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Solid Mechanics — Parabolic tunnels in a heavy elastic medium, by M. J.
LeitMaN and P. VILLAGGIO, communicated on 9 November 2012.

Dedicated to the memory of Gaetano Fichera in recognition of his contributions to
the Theory of Elasticity

ABSTRACT. — We consider an elastic half-space subject to constant body forces acting perpendic-
ular to its surface. Assume that the medium is perforated by a parabolic cylindrical cavity whose
plane of symmetry is perpendicular to the surface. We characterize the state of stress in the medium;
in particular, we compute the hoop stresses along the boundary of the cavity. Our solution is
obtained by applying the complex variable method in plane elasticity, extending the technique to
stress states which do not necessarily vanish at infinity.
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MATHEMATICS SUBJECT CLASSIFICATION: 74B05, 74L.10.

1. INTRODUCTION

A tunnel is an underground passage through a hill or mountain or beneath the
bed of a river. Natural tunnels have served as habitations for humans since the
Stone Age. Artificial tunnels, created by superposing stone blocks, represent a
brilliant architectural achievement as early as the sixth century BCE (Sparacio
[7]). Tunnels were drilled through the Alps in the second half of the 19th Century,
though at enormous cost and sacrifice of lives (Orava [3]).

The first mathematical models of tunnels were formulated at the beginning
of the 18th Century, but only considering the statics of the arch regarded as
a vault loaded by prescribed vertical forces. However, the arch is in contact
with the material above, which behaves as an elastic medium subject to gravita-
tional body forces. The problem then arises of determining the interaction be-
tween the arch and the heavy material above. Some brilliant solutions were
found by Mindlin [2] and recorded in the books of Savin [5] and Poulos and
Davis [4]. The latter has a wider collection of particular solutions. The cases
in the literature consider a circular cavity in the plane or near the boundary of
a half-plane. These solutions, though elegant, are not always realistic since the
cross-sections of rail and road tunnels are often parabolic, not circular (see
Schleicher [6]).

In this paper we propose an elastic solution for a parabolic cavity piercing
an heavy, elastic, half-plane. The solution is obtained by applying the complex
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variable method in plane elasticity using the conformal map of the exterior of a
parabola onto a half-plane. Our model is more realistic, for it takes into account
the fact that material weighing on the arch is not infinite but bounded above by a
free surface, such as a plane, as shown in Fig. 1. However, the surface tractions
on the plane do not vanish in our proposed solution. Therefore we must further
discuss in just what sense our solution can be deemed acceptable.

In addition, our elastic solution is physically questionable, since it predicts ten-
sile hoop stresses near the vertex. But tunnels are usually drilled through materi-
als notoriously unable to support tensile stresses. To avoid these tensile stresses,
the material near the vertex must be reinforced in some way. An analytic criterion
for determining the required superposed stress state is proposed here.

2. THE ELASTIC SOLUTION FOR THE FREE CAVITY

We consider a parabola in the (x, y)-plane described by

1) yex=g- (%),

where &, > 0 is a parameter. The focus is at the origin and the vertex has
coordinates (ég, 0). The infinite, closed region L, above the parabola and below
the half-plane at height H > 55, is occupied by a heavy elastic medium (earth or
rock) weighing upon the parabola while the infinite, closed region R, below the
parabola and above the half-plane, is empty (see Fig. 1). We assume that the
density of the medium, y > 0, is constant so that the distribution of the body
forces can be represented by

(2.2) by=—-y and b, =0.

The parabola in Fig. 1 is the image in the (z = x 4 1y)-plane of the line & = &,
in the ({ = & + w)-plane under the conformal map

(2.3) (s z=m() =%
Equivalently, we have
(2.4) x=&—p> and y=2&.

Setting ¢ = &, and eliminating # yields Eq. (2.1) (see Figs. 1, 2). The map in
Eq. (2.3) is admissible, since the only point at which m'({) =0 is the origin,
which lies in the region R.

The stress state in L may be regarded as the superposition of two stress
states: that induced by the body forces of Eq. (2.2), called the fundamental stress
state, and an extra stress state chosen to satisfy the boundary conditions on the
parabola.
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Figure 1: Tunnel Figure 2: Half-plane
z-Plane: z = x + 1y {-Plane: { = & + uy.

The body forces derive from a potential, say V" in the notation of Milne-
Thomson [1, §1.72], such that!
0 0 0
— =1 |V =2=V
ox Z6)/)

(2.5) —y = by —1b, = ( ~v.

Generalizing Milne-Thomson’s method for constructing a class of compatible
stresses, we take

(2.6) V(z,2) = — L (z 4+ 2) +9H,

DN~

where H > éé is the height of the half-plane described above. Now introduce a
real-valued function Q such that V2Q = —V or

2

2

(2.7) 4= 0(2) = —V(2,2) = % (z+2) — pH.
An integral of Eq. (2.7) is

(2.8) 0(z,5) = L [(2%2 + 22%) — 4z2H — 2°H).

16

Since @ is bi-harmonic, the strain state induced by the body forces is admissible.
If we denote the the stresses in the physical z-plane induced by the body forces,

! We systematically use the notation of Milne-Thomson’s classic monograph [1].
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o [e]

the fundamental stresses, by oy, o7, 77, the corresponding fundamental stress
combinations are given by (see Milne-Thomson [1, §2.10]):

2

oL o _ @ _ J o z+12
(2.9) 07+ 07 =0 = (8 —4r) == 0(,7) = 7(2 - v)( - H),
o o o 62 - V _
(2.10) oy —oy +2iry, = Dy = —4vp 0(z,2) = EV(H —2),

where v is given in terms of Poisson’s ratio, #, by

1-2
(2.11) yi=—
1—7
Note that 0 < v < 3/2 and v = 0 implies the material is incompressible.
From Egs. (2.9 and 2.10), we recover the fundamental stresses:

(212) oy=—2@-VH=-x) of=-L@=3H-x) 5, =7w.
This fundamental state satisfies the equilibrium equations. Moreover, on the
half-plane x = H, we have o)(H,y) =0, o7(H, y) =0 but not the condition
7y, (H, y) = 0. Consequently, the boundary x = H is not a free surface for this
stress state. However, we may accept it as an approximation to the true funda-
mental state when the magnitude of p is small; that is, it should approximate
the true fundamental state near the vertex of the parabola. However, this situa-
tion may change once an extra stress state is added so that the parabolic surface is
free. There are other expressions for the analytical form of the fundamental
state (See e.g. Worch [8, p. 54].) But Eqgs. (2.9 and 2.10) have the advantage of
being extendible to more general distributions of body forces which derive from
a potential.

From Egs. (2.9 and 2.10), we can obtain an expression for the fundamental
stress vector in L of the {-plane:

o o\ _ D ol A\ m/(g)
(213) 2o +15) = O(m(0)) ~ Bl (555
_2 —
0 +¢ ¢
2 ¢
The fundamental stress vector does not vanish on the boundary of the parabola.
Indeed, if we evaluate this stress on the boundary of the parabola by setting

é = 250 - Ca we get

(2.14)  2(02 +118)|:y, = % (4 — 302 — p(4 — 3v)&¢

= =2 - (H-==) ~ D -

(4= 30)H — 42 - )&] - yvéoHé.

N ~=
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Since we require the parabola to be a free surface, it is necessary to add an excess
stress state o7, g,, 7, so that, on the parabola,

> “ep
(2.15)  2(0z + 175 gz, = —2(0F + 075 )lpge, ¢

(4 =30 + (4 = 3n)&¢

NI NI

1
FL[(4—3)H — 42— )& + PEH 7.
Since the excess stress state is free of body forces, it can be defined in terms of two
holomorphic functions, W.({) and w.({), related to the stress combinations @,
and @, by the formul (See Milne-Thomson [1, §2.20])

(2.16) o+, =0.= W)+ W.(0),
* * * C T/ 7\
(2.17) ol —g! = uth, = B, = (%) @) +wi(0).

We can determine W, ({) and w.({) by a slight modification of the standard
procedure for solving elastic problems on a half-plane. First write the formal
expression for W, ({) in terms of the Cauchy integral:

(=2(0¢ +175,)(S) |z 226, )m' ()
¢—¢

where C is the contour in the complex {-plane parameterized by 7 +— { = & + 11,
for oo > 7 > —o0, the positively oriented (L on the left) boundary, and P({) is a
polynomial to be determined later. If the Cauchy integral converges, it deter-
mines a sectionally holomorphic function with a jump across the contour C.
Note that P({) is holomorphic everywhere and, consequently, does not contribute
to the jump. We now proceed to evaluate the integral.

For convenience set H =x?, x>0 and denote the right-hand side of
Eq. (2.18) by I({, a):

1 /“ (2(a2(&o +17) 4078, (&9 +27)))m' (&o + 27)

@18) m(OW.(0) = /C

ds + P({),

- 21

(219) 1(Go) =5 | (&o +) = ¢

where « is a large, positive parameter. Integration yields

wdt + P({),

_ya ) B 4—vy 2 062
(2.20) I(C,oc)—;(4—3v){5 —éoc—(rc _4—3v5°_?>]

5 tlIn(=(C = &) = o) = aln(— (L = &) +12)]

(4 =30 —2(4 — 3v) &
— (K*(4 = 3v) =42 = V)& — 2w &) + P(L).



6 M. J. LEITMAN AND P. VILLAGGIO

As o — o0, the first term in Eq. (2.20) diverges and, hence, the Cauchy integral
is not well-defined. Fortunately this term is a polynomial in {; so we can choose
the polynomial P({) to cancel it. With

2.21) P() = P((,0) = —%(4 —3) {@ — &l - (Kz B 44_—3va§ - %2)] :

Eq. (2.20) becomes
(222)  1(E%) = 5alln(=(C = &) = 2) — In(—(C — &) + )]
(4 =30 = 2(4 = )&
— (24 = 3v) —4(2 —)EDC — 2w
It is not difficult to show that

n: iflel,

(2.23) oclglalo 1(In(—(¢ = &) — 1) — In(—({ — &) + 1)) = {; ifleRr.

Upon computing the limit of the expression in Eq. (2.22) as « — oo and dividing
by m’({), we recover the sectionally holomorphic function W, ({) given by

(224)  WL(0) = WE(Q)

— (K34 = 3v) =42 —)ED) + 2wczéoﬂ , Cel,

and

(225) W) = WRQ) =

*

[@—3ﬂ8—2m—3wgc

A=

— (K34 = 3v) =42 —)E) + 2v1c2502] , (eR.

Of course, for all (,

(2.26) wkhko) = -wko.

The jump in W, () across the boundary should equal minus the value of the
fundamental stress vector there. Recall that for { € L, the point 2¢; —{ € R is
symmetric to { with respect to the boundary line & = &,. The jump is:

(2.27) lim (W.(0) — W(2 (), (elL,
(—&o+m
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or, in our case,

(2.28) lim (WH(Q) — wWR2E - 0)

(—&ot+m

- lii%l( WEE +e4m) — WRE —e4 )

= li%l(W*L(fo +aupde) + WEE +um—e))

el
= 2W*L(éo + “7)
A short computation and the replacement of x> by H shows that
2

(2.29)  2WE(E +uw) = % (4 =30 — (4 =& + H((4 —v) - 2Vh)

—1H vy

7
&+

which, after a bit of arithmetic, is the same as —(2(aZ(So + ) + 07, (So + 7))
given in Eq. (2.14).

As a further check, we can use a version of the formula in Milne-Thomson
[1, §6.21(7)] to compute the extra stress vector 2(a({) — wtf, ({)) for { € Lt

m' (OWEQ) —m' (28 - OWR2& - )

+ (m'(8) —m'(2&o — O))WE(C)

(230)  201(0) — 11, (0) = mflm

+ (m(l) = m(2& — O)WH (|-

Rather than explicitly computing the extra stress vector in L, we merely observe
that, on the boundary, Eq. (2.30) reduces to:

(2.31) 2(0% (& +up) — 1y (Co + n))lz_z, o = 2W,(Eo + ).

Therefore, the total stress vector on the boundary is zero and, hence, the total
stress state:

tot .__ o tot ,.__ o tot ._ Lo
(2.32) o ==0;+o; o0 =0,+t0, T4 =715 +7
is an admissible stress state which satisfies the free boundary condition on the
parabolic boundary.

We could at this point obtain w,({), the second complex stress for the extra
state. However, we are primarily concerned with determining the the hoop stress
on the boundary of the parabola at and near the vertex. In view of the fact that
ot = 0 on the entire boundary, the hoop stress is just



8 M. J. LEITMAN AND P. VILLAGGIO

(2.33) o =0, + 0,
— [00(m(0)) + O.(m(E))s_as, ¢

= [@o(m(0) + W) + WED s, -

We can recover @y(m({)) from Eq. (2.9) and WX({) from Eq. (2.24). The hoop
stress on the boundary { = &, + wuy is then

. 2H
(2.34) nHa,;t(éoer)zyVl(H—fS)—f(anJrég)]-

Observe first that the hoop stress at the vertex # = 0 is
(2.35) (&) = pv(H — &),

which, for all values of Poisson’s ratio, is non-negative (tension) and proportional
to the distance between the vertex and the bounding plane.? Second, the hoop
stress is even in # and strictly decreasing to —oo as || gets large. Therefore, the
hoop stress must become compressive at some critical value of |#|. This critical
value increases with the distance between the vertex and the bounding plane
from zero to &, as this distance becomes large. It is interesting to note that the
location of the inversion from tension to compression is bounded; moreover, the
bound is strictly geometric, for it depends only on the shape of the parabola.

3. A REINFORCEMENT PROBLEM

The value of the hoop stress given in Eq. (2.34) stems from the implicit assump-
tion that the material is perfectly elastic and infinitely resistant in tension and
compression. This assumption is not valid if the medium through which the
tunnel is bored is soil or rock, both of which are strong in compression but noto-
riously weak in tension. So our result would predict that collapse of the tunnel is
likely near the vertex.

A device traditionally adopted by builders since remote times is to bind or re-
inforce the soil or rock near the vertex where tensile stresses are expected. Since
the procedure has often been informed by empirical criteria, it naturally begs the
question as to whether a binding level can be determined analytically. A simple
way to do this is the following.

We suppose that a binding procedure produces an additional bound stress
state, vanishing at infinity, characterized by the complex stresses Wj({) and
wp(). For all { we take
(3.1) Wi(0) =

)

2 At the extreme value % of Poisson’s Ratio, at which the material is incompressible, v and, hence,
(&) is zero.
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where A4 is a real parameter to be determined. The second complex stress can
then be determined by reflection across the line & = &, in the {-plane (see Milne-

Thomson [1, §6.21]).
MR-l 1\ m2&%-01 1 2§
-+ - ==+
m'({) (C 250*C> m'() ¢ 27
However, since we are interested in the induced hoop stress on the boundary of
the parabola, af?’(c‘fo + ), we get directly

(3.2) wp(() =4 l

2804
33 (& + ) = .
(3.3) et =
It also turns out that, on the entire boundary of the parabola, we have
(3.4) o2& +up) =0 74, (& + ) = 0;

so the addition of this binding stress state will still yield an admissible stress state
which satisfies the the free boundary condition on the parabola.

To avoid tensile hoop stresses on the free surface of the parabola we need to
have

(3.5) 7, (So +un) + 0, (& +up) < 0.

We can achieve this by choosing 4 so that at the vertex of the parabola

(3.6) 01(&) + b (&) < 0.
From Egs. (2.35) and (3.3) we conclude that

(3.7) A<Ad= —%50(H - &) <0.

This confirms the intuitive expectation that once & is prescribed, the level of the
binding constraint characterized by 4 is proportional to the distance between the
vertex of the parabola and the bounding plane.

4. COMMENTS AND CONCLUSIONS

The present solution exactly satisfies the free boundary condition on the para-
bolic contour, even with the additional binding forces of Sec. 3, but not along
the plane at x = H > éé. In principle, that surface should be free. Therefore, we
must determine in what sense our solution is acceptable. Consider the following
argument.

The fundamental stress state given in Eqs. (2.10) satisfies the the free bound-
ary condition on x = H > éé only partially, since the tangential stress 77, does
not vanish there. Yet we considered it satisfactory near the x-axis, where its
values are small. Indeed, all three fundamental stress components vanish at the
point (x, y) = (H,0). As for the additional and binding stress states, an estimate
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of their influence near the x-axis can be obtained by evaluating the stress combi-
nations @, = o} + 0, and ©, = Jé’ + 0, at £ = k. From Egs. (2.24) and (3.1) we
obtain:

(4.1) 0. =W+ WEO e = 27(2 = v)Eo (e — &o),

(42> ®b WbL (C) + WbL (C)|C:K =2

2w,

= Do g,

where A is given in Eq. (3.7). This could be deemed unsatisfactory, since the
sum @, 4+ ®, does not even vanish at (&,7) = (x,0), which corresponds to
(x,y) = (H,0). However, inspection of Egs. (4.1) and (4.2) shows that once
H =« is fixed, the sum is negligible near the x-axis for deep tunnels, char-
acterized by small values of the ratio &, /x.
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