be bounded by two parallel n� 1

hyperplanes of the form ax1 þ bx2 ¼ c whose distance is less than e. If n ¼ 2 the
proof is complete, provided that we understand P1;2 as R

2, the projection of W on
P1;2 as W itself, and the n� 1 orthogonal hyperplanes as lines. If n > 2 for any
given W

ð1Þ
j we can consider a rectangular system of coordinates such that the nor-

mal to the above n� 1 hyperplanes which bound the set, points in the direction
xn. Then we can repeat the previous arguments and subdivide the set W

ð1Þ
i in sub-

sets W
ð2Þ
j ( j ¼ 1; . . . ; 2N2 ) on each of which the integral of ujuj p�2o is zero and

their projections on P1;2 have the same area which is less then e2=2. Therefore,
any given W

ð2Þ
j , can be bounded by two n� 1 hyperplanes of the form ax1 þ bx2

¼ c whose distance is less than e. If n ¼ 3 the proof is over. If n > 3 we can go on
considering W

ð2Þ
j and rotating the coordinate system such that the normal to the

above n� 1 hyperplanes which bound W
ð2Þ
j , points in the direction xn�1 and such

that the rotation keeps the xn direction unchanged. The procedure ends after
n� 1 iterations, at that point we have performed n� 1 rotations of the coordi-
nate system and all the directions have been fixed. Up to a translation, in the re-
sulting coordinate system

W
ðn�1Þ
j J fðx1; . . . ; xnÞ a Rn : 0a x1 a dj; jxlja e; l ¼ 2; . . . ; ng: r

Proof of Theorem 1.1. From (1.4), using the density of smooth functions in
Sobolev spaces it will be enough to prove thatR

W jDuj poR
W juj po b

�pp
d

� p

when u is a smooth function with uniformly continuous first derivatives andZ
W

juðxÞj p�2
uðxÞoðxÞ dx ¼ 0.
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Let u be any such function. According to Lemma 3.1 we fix e > 0 and we de-
compose the set W in convex domains Wi (i ¼ 1; . . . ; k). We use the notation of
Lemma 3.1 and we focus on one of the subdomains Wi and fix the reference sys-
tem such that

Wi J fðx1; . . . ; xnÞ a Rn : 0a x1 a di; jxlja e; l ¼ 2; . . . ; ng:

For t a ½0; di� we denote by giðtÞ the n� 1 volume of the intersection of Wi with
the n� 1 hyperplane x1 ¼ t. Since Wi is convex, then by Brunn-Minkowski in-
equality (see [15]) gi is a log-concave function in ½0; di�.

Then, for any t a ½0; di� we denote by vðtÞ ¼ uðt; 0; . . . ; 0Þ, and fiðtÞ ¼

giðtÞoðt; 0; . . . ; 0Þ. Since u,
qu

qx1
and o are uniformly continuous in W, there exists

a modulus of continuity hð�Þ (hðeÞ & 0 as e ! 0) independent of the decomposi-
tion of W such that

Z
Wi

qu

qx1

����
����
p

o dx�
Z di

0

jv 0ðtÞj pfiðtÞ dt
����

����a hðeÞjWij;ð3:1Þ
Z
Wi

juj po dx�
Z di

0

jvðtÞj pfiðtÞ dt
����

����a hðeÞjWijð3:2Þ

and Z di

0

jvðtÞj p�2
vðtÞ fiðtÞ dt

����
����a hðeÞjWij:ð3:3Þ

Since di a d, and fi are positive log-concave functions, applying Proposi-
tion 1.1 we haveZ

Wi

jDuj po dxb

Z
Wi

qu

qx1

����
����
p

o dxb
�pp
d

�p
Z
Wi

juðxÞj po dxþ ChðeÞjWij:

Here the constant C does not depend on e. Summing up the last inequality over
all i ¼ 1; . . . ; k Z

W

jDuj po dxb
�pp
d

�p
Z
W

juðxÞj po dxþ ChðeÞjWj:

and as e ! 0 we obtain the desired inequality. r
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