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Mathematical Analysis — Generalized N-property and Sard theorem for Sobolev
maps, by Giovanni Alberti.

Abstract. — I report on some recent extensions of the Lusin N-property and the Sard theorem

for Sobolev maps, which have been obtained in a joint work with M. Csörnyei, E. D’Aniello, and
B. Kirchheim. Our research was originally motivated by questions related to the uniqueness of

weak solutions for the continuity equation associated to a vector field with Sobolev regularity1.
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1. Introduction

In this paper I describe some extensions of the Lusin N-property and the Sard
theorem for Sobolev maps which have been recently obtained in collaboration
with M. Csörnyei, E. D’Aniello, and B. Kirchheim [3], [4]; since this work is
still in progress, some of the results I will mention here are not yet in definitive
form.

The N-property (see Section 4 for the definition) has been widely studied,
mostly in connection with the area formula for Sobolev maps and other classes
of weakly di¤erentiable maps. However, the variant of this property that we are
interested in arises as a key ingredient of our proof of the optimal form of Sard
theorem for Sobolev maps. We were led to consider this version of Sard theorem
in the attempt—which eventually failed—to produce a counterexample to a cer-
tain uniqueness statement for the flow associated to a vector field with Sobolev
regularity; this statement is in turn related to the uniqueness of weak solutions
of the continuity equation (or the transport equation) associated to the same
vector field.

In the following I plan to explain the connections between these problems
(N-property, Sard Theorem, uniqueness for the flow and for the continuity equa-
tion associated to a divergence-free vector field), and then illustrate some of our
results at least in simple cases, giving when possible an outline of the proof. In
writing this note I tried to improve readability at the expenses of precision by

1This paper originates from a lecture that the Author gave at the Conference ‘‘Geometric Func-
tion Theory’’, which took place at the Accademia dei Lincei on November 3rd 2011.



omitting most technical details. I hope that nevertheless these pages will convey
some meaning.

Let me finally add that similar results on the N-property and the Sard theorem
for Sobolev maps have been obtained by J. Bourgain, M. V. Korobkov, and J.
Kristensen [8] at about the same time as us (but with di¤erent motivations in
the background).

Acknowledgements. I would like to thank Gianluca Crippa for his thoughtful comments on an
earlier version of this note. This research has been partially supported by the Italian Ministry of Ed-

ucation, University and Research (MIUR) through the 2008 PRIN Grant ‘‘Trasporto ottimo di
massa, disuguaglianze geometriche e funzionali e applicazioni’’.

2. Uniqueness for the continuity equation

Let us consider the continuity equation

ut þ divðbuÞ ¼ 0ðpdeÞ

where b is a vector field on Rn and the unknown u is a scalar function on
½0;TÞ � Rn subject to the initial condition uð0; �Þ ¼ u0, with u0 a given initial da-
tum.

To understand what follows it is convenient to keep in mind the standard
mechanical interpretation of (pde): consider a continuous distribution of point
particles in Rn such that the trajectory x ¼ xðtÞ of each particle satisfies the ordi-
nary di¤erential equation

_xx ¼ bðxÞ;ðodeÞ

and let u ¼ uðt; xÞ be the corresponding density—that is, mass per unit volume at
time t and position x. Then u satisfies (pde).

This interpretation suggests that existence and uniqueness of solutions of the
Cauchy problem for (pde) are strictly related to existence and uniqueness for the
Cauchy problem for (ode).

2.1. Existence. Assume for the time being that b is bounded and smooth. Under
these assumptions we can construct the flow associated to (ode), namely the one-
parameter family of di¤eomorphisms of Rn

fFtgtb0

defined by the fact that for every x a Rn the map t 7! FtðxÞ solves the equation
(ode) with initial value F0ðxÞ ¼ x.

If b is divergence-free then the flow is volume-preserving (that is, each di¤eo-
morphism Ft is volume-preserving), and therefore a solution of (pde) with initial
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datum u0 is2

uðt; xÞ :¼ u0ðF�1
t ðxÞÞ:ð2:1Þ

It follows immediately that if u0 is bounded then

kuðt; �Þkla ku0kl for all t:ð2:2Þ

Assume now that the vector field b is bounded, divergence-free (in the sense of
distribution) but no longer smooth. We construct a solution of (pde) with initial
datum u0 as follows: let be be a regularization of b by convolution (so be is
bounded, divergence-free, and smooth), and let ue be the solution of (pde) with
be in place of b given by formula (2.1); then we can use the bound (2.2) to pass
to the limit in ue as e ! 0, and obtain bounded function u that solves (pde) for all
positive times (in the sense of distribution).

To make this argument work it is not needed that div b ¼ 0, but it su‰ces that
div bb�m for some finite m; in this case (2.1) should be replaced by

uðt; xÞ :¼ u0ðF�1
t ðxÞÞ � detð‘F�1

t ðxÞÞ;

and since the derivative of detð‘FtðxÞÞ with respect to the variable t agrees with
div bðxÞ, which is larger than �m, then the bound (2.2) becomes

kuðt; �Þkla emtku0kl for all t:

Note that without assumptions on the divergence of b the existence of bounded
solutions for all times may no longer hold, because it can happen that all particles
end up in the same point and remain there; therefore after some time the particle
density becomes a measure with an atom and is no longer represented by a func-
tion (let alone a bounded function). For example, this is the case when

bðxÞ :¼ �x=
ffiffiffiffiffiffi
jxj

p
if xA 0;

0 if x ¼ 0:

�

2.2. Uniqueness. Under the only assumption that b is bounded and has bounded
(or even vanishing) divergence there is in general no uniqueness for the Cauchy
problem for the continuity equation (pde).3 However, in the fundamental paper

2The heuristic idea behind formula (2.1) is clear: if B ¼ Bðx; rÞ is a ball centered at x with small

radius r, the density uðt; xÞ is (up to a small error) the mass mðB; tÞ of the particles contained in B at
time t divided by the volume of B. But the particles contained in B at time t are those contained in

B 0 :¼ F�1
t ðBÞ at time 0, and therefore mðB; tÞ ¼ mðB 0; 0Þ, while the volume of B is the same as that

of B 0 because Ft is volume-preserving. Hence uðt; xÞ agrees with mðB 0; 0Þ divided by the volume of

B 0, which is the density at time 0 and position F�1
t ðxÞ.

3Among the existing examples we mention the one in [11]: a time-dependent, bounded,

divergence-free vector field b on R2 such that (pde) admits a nontrivial (distributional) solution
with vanishing initial datum. It is easy to modify this construction and obtain an example of

non-uniqueness for a time-independent, divergence-free vector field on R3. An example of time-
independent vector field on R2, quite more complicated, is given in [1].
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[12], R. J. DiPerna and P.-L. Lions proved that uniqueness holds under the addi-
tional assumption that b is (locally) of Sobolev class W 1;1, and later on L. Am-
brosio [5] improved this result by showing that it su‰ces that b is (locally) of class
BV .4

Note that in both papers uniqueness is proved within the class of distribu-
tional solutions of (pde) that are functions for all times (actually some additional
bound on the solution u is also needed, for example kuðt; �Þkl uniformly bounded
in t for all finite time-intervals). In other words, the possibility that particles con-
centrate in a negligible set5 is excluded a priori, and not proved impossible.

It should also be noted that both results give conditions which are su‰cient
for uniqueness, but not necessary (cf. §2.4).

In view of the mechanical interpretation described above, one would expect
that uniqueness for (pde) is related to uniqueness for (ode), and the heuristic ar-
gument should be the following: let N be the set of non-uniqueness associated to b,
that is, the set of all points z a Rn such that the di¤erential equation (ode) has at
least two solutions xzðtÞ and ~xxzðtÞ with initial datum z. Consider now an initial
distribution of particles contained in N: there are at least two possible evolutions
of this distribution, one obtained by moving each particle initially located at the
point z according to the trajectory xzðtÞ, and the other one obtained by moving
it according to ~xxzðtÞ. We thus expect that the densities u and ~uu associated to
these two evolutions give di¤erent solutions of (pde) with the same initial datum.

Now, this would certainly be the case if our notion of solution included
measure-valued solutions, that is, if we allowed the particle density at time t to
be represented by a measure instead of a function. But since by solutions we
mean functions, and sometimes even bounded functions, we quickly realize that
to make the previous constructions work we need some additional assumptions.

First of all we need an initial distribution of particles with positive total mass
whose density is a function and not a measure, and therefore we must assume
that the non-uniqueness set N has positive measure.

Secondly, we need that at every time t > 0 the densities of the two distribu-
tions considered above are functions and not measures, which is obtained by
assuming that the families of trajectories fxzg and f~xxzg do not ‘‘concentrate’’,
where non-concentration (for fxzg) means that for every set E with positive mea-
sure contained in N and every t > 0, the set Et :¼ fxzðtÞ : z a Eg has positive
measure. (This is the weakest notion of non-concentration: to makes sure that
the solutions u and ~uu constructed above are bounded functions, and not just func-
tions, one has to impose some explicit lower bound for the measure of Et, such as
measðEtÞbmmeasðEÞ for some positive constant m.)

The argument I have just presented has been made rigorous by Ambrosio in
[5] using a suitable weak notion of flow (compare it with the classical one in §2.1):

4The relevance of these uniqueness results lies in the applications to other hyperbolic problems,
which I am not going to discuss here.

5Here and in the following the terms ‘‘negligible’’ and ‘‘measure’’ refer, unless stated otherwise,
to the Lebesgue measure on the ambient space.
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a regular Lagrangian flow associated to a vector field b on Rn is a family of maps
Ft : R

n ! Rn parametrized by time t such that

(i) t 7! FtðxÞ solves (ode) for almost every x a Rn,
(ii) there exists a positive constant m such that measðFtðEÞÞbmmeasðEÞ for

every set E and every time t (non-concentration).

Two Lagrangian flows are said to be equivalent if they agree for almost every x
and every t, and, as shown in [5], the existence of two non-equivalent regular
Lagrangian flows implies non-uniqueness of bounded solutions for (pde). In par-
ticular, the uniqueness result for (pde) in [12] and [5] imply the uniqueness of reg-
ular Lagrangian flows up to equivalence.

For more details on the connection between (pde) and flows for (ode), and for
a review of related uniqueness results I refer the reader to [9], [6].

2.3. An open question. The uniqueness of regular Lagrangian flows (up to equiv-
alence) can be loosely interpreted as uniqueness for (ode) for almost every initial
position. However, these two conditions are not equivalent: while the latter
clearly implies the former (because of assumption (i) in the definition of regular
Lagrangian flow), the converse is not true (essentially because for certain vector
fields b there exist flows that satisfy condition (i) but not (ii)).

In particular, it is not know whether the uniqueness results for (pde) in [12]
and [5] imply uniqueness for (ode) for almost every initial position.

We are thus led to the following question, which is still open: Is there a contin-
uous vector field b on Rn with bounded divergence and of class W 1;p for some pb 1
(that is, a vector field to which the uniqueness result in [12] applies) such that the
non-uniqueness set N has positive measure?

2.4. Relation with Sard theorem. In this paragraph we restrict our attention to
vector fields b on R2 that are bounded and divergence-free. Under these as-
sumptions there exists a Lipschitz function f : R2 ! R, called potential of b,
such that

b ¼ ð‘ f Þ?ð2:3Þ

where v? stands for the rotation of the vector v by ninety degrees counter-
clockwise ( f exists because the rotation of b by ninety degrees clockwise is curl-
free).

In [1, Theorem 4.7] it is proved that the vector fields b such that there is
uniqueness for the corresponding continuity equation (pde) can be characterized
in terms of the critical set of the potential f .

Let me give an idea of the proof. In view of the mechanical interpretation of
(pde) given at the beginning of this section, we can rephrase the first step of this
proof as follows: a particle that belongs to some level set f �1ðyÞ at time 0, re-
mains for all subsequent times in the same level set, and more precisely in the
same connected component of the same level sets. This is not surprising because
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b is orthogonal to ‘f and therefore tangent to the level sets of f at almost every
point.6

It follows that solving (pde) is equivalent to solve a partial di¤erential equa-
tion similar to (pde) on every nontrivial connected component E of a generic
level set f �1ðyÞ (here ‘‘nontrivial’’ means ‘‘containing more than one point’’;
‘‘generic’’ means ‘‘for almost every y’’).

Moreover a nontrivial connected component E of a generic level set is a sim-
ple rectifiable curve (see [2, Theorem 2.5]) and therefore uniqueness for (pde)
reduces to uniqueness for a family of variants of the continuity equation in one
space dimension. It turns out that uniqueness for these one-dimensional continu-
ity equations is strictly related to the intersection of the connected component E
and the set of critical points

S :¼ fx : ‘f ðxÞ ¼ 0g:

In particular, if a generic level set of f does not contains critical points (that is, if
f has the Sard property—see Section 3) then there is uniqueness for all these one-
dimensional equations, and therefore also for the original two-dimensional equa-
tion (pde).7

In the rest of this paragraph I follow this line of thought and claim that a neg-
ative answer to the question raised at the end of §2.3 could be given by a suitable
example of Sobolev function without the Sard property.

Let f : R2 ! R be a Lipschitz function of class W 2;p and with compact sup-
port, and let V be the set of all values y a R such that there exists a nontrivial
connected component Ey of the level set f �1ðyÞ which contains one and only
one critical point of f , denoted by xy. Finally let b be the vector field with poten-
tial f , that is, the one defined by (2.3), and let N be the non-uniqueness set asso-
ciated to b (see §2.2).

I claim that if the set V has positive measure then the set N has positive mea-
sure, and therefore the answer to the question raised in §2.3 is negative.

Let me argue in favour of this claim. I first recall that for almost every y a R
the set Ey is a rectifiable, simple, closed curve, and I observe that

(i) a particle that moves along Ey reaches xy in finite time;
(ii) after the particle has reached the critical point xy it can stay there for any

given amount of time and then start moving again.

Statement (ii) is essentially a consequence of statement (i) (applied with reversed
time) and of the fact that b vanishes in xy. To prove statement (i), note that the
time Ty taken by the particle to go all the way through the curve Ey is

Ty ¼
Z
Ey

1

jbj ¼
Z
Ey

1

j‘f j a
Z
f �1ðyÞ

1

j‘f j ;

6 In other words, the level sets of f play the role of characteristic curves for (pde).

7The uniqueness result in [1] actually requires that f satisfies a weaker version of the Sard prop-
erty; the precise definition is a bit technical, and therefore it has been omitted.
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and therefore

Z
V

Ty dya

Z þl

�l

Z
f �1ðyÞ

1

j‘f j

" #
dyameasðsuppð f ÞÞ < þl

(the second inequality follows by the coarea formula and the fact that f �1ðyÞ
is contained in the support of f for all yA 0; the last inequality is due to the
fact that the support of f is assumed to be compact, and therefore it has finite
measure).

Hence Ty is finite for almost every y a V , which implies statement (i).
Now notice that statements (i) and (ii) together imply that for every point z

contained in Ey with y a V there are infinitely many solutions of (ode) with initial
datum z, and therefore Ey is contained in the non-uniqueness set N of the vector
field b. Finally, the coarea formula and the fact that V has positive measure
imply that the union of all Ey with y a V , and therefore also N, are sets of posi-
tive measure in the plane.

2.5. Conclusions. The fact that the set V in the previous construction has posi-
tive measure implies that the function f does not have the Sard property. When
we started working on these problems it was only known that Sard theorem holds
for functions f : R2 ! R of class W 2;p with p > 2 but nothing was known for
pa 2 (see the next section). So we looked for a counterexample, with the hope
that it would eventually lead to a negative answer to the question in §2.3. Un-
fortunately (or fortunately) we found out in the end that there are no counter-
examples, and that Sard theorem holds for all pb 1.

3. Sard theorem

Given a function f : Rn ! Rm with ma n, the critical set of f is

S :¼ fx : rankð‘f ðxÞÞ < mg:

We say that f has the Sard property if f ðSÞ is negligible, that is, if a generic level
set of f contains no critical points.

In the classical form (see [18]), Sard theorem states that if f is of class Cn�mþ1

then it has the Sard property. Note that the regularity exponent n�mþ 1 is
sharp: there exist maps of class Cn�m without the Sard property (see [19], [13,
§3.4.4]).

A more precise version of Sard theorem was given in [13, Theorem 3.4.3]:
given a map f : Rn ! Rm of class Ck (without restrictions on n and m) and
h ¼ 0; 1; . . . , then the set

Sh :¼ fx : rankð‘f ðxÞÞa hgð3:1Þ
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is Hhþðn�hÞ=k-negligible, where Hd denotes the d-dimensional Hausdor¤ mea-
sure. This result was later extended in [7] to maps of class Ck;a.

Concerning Sobolev maps, L. De Pascale proved in [10] that continuous maps
of class Wn�mþ1;p with p > n > m have the Sard property. A simpler proof of
this statement was later given in [14]. Note that the counterexamples mentioned
before show that the di¤erentiability exponent n�mþ 1 is sharp. On the other
hand, there are no examples showing that the bound p > n on the summability
exponent is optimal (and indeed it is not, as I am going to explain).

In the rest of this section I restrict for simplicity to the case n ¼ 2 and m ¼ 1,
that is, to functions f on R2 to R. (For n ¼ m Sard theorem is just a consequence
of the area formula, and therefore the ‘‘interesting’’ cases are those with n > m;
among these the case n ¼ 2 and m ¼ 1 is the simplest, and is also the one which is
relevant to the construction explained in §2.4.)

In this case the critical set S agrees with the set S0 of all points where the gra-
dient ‘f vanishes, and the result by De Pascale states that a continuous function
in W 2;p with p > 2 has the Sard property. Next I will give a detailed outline of
the proof of this result, and then indicate how it can be extended to W 2;1.

3.1. Proof of Sard theorem for p > 2. Let f : R2 ! R be a continuos function of
class W 2;p for some p > 2; we assume for simplicity that the singular set S0 ha
finite measure.

The starting point is the following estimate: for every ball B ¼ Bðx; rÞ with
center x and radius r there holds

oscð f ;BÞk rj‘f ðxÞj þ r2
�Z

B

j‘2f j p
�1=p

;ð3:2Þ

where oscð f ;BÞ stands for the oscillation of f over the set B (that is, the di¤er-
ence between the supremum and the infimum), the symbolkmeans that the in-
equality holds up to some (universal) multiplicative factor, and the barred inte-
gral stands for the average.

Since estimate (3.2) is scaling and translation invariant, it su‰ces to prove it
when B ¼ Bð0; 1Þ. Since W 2;p embeds in Ll, we can bound the oscillation of f
by its W 2;p-norm (on B). Now recall that an equivalent norm on W 2;p is given by
the sum of the Lp-norm of ‘2f and any continuous seminorm f on W 2;p which
does not vanishes on nontrivial a‰ne functions, for example fð f Þ :¼ j f ð0Þj þ
j‘f ð0Þj (the equivalence with the usual norm of W 2;p follows by a standard argu-
ment, see [20, Chapter 4]). Thus

oscð f ;BÞk j f ð0Þj þ j‘f ð0Þj þ k‘2f kL pðBÞ:ð3:3Þ

Moreover, since oscð f ;BÞ is invariant under the addition of a constant to f , we
can assume f ð0Þ ¼ 0 and drop the first addendum on the right-hand side of this
inequality, and so we finally obtain (3.2).
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Note that if x belongs to S0 then ‘f ðxÞ ¼ 0 and (3.2) becomes

oscð f ;BÞk r2�2=p
�Z

B

j‘2f j p
�1=p

:ð3:4Þ

We now choose an open set A that contains S0, and cover S0 with a collec-
tions of balls Bi ¼ Bðxi; riÞ such that xi a S0 and Bi HA. Thus the sets f ðBiÞ
cover the set f ðS0Þ, and we can use this cover to estimate the measure of
f ðS0Þ:

measð f ðS0ÞÞa
X
i

measð f ðBiÞÞ:

Since the measure of the set f ðBiÞ is less than its diameter, which is oscð f ;BiÞ,
using (3.4) we get

measð f ðS0ÞÞk
X
i

r
2�2=p
i

�Z
Bi

j‘2f j p
�1=p

ð3:5Þ

a

�X
i

r2i

�1�1=p�X
i

Z
Bi

j‘2f j p
�1=p

kmeasðAÞ1�1=p
�Z

A

j‘2f j p
�1=p

;

where the second inequality follows by applying Hölder inequality in the formP
aibi a ð

P
a
q
i Þ

1=qð
P

b
p
i Þ

1=p, and the third one holds provided that the balls Bi

do not overlap too much—a property that can be obtained by the Besicovitch
covering theorem.

To conclude the proof, note that we can choose the open set A so that
measðAÞ is arbitrarily close to measðS0Þ, which is finite, while

R
A
j‘2f j p is arbi-

trarily close to
R
S0
j‘2f j p, which is null because ‘f ¼ 0 on S0 implies ‘2f ¼ 0

a.e. on S0.

3.2. Statement of Sard theorem for pa 2. All versions of Sard theorem I men-
tioned so far apply to classes of maps that are di¤erentiable at every point, and
for which, consequently, the definition of critical set carries no ambiguity. How-
ever for 1a pa 2 the space W 2;pðR2Þ embeds in C0 but not in C1, and therefore
a function f in this space admits a continuous representative which in general is
di¤erentiable almost everywhere but not everywhere. Thus for such f we should
consider two sets:

S0 :¼ fx : f is di¤erentiable at x and ‘f ðxÞ ¼ 0g;
N :¼ fx : f is not di¤erentiable at xg:

ð3:6Þ

It turns out that Sard theorem holds in the strongest form (see [4], [8]): if f is a
continuous function of class W 2;1 then f ðS0 ANÞ is negligible.
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3.3. Outline of the proof. The only information readily available on the set N is
that it cannot be too large, and more precisely H1ðNÞ ¼ 0.8 Therefore we could
obtain that f ðNÞ is negligible if we knew that for every set E in R2

H1ðEÞ ¼ 0 ) H1ð f ðEÞÞ ¼ 0:ð3:7Þ

This is exactly a particular case of the generalized N-property that I will discuss
in the next section (a precise statement is contained in §4.1).

Let me now show how to adapt the proof in §3.1 to obtain that f ðS0Þ is neg-
ligible, too. First of all, notice that this proof, as it is, does not work. The point
is that we no longer have estimate (3.2), because for pa 2 the space W 2;p does
not embeds in C1, and therefore the value of ‘f at a given point x is not well-
defined.

The idea is to replace the term j‘f ðxÞj in (3.2) withZ
B

j‘f j dmB

where mB is a probability measure supported on B that belongs to the dual of
W 1;1, in the sense that u 7!

R
u dmB is a well-defined bounded functional on

W 1;1, and therefore u 7!
R
juj dmB is a well-defined continuous seminorm

on W 1;1 (for more details on measures in the dual of W 1;1 see [20, Section 4.9]).
Then we have the following variant of (3.2):9

oscð f ;BÞk r

Z
B

j‘f j dmB þ r2
Z
B

j‘2f j:ð3:8Þ

Let now S 0 be the set of all x a S0 with the following property: there exists a
sequence of balls B ¼ Bðx; riÞ with ri ! 0 such that on each of these balls we can
find a measure mB as above, supported on S0BB.10

With this choice of mB the first integral at the right-hand side of (3.8) van-
ishes, and therefore we get once again estimate (3.4) (with p ¼ 1). We can
now repeat the rest of the proof in §3.1 as it is, and obtain that f ðS 0Þ is neg-
ligible.

It remains to show that f ðS0nS 0Þ is negligible. We obtain this using (3.7) and

H1ðS0nS 0Þ ¼ 0:ð3:9Þ

8 It can be proved that f is di¤erentiable at every point where the gradient ‘f admits an approx-
imate limit (in the L1-sense). Therefore N is contained in the set of points where this approximate

limit does not exists, and since ‘f is of class W 1; 1, this set is negligible with respect to H1 (see for

instance [20, §5.12]).
9The proof runs exactly as that of (3.2) provided that the continuous seminorm f used to prove

(3.3) is replaced by fð f Þ :¼ j f ð0Þj þ
R
B
j‘f j dmB. One has to be careful though, since the constant

in (3.8) is a¤ected by the norm of mB as an element of the dual of W 1; 1.

10To be precise, I also require that the norms of these measures as elements of the dual of
W 1; 1ðBÞ are suitably controlled.
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To prove (3.9), we first need to understand when a point x belongs to S 0, which in
turn implies understanding when the set S0BBðx; rÞ can support a probability
measure mB in the dual of W 1;1 and how small the dual norm of this measure
can be (cf. footnote 10).

So, when does a set E in R2 support a probability measure m in the dual of
W 1;1? Intuitively, a necessary condition should be that the set E has positive
W 1;1-capacity, or, equivalently, that H1ðEÞ > 0. It turns out that a su‰cient
condition is that H1

lðEÞ > 0, where H1
e are the Hausdor¤ pre-measures that ap-

pear in the definition of Hausdor¤ measures (see [20, §1.4.1]).11
Using this su‰cient condition we obtain that x belongs to S 0 if

lim sup
r!0

H1
lðS0BBðx; rÞÞ

r
b 1=2;ð3:10Þ

and therefore for all x a S0nS 0 the limsup in (3.10) is necessarily strictly smaller
than 1, which implies that

lim sup
r!0

H1
lððS0nS 0ÞBBðx; rÞÞ

r
< 1:ð3:11Þ

The last step of the proof consists in showing that (3.11) implies (3.9).

3.4. The general case. In [4] we prove the following (but as I said, this is still a
work in progress): Take n, k, and p so that the Sobolev space W k;pðRnÞ embeds in
C0 (that is, kp > n or p ¼ 1 and k ¼ n), let f : Rn ! Rm be a continuous map of
class W k;p, and define the sets S0 and N as in (3.6). Then

Hn=kð f ðS0 ANÞÞ ¼ 0:ð3:12Þ

Moreover this result is optimal, in the sense that

(i) the dimension n=k in (3.12) cannot be lowered;
(ii) if n, k, and p do not satisfy the condition above, then there are maps f on Rn of

class W k;pBCk�1 for which the Hausdor¤ dimension of f ðS0Þ is strictly larger
than n=k, and in particular (3.12) fails.

To obtain the optimal statement of Sard theorem we should then prove similar
estimates for the sets Sh defined in (3.1).

11This su‰cient condition can be obtained by putting together the characterization of measures
in the dual of W 1; 1 given in [20, Theorem 4.9.4] and Frostman’s lemma [17, Theorem 8.8]. More-

over the dual norm of the measure m is controlled by the inverse of H1
lðEÞ (the smaller the set, the

bigger the norm).
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4. Generalized N-property

A map f : Rn ! Rm with mb n has the Lusin N-property if the following impli-
cation holds for every set E contained in Rn:

HnðEÞ ¼ 0 ) Hnð f ðEÞÞ ¼ 0:

This property has been widely studied in the past years, mostly in relation to
the area formula. Indeed, the following statement holds: let f be a map which
is di¤erentiable (in the approximate sense) at almost every point and has the N-
property; then the area formula holds, that is

Z
y ARm

X
x A f �1ðyÞBE

jðxÞ
" #

dHnðyÞ ¼
Z
x AE

jðxÞ Jf ðxÞ dHnðxÞð4:1Þ

where j is any positive Borel function on Rn, E is any Borel subset of Rn, and Jf
is the Jacobian of f (defined at every point where f is di¤erentiable).

The proof of this statement is elementary: since f is a.e. di¤erentiable, it has
the Lusin approximation property with Lipschitz maps, that is, there exist a se-
quence of Borel sets Fi and of Lipschitz maps fi such that the sets Fi cover almost
all of Rn and f ¼ fi on Fi (see [13, Theorem 3.1.8]). Using the area formula for
Lipschitz maps (see [13, Theorem 3.2.5]) we obtain that (4.1) holds when E is
contained in the union of all Fi. It remains to show that (4.1) holds when E is
contained in the complement of the union of all Fi. Since E is Hn-negligible,
the integral at right-hand side of (4.1) vanishes, and to prove that also the integral
at the left-hand side vanishes it su‰ces to show that f ðEÞ is Hn-negligible, which
is precisely what the N-property says.

Concerning Sobolev maps, a continuous map f : Rn ! Rm of class W 1;p has
the N-property if p > n (see [16]) and this bound on the summability exponent is
sharp (however, homeomorphisms of class W 1;n also have the N-property; for this
and other results on the N-property see for instance the review paper [15]).

In the rest of this section I will focus on a generalization of the N-property
that naturally arises when dealing with the Sard theorem for Sobolev maps (see
§3.3).

4.1. Generalized N-property. Given a map f between metric spaces and positive
numbers a, b, we say that f has the ða; bÞ-N-property if the following implication
holds for every set E contained in the domain of f :

HaðEÞ ¼ 0 ) Hbð f ðEÞÞ ¼ 0:

It follows from elementary facts that a Lipschitz map has the ða; aÞ-N-
property for every a > 0 and, more generally, an Hölder map with exponent g
has the ða; a=gÞ-N-property for every a > 0.

Concerning Sobolev maps, in [3] we prove the following: Take n, k, and p
so that the Sobolev space W k;pðRnÞ embeds in C0 (that is, kp > n or p ¼ 1 and
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k ¼ n), and let f : Rn ! Rm be a continuous map of class W k;p. Then

(i) f has the ða; bÞ-N-property with b :¼ ap

kpþa�n
for a < n� ðk � 1Þp;

(ii) f has the ða; aÞ-N-property for a > n� ðk � 1Þp.12

Moreover this result is sharp, in the sense that

(iii) the value of b in (i) cannot be lowered;
(iv) if we take n, k, and p so that the Sobolev space W k;pðRnÞ does not embed in

C0, then there are continuous maps f : Rn ! Rm of class W k;p that do not
have the ða; bÞ-N-property for any a > 0 and bam; in other words, these
maps take some sets of dimension arbitrarily close to 0 into sets of dimen-
sion m.

4.2. About the proof. We have two di¤erent methods for proving statements (i)
and (ii) above. Even though the proof can be achieved by either methods for most
k, p, a, b in the range where the N-property holds, yet neither approach covers all
cases (or so it seems).

Let me illustrate the first method in the case of the ð1; 1Þ-N-property for maps
f : R2 ! Rm of class W 2;1. The starting point is the following estimate (the proof
is essentially the same as that of estimates (3.2) and (3.8)): for every ball B ¼
Bðx; rÞ there holds

oscð f ;BÞk r

Z
B

j‘f j þ r2
Z
B

j‘2f j:ð4:2Þ

We now fix a set E with H1ðEÞ ¼ 0 and, given e > 0, we choose a family of
balls Bi ¼ Bðxi; riÞ which cover E and satisfy

P
ri a e. Then the sets f ðBiÞ cover

f ðEÞ, and we use this cover to estimate the Hausdor¤ measure of f ðEÞ:

H1ð f ðEÞÞa
X
i

diamð f ðBiÞÞ:

Since the diameter of f ðBiÞ agrees with the oscillation of f on Bi, using (4.2) we
obtain

H1ð f ðEÞÞk
X
i

1

ri

Z
Bi

j‘f j þ
X
i

Z
Bi

j‘2f j:ð4:3Þ

We want to show that both sums at the right-hand side of (4.3) tend to 0 as e
tends to 0 (provided the covers fBig are suitably chosen).

If the balls Bi do not overlap too much (and this can be obtained by Besico-
vitch covering lemma) we can estimate the second sum by the integral of j‘2f j
over the union A of the balls Bi, and since the area of A tends to 0 as e ! 0, the
same happens to the integral.

12The case a ¼ n� ðk � 1Þp is not yet settled, except for p ¼ 1 where we know that the ða; aÞ-N-
property holds.
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The di‰cult part is to handle the first sum. First of all we write it as
R
j‘f j dm

where m is given by the Lebesgue measure multiplied by the density

r :¼
X
i

1

ri
1Bi

;

and then we show that m belongs to the dual of W 1;1ðR2Þ in the sense of [20, §4.9]
(the key step is to prove that mðBÞk r for every ball B ¼ Bðx; rÞ). Then the proof
is concluded by a careful estimate of the norm of this measure as element of the
dual of W 1;1ðR2Þ.

Concerning the second method, let me just hint that it is related to estimates
for the local Hölder exponent of Sobolev maps. The simplest version of such esti-
mates reads as follows: if a is a real number with 0 < aa n and f : Rn ! Rm is a
continuous map of class W 1;p with p > n, then for Ha-almost every x a Rn and
every ball B ¼ Bðx; rÞ there holds

oscð f ;BÞk r
�Z

B

j‘f j p
�1=p

¼ OðrgÞ with g :¼ pþ a� n

p
:ð4:4Þ

The inequality in (4.4) can be proved in the same way as estimate (3.2), and
the equality is obtained by applying the following elementary statement with
g :¼ j‘f j p: given a positive function g in L1ðRnÞ and 0 < aa n, for Ha-almost
every x a Rn and every ball B ¼ Bðx; rÞ there holdsZ

B

g ¼ OðraÞ

(the estimate applies in the regime r ! 0, and it is clearly not uniform in x).
Now, estimate (4.4) says more or less that we can find a sequence of sets such

that the restriction of f to each of these sets is Hölder continuous of exponent g,
and the sets cover Rn except for a residual set which is Ha-negligible. If we ne-
glect this residual set, we immediately obtain that f has the ða; a=gÞ-N-property,
and a=g is exactly the value of b in statement (i) of §4.1 for k ¼ 1.

Unfortunately we cannot neglect the residual set, and turning this formal ar-
gument into a real proof requires some work.
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Università di Pisa

largo Pontecorvo 5

56127 Pisa, Italy

galberti1@dm.unipi.it

491generalized N-property and sard theorem




	mk1
	mk2
	mk3
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mkEnd-page

