Rend. Lincei Mat. Appl. 24 (2013), 39-81
DOI 10.4171/RLM/644

Partial Differential Equations — Mixed type, nonlinear systems in polygonal
domains, by V. A. SoLONNIKOV and M. A. VivaLDI, communicated on 9
November 2012.

In Memoriam Gaetano Fichera

ABSTRACT. — We prove existence, uniqueness results and coercive estimates in the weighted
Sobolev spaces for a linear problem of mixed type in a bounded domain Q = R? whose boundary
is smooth everywhere except a single angular point x = 0 with the aperture of the angle 6 > n. In
addition, we establish a stability result for a non-linear system of mixed type. The results of the
paper and the proofs extend to the case of polygonal domains.

KeEy worps: Non-linear systems of mixed type in irregular domains, estimates in weighted
Sobolev spaces, stability results.
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1. INTRODUCTION

In this paper we consider the non-linear system of mixed type

ou 0 )
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in a bounded, polygonal domain Q < R? for the vector u = (v, w); the data of the
problem, f(x,?) and uy(x), have a similar structure: f = (g,h), up = (v, wo).
Here A is a matrix differential operator of the form

_(LE) a)
(1.2 A_(/z(;) /31<x)>’

where /1(x), /(x), /3(x) are given functions, L(£) =—A+1 and 2(u) =
(2 (u),2(u)) is a vector field of non-linear terms. We assume that & is a linear
combination of the terms p;, j =1,...,7, satisfying conditions (1)—(7) in Section
7. These conditions are satisfied if p; are polynomials of degree > 2. The non-
linear operator 2 is a linear combination of terms ¢; given by
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(8) gs(v,w) = w"v,
(9) go(w) = w1,

where m is a positive integer.

Systems of this type have been used to model several phenomena in different
fields, for instance in Physics in the studies of nuclear reactor dynamics and heat
conduction (with adiabatic feedback effect in the reactor system) (see [32] chap.
1.3), in Neurophysiology in the formulation due to FritzHugh-Nagumo describ-
ing the ionic and electrical events occurring during the transmission of an impulse
along an axon (see [32] chap. 12.7). Similar equations come from ecological ap-
plications, such as studies of forestry ecosystems (see 8], [9], [10], [25] and [38]),
as well as from biological applications (see [29], chap. 13, [30], chap. 1, chap. 13
and [26]). A simpler version of problem (1.1) is introduced in [30], chap. 13, as
a model of rabies epidemics. The population consists of two types of foxes: the
vector u is the couple (v, w) where v(x, ?) is the density of the infective ones and
w(x, 1) of the susceptible ones, the non-linear terms reflect the interactions be-
tween the two types of foxes. The model takes into account the life expectancy
of infective foxes, a measure of transmission efficiency of the disease from infec-
tive ones to susceptible ones and the diffusion coefficient of infected foxes. Neu-
mann boundary condition on the infected foxes are given (i.e. the migration of
cubs seeking their own territory is excluded).

In the classical setting of smooth domains in R” coercive estimates of solutions
of general parabolic initial-boundary value problems have been proved by Agra-
novich and Vishik in the Sobolev-Slobodetskii norms szbl’l [2] and coercive
Schauder type estimates have been established by Solonnikov [36] and extended
by Belonosov [5] to weighted Holder spaces. Stability results have been proved by
Henry by an abstract approach [19] and for a large class of non-linear parabolic
systems by Belonosov and Visnevskii [6].

Recently, stability and instability of a stationary solution for non-linear sys-
tems of mixed type (as in (1.1)) has been studied by Mulone and Solonnikov
and a linearization principle in Sobolev-Slobodetskii spaces with an exponential
weight have been proved [28]. In the paper [17] we studied non-linear mixed type
systems of 2m-equations in n spatial dimensions and we proved existence, unique-
ness results and coercive estimates in the Holder spaces for the solution of the
associated linear mixed-type problem (see Theorem 2.1 in [17]). Assuming suit-
able conditions on the spectrum of the operator —4 and on the eigenvalues of
matrix —/3 we established weighted estimates in the Holder spaces (see Theorem
2.2in [17]). These estimates are crucial for proving the stability result for the non-
linear problem (see Theorem 3.1 in [17]).

In the present paper we study problem (1.1) in a non convex polygonal do-
main Q = R?. For simplicity we assume that the boundary of Q is smooth every-
where except a single angular point x = 0 with the aperture of the angle 6 > =.
The case of a fixed (finite) number of angular points can be easily reduced to the
case of a singular point by using partition of the unity. In order to extend the
results of the present paper to a larger class of irregular domains—for instance
(&,0)-domains with fractal boundary—it would be important to understand as
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our results depend on the increasing number of sides of the polygonal boundaries
approximating the fractal curve. This question, interesting in our opinion, is be-
yond the aim of this paper and it will be faced in a forthcoming paper.

We describe briefly the contents of the present article. First we consider linear
parabolic Neumann problems. The Dirichlet and Neumann problems in irregular
domains have been faced in many papers and books. We mention [35], [23], [24]
[31] and we refer to the blbhography quoted there. In this paper we state exis-
tence, uniqueness results and coercive estimates in the space W (QT) for the
solution (see Theorem 5.1). The presence of angles with aperture 6 > 7 causes
a loss of regularity for the solutions of the (linear) elliptic problems and the
H?-regularity fails even in the case of smooth data. The natural setting in our ge-
ometry are then weighted Sobolev spaces where the weight |x|* is the distance
from a single angular point 0. Moreover because of the Neumann condition on
the boundary the weighted Sobolev spaces involved are the spaces W2 1(QT)
Or =Qx (0, T) (see formula (2.1)) which differ from the spaces of the Kondrat iev
type H 5’1(QT). It is clear that the H-spaces are continuously imbedded in the
corresponding W-spaces. From the Hardy inequalities it follows that the norms
[|ull W) ) and [|u| HiQ) are equivalent as well as the norms |u|| W2 () and
[|ull 20 for functions vanishing for x =0 and these spaces coincide. We also
mentlon related papers [13], [14], [15] and [16] where elliptic and parabolic prob-
lems with oblique derivative conditions on the sides of an infinite angle have been
studied, and [11], [12], devoted to the problems with dynamic boundary condition
on one of the sides.

A technical difficulty arising in the Neumann problem consists in the fact that
in general the solutions do not vanish for x =0, which makes it necessary to
establish the special trace results for the spaces W (QT) (see Propositions 4.1,
4.2 and 4.3). This enables us to reduce our problem to a similar one with zero
initial datum by applying the above-mentioned trace results. Then we convert it
by means of the Laplace transform in a parameter-dependent problem as in the
article of Agranovich and Vishik [2] and we establish existence, uniqueness results
and coercive estimates in the space W2 4(€) for the solution, principal tools
being the Lax-Milgram theorem, estlmates obtained in [39] and Kondrat’iev’s re-
sults. We study then the linear system of mixed type associated to problem (1.1)
and we prove existence, uniqueness results and coercive estimates in the space
szﬂl (Or) x Wz‘Y’O(QT) (see Theorem 6.1). The proof is based on the analysis of
the Cauchy problem related to the second equation of system (1.1) and on the
previously mentioned results for the parabolic Neumann problem related to
the first equation of system (1.1). More precisely we represent the solution of the
Cauchy problem by means of the resolving operator, we plug the expression in
the first equation and we obtain an initial-boundary value problem with an inte-
gral operator of Volterra type that we solve by successive approximations and
Gronwall Lemma. Theorem 6.1 allows us to define the resolvent operator e~
Assuming suitable conditions on the spectrum of the operator —A4 and on the co-
efficient /3 we establish the exponential decay of the operator e’ (Theorem 6.2).
The proof of Theorem 6.2 is in some sense the most delicate part of this paper,



42 V. A. SOLONNIKOV AND M. A. VIVALDI

principal tools being sharp estimates for the parameter-dependent problem (The-
orem 5.2), fixed point arguments, the Gohberg theorem (Theorem 1.5.1 in [18]),
Fredholm alternative theorem, compact imbedding results in the weighted spaces
(Proposition 3.1), and the results of Henry (Theorem 1.3.4 in [19]). Theorems 6.1
and 6.2 allow us to prove the exponential decay of the solution u of a linear prob-
lem in the spaces Wf’;(QT) X Wz‘Y’O(QT) (Theorem 6.3). These estimates, that to
our mind are interesting in themselves, are crucial for establishing the stability
result for the non-linear problem (Theorem 7.1).

The layout of this paper is the following: in Section 2 we introduce the spaces
involved in our setting, in Section 3 we prove inclusions results, in Section 4 trace
results. Section 5 concerns Neumann parabolic problems. In Section 6 we deal
with the linear mixed-type system related to problem (1.1). Finally Section 7 con-
cerns problem (1.1).

2. NOTATION

In this section we introduce the weighted Sobolev spaces involved in our results.
Let Q c R? denote a bounded domain whose boundary is smooth everywhere
except a single angular point x = 0. We suppose that the aperture of the angle,
denoted by 6, is strictly greater than z. For simplicity we assume that in a certain
neighborhood of the angular point the boundary of Q is formed by two straight
segments.

[s)

Set Q7 =Q x (0,7T) and € (0,1). Let L, ,(Qr) denote the completion of
the space C°(Q;) with respect to the norm

T 1/q
llyion = [ [ ool avar}
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then the space

(2.1)  W3(Qr) ={v e Ly u(Qr) : DIDfv € Ly u(Qr), V]o| + 2k <

is a Hilbert space with the norm
1/2

k.12
”UHWZZ‘,,](QT) = Z DD, UHLz,ﬂ(QT) ’
' | 12k <2

o= (o,0), 01,0,k e NUO.
The space

W3(0r) = La(0, T; W3(Q)

is a Hilbert space with the norm

T
2
Illnzeign ={ [ ez at}

1/2

where W5(Q) denotes the usual (possibly fractional) Sobolev space on Q, s >

Ifs=[s]+0,0<0<1,then

2
. % |m — D7y
Il = 3 WDl + > [ [ e

| <1s] \fxl ls]

2}

dxdy

43

0.

(see e.g. [1]). Finally, Wzk ,(€2) denotes the weighted Sobolev space that is a

Hilbert with the norm

o 2
ol o =4 S 1D, 0

o] <k

1/2

3. INCLUSION RESULTS

We state now some inclusion results that are important tools in our estimates.

From now on, we denote by ¢ (possibly) different constants.

Let 2 be an infinite wedge with the vertex at the origin and aperture 6 > ©
(we may assume without loss of generality that & is symmetric with respect to
the x;-axis and it contains the half-axis x; > 0). By C, we mean an infinite wedge
with the vertex x and aperture 0; = 2z — 0 oriented in the same way as &, and

Culd)) ={yeCy|ly—x|<dp}. If x € Z, then C, c Z.

For arbitrary differentiable function u(x) vanishing at infinity the Smith repre-

sentation formula holds (see [34])

6. ) = [ Klr=)-Vuly) dy
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where

K(z) = | | <|§|)

The function w(¢) defined on the unit sphere S; is smooth and its support is

contained in Cyn S, in addition, / w(&)dS = 1. Hence K vanishes on the
s
surface of Cy. It can be extended by 1zero in RZ\CO; the extended function is

smooth everywhere except the vertex and

¢
|Z| 1+]o|

(3.2) ID*K(z)| <

where o = (a1, 00), o, € NUO.

The domain Q described in Section 2 possesses the cone property which means
that with every point x € Q we can associate a finite cone C.(dy) < Q with a fixed
(independent of x) aperture 0; and fixed dy > 0 (it may be oriented in an arbitrary
way). From the Smith representation formula mentioned above it follows that
arbitrary v(x) € W217 ,(€2) can be represented in the form

(33) o) = /@ Kl v dr s / Ka(x — y)o(y) dy

Cy(do)
= vl(x) + Uz(x),
where
(3.4) Ki(x =) =K(x = »)¥(lx — yl/do),
Ky(x —y) = —div(K(x — y)(1 = ¥(|x — y[/do)))

and Y (r) is a monotone function of a positive argument r > 0 equal to 1 for
r < 1/2 and to 0 for r > 3/4. By (3.2),

(3.5) Ki(x— )| <clx—y™",  |[K(x—y)| <cdy?
and supp, K (x — y) = C(do), supp, K>(x — y) = C(do)\Cx(do/2).

1+u

ProrosiTION 3.1. If2<¢g< then the following compact imbedding holds

WZ,,u (Q) < Lq, 2u/q (Q) )

with
(3.6) ollz, .., < €llolws @)
[f2<q<( T ,o>1, then
Wz,ﬂ(Q) < qu/ﬂ(Q)’
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with

(3.7) l|lo

PrROOF. We consider the case g > 2. We represent v(x) in the form (3.3) and
estimate v;(x). By the Holder inequality,

(3:8) n) = ( /@ .

x40

B 1/2
([ il = a)
Cx(d())

1/2-1/q
([ i)
Cx(d())

where 0 <a <2, 0<b<2, ‘5’—1-%: 1, g > 2. Actually we choose

Lye(@) S C||U||Wz{ﬂ(g)~

1/q
K= ) Vel )

b=2(1—-¢), a=gqe,

where ¢ denotes a positive, sufficiently small constant. By (3.5),

d
69 [ Ko s e [ D <,
Cx(do) R? [x — y[7|y]

and we evaluate the norm of v; coming back to the inequality (3.8). We have
q/2—1
(3.10) / lon (x, )| % dx < c(/ Vel dy)”
Q Q

- / x| 2200220 g / Ky (x — 3)|“|Vol [y dy
Q Cx(d())

2u
-2 2112 |x|™ dx
< Vel | o)1y | o

y=xtd x =yl

< Cdo2(1+ﬂ)—zm”VU”ZM(Q)7
because (—b — 2u+2)q/2 +2u = q(e — 1) +2u € (—2,0) and

(=b—2u+2)q/2+4+2u+2—a=—qe+2—q+qge—qu+q+2u>0

for g < #; hence

/ e — | O (E D2 g g
|x—yl<do

for arbitrary y € Q.
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Hence

201+u)/g—
ol . @ < cdg V0L, .

q, 2#/4
By exactly the same arguments we show that

2(14p) fq—p—1
Lyoue(@) = cdy |

[ oll

7;1 ),

and (3.6) is proved.
Replacing dy with edy, € « 1, we obtain

BAD) el < lTPHGO] )+ EEHE o] o).

To prove (3.7), we repeat the above calculations and arrive, instead of (3.10),
at

‘/WKMOWWWWdXSCWWQAm
Q

Q y=x|<do
< Cd(;]yHVUHZZVH(Q)

Wherey:q,ul_T"—f—2>O, ifo>1,andy=2ifog=1.
We also have

—1
/Q|vz(x,t)|q|x|q”/adx£cdg(y ol

Q)
which completes the proof of (3.7).
Along with (3.7), there holds
312 el @ < €IVoll, o + Mol @)s €< L.
The proposition is proved.
By similar arguments we can prove the inequality
(3.13) IVl o) < C(d0||D2U||L2J,(Q) + d()il||U||L2:M(Q))7

v

Dx,-é’x,) i,j=1,2"

where D?v = ( Instead of (3.3), we should use the representation for-

mula

ov(x) . M .
’ _/Cwo)Kl( y)V( i )d”/cx(do)Kz( y)o(y)dy

0X;
where Ki(x — y) = % and K>(x — y) is defined in (3.4). This kernel satisfies

the inequality
K (x = p)| < edy”.
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REMARK 3.1. We note that inequality (3.13) still holds for functions v defined in
the infinite wedge 9 if we replace the domain Q by the wedge % and the constant
dy by any positive number &.

PROPOSITION 3.2, If0 < s < 2 — pu, then the following imbedding holds
W3 (Q) = W3(Q)

with

(3.14) ||U||W;(Q) < c||v||W2%#(Q)

and this implies that

T
2 2
|Mmywﬂ<cl o)z (@ = ellvl 200, -

Moreover, if s > 1 then

(3.15) sup o] < cflv]3 0
X

ProOOF. We start by showing that
(3.16) ||u||W2"(Q) < CH””WZ{M(Q)v oel0,1—p).
The inequality
1—p -
(3.17) ||”||L2(Q) < ¢(d, ! ||V“||L2,},(Q) + d, ﬂ”“”LZ,,‘(Q))

is obtained in the same way as (3.6), (3.7). Now we represent u as the sum
u(x) = u(x)y(x/dy) + u(x)(1 —(x/dy)) := u; + u» where y is a smooth mono-
tone function of |x| equal to 1 for |x| < 3/4 and to zero for |x| > 1. The constant
d, is chosen in such a way that the boundary of Q consists of two straight lines
for |x| < d, and d; > dy. We can consider u;(x) = u(x)y(x/d;) as a function
given in &, setting u; (x) = 0 for |x| > d,. Let us estimate the seminorm

|Ul | 1/2
et u//" ﬂﬂk ava:) "

It is easily seen that

o (x) = (2)] 172 _
3.18 // ————5—dxdz) <cdy||u,,
(3.18) ghﬂﬁj|x_dﬁh )" < edi o)
and
- 1—p—0o —u—a
(3.19) dy HulHLz(Q) < ¢(d, ! ||V”1||L2_,4(Q) "‘doﬂ “”lHLz_ﬂ(Q))-

Now we estimate the integral

Ju1 (x) =i (2)]?
dxdz.
//]x d<dy X — Z|2+20
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By (3.1),

u1<x>—u1<z>=/ K<x—y>~wl<y>dy—/01<<z—y>~Vu1<y>dy

Cy

- / K(x— 7) - Vi (3) dy — / K(z — 1) - V() dy
C,VOB“Y (X) C: NBy, (X)
+ / (K(x— )~ K(z ) - Vi (7) dy
(CxUC.)\ By (X)

=L+ 5L+ 5,
where r = |x — z|, X = (x+z)/2, B,(X) is a circle of radius a centered at X. In
the integral I3, the kernels K(x — y) and K(z — y) are extended by zero in R?
(with respect to the variable y).
It is easily verified that
Cy N By(X) = Ci(9r/2), C.nN Bgy(X) = C.(9r/2),

hence

P K NP [ Kl ]

Cy(9r
< et / o RGP V ) o

where max(0,2u — 1) < k < u, and

5 dxdz
|Il | 2420
7 J @, |x—z|<dy |x — z]

dxdz / 141 2 2
sc IK(x — )| |V ()| ||y dy.
/ /J Jx—z|<do |X — 1+2”+2“ “Je.or2)

We introduce in the last integral a new variable of integration ¢ = z — x instead
of z and obtain

dxdz
(3.20) / / I ——
2 J G, |x—z|<dy |x — z]

df —1—x
=< C/ Vu1|2|y|2”dy/ f/ |x — ¥l dx
7 E<d |E] T i< 00201

<edy / \Var [y dy.
9
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In the same way we show that

dxd 240
(3.21) // infm < cd2¥? /|Vu1|2|y|2”dy.
9, \v7"|<d0 |x — z| 9

Now we pass to the estimate of I5. If y € (C, U C.)\ By (X), then
K(x—y) —K(z=p)| < clx =2 |[X = y| 7,
hence

uasdxﬂ/‘ X — 3| Vi ()] dy
(CxuCo)\Byr(X)

|y| 2u dy 1/2
se-A([ P Egy)
9\84\.\’—:\ (X) |

_ y|2+2\1

dy 1/2
X ( 2 2—2v)
Xyl z4fx—z| [ y[ 7| X =y

My \1/2
seu—a( [ PR
D\Byjy—z(X) |

X o y|2+2\1
where 0 < v < g, and

/ / |I |2 dX dZ
P
9 J @, |x—z|<dy [x — z|2+2”

dx dz / 2 |y[*dy
<c Vur (D))" ————5% -
/ /@ |x—z|<do |x 20+2ﬂ > D\Byjx— (X) | X _Y|2+2v

We introduce new variables of integration

X=(x+2)/2, ¢(=(x-12)/2
and obtain

dxdz
3.22 / / L=
( ) 9 JD,|x—z|<dy | | |X — Z|2+2(7

dX
Sc/ -—T—T/HMHﬂ”@/
El<dy |E]2TH X

v 242y
24 [X =y
(1—o— 2
S Cdo 7 ﬂ ||Vu1||L2,,u(g

Hence by (3.20), (3.21), (3.22), (3.18) and (3.19)

1—0— —0—,
(3.23) etllyirg (o) < eldy " NViurll, o) +do " Nurll, ))-

49
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Now we pass to the estimate of uy(x) = u(x)(1 —(x/dy)). Since up(x) =0
for |x| < 3d, /4, it suffices to estimate this function in Q' = {x € Q : |x| > d,/2}.
It is known that (see e.g. [27])

2 gy < ey IVl iy + g 7Nz )

and since |x| > dy/2 in Q', we also have

1-0— —o—,

||u2||W2"(Q’) < c(d ﬂHVuZ”LZJ,(Q/) +d, ﬂ||”2||L2_,,(Q’))-

Together with (3.23), (3.17), this inequality yields

l—0o— —0—
(3.24) ||“HW;(Q) < c(d, ﬂHV”HLz_,‘(Q) +d, 'uHuHLZJ,(Q))u
hence (3.16) is proved. In addition, replacing dy with edy, we obtain

lll ey < c(e' = IVull L, ) + ¢ ullL, @)

Inequality (3.14) is a consequence of (3.24), (3.13). Indeed, taking o =5 — 1,
we obtain

2—s5— 1—s—u
HVDHWZ"*](Q) < c(dy ﬂ”DZU”LM(Q) +dy ||VU||L2,#(Q))
2—s—u —s5—
< c(dy " ”DzUHLz‘ﬂ(Q) +dy* #HU||L2,“(Q))-

We also have

(3.25) lollwgiay < llvlluz @ + (@l @y €< 1.

Finally, (3.15) follows from (3.14) and from the imbedding of W;(Q), s > 1,

in C°(Q). The proposition is proved.

REMARK 3.2. We note that for s > 1 the Sobolev space W3 (Q) is an algebra with
respect to the product of functions, because of the Sobolev-Slobodeckii embedding
results. Moreover it holds for 1 < s <2 —yu

(3.26) ”W”W;(Q) < C(H“”W;(Q)(HUHWZI(Q) + ||UHL,,(Q))
+ HU||W2"(Q)(||“||W21(Q) + [lull, @)
Indeed,
uvll ) < cllullr, @ llull @)

”V(MU)HLZ(Q) < C(H””Lx(Q)HUHWZI(Q) + ”U”LQC(Q)”L’HWZI(Q))?

dx dy
//wmﬂww—wmﬁ——jsﬂw@ww%@
o Jo x| ;
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Let us show that

dx dy
IVo(x)P[u(x) = u(0)]? ——5 < clloll3s Ul g
oo -y 2 2

|x

Denoting by u* and v* the extensions of the functions u and v to W;’(R2
e sy < cllullwsy, "l @y < cllullwyq)
and
||U*||W;(R2) =< CHUHWZ“(Q)a ||U*||W21(R2) =< CHUHWZI(Q)
we obtain
dxdy
2 2
62 [ el - P
QJo Ix —

S/H”/ Ve ()Pl (x4 2) — ()] e

dz
%112 * * 2
< [ Vo e, /R (- +2)—u <')HW22’“RZ)W'

The last integral in (3.27) can be bounded by

/ ER /"‘f‘— L€ ar (€)) de

<c [ A+ ePI@Pdz < By,

where u* is the Fourier transform of u*. Hence

dx dy
Vo) PJu(x) — u(3))? ——5 < cllvlliyso luliq
oo _y| 2 2

|x

In the same way we obtain

dx dy
2 2 2
[ [ 1vutaPlets) = o() T < el iy

Collecting the previous estimate we obtain inequality (3.26).

4. TRACE RESULTS

In this section we prove some trace theorems for the space sz’ﬂl (Or).

51

) such that
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PROPOSITION 4.1. (i) If u € W5} (Qr), then u(0,-) € W3'"*(0, T) and the fol-
lowing estimate holds

(41) 1400, M -2, 7y < el gy

(i) For any function ¢ € Wz( /2(0 T) there exists a function ® € WZZIJ(QT)
such that ®(0,1) = ¢(1), ©(x,0) = 0 and

(4.2) H(I)”WZZ_'IJ(QT) < CH(”HWZ“”‘)/Z(Q )"

ProrosiTioN 4.2. (i) Ifu e WZZ!}(QT), then u(-,0) € W217#(Q) and the following
estimate holds '

(4.3) e, Ol (@) < cllullipzio,)-

(i) For any function uy € Wy 4(Q) there exists a function u € W2 Y(0r) such
that u(x,0) = uy(x) and

(4.4) el 210,y < €lltollny @)-

The following proposmon concerns the trace on the surface I'r = 0Q x (0, T')
of Vu for a function u € W (QT)

ProrosiTION 4.3. (i) Ifu e W2 Y(Or), then Vulp, € Wl/2 1/4(FT) and the fol-
lowing estimate holds

(4.5) IVule Ny pis e,y < cllllyzior)-

(i) For any function ¢ € Wl/2 1/4(FT) there exists a function u € W;_*/J(QT)
such that & = ¢ and /

(4.6) lelly21 0y < gl e,y

By [|4]] w2y we mean the norm

12
gy = | Iy i [ 1005 a5

where ||¢(-,7)]] w200 is defined as

(4.7) 6 I)HWZI./#Z((SQ) = [l ¢lx["| HWZI/Z(@Q)'

Another equivalent definition is

1/2
||¢HW1/2 . {Z ||¢¢||W1/2 +lg(1 — ¢)||W21/2(69)}
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where = w( ) is the same cut-off function that is introduced in Proposition
3.2, R; are the two straight sides that constitute the boundary of the infinite angle
9 Wlth the vertex x = 0 and

+00 r
ol = ol R+ [ [lptr+0) = o) Pp

R. = [0,+0) (see for instance formula (2.5) in [14]).

Before giving the proof of Propositions 4.1, 4.2 and 4.3 we introduce the
spaces HY(Q), H>'(Qr) and H}'*(T'r) of the Kondrat'iev type, (see [21] o
[22] where these spaces are denoted by Vzk (Q), V; #(QT) and V1 1/2(FT)) the

norms 1n these spaces coincide with the norms in the spaces W5 (Q ) Wi (0r)
and W 12 (T'7) of the function multiplied by |x|* (as in (4.7)).

We apply to the product u(x)|x|” the standard Sobolev-Slobodevskii trace
theorems and obtain (see for instance [35] and [39]):

ProrosiTiON 4.4. (i) If u e H/f=1(QT), then u(-,0) € Hﬂ1 (Q) and the following
estimate holds

(4.8) . 0) Ly @) < ellal 20, -

(i) If ue Hy'(Qr), then Vuly, € Hi/zvl/“(FT) and the following estimate
holds

(4.9) ||Vu|rT ||H,,l/2'l/4(rr) < cHuHHﬁ'l(QT)'

Moreover (iii) for any function uy € H; (Q) there exists a function u € HZ*I(QT)
such that u(x,0) = uy(x) and

(4.10) ol 2102y < lloll o

(iv) For any function ¢ € Hl}/z VA7) there exists a function u e H2 1(0r)
such that & = ¢, u(-,0) = 0 and

(4.11) HuHHf‘l(QT) < C||¢||H,}/2‘]/4(l"r)'

It is clear that the H-spaces are continuously imbedded in the corresponding
W-spaces. From the Hardy inequalities (that we recall below) it follows that the
norms [|ul| 1 () and ||u\|H1 are equivalent as well as the norms |[ull;> (o) and

[|ee]] @ ) for functlons Vanlshlng for x = 0 and these spaces coincide. In fact for
any functlon uce WZ,u( ) and u € (0, 1) we have (see for instance [39])
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and for u € Wz%ﬂ(Q) vanishing for x = 0

(4.13) lull, , @ < C||”HWZ{H(Q) S CHMHWEH(Q)'
Now we prove Proposition 4.1.

PrOOF. To prove inequality (4.1) we extend the function u € W (QT) to the
infinite time interval ¢ € (—o0,400) in such a way that the extended function
u* vanishes for |t| > T) > T and

(4.14) I 210, < el

where Q,, = Q x (—o0,+0o0). The extension can be made by reflection with re-
spect to the planes t = 7" and ¢t = 0 and subsequent multiplication by an appro-
priate cut-off function {(z). We set u; (x,-) = u*(x, (3 ) where the function i is
the function used in the proof of Prop051t10n 3.2. We may assume that function
uj is given in the infinite angle & with the vertex x =0 and uj(x,-) =0 for
|x| > dy; moreover

(4.15) ||HT||W22_-)[1(9%) < cfull Wy l(or)
where 7, = 2 x (—o0,+). Since u*(0,-) = u;(0, ) it is enough to prove (4.1)

for u;. Let 4 (x,&,) denote the Fourier transform of ] with respect to 7. Using
estimate (A9) in [15] we obtain for arbitrary positive p

(4.16)  [a7(0,&)/?

<eg pHtn ZIID“A* S|z, ) + 27

|o/=2

i} (-, o)lIZ, o)
If we take, in estimate (4.16), p = || ~/* we obtain

(4.17) ol 187 (0,%0)* < ZHD“ 1 €)lIzs )

|/ =2

2
i (+,Co)llz, (o) ¢
if we take, in estimate (4.16), p = 1 we obtain

418) a5 (0,&0)* < e$ D D% (-, &o)lI7, o + 85 5 €T, o)

|e|=2

Integrating these inequalities with respect to &, € (—oo, +o0) and making use of
the Parceval identity we obtain

2

*

ouj
ot

* 2 o, k(12
(4.19)  ||u (o,.)||W2(17,‘)/2(R> <e§ Y IDUNL, o) +

o] <2

LZ.ﬂ(fjbf,)
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Estimates (4.19) and (4.15) imply

(4.20) 160, )l -2, 7y < el 20,

so inequality (4.1) is proved. Now we prove the second statement of Proposition

4.1. We extend the function ¢ € Wz(l_” )/ 2(0,T) in the time interval ¢ > T (still
denoting by ¢ the extended function) so that

||(p||W2<1—u>/z(R+) < C||€”||W2<1*!‘>/2(0, )’

then we extend it by zero in the interval (—o0,0). By Lemma 7.1 in [2]

”(pHWZ(l*“)/z(R) < C||¢HW2(1*”)/2(R+) < c”(ﬂHWZ(l*/‘)/Z(Q T)

Let ¢(s), (Res = 0), be the Laplace transform of ¢ then (see Theorem 7.1 in
[2]) denoting Res by o and Sms by ©

+o0
~ - \12 - 11— 2 2
@21) sup [ (glo+ io)llo +ie]' “de < ol e gy < clol g,

>0 J -0

We define @(x, s) in the sector R = {x = (x1,x2) : x1 = 0,x2 > 0} by

®(x,5) = p(s) exp((—V/s = 1)(x1 + x2)),

we note that @(0,s) = ¢(s) and in the sector Ri the sum x; + x; is equivalent to
|x|. The function /s = |s|1/ 2eir9s/2 (defined for —n < args < 7) is holomorphic
for Res > 0 and as (for Fes > 0)

|e(—\/5'—1)(x1+x2)| — e Revs-Dxi+x) < e(-é‘lé‘\l/z—l)(«’fl-i'xz)’

we have

4

(=Vs=1D(x1+x2) - -
(4'22) ||€ e ||L27#(Ri) < (|S|1/2 N 1)1+ﬂ'

We then extend the function ®(x,s) by using the Hestenes-Whitney formula
(see [3], [37] and [20]) in the half plane x; > 0 and then in the whole domain Z.

The extended function ® is analytic with respect to s (when fes > 0) so the
pre-image (inverse Laplace Transform) of @ vanishes for # < 0 (see Theorem 7.1
in [2] or Theorem V in [33]).

Moreover we deduce from estimate (4.22):

LR =012 A 21—
(4.23) USRI, o) + 181z o dr < [ Igt)Pls!
o0 —

0

and for Res = 0 (see Theorem 8.1 in [2])

2 22 2012
1Rz 0,y < e | ATIPIL, @) + 1Pz (o)} de

—0
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and by formulas (4.21) and (4.23)

19021 ) < el 7y

The proof of Proposition 4.1 is then completed.
We prove now Propositions 4.2 and 4.3.

REMARK 4.1. We have to prove only estimates (4.3) and (4.5) because the second
statement of Proposition 4.2 and the second statement of Proposition 4.3 (the in-
verse trace theorems) follow from the similar statements for H-spaces (we mean
Proposition 4.4 statements (iil) and (iv) and inequalities (4.10) and (4.11)) (see
also Lemma 2.3 in [14]).

PROOF OF PROPOSITIONS 4 2. Letue W (QT) Using Proposition 4.1 we
construct a function v € W (QT) such that v( ) =u(0,), v(x,0) = 0 and

(424) o012 10y < €Oyt 1) < el g,

Let w = u — v, since w(0, -) = 0 we deduce from (4.24) (see inequalities (4.12),
(4.13))

(4'25) ”W”H}f-](g,,) < C||W||W;-/J(Q CH”HWZ‘ (0r)
and by (4.8)
(426) (-, 0)lly oy < el 0) iy < clbvllyzgyy < il

Taking into account Remark 4.1 and inequality (4.26) the proof of Proposition
4.2 is achieved.

PROOF OF PROPOSITIONS 4.3. As in Proposition 3.2 we use the splitting

u(x, 1) = u(x, t)zﬁ(%) + u(x, t)(l - np(dil)) = uy + up.

The function u, vanishes in a neighborhood of the angular point x = 0 and
for this function estimate (4 5) is a consequence of the similar inequality for the
ordinary Sobolev space W 1 (without weight):

(427) ||u2||W21./#2_1/4(FT) < C||u2||W21/z,1/4(FT) < C”Mz“ w20 S CHMH W (0r)

The function u; vanishes for |x| > d; and it can be extended into the whole &
putting u; = 0 outside Q; then we also extend u; = 0 as previously (see Proposi-
tion 4.1) with respect to ¢ € (—o0, +00). We denote by u; the extended function.
By Theorem 2.2 in [39]

(4.28) Vi G, Dl 209y < VUi (5 Dl (o)
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and the same inequality holds for the Fourier transform #; (-, &;); in addition we
have

(4.29) |[Var (-, o)1, 09

1/2

<eq &7 ID%a (€T, o) + 1€ VAT L EDT, o)

|of=2

In fact estimate (4.29) can be obtained by a scaling argument from estimate (7.2)
in [39] (that we rewrite for completeness of presentation)

1/2

o 2
(4.30) VUL, 00y < €3 D ID* UL, ) + VUL, o)
|o=2

Hence

(431) V& (0l o) + [0l P IVET (5 0 oo

> 1D (- €L, ) + 1ol IV (- E0IIL, o)

Jo| <2
By Remark 3.1 the right hand side in (4.31) does not exceed
3 DD (- Co)lIz, o) + 1ol 1185 (- o)1z, o)
|l <2

After integration with respect to &, € R we obtain

(4.32) ”ulHW;f'l/A(FT) < c||u1*||W21./ﬂz,1/4(‘%) < cl|u1‘|W£‘l:(QT) < c‘|u||W;';(Qr)'

Together with (4.27) inequality (4.32) yields (4.5).

5. THE PARABOLIC NEUMANN PROBLEM

In this section we establish existence, uniqueness results and coercive estimates
for the solution of the parabolic Neumann problem

@+Lv_d(x,z) xeQcR* e (0,7)

(5.1) o

. =0, v(x,0) = vo(x)
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and the corresponding parameter-dependent problem

Ju+Lu=f(x) xeQcR?
(5.2) Ju

o =0,
on | con

with a complex-value parameter A; the functions f, u are also complex-valued.
Here L = —A + 1, A is the Laplace operator and we assume that Q is a bounded
domain whose boundary 0Q is smooth everywhere except for a singular angular
point x = 0. The opening of the angle denoted by 0 is supposed to be greater
than 7.

The main results of this section are the following

THEOREM 5.1. If d € L, ,(Or), v € Wzl#(Q), 1 —n/0 <u<1 then problem

(5.1) has a unique solution v € WZ’;(QT), and v(x, t) satisfies the inequality

(5.3) ||U||W22"H](QT) <c{ldl., o + ||Uo||W2{M(Q)}
where the constant c is independent of T.

THEOREM 5.2. Let f € L, ,(Q), 1 — /0 < u < 1 and / satisfy the condition
(5.4) Reld > min{—y, —x|Smi|}

with y,» € (0,1). Then problem (5.2) has a unique solution u € sz_#(Q), and u(x)
satisfies the inequality ’

(5.5) ullz ) + (T +1ADMull, @) < €lfllL, 0
where the constant c is independent of /., but it may depend on y and x.
We start by proving Theorem 5.2.

PROOF. We say that a function u € W, (Q) is a weak solution of problem (5.2)
if u satisfies the integral identity

(5.6) 01t p) = (1+ ) /

u@dx—i—/VuV@dx:/f(ﬁdx
Q Q Q

for any ¢ e W, (Q) (all the functions are complex-valued and VuVjp =

2 —
Zi:l Uy gox,-)' . . . .
We show that for arbitrary f € L, ,(Q) there exists a unique weak solution
via the Lax-Milgram theorem because the form Q, possesses the property:

(5.7) |05, u)| = (1 + |20)Jull7,0) + 1/2]VullZ, g
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if A satisfies condition (5.4). In fact

Re Qs (u,0) + |SmQs ()| = (Red + [Sm| + 1) ull ) + | Vull L
and if condition (5.4) holds then

(Red + |[SmA| 4+ 1) = c(JA| + 1).

Hence

ReQ; (u, u) + |SmQ; (u,u)| = (|2 + V)|ull7, ) + IVull7, 0
and
(5.8) |05 (u,u)| = 1/2(ReQ; (u, u) + |SmQ; (u, u)])

> 1/2{c(|2] + Dlul7,0) + VullZ,0)}-
Setting ¢ = u in (5.6) we obtain

1/2
(59) 10400] = 1, g0 ([ i)

Now to evaluate the last term in inequality (5.9) we use estimate (4.11) in [39]
where we put & = (1 4 |4|)"/%. This gives

(5.10) (4 +D'* /Q 12 |x| 7 dx < (1A + Dull} i + 1Vull 7, }-
Finally inequalities (5.8), (5.9) and (5.10) yield

(511 (A + DA+ DlullZy ) + 1Vl 7y} < 117, 0

Next step is to prove the inequality

(5.12) (14 + DL + Dllallz, o) + IVullZ, o)} < lfIIZ, -

We set ¢ = ulx|* in (5.6) and we repeat the previous arguments to obtain

(5.13) (1] + DllullZ, @ + V417, @

< { [t ass [ vulaf ! dx}.
Q Q

By Cauchy inequality we have

/IVul Jul XIZ”Idxge/ |Vu|2|x|2”dx+c/€/ 22 dx
Q Q o
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where we choose € « 1. To evaluate the last integral in the previous inequality

we again use estimate (4.11) in [39] where now we replace x by 1 — x and put
&= (1+14))"*. This gives, using also estimate (5.11)

(5.14) /|u| X2 dx < (|4 + 1) /{|Vu| 4 (4] + Dluf} dx

< c(|Al+ V)M IA7, o

Another term in (5.13) is estimated as follows

1/2
(5.15) /Q|u| ] ] dx < {(|)»|—|—l)/gu2|x2”dx}

12
-{(|/1|+1)_1/Qf2|x|2”dx} .

From (5.13) (5.14) and (5.15) we obtain
(5.16) (|/1|+1)/ 2|x|2“dx+/ Vul ) dx < (3] + 1) /f2|x|2”dx
Q

and this estimate (5.16) is equivalent to (5.12).
To evaluate the second derivatives of the function u, we consider u as weak
solution of the Neumann problem for the equation

Au=—f(x)+(A+1u

u satisfies the integral identity

/QVMV(/)dx—/Q{f—(l + A)u}@pdx

for any ¢ € W) (Q) with /' — (1 + A)u € L, ,(Q). From the results of V. A.
Kondrat’iev (see [21]) it follows that D*u € L, ,(Q) for |«| = 2 and

1D%ullp, o) < cllf = (U +Dull, @ <cllfllz, @

Together with (5.12) this inequality yields (5.5) and the proof of Theorem 5.2 is
now complete.

PrOOF OF THEOREM 5.1. We reduce Problem (5.1) to a similar problem with
zero initial data. Using Proposmon 4.2, Proposition 4.1 and Proposition 4.4, we
construct the function w € W (QT) such that w(x,0) = vg(x) for x € Q, 2 =
for x € 0Q and

(5.17) Iwll210p) < cllvollwy -
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The difference u = v — w is solution of the problem

%JrLu:f(xﬂ) xeQc R, 1e(0,7)
(5.18)

ou
0n |, o0

where [ =d — L‘; —Lw e Ly ,(Qr) and

0

=0, u(x0)=0

(519 Wl 00 < 101s 00 + 192301y < U1l o) + N0l )

We solve problem (5.18) by the Laplace transform as in [2]. We introduce the
extension of f on Q x R denoted by f and defined as follows: we first extend it
into the time interval ¢ € (T,27) by reflection, then it is multiplied by an appro-
priate cut-off function of ¢ and finally we set /' = 0 for ¢ < 0. Clearly the extended
function satisfies the inequality

(5.20) ||f||L2,“(Q><R) = chHLz.#(QT)'

The Laplace transform converts problem (5.18) in

si+Li=f xeQcR?
(5.21) ou

— =0.
on xedQ

We assume that Res > 0 and from Theorem 5.2 we deduce the existence of the
unique solution of problem (5.21) and the estimate

(5.22) (sl + DIz, @ + lall: @ < elfl, -

The inverse Laplace transform yields the solution of problem (5.18) that
is unique. Setting Res =0 and integrating with respect to Smis in the line
(—o0,+00) we obtain

2 12
(523) Hu”WzZHl(QT) =< C”fHLZ,,,(QT)'

Together with (5.17) and (5.19) this inequality yields (5.3). The proof of
Theorem 5.1 is complete.

6. THE LINEAR PROBLEM

In this section we consider the linear initial-boundary value problem

ou 0 2
6.1) 5+A(’C’£>”_ﬂx’l) ¥eQeR, e (0.1)
: ov
%xemz(), u(x,0) = up(x)
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where u(x,1) = (v(x,1),w(x, 1)), up = (vo,wo), f(x,2) = (g9(x,1),h(x,1)), 4 is a
matrix differential operator of the form (1.2), i.e.

4= (ﬁic) 28)

L=—-A+1, A is the Laplace operator and /;(x), /2(x), /3(x) are real-valued
functions given in Q. We assume that Q is a bounded domain (Q = R?) and 6Q
is smooth everywhere except for a singular angular point x = 0. In a neighbor-
hood of this point, the boundary of Q consists of two straight lines. The opening
of the angle denoted by 0 is supposed to be greater than 7.

Our objective is to establish existence, uniqueness results and coercive esti-
mates for the solution of the problem (6.1). These estimates, which in our opinion
are of interest in themselves, are crucial for proving the stability result for non-
linear problem (1.1) (see Theorem 7.1).

The first result of this section is

THEOREM 6.1. If /1 € L, (Q), £,l3€ W5(Q), voe W) (Q), ge Lyu(Or),
wo € W5 (Q), h e WZS’O(QT), l—n/0<u<l1,1<s<2—pu, then problem (6.1)

has a unique solution u = (v,w) with v e sz_‘ﬂl(QT), w, & e W;‘O(QT), and the

> o1
following estimate holds: ‘

aw
or

(6.2) vl 0, + Wl +
Wz_'#(QT) Wg (QT) W;O(QT)

< (M9l 0m) + Wllso0,) + 10l ) + I0ll g}
The proof of Theorem 6.1 is based on the analysis of the Cauchy problem

(6.3) %—V; (x,0) + 3(x)w(x, 1) = p(x, 1), w|,_o=wo(x), xeQ, te(0,T),

and of the parabolic initial-boundary value problem (5.1).
We start by proving the following proposition

PROPOSITION 6.1. If wy € W3(Q), /5 € W;(Q) and ¢ € W' (Qr), | <s, then
problem (6.3) has a unique solution w € sz’o(QT), moreover the time derivative 3
belongs to the space W, ’O(QT) and

ow

E + sup HW(')Z)HWZS(Q)

wy(0r) te(0.T)

(6.4) HWHW;'O(QT) +'

< e(T)(IWoll sy + 191l so0,):
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PrOOF. Tt is well known that the solution of the problem (6.3) is given by the
formula

(6.5) w(x, 1) = V(t)wo(x) + /Ot V(t—1)p(x,7)dr,

where V(1) = e~ is the resolving operator of problem (6.3).
Estimate (6.4) follows easily from (6.5) by using the Young inequality for
convolutions (see e.g. [4]), because

(6.6) 1V Wil < €Dz

Proposition 6.1 is proved; let us note that in general, ¢(7T) grows exponen-
tially, as 7' — +o0.

PRrROOF OF THEOREM 6.1. We start by the reduction of the problem (6.1) to the
problem (5.1) with an additional non-local lower order term in the equation for v.
We consider w as a solution of (6.3) with ¢ = i — />(x)v, which yields the follow-
ing expression for w:

w(x, 1) = V(t)wo(x) + /0[ V(t—1)h(x,7)dr — /Ot V(t—1)h(x)v(x, 1) dr.

When we plug this expression into the first equation of the system (6.1), we obtain
the initial-boundary value problem for v:

%(x, )+ Lo(x,t) — /1 (x) /Ot V(t—1)a(x)v(x,7)dt
(67) = d(x7 [)7 (X, l) € QT7
ov
o Y =0, v(x,0)=uwvp(x),

where

6.8)  d(x,) =g(x,1) — /1(x)(V(z)wo(x) + /O Vit = Oh(x.) dr).
It is easily shown that

69) Il o < gz, cop + (D)ol o+ Il 0r)-

Problem (6.7) differs from (5.1) by the presence of the integral operator of the
Volterra type

(6.10) Jv=—1(x) /Ot V(t—t)a(x)v(x,7)drt
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in the equation. It satisfies the inequality

(6.11) 170l L, 0y < (DIollL, 00

that allows us to solve problem (6.7) by successive approximations, according to
the following scheme.
We define v; as the solution of the problem

%4—&)1 =d(x,1), xeQ te(0,7T),
0
% . =0, v1(x,0)=uwp(x)

and we find v, | from

60{;”:1 + Lvp = 41(x) /0[ V(t—1)h(x)om(x, 1) dt+d(x,t), xeQ,te(0,T),
Comt =0, omr1(x,0) = vo(x).
an e
Set
Cmil = Umtl — Uy m =1
and

& =u
The function &, |, m > 1, is a solution of the problem

0
@‘i‘Lém—H = _<¢éma X € Q’ re (0’ T)’

ot
aéerl

=0 0)=0.
on o ) ém+l(xv )

From Theorem 5.1 (see (5.3)) and (6.11) we obtain

HmeHWz-ul(Q,) =< C(T)”émHLz_,t(Q,)v m=1,

which implies

M M
> lemnllyzigy < D (I€121 0, + > liavi00)-
m=

m=0
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The last sum in the right hand side does not exceed

Zsupnfmﬂ 112, / 1emsillz, 0 df)
" N, M e 12
- T1/4<Z ) (mz:l/o 1Em+1llL, @) dT)

m=1
Hence applying the Cauchy inequality we obtain

M t
Z lemlluzigy < M (I€lz1g)+ > / 1l e, 0 47)
m=1

m=0
<o) (Ieiluzrioy + [ 3 Vewrllziio &)

m=0

aéer]
ot

LZ.p(Q)

Finally, using the Gronwall lemma, we arrive at

(6.12) Z 1wtz ) < DI 210, < ATVl 00 + ol )

Thls shows that the sequence {v,} is convergent in the Sobolev space
(QT) to a solution of problem (6.7).
The uniqueness of the solution follows from inequalities (5.3) and (6.11) ap-
plied to the difference of two solutions v and v of (6.7). Since

1o ¥llz10) S T~z
there exits a positive time T such that v = v’ for ¢ < Tp. In a finite number of

steps we prove that v = v’ for t € (0, T).
Consequently also problem (6.1) admits a unique solution. By (6.12), (6.9)

(6.13) ||U||W;=/:(QT) < C(T)(HQHLz,,,(QT) + HUOHW;M(Q) + HWOHW;(Q) + ||h||W;-0(Q,))-

Inequality (6.2) follows from estimates (6.13) and (6.4). Theorem 6.1 is proved.

Theorem 6.1 allows us to define the operator e~4’ and write the solution of
(6.1) in the form

13
u=e uy+ / e AIf (1) de
0

where uy = (v9, wo) € W, ,(Q) x W3(Q), f(x,1) = (g(x, 1), h(x,1)) € L2 ,(Qr) X
w(0r).
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Assuming suitable conditions on the spectrum of the operator —A and on the
coefficient /3 we establish the exponential decay of the operator e 4’. More
precisely we denote

(6.14) X :=1,,Q)x W;(Q)

then the following result holds.

THEOREM 6.2. We assume that /1 € L.,(Q), {2,/3 € W3(Q), vy € WZI‘H(Q), ge
L ,(Or),wo € WS(Q), h e W;’O(QT), l—-n/0<u<l1,1<s<2—u Moreover

we suppose that the following conditions are satisfied

a) /3(x) = by >0,
b) the spectrum of the operator —A is located in the half-plane el < —b;.

Then

(6.15) le= ||y < ce P!

where , < by and X is defined in (6.14). As a consequence

(6.16) le"ull 0, 7:x0) < elluolly + 1"l g0, 1))
where § < B, and the constant c¢ does not depend on T.

PrOOF. We prove inequality (6.15) by using the resolvent estimate. We consider

A ~

the following parameter-dependent problem where &z = (8, W), f = (g,h), 4 € C:

6.17) {m+Aa:feX

PON
ov —
onlxedQ — 07

and we prove that there exists such positive x that this problem is uniquely solv-
able for arbitrary f € X and for any 4 in the set

C. 5, = {Zel > min{—f, —»|Imi|}}; py <by.
Moreover, the solution satisfies the inequality
(6.18) (1A + Dl + 142l < ClIfllx
which implies
(6.19) (A1 + Dllally + 18llwz o) + #llwiey < CILF -

The constants in these inequalities are independent of A, but they may depend on
» and f;.
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Let ® = R_ denote the closure (in R) of the range of the function —/3(x); it is
clear that for any ff; < b, Rn €, 5 =0.
If A is not in R, then the equation

M+ b+ L3 = h
has a unique solution

h— 5(x)b

(6.20) S EwA

We plug (6.20) in the first equation in (6.17) and we obtain

}uA+LA ==
(6.21) {@f o
ElxeﬁQ =0.
where
. h— (2(x)0
6.22 —=g—/(x)—7
( ) l/J g l(x) /1+/3(X)

We consider at first problem (6.21) with a given y € L, ,(Q). It is uniquely
solvable for all 4 such that Zel > —x|-Fmi|, (x € (0,1)) (in fact, for all A outside
the half-axis fed < —1, SmA = 0), and the solution satisfies the inequality

(6.23) (|4 + Dol 0 + 18llwz @ < (4 + Do), @ + L8], @)
- 2u Iz /

< co||‘ﬁ||L2_u(Q)‘

This statement is proved in Section 5 for x € (0, 1) (see Theorem 5.2). By using
the contraction mapping theorem we can prove that problem (6.21), (6.22) is
also uniquely solvable and the inequality (6.18) is satisfied for

L€, ,={Rel > —x|Imi|, |\ = p}

with sufficiently large p. We stress the fact that the lower bound of p depends only
on the the constant ¢q in (6.23) and on the L..-norms of the data 7y, /3, /3. It is
easily seen that f = 0 implies & = 0.

Now we consider the equations (6.21), (6.22) for arbitrary 1 € C\R. We choose
a (real) number a > p such that the operator L + al has the inverse (L +al)™'
and we write these equations in the form

(6:24) b= Wi = (L+al) (~0h(a+ (v+a) " +9)
where v =14 —a,

LW =—(L+al) (I =Ots(ls+ 0 +a)™h).
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Let 8, = {ve C:v+a e R}. For arbitrary v € C\R, the operator ¥ (v) is a
holomorphic operator function completely continuous in L, ,(Q). Moreover, the
equation

(6.25) b— L(0p=0

has only a trivial solution, if Rev is sufficiently large. By the Gohberg theorem
(Theorem 1.5.1 in [18]), every compact set .# < C\R, may contain at most a
countable number of points v such that the equation (6.25) has a finite number
of non-trivial solutions.

If 56— 2(»)o=0, then Ai+ Au=0 where i = (5,w), w=(A+74(x) "
/>(x)6(x). Since A € C\R, v(x) = 0 implies w(x) = 0. Hence the operator A has
a countable number of eigenvalues accumulating at infinity and at .

Now we go back to the estimate (6.19). It can be derived from (6.23) and
(6.20) for 4 € X, ,; we show that it holds also for 4 € €, 3 with % so small that
Rel = —x|Smi|, |A| = p implies Rel = —f,. By assumption (b) for sufficiently
small » no A from the compact set

(S%!ﬂl \2%1/) = 6

can be an eigenvalue of —A4 hence for any v = 1 — a with 1 € © equation (6.25)
has only a trivial solution. By applying Fredholm alternative theorem to the
operator #(v) (v =4 — a) we have, for any f € X, the existence of the solution
v of problem (6.21) and (6.22) with 1 € €. Finally for any f € X the solution of
problem (6.17) is then & = (9, w) where W is given in (6.20).

To prove (6.19) for 4 € €, g it suffices to obtain a uniform estimate

(6.26) il < ellflly

for all A from the compact set S.

If (6.26) is not true, then there exist sequences 4, € S, and i, = (O, W) such
that ||i@,|, = m| f|y. The elements U, = ||ﬁm||;(lﬁm = Vi, W) satisfy the
equation 4,,U,, + AU, = ||itm]|;1f, ie.,

Vm(L + al)_l Vi + Vm + (L + al)_lfl Wm = ||1'A‘m||A_’1(L + al)_lg7
(627) (Vm + Cl) Wm + /2 I/m + /3 Wm == ||1:lm||;/lila

Vi _
5;11 xedQ — 0.

There exist m; — +oo (as k — +00) such that the sequence A, = vy, + a is
convergent to 4 € S, the sequence U, is convergent weakly in X, the sequence
Wi, 1s convergent strongly in L, ,(€2) and the sequence (L + al )71 Vi, 1s conver-
gent strongly in L, ,(Q).

The existence of such sequences follows from the compactness of the imbedd-
ing of W3(Q) in L, ,(Q) and from the compactness of the operator (L +al)™ .

Setting m = my, in (6.27) we see that all the terms in the first equation (with the
exception of V,, ) are convergent strongly in L, ,(€2), so we can conclude that
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Vm, 1s also convergent strongly. Since (L + al )_1 is a bounded operator from
L, ,(Q) in W2 4(€), all the terms in this equation are convergent strongly in
W2 (). As a consequence, £V, is convergent strongly in W5(Q), (see Propo-
smon 3.2) as well as (v, +a+ ¢3)W,,, and W, . Hence we can pass to the limit
in (6.27) and obtain AU + AU = 0. Since /A can not be an eigenvalue of —A4, we
conclude that U = 0. But this contradicts to the fact that ||Ul|, = 1 (since Uis
a strong limit of U, in X). Hence the estimate (6.26) holds for 4 € S, and the
resolvent estimate (6.18) holds for 2 € €, 4,

This estimate implies (6.15) (see Theorem 1.3.4 in [19]), and this complete the
proof of Theorem 6.2.

THEOREM 6.3. We assume all the hypotheses of Theorem 6.2. Then problem (6.1)

has a unique solution u = (v,w) with v € W (QT) w, & e WSO(QT), and the
following estimate holds:

ow
ot

(6:28) el 2o, + "Wy, + € 5

WAOQ)

1Pl 0 + P Hlysogyy + IWollwsiey + Neollw (@)

with the constant ¢ independent of T. Here T < +oo and f < by is a positive
number.

PrOOF. Estimate (6.28) is established by the same arguments as (6.13). We go
back to Theorem 6.1 and consider the problem (6.3). In view of the assumption
(a), we have,

1V (@wollws) < ce™[Iwoll oy

||eﬁt¢||W2‘o(QT S ||eﬂth||W2r0 T + CHe DHW;0<Q7‘)
and

ow
Ml s I Ol

6.29 Prwl + H
629) e wlyn, e

pt
C(HWOHW;(Q) + [le (P”W;'“(Qr))

with the constants independent of 7' (these estimates are established by elemen-
tary calculations and applying the Young inequality for convolutions see e.g.
[4]). Moreover, the functions d and v (defined in (6.8) and (6.10)) satisty

||eﬁtd||L2_,,(QT) < HeﬁtgHLz,#(QT) + c(llwoll, ) + ‘|eﬁrh||L27#(QT))v
(6.30) ||eﬁ’fv|]L2’”<Q,,_) < c||eﬂtv|\inﬂ(Q,,,).

Since the function vg(x, t) = e#v(x, 1), where v is a solution of (6.7), satisfies the
relations
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0
% + Lvg = —el' gv + eP'd + Bug,
?

| =0 w0 = w),

we have, by (5.3), (6.30)

(6:31) [le™vlly21(0,) < er(lwollwya) + llvollny )
+ Hemh”Lz.y(QT) + HeﬁtgHLz,u(QT)) + CzHeﬂlvHLl-ﬂ(QT)’

with constants independent of T'.
We estimate the last term in (6.31) by inequality (6.16):

(6.32) ||€mv||L2,,,(QT) =< ”eﬁluHLz(O,T;X) < ¢((luolly + ”eﬁtfHLz(O,T;X))'
Estimate (6.28) follows from (6.29), (6.31), (6.32). Theorem 6.3 is proved.

REMARK 6.1. In the assumptions and notation of Theorem 6.3, by means of
interpolation inequalities (see e.g. [27]), we can derive from (6.28) the following
estimate that we will use in Section 7

pr Bty (. pt ,
(633)  1"0ly210,) +up o Ol o + ™l

ow
Nl

+H ot

+sup -, )y
w0r) I<T )

< clle”glL,,0n) + 1Rl 00,y + IWollwsiay + 00l (o)

with the constant ¢ independent of T. Here T < +o0 and < by is a nonnegative
number.

REMARK 6.2. Theorems 6.1, 6.2 and 6.3 hold true under more general assump-
tions concerning the operator L (in particular we can choose a second order differ-
ential operator with smooth coefficients) as well as the Dirichlet boundary condi-
tions but in order to focus the attention on the ideas and tools we have preferred
to treat only a model problem.

7. THE NON-LINEAR PROBLEM

In this section, we apply Theorem 6.3 to the analysis of the non-linear problem
0 0
6—?+A(x,$)u+%(u) —0, xeQcR% e (0,T)

@
on

(7.1)
=0, u(x,0)=u(x),

xedQ
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where A is linear operator (1.2) and #(u) = (2(u), 2(u)) is a vector field of non-
linear terms.
From now on we assume that # is a linear combination of the terms p;,

j=1,...,7, satistying the following conditions (1)—(7) where m is a positive
integer.
the second derivative Exé N

by Uk, 1 and ((VAPD\ )k/ 1,2 by D2

(1) |p1(0)] < elo]™, |2 < e|o] " with 2 < 0y < 24 1/4,

2) |p2(v,Vo)| < ¢|v| %| < |||V, |§f;§ < ¢|o|™, where 1 <71 < 1/p,

3) |p ( w)| < elw| 0], |22 < elo]” M w|™ |2 < o] w]" ! with 2 < 0y <
2+1/n,

4) |p (v Vo, w)| < c|w|™|v]? |V, {3174’ < cv|®” 1|Vv| lw|™, ;’ﬂ < || |w|™,
Pe| < o] Vo w|™ " with 1 <5 < 1/u,

(5) |ps(D*v,w)| < ¢|w|™| D], i’f,\ < c|w|™, || < e|D?o] W™,

(6) |p6(v VW)| < C| |G}|VW| 6]76} < (,|l)|0'3 1|VM/| }gﬁﬂ < C|U| 5 Wlth 1 < g3 <
14060

(7) 1p2(Vo, V)| < I 2 < eV,

These conditions are satisfied if p; are polynomials of degree > 2.
The non-linear operator 2 is a linear combination of terms ¢; of the type

(8) gs(v,w) = w™v,
(9) go(w) = w™*,

where m is a positive integer.

We refer to the Introduction and to the references cited there for a discussion
of mixed type systems modeling biological phenomena, ecological studies and
physical problems.

We will prove the following stability result.

THEOREM 7.1. Let the operator A, defined in (1.2) satisfy all the assumptions of
Theorem 6.2 and the operator #(u) be a vector field of nonlinear terms satisfying
the above conditions (1)—(9). Then there exists n > 0 such that if

(7.2) luolly = lleollws (@) + [wollwyo) <
problem (7.1) has a unique solution u= (v,w), v € szul(an), we W0,
e Wy °(Q..), and the following estimate holds
ow
03 g el 4 ]

< C(HW0||WZ~"(Q) + ||U0”WZ{”(Q)) =

where 0 < f < by.
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We can regard (7.1) as the problem for perturbations of the zero solution of
(7.1) (with up = 0), and estimate (7.3) proves the exponential stability of this
solution.

The proof is based on inequality (6.28) and on the estimate of the norms
1P W) 0 101 ) and [€#O(1t, U)oy, Where

(7.4) oR(u,U) = /OI%Q(LH—VU) dr = R(u+ U) — R(u).

We also make use of the following Lemma that can be established by elemen-
tary calculations.

LeEMMA 7.2. Let aj, be a sequence of non negative real numbers such that
(7.5) ay <co, and ap <10+ ca], o> 1.

Then for any choice of c3, ¢i and o > 1 there exists a positive constant ¢z > c| that
guarantees the uniform estimate

(7.6) ap < 30
if 0 is sufficiently small.
We start with the estimates of || pjl[,, (o,) and [|g;ll ., 7; W Q)"

PROPOSITION 7.1. In the previous notation and assumptions the following esti-
mates hold:

7
77 1Dl on
=

< C(Ya] _|_ Y‘[]-‘rl + Ym—HTz + Ym+‘[2+1 + Ym+l + Y0'3+1 + Yz)’
9
(7.8) Z HeﬁtquWZSvO(QT) <cym,
j=38

where Y = Y (u,f) is the sum

_ Pt pt . Pt
(7:9) ¥ = le"ollyz g, + 599 e, Dl @+ lle™ w00,

ow
/sz +sup e[|w(, [)HW;(Q)v

+ He
WZS.O(QT) t<T

a1, 02, 03, T1, T2, M are the exponents in items (1)—(9) and T < +o0.



MIXED TYPE, NONLINEAR SYSTEMS IN POLYGONAL DOMAINS 73

PrROOF. We estimate at first the norm of p;(v). By the embedding results (see
Propositions 3.1 and 3.2, formulas (3.6) and (3.15)),

0’171

-1
o IILM(Q) < C||U||WZ%N(Q)||“||W2{#<Q)’

1211, @) < € suplo(x, O] |0l

xeQ
which implies

0'171

le”p1 (o)1, o) < € Sup i f)llWzl\ﬂ(g)II€B’UIIW;;;<QT) <cY”,

(since ef! > 1).
Now we evaluate the norm of p,(v, Vv). By the Holder inequality,

) 1/2p ' o s\
1p2(v, VO)ll 1, ) < c(/Q|VU|21 |x|2ﬂdx) (/Q|U|2 17 x| dx) ;

where 1/p+1/p’ =1 and

)2 <l UM
u+1 p u+1

(since 71 < /11, such p can be found, and it is easily seen that 7, p’ < ’%1). Hence by

the embedding result (see in Proposition 3.1 estimate (3.6) with g =2p <2 +2/u
and ¢ = 271 p’ < 2+ 2/u) we have

1226, 99) 1y < el oyllelle e

and

T 1+7
e p3(6, V01,100 < € 3up €™ e )5y 1P elz000,, < X177

Now we evaluate the norm of p3(v, w). It is easily seen that

-1
1230, W)l 1, ) < sup w(x, )" sup [o(x, O | [0]”7 (|, @)
xeQ xXeQ

hence by (3.6),

-1
| p3(v, ‘V)||L27!£(Q) < C||W||’V7/;(Q)||U||;§21_ﬂ<g)||U||Wﬁﬂ(Q)

where we have used the embedding results (see Propositions 3.1 and 3.2, estimate
(3.6), with ¢ = 205 — 2, 05 < 2+ 2/ and estimates (3.14) (3.15)) and

Bt
lle” p3(v, W)||LM(QT>

0’2—1

pt +
Wzl.,l(Q)”e v||W§',?(QT) < cYymtoz,

< e sup "]l q) sup Do
<T <T
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The norm of p4(v, Vo, w) is estimated in the same way as p:
124(0, 90,0, ) = €lloly oyl @ Sup bt )"

and

le”pa(v, Vo, W)z, (00)

sup & (w50 e tll w2 (o) < ¥R

< ¢ sup P |p||
t<7r") ” ”W] @) t<T

We pass to the estimate of ps(D?v, w):
| ps(D?v, Wiz, @ < sup wix, )" || D2 .

XxXe

Heﬁtps(Dzv’ W)”LZ#(QT) sc S[’E]P eﬁtm”W('a I)HVI;/;(Q)He'[)}tUHsz_ﬂ(QT) = ey,

Now we evaluate the norm of pg(v, Vw). We have

1/2 , , 1/2p’
(7.10) |l ps(v, VW)l @) /|VW|2pdx p(/ 0|27 x| dx) p’
Q

where p= (2—s)"', so that the space W5~1(Q) is continuously imbedded in
L>,(€2). We also have 2p 7 < Gota , hence the last integral in (7.10) can be esti-
mated by (3.7). This gives

| (v, VW)HLM(Q) =< C||W||W;(Q)||U||Z§21/(Q)

and

||€/}tp6||L2~”(QT) S CHeﬁtM}”W;_O(Qr) fg]l? eﬂt()‘3|| ( )” < CY1+(T3

Now we evaluate the norm of p;(Vv, Vw). We apply the Holder inequality with
the same p as above and obtain

1/21) 2 ’ 2( ! l/zp
1p7(Vo, V)., ) < (/Q|VW|2ﬁdx) (/Q|w| 7 d)

= C||W||W;(Q)||U”W22_ﬂ(g)v

i 2
le”p2(Vo, V)i, 0,y <€ sup e w(s Dllwy@lle”ellyzo(o,) < ¥
< ,

!

Collecting the estimates of p; we arrive at (7.7). It remains to estimate ¢s and
¢9. By Proposition 3.2 we have

llgs (0, W)l =< cllwlls ool < CIIWIIW IIUIIWz @

||eﬁtq8(u,w)||W;,o<Q7_) <c squ P (-, t>HW5 | < cymH
<

L (0r)

1
llgo()llws() < cllwllivsiay

||€’”619(W)||W;-,0(QT> <oy
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These estimates yield (7.8), hence the proposition is proved.

To evaluate the term 0%(u, U) in (7.4) we have to consider the vector field
ZA(u) where u') = u 4 rU and to estimate the norms of the derivatives of the
functions 2(u"), 2(u") i.e. the functions

V%, i=1,2,3,4,6,
ov
av ap] .
=247
axk 60k J y T
7.11
(7.11) .
W—-—, n=3,45,
ow
O’V dops W dps W opr
axkax/ avk[ 6xk awk’ 6xk 5Wk’
as well as
(7.12) p s s oy 0

80 ow’ 6w

for large and small T where the terms p; = p;(u'), j=1,...,7 and ¢;(u"),
i =8,9. Concerning the vector U = (V, W) we assume that it has finite norm
(7.9) (denoted by Z =Z(U,p) if >0 and by Z, if f=0) and in addition
U|t 0 — (V|t—07 W|t 0) (0 O)

PROPOSITION 7.2. In the previous assumptions and notation there hold the in-
equalities

(7.13) Z'eﬁ’V% +Z‘ OV +Z‘eﬁ’W%
i v L2,/z(QT> j 6)(:]( 6vk LZ#(QT) n w LZ.;((QT)
+ [j’t a 4 aPS /)'taW 5p6
(’Jxk@xl 6l)k1 Ly ,(07) 8xk awk Ly (O7)
4 W Opr sy 248
Oxy 0wy Lo, (1) o0 “0(0p)
i 348 +“ a6]9
" ow 0(0r) Wl

< CZ(Y”‘”(u“),ﬂH Yo, )+ Y W, f) + YR ), )
+ Y2, p) + Y, B)+ Y, ).

Moreover, if norm Yo=Y u",0)< M, (see (7.9) with p=0) and
luy(0)]| y < cn (see (7.2)) then
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I

LZ.;t(QT) n
PV ops
0x10x7 Ovk )

o oy
8xk évk

5Pn
ow

w

Ly, I QT LZ-#(QT>

oW dpe
(’)xk 6wk

ow 6p7
8xk 6Wk

Ly .(Or) ‘

o
r() QT

Ly, (QT) ‘ L, /t(QT)

oqs

+HV61J

wW—
w05 H 8w W (0r)

< (M>C2(67 7, )207

where € is a small positive number and c;(e,n, T) can be made arbitrarily small by
the choice of small e, and T.

PROOF. Inequality (7.13) is established in the same way as (7.7), (7.8), for in-
stance,

dpi (v™") o1
a5 SR <csw vl .
L2,/1(Q> xeQ
g—1
< VHWZZ_M(Q)”U ”L; ul
dpl( ) 1
7.16 < ¢ sup Py o1 a7l
( ) H dU L2.,u(QT) t<7}? || ( )H || ”szl?(QT)

< cZY N u).

We omit the estimates of other terms.
To obtain a small constant in (7.14), we use the interpolation inequalities, for
instance,

(717)  sup [V(x, 0l < el Vi) < €llViiwz @ + <@V, @
xeQ o
This inequality follows from (3.25); it implies

T 1/2
2
(] swiveeord) ™ < Vi, + <@Vl

xeQ
oV
< ellVlwz2o00, +C(€)T’ ol con < (e+c(e)T)Z.
21071
Hence
0
H y P < o(M)(e + c(€)T)Z.
dv Ly x(0r)
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Taking at first € and then 7 sufficiently small, we can make € + ¢(¢e) T as small as
necessary. The terms with the derivatives of p, are evaluated in the same manner
with the help of estimates (3.11), (3.12). The terms with the derivatives of p3, ps
and ps with respect to w are evaluated in the same manner with the help of the
estimate

ow
sup W (5 < ¢ sup |- Ol < VT |21
Or t<T 2 t

W, %(0r)

. 2 5
Now we turn to the estimate of ==X 25 We have
5xk6X/ (7ka 1

PV dps
axk6x1 aka

< csup|w(-, ! Trs V 2,0 .
LZ.;!(QT) t<T || ( )||W2 (Q)H ||W2,;¢(QT)

We use the inequality

)

aw
5[ WZS.O(QT)

§@wnwwmgmwmw¢f
v : :

which implies
PV ops

< TY))"Z,.
ﬁxk(?x; 81);(,; - 6(77 * \/_. 0) 0

LZ.u(Q’I')

We omit further details.

PRrROOF OF THEOREM 7.1. The solution of (7.1) can be constructed by successive
approximations. We define #; as the solution of the linear problem

8u1 0

E#—A(x,a)ul—o, xeQ, 1e(0,7),
oo 0, w(x,0) = u(x)
~ =V, upx, = Up(X
al’l xeiQ

and we find uy,, & > 1 from

auh+l 0 o
ot +A(X,&)uh+1 _7‘@(1’[/1)7 XEQ, ZE(O, T)7
(7.18) N
h+1
_ = 0 0 = .
on |y upi1(x,0) = uo(x)

By Proposition 7.1 if Y (u,) is finite, then #(u;,) € L,(0, T; X) and the problem
(7.18) is solvable. In view of Theorem 6.3 it is clear that the functions u, are de-
fined for all # and that the sequence Y;, = Y (u;) (see (7.9)) satisfies the conditions

Yl < a,

7.19
( ) Yh+1 < C(Yhz + Y/;ﬂ T YthJrl + Yhm+o—z + Yhm+rz+l + Yherl + Yh(73+l) +C777
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where
n= ||U0||W2‘7#(Q) + [wollwy()-
If 7 is small, then by Lemma 7.2 (7.19) guarantees a uniform estimate
(7.20) Yy <en.

To prove the convergence of the sequence u,,, we consider the problem for the
differences Ujy 1 = upg — up, h > 2:

aUthl 0 - 2
o +A(X7a) Up1 = —0R(up-1,Uy), xeQc R, 1e(0,7)
Vi
ol 0, Upai(x,0) = 0,
on xXeoQd i

In view of Theorem 6.3 (see also Remark 6.1)
(7.21) Y(Upi1) < clle”o(up, Uh)||L2(o,+oo;x)~

It is easily verified that 0% (uj—1, Up) is the integral with respect to r € [0, 1]
of the functions (7.11) and (7.12) with U= (V,W)="U,, u= (v,w) and
wp_1 +rUy = u”. By (7.20),

(7.22) Y(u,(lr)) <rY(up)+ (1 =r)Y(up_1) < cn
and by (7.21) and (7.13),
(7.23) Y(Upi1) < en” Y(Uy)

with some y > 0. Hence

K K
S Y(Upn) <en’ Y Y(Up).
h=2 h=2

If cn? < 1, then we can conclude from this estimate that the sum Y, , Y(Uj,) is
uniformly (with respect to K) bounded, and the sequence u;, is convergent
strongly in the norm Y to the solution of the problem (7.1). In view of (7.20),
the solution satisfies (7.3).

Now we prove the uniqueness of the solution. Assume that along with the
solution u = (v, w) constructed above there exists another solution u’ with finite
norm Yy(u') = Y’ in the interval ¢ € (0, T)) (this norm is defined by (7.9) with
S = 0). We consider the problem for the difference U = v’ — u

U4 AU = —6Ru,U), xeQcR> te(0,7T)
ov

— =0, U(x,0)=0.
on xedQ
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We observe that the norm Yy (u+ rU), r € [0, 1], is bounded by a certain con-
stant B in the interval 7 € [0, Tp| (see (7.22)). By (6.33) and (7.14), (see also (7.21))
for arbitrary 7' < Ty

YO,T<U) < (3)62(67 n, T) YO,T(U)ﬂ

where Y, 7(U) is the norm of U in the interval (0, 7") and ¢;(B) is a constant de-
pendent only on B. We proceed as previously and choosing € and 7 in an appro-
priate way we may make the constant ¢;(B)ca(e,, T') less that 1. It follows that
Yo, 7(U) =0, ie., u' =ufort < T. By a finite number of steps we can show that
u' = u for t < Tj. This concludes the proof of the theorem.

REMARK 7.1. Theorem 7.1 holds true under more general assumptions concerning
the operators # =", ¢;(?i(v, Vo, D*v,w)) and 2 = 3" cx(2k(v, w)) where 2;, 2y
are of the type described in items from (1) to (7) and (8)(9) (respectively) with re-
spect to their arguments. In particular we may assume that the functions %;, 2
have coefficients belonging to the space W3 (Q) with respect to the space variable
x and independent of t.
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