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Abstract. — For the purpose of change of variables in integral, it is important to know how

to verify Luzin’s condition (N) for Sobolev mappings. In this article we survey some results on this
topic sorted according to the method. We discuss the method of absolute continuity, results obtained

via degree, and results based on the interplay between integrability and modulus of continuity.1

Key words: Luzin’s condition (N), change of variables in integral, area formula, Sobolev
mappings.

Mathematics Subject Classification: 26B15 (primary), 28A75, 30C65, 49Q15, 51M25
(secondary).

1. Introduction

An advanced version of the theorem on change of variables in integral is due to
Federer [9], [10]. It states that the area formulaZ

M

uðxÞjJf ðxÞj dx ¼
Z
Rn

� X
fx AM: f ðxÞ¼yg

uðxÞ
�
dyð1Þ

is valid for all non-negative measurable functions u : W ! R if WHRn is an
open set, f : W ! Rn approximately di¤erentiable a.e. (for example, a Sobolev
mapping) and MHW a suitable set of full measure. In particular, we can take
M ¼ Dappð f Þ, namely, the set where f is approximately Lipschitz continuous. It
is desirable to have as small as possible or even empty exceptional set WnM. This
problem leads us to consider the so-called Luzin’s condition ðNÞ.

Definition 1 (Condition ðNÞ, area formula). Let WHRn be an open set and
f : W ! Rn a mapping. We say that f satisfies (Luzin’s) condition ðNÞ on a set
W 0HW if the implication

jEj ¼ 0 ) j f ðEÞj ¼ 0

holds for each subset E of W 0. We say that the area formula holds for f on W 0 if
(1) holds for each measurable subset M of W 0 with the choice u ¼ 1 (then it holds

1The results of this paper are related to the lecture that the second author gave at the Conference
‘‘Geometric Function Theory’’, which took place at the Accademia dei Lincei on November 3rd 2011.



for an arbitrary measurable ub 0.) If W 0 ¼ W above, then we simply say that the
area formula holds for f .

Strictly speaking, above we consider a precise representative of f , see e.g.
[8]. Now, let us summarize that for a Sobolev mapping (this means W

1;1
loc ), the

area formula is equivalent to the condition ðNÞ.
The aim of this article is to survey some results on the condition ðNÞ (area

formula) and to announce some new progress.
In the scale of Sobolev spaces, the area formula for W 1;l is just the Lipschitz

setting and thus a particular case of Federer’s results. It is also classical that the
area formula holds for absolutely continuous functions on the real line, which is
the case n ¼ p ¼ 1. If the space dimension n is strictly larger than 1, the situation
is much more complicated. Marcus and Mizel [38] proved that the area formula
holds for W 1;p-mappings if p > n, see also [3]. On the other hand, there are
planar examples due to Cesari [3] and Reshetnyak [46] according to which the
area formula can fail for (continuous) W 1;n-mappings, for higher dimension see
Väisälä [51] and Malý and Martio [37]. The borderline case p ¼ n is actually
rather delicate. Indeed, the validity of the area formula can be retrieved if we
refine the scale or impose a suitable additional condition. Reshetnyak proved
that W 1;n-homeomorphisms [44] and quasiregular mappings (mappings of
bounded distortion) [45] satisfy the area formula. Gol’dshtein and Vodop’yanov
[16] extended the latter to the class of mappings of finite distortion. The topolog-
ical condition of being homeomorphic has been also relaxed in various directions,
see e.g. Reshetnyak [46], Martio and Ziemer [39], and Malý and Martio [37] for
results in this spirit.

For other related results see Alberti and Ambrosio [1], Giaquinta, Modica
and Souček [13], Hajłasz [20], [21], Kauhanen [28], Swanson [50], Vodop’yanov
[52], Vodop’yanov, Gol’dshtein and Reshetnyak [53], and the monographs
Reshetnyak [47], Gol’dshtein and Reshetnyak [15], Giaquinta, Modica and
Souček [14], and [11]. We also refer to some other sources later in connection
with particular methods.

This note is organized as follows. In sections 2–4 we describe three di¤erent
methods for proving condition ðNÞ and state the corresponding main results.
In the final section, Section 5, we pose open questions and make some related
comments.

2. The method of absolute continuity and its generalizations

We will consider some n-dimensional concepts of absolute continuity. Let us note
that not all classes of functions which reduce to absolutely continuous functions
when n ¼ 1, or bear the name of ‘‘n-dimensional absolutely continuous func-
tions’’ (e.g. in the sense of Banach or Tonelli) are in our focus of interest.

Following the traditional e–d definition of absolutely continuous functions
on the real line, the following n-dimensional generalization was introduced in
[35].
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Definition 2. Let WHRn be an open set. A function f : W ! R is n-absolutely
continuous (shortly ACn) if for each e > 0 there exists d > 0 such that for every
pairwise disjoint finite collection fBjg of balls in W we have

X
j

jBjj < d )
X
j

ðoscBj
f Þn < e:

The e–d definition is not the only way to introduce the class of absolutely con-
tinuous functions on the real line. We may say that f : R ! R is absolutely con-
tinuous if there exists an integrable function g : R ! R such that j f ðbÞ � f ðaÞjaZ b

a

gðxÞ dx for each a < b. This yields locally the same system of functions. The

n-dimensional analogue has been considered by Radó and Reichelderfer [43].

Definition 3. Let WHRn be an open set. A function f : W ! R is generalized
Lipschitz continuous of class RRn if there exists a function y a L1

locðWÞ such that
for each ball B in W we have

ðoscB f Þn a
Z
B

yðxÞ dx:

By defining oscB f ¼ supfj f ðxÞ � f ðyÞj : x; y a Bg, the two definitions above
can be used as well for mappings. It has been observed in [35] that these classes
of mappings provide a unified approach to various results on the area formula.
Namely, the ACn condition can be verified in several situations (we will mention
them below), and the following theorem holds.

Theorem 1 [35]. Let WHRn be an open set and f : W ! Rn be an ACn map-
ping. Then f a W 1;n

loc ðW;RnÞ and f satisfies condition ðNÞ. Hence the area formula
holds for f .

For the class RRn, the following result goes back to Radó and Reichelderfer.

Theorem 2 [43]. Let WHRn be an open set and f : W ! Rn be generalized
Lipschitz continuous of class RRn. Then the area formula holds for f .

It is an easy observation that the RRn property implies ACn, so that
Theorem 2 is a consequence of Theorem 1. Moreover, the converse holds as
well (but it is much deeper).

Theorem 3 (Csörnyei [5]). Let WHRn be an open set and f : W ! Rn be gener-
alized Lipschitz continuous of class RRn. Then f is an ACn mapping.

2.1. Su‰cient conditions for ACn

We give rather sharp criteria for a mapping to have the ACn property. Let us
begin with the setting of rearrangement invariant spaces (for the definition see
e.g. [4]). The following result has been given in [29]. The main achievements
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were (i) ) (ii) and (iii) ) (i). The implications (ii) ) (iii)–(vi) are from [35]. For
some other implications we refer to [4] and [48]. Recall that Ln;1ðRnÞ is the
Lorentz space of all functions g : Rn ! R satisfyingZ l

0

jfx : jgðxÞj > sgj1=n ds < l:

If Y is a Banach space of functions on Rn, then W 1ðY Þ is the space of all func-
tions u a Y such that ‘u a Y , with the norm kukY þ k‘ukY .

Theorem 4 [29]. Let Y be a rearrangement invariant Banach space of functions
on Rn. Then the following assertions are equivalent:

(i) Y embeds continuously into Ln;1ðRnÞ (the Lorentz space),
(ii) all W 1ðY Þ-functions can be represented as locally ACn functions,
(iii) all continuous W 1ðY ;RnÞ-mappings satisfy condition ðNÞ,
(iv) all W 1ðY Þ-functions have a continuous representative,
(v) all W 1ðY Þ-functions are in Ll

locðRnÞ,
(vi) all continuous W 1ðYÞ-functions are a.e. di¤erentiable,
(vii) W 1ðYÞ embeds into C0ðRnÞ,
(viii) W 1ðYÞ embeds into LlðRnÞ.

Notice that this theorem implies the area formula for W 1;p-mappings for
p > n [38].

We can recover some other classical results on the area formula (for references
see Introduction) noticing that certain classes of function are contained (locally)
in the ACn class. This is often the case if we consider a W 1;n-mapping f obey-
ing some additional qualitative properties, like being a homeomorphism, or a
continuous and open mapping, or a mapping of finite distortion. The essential
information which allows us to prove the ACn property is a kind of monotonicity
condition, as shown by the theorem below.

Definition 4. Let WHRn be an open set and f : W ! Rd be a mapping. We
say that f is spherically pseudomonotone if there exists a constant C such that

oscB f aC oscqB f

for each ball BHHW.

Theorem 5 [35]. Let f a W 1;nðW;RdÞ. If f is spherically pseudomonotone, then
f is an ACn mapping.

3. The Method of Jacobian and degree

Let WHRn be an open set. We say that a mapping f : W ! Rn is sense
preserving, if f is continuous and for each open set GHHW and every
y a f ðGÞn f ðqGÞ, the topological degree degð f ;G; yÞ is strictly positive.
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If a Sobolev mapping f : W ! Rn is sense preserving, then one can achieve
condition ðNÞ under the assumptions that the degree can be represented via the
pointwise Jacobian of f and this Jacobian is locally integrable. Roughly, the idea
is that if GHHW then

j f ðGÞn f ðqGÞja
Z
f ðGÞn f ðqGÞ

degð f ;G; yÞ dya
Z
G

Jf ðxÞ dx:

Recall that Jf is the pointwise Jacobian computed from the Sobolev derivative
‘f . For smooth f , one may represent the degree via the Jacobian as

degð f ;G; yÞ ¼
Z
G

jð f ðxÞÞJf ðxÞ dx

whenever y belongs to a component U of f ðGÞn f ðqGÞ and j a Cl
0 ðUÞ satisfiesZ

U

j ¼ 1. Integrating by parts, one ends up with a formula involving the distribu-

tional Jacobian Det‘f . By approximation, this formula extends to hold for
rather general Sobolev mappings g, and one is reduced to the question whether
the distributional Jacobian of g can be represented by Jg ¼ det‘g. If this is the
case, we simply write ‘‘Det‘g ¼ det‘g’’.

The following result gives us a setting where the degree approach is appli-
cable.

Theorem 6 [30]. Let WHRn be an open set and f a W 1;pðW;RnÞ with p> n� 1
be a continuous mapping. If f is sense preserving and Det‘f ¼ det‘f , then f
satisfies condition ðNÞ.

Let us briefly discuss the most important results on validity of the formula

Det‘f ¼ det‘f :ð2Þ

It has been proved by Müller [40] that (2) holds if f a W 1;pðW;RnÞ with pb n2

nþ1

and if the distribution Det‘f can additionally be represented as an integrable
function. This is a general criterion. However, sometimes it is desirable to make
a judgement only based on knowledge of ‘f and its integrability. An important
su‰cient condition is

lim
e!0

e

Z
W

j‘f jn�e
dx ¼ 0;

assuming that Jf ðxÞ ¼ det‘f ðxÞb 0 almost everywhere. Here one really needs
the assumption that the Jacobian has constant sign. This result is due to Iwaniec
and Sbordone [25] and Greco [17]. Sharp su‰cient conditions in the Orlicz scales
are discussed in the papers by Greco [18], Greco, Iwaniec and Moscariello [19],
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Koskela and Zhong [34], and Kauhanen, Koskela, Malý, Onninen and Zhong
[31]. Especially, it su‰ces thatZ

W

j‘f jn log�1ðeþ j‘f jÞ dx < l

when Jf ðxÞb 0 almost everywhere. For an interesting su‰cient condition in
terms of minors we refer to the paper [12] by Giannetti, Iwaniec, Onninen and
Verde. For further studies on this see e.g. the works of Šverák [49], Müller, Qi
and Yan [41], Müller and Spector [42], Fonseca and Gangbo [11], Hamburger
[23], Iwaniec [24], Jerrard and Soner [26], De Lellis [6], De Lellis and Ghiraldin
[7], and Brezis and Nguyen [2].

Remarks 1. 1. Concerning the counterexample by Ponomarev ( f is a W 1;p

homeomorphism with p < n violating the condition ðNÞ), the distributional
Jacobian of f has a singular part. In this example, one necessarily hasZ
W

j‘f jn log�1ðeþ j‘f jÞ dx ¼ l.

2. By the degree method, we can obtain results below W 1;n. Since the class
ACn is locally contained in W 1;n, these results cannot be obtained through the
ACn condition.

4. Methods involving the modulus of continuity

Let B be a ball in Rn and f : B ! R be a measurable function. We use the
notation

medBðx; rÞ f ¼ inf s > 0 : jfx a B : f ðxÞ > sgj < 1

2
jBj

� �

for the upper median of f in B.

Definition 5 (Moduli of continuity). Let WHRn be an open set and
f : W ! Rd be a measurable function. We define two moduli of continuity for
f : W ! Rd which make sense for x, r such that Bðx; rÞHW.

• Classical modulus: ocð f ; x; rÞ ¼ supBðx; rÞj f � f ðxÞj.
• Median modulus: oð f ; x; rÞ ¼ medBðx; rÞj f � f ðxÞj.

Of course, we have oð f ; x; rÞaocð f ; x; rÞ, so that the results based on
oð f ; x; rÞ have weaker assumptions.

We start with the following result, due to Malý and Martio [37].

Theorem 7. Let f a W 1;nðW;RnÞ be Hölder continuous. Then f satisfies condi-
tion ðNÞ.
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More generally, condition ðNÞ holds on the set of all points where
oðx; f ; rÞk ra for some a.

Remark 1. Results in spirit of Theorem 7 have a chance to be established in
metric measure space setting, see e.g. [36].

Corollary 1 [37]. If f a W 1;nðW;RnÞ is precisely represented, then there exists
a set E of Hausdor¤ dimension zero such that f satisfies condition ðNÞ on WnE.

4.1. Results in a finer scale

We want to announce our new result in a finer scale of moduli of continuity.

Theorem 8 [33]. Let 0 < la n� 1 and m > 0. Set

cðtÞ ¼ expð�m log1�l=ðn�1Þð1=rÞÞ; if l < n� 1;

log�mð1=rÞ; if l ¼ n� 1:

(

Let WHRn be an open set and f : W ! Rn be a precisely represented Sobolev

mapping. Assume that

Z
W

j‘f jn loglðeþ j‘f jÞ dx < l. Let EHW be a Lebesgue

null set. Suppose that oðx; f ; rÞkc at all points of E. Then j f ðEÞj ¼ 0.

Remark 2. If l > n� 1, then the gradient of f is in Ln;1 and condition ðNÞ fol-
lows without any modulus of continuity assumption. The case l ¼ 0 corresponds
to Theorem 7. If l < 0, then we are below W 1;n and the method does not seem to
work.

5. Further comments and open problems

Recall from Section 3 that condition ðNÞ holds for all Sobolev homeomorphisms
with Z

W

j‘f jn log�1ðeþ j‘f jÞ dx < l;

the Jacobian of such a homeomorphism necessarily has constant sign in
each connected component. By Section 2, another su‰cient condition is that
f a W 1;nðW;RdÞ be pseudomonotone. We do not know if a pseudomonotone
Sobolev mapping with Z

W

j‘f jn log�1ðeþ j‘f jÞ dx < l

could always satisfy condition ðNÞ, even if Jf ðxÞb 0 almost everywhere. The
obstacle here is that f may well fail to be sense preserving, and thus the technique
from Section 3 does not apply.
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Secondly, from Section 4, a general f a W 1;nðW;RnÞ satisfies condition ðNÞ
outside a set of Hausdor¤ dimension zero. We do not know if such an excep-
tional set of Hausdor¤ dimension strictly less than n could exist for a general
Sobolev mapping with Z

W

j‘f jn log�lðeþ j‘f jÞ dx < l

for 0 < l < 1. By [28], this may fail if l > 1.
Thirdly, recall the moduli of continuity expð�m logað1=rÞÞ from Section 4.

Given 0a l < n� 1, one can construct examples [33] of Sobolev mappings f

with this modulus of continuity for any a < n�1�l
n

for some m > 0 and withZ
W

j‘f jn loglðeþ j‘f jÞ dx < l so that condition ðNÞ fails. Notice the slight

mismatch of a with the exponent from Section 4. We do not know if this is
because of the constructions not being optimal or because the arguments are
not optimal. When l ¼ 0 and n ¼ 2, the exponent a above is 1

2 . This very same
exponent shows up in the results [27] on the boundary behavior of conformal
maps of the unit disk. In fact, any planar W 1;2-mapping with this modulus of
continuity necessarily maps regular Cantor sets to sets of vanishing area [32].
Here regularity requires that the complement of the set be a so-called uniform
domain.

Fourthly, in all (continuous) counterexamples to condition (N), one necessar-
ily maps a perfect compact set onto a set of positive measure. For example, in
the setting of continuous mappings in W 1;pðW;RnÞ, where p > n� 1, one may
additionally assume that the set be totally disconnected, see [33]. Hence, at least
in this case, one can find a compact set homeomorphic to the ternary Cantor
set that gets mapped onto a set of positive measure. We would like to know
how generally this phenomenon holds and if an even more regular set that gets
blown up would necessarily exist.

For q > 1, one can find a continuous f that maps a regular Cantor set onto a
cube and so that the gradient of f belongs to the Lorentz space Ln;qðRnÞ. This
issue is related to the problem of covering compact metric spaces by the unit
cube. For recent studies on this see [22] for the case of Sobolev spaces and [54]
in the Lorentz space setting.
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Finland

pekka.j.koskela@jyu.fi

Jan Malý
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