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Abstract. — We prove existence, uniqueness results and coercive estimates in the weighted

Sobolev spaces for a linear problem of mixed type in a bounded domain WHR2 whose boundary
is smooth everywhere except a single angular point x ¼ 0 with the aperture of the angle y > p. In

addition, we establish a stability result for a non-linear system of mixed type. The results of the
paper and the proofs extend to the case of polygonal domains.
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1. Introduction

In this paper we consider the non-linear system of mixed type

qu

qt
þ A

�
x;

q

qx

�
uþRðuÞ ¼ f ; x a WHR2; t a ð0;TÞ

qv

qn

����
x A qW

¼ 0; uðx; 0Þ ¼ u0ðxÞ;
ð1:1Þ

in a bounded, polygonal domain WHR2 for the vector u ¼ ðv;wÞ; the data of the
problem, f ðx; tÞ and u0ðxÞ, have a similar structure: f ¼ ðg; hÞ, u0 ¼ ðv0;w0Þ.
Here A is a matrix di¤erential operator of the form

A ¼ L
�
q
qx

�
l1ðxÞ

l2ðxÞ l3ðxÞ

� �
;ð1:2Þ

where l1ðxÞ, l2ðxÞ, l3ðxÞ are given functions, L
�
q
qx

�
¼ �sþ I and RðuÞ ¼

ðPðuÞ;QðuÞÞ is a vector field of non-linear terms. We assume that P is a linear
combination of the terms pj, j ¼ 1; . . . ; 7, satisfying conditions (1)–(7) in Section
7. These conditions are satisfied if pi are polynomials of degreed 2. The non-
linear operator Q is a linear combination of terms qj given by



(8) q8ðv;wÞ ¼ wmv;
(9) q9ðwÞ ¼ wmþ1,

where m is a positive integer.
Systems of this type have been used to model several phenomena in di¤erent

fields, for instance in Physics in the studies of nuclear reactor dynamics and heat
conduction (with adiabatic feedback e¤ect in the reactor system) (see [32] chap.
1.3), in Neurophysiology in the formulation due to FritzHugh-Nagumo describ-
ing the ionic and electrical events occurring during the transmission of an impulse
along an axon (see [32] chap. 12.7). Similar equations come from ecological ap-
plications, such as studies of forestry ecosystems (see [8], [9], [10], [25] and [38]),
as well as from biological applications (see [29], chap. 13, [30], chap. 1, chap. 13
and [26]). A simpler version of problem (1.1) is introduced in [30], chap. 13, as
a model of rabies epidemics. The population consists of two types of foxes: the
vector u is the couple ðv;wÞ where vðx; tÞ is the density of the infective ones and
wðx; tÞ of the susceptible ones, the non-linear terms reflect the interactions be-
tween the two types of foxes. The model takes into account the life expectancy
of infective foxes, a measure of transmission e‰ciency of the disease from infec-
tive ones to susceptible ones and the di¤usion coe‰cient of infected foxes. Neu-
mann boundary condition on the infected foxes are given (i.e. the migration of
cubs seeking their own territory is excluded).

In the classical setting of smooth domains in Rn coercive estimates of solutions
of general parabolic initial-boundary value problems have been proved by Agra-
novich and Vishik in the Sobolev-Slobodetskii norms W

2bl; l
2 [2] and coercive

Schauder type estimates have been established by Solonnikov [36] and extended
by Belonosov [5] to weighted Hölder spaces. Stability results have been proved by
Henry by an abstract approach [19] and for a large class of non-linear parabolic
systems by Belonosov and Višnevskiı̌ [6].

Recently, stability and instability of a stationary solution for non-linear sys-
tems of mixed type (as in (1.1)) has been studied by Mulone and Solonnikov
and a linearization principle in Sobolev-Slobodetskii spaces with an exponential
weight have been proved [28]. In the paper [17] we studied non-linear mixed type
systems of 2m-equations in n spatial dimensions and we proved existence, unique-
ness results and coercive estimates in the Hölder spaces for the solution of the
associated linear mixed-type problem (see Theorem 2.1 in [17]). Assuming suit-
able conditions on the spectrum of the operator �A and on the eigenvalues of
matrix �l3 we established weighted estimates in the Hölder spaces (see Theorem
2.2 in [17]). These estimates are crucial for proving the stability result for the non-
linear problem (see Theorem 3.1 in [17]).

In the present paper we study problem (1.1) in a non convex polygonal do-
main WHR2. For simplicity we assume that the boundary of W is smooth every-
where except a single angular point x ¼ 0 with the aperture of the angle y > p.
The case of a fixed (finite) number of angular points can be easily reduced to the
case of a singular point by using partition of the unity. In order to extend the
results of the present paper to a larger class of irregular domains—for instance
ðe; dÞ-domains with fractal boundary—it would be important to understand as
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our results depend on the increasing number of sides of the polygonal boundaries
approximating the fractal curve. This question, interesting in our opinion, is be-
yond the aim of this paper and it will be faced in a forthcoming paper.

We describe briefly the contents of the present article. First we consider linear
parabolic Neumann problems. The Dirichlet and Neumann problems in irregular
domains have been faced in many papers and books. We mention [35], [23], [24],
[31] and we refer to the bibliography quoted there. In this paper we state exis-
tence, uniqueness results and coercive estimates in the space W

2;1
2;m ðQTÞ for the

solution (see Theorem 5.1). The presence of angles with aperture y > p causes
a loss of regularity for the solutions of the (linear) elliptic problems and the
H 2-regularity fails even in the case of smooth data. The natural setting in our ge-
ometry are then weighted Sobolev spaces where the weight jxjm is the distance
from a single angular point 0. Moreover because of the Neumann condition on

the boundary the weighted Sobolev spaces involved are the spaces W
2;1
2;m ðQTÞ,

QT ¼ W�ð0;TÞ (see formula (2.1)) which di¤er from the spaces of the Kondrat’iev
type H 2;1

m ðQTÞ. It is clear that the H-spaces are continuously imbedded in the
corresponding W -spaces. From the Hardy inequalities it follows that the norms
kukW 1

2; m
ðWÞ and kukH 1

m ðWÞ are equivalent as well as the norms kukW 2
2; m

ðWÞ and

kukH 2
m ðWÞ for functions vanishing for x ¼ 0 and these spaces coincide. We also

mention related papers [13], [14], [15] and [16] where elliptic and parabolic prob-
lems with oblique derivative conditions on the sides of an infinite angle have been
studied, and [11], [12], devoted to the problems with dynamic boundary condition
on one of the sides.

A technical di‰culty arising in the Neumann problem consists in the fact that
in general the solutions do not vanish for x ¼ 0, which makes it necessary to
establish the special trace results for the spaces W 2;1

2;m ðQTÞ (see Propositions 4.1,

4.2 and 4.3). This enables us to reduce our problem to a similar one with zero
initial datum by applying the above-mentioned trace results. Then we convert it
by means of the Laplace transform in a parameter-dependent problem as in the
article of Agranovich and Vishik [2] and we establish existence, uniqueness results
and coercive estimates in the space W 2

2;mðWÞ for the solution, principal tools

being the Lax-Milgram theorem, estimates obtained in [39] and Kondrat’iev’s re-
sults. We study then the linear system of mixed type associated to problem (1.1)
and we prove existence, uniqueness results and coercive estimates in the space

W
2;1
2;m ðQTÞ �W

s;0
2 ðQTÞ (see Theorem 6.1). The proof is based on the analysis of

the Cauchy problem related to the second equation of system (1.1) and on the
previously mentioned results for the parabolic Neumann problem related to
the first equation of system (1.1). More precisely we represent the solution of the
Cauchy problem by means of the resolving operator, we plug the expression in
the first equation and we obtain an initial-boundary value problem with an inte-
gral operator of Volterra type that we solve by successive approximations and
Gronwall Lemma. Theorem 6.1 allows us to define the resolvent operator e�At.
Assuming suitable conditions on the spectrum of the operator �A and on the co-
e‰cient l3 we establish the exponential decay of the operator e�At (Theorem 6.2).
The proof of Theorem 6.2 is in some sense the most delicate part of this paper,
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principal tools being sharp estimates for the parameter-dependent problem (The-
orem 5.2), fixed point arguments, the Gohberg theorem (Theorem 1.5.1 in [18]),
Fredholm alternative theorem, compact imbedding results in the weighted spaces
(Proposition 3.1), and the results of Henry (Theorem 1.3.4 in [19]). Theorems 6.1
and 6.2 allow us to prove the exponential decay of the solution u of a linear prob-
lem in the spaces W 2;1

2;m ðQTÞ �W
s;0
2 ðQTÞ (Theorem 6.3). These estimates, that to

our mind are interesting in themselves, are crucial for establishing the stability
result for the non-linear problem (Theorem 7.1).

The layout of this paper is the following: in Section 2 we introduce the spaces
involved in our setting, in Section 3 we prove inclusions results, in Section 4 trace
results. Section 5 concerns Neumann parabolic problems. In Section 6 we deal
with the linear mixed-type system related to problem (1.1). Finally Section 7 con-
cerns problem (1.1).

2. Notation

In this section we introduce the weighted Sobolev spaces involved in our results.
Let WHR2 denote a bounded domain whose boundary is smooth everywhere
except a single angular point x ¼ 0. We suppose that the aperture of the angle,
denoted by y, is strictly greater than p. For simplicity we assume that in a certain
neighborhood of the angular point the boundary of W is formed by two straight
segments.

Set QT ¼ W� ð0;TÞ and m a ð0; 1Þ. Let Lq;mðQTÞ denote the completion of
the space C0ðQTÞ with respect to the norm

kvkLq; mðQT Þ ¼
Z T

0

Z
W

jvðx; tÞjqjxjqm dx dt
� 	1=q

;
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then the space

W
2;1
2;m ðQTÞ ¼ fv a L2;mðQTÞ : Da

xD
k
t v a L2;mðQTÞ; Ejaj þ 2kc 2gð2:1Þ

is a Hilbert space with the norm

kvk
W

2; 1
2; m

ðQT Þ ¼
X

jajþ2kc2

kDa
xD

k
t vk

2
L2; mðQT Þ

8<
:

9=
;
1=2

;

a ¼ ða1; a2Þ, a1; a2; k a NA 0.
The space

Ws;0
2 ðQTÞ ¼ L2ð0;T ;Ws

2 ðWÞÞ

is a Hilbert space with the norm

kvk
W

s; 0
2

ðQT Þ ¼
Z T

0

kvk2W s
2
ðWÞ dt

� 	1=2

where Ws
2 ðWÞ denotes the usual (possibly fractional) Sobolev space on W, sd 0.

If s ¼ ½s� þ s, 0 < s < 1, then

kvk2W s
2
ðWÞ ¼

X
jaja½s�

kDavk2L2ðWÞ þ
X
jaj¼½s�

Z
W

Z
W

jDavðxÞ �DavðyÞj2

jx� yj2þ2s
dx dy

(see e.g. [1]). Finally, Wk
2;mðWÞ denotes the weighted Sobolev space that is a

Hilbert with the norm

kvkW k
2; m

ðWÞ ¼
X
jajck

kDavk2L2; mðWÞ

8<
:

9=
;
1=2

:

3. Inclusion results

We state now some inclusion results that are important tools in our estimates.
From now on, we denote by c (possibly) di¤erent constants.

Let D be an infinite wedge with the vertex at the origin and aperture y > p
(we may assume without loss of generality that D is symmetric with respect to
the x1-axis and it contains the half-axis x1 > 0). By Cx we mean an infinite wedge
with the vertex x and aperture y1 ¼ 2p� y oriented in the same way as D, and
Cxðd0Þ ¼ fy a Cx; jy� xja d0g. If x a D, then CxHD.

For arbitrary di¤erentiable function uðxÞ vanishing at infinity the Smith repre-
sentation formula holds (see [34])

uðxÞ ¼
Z
Cx

Kðx� yÞ � ‘uðyÞ dy;ð3:1Þ
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where

KðzÞ ¼ z

jzj2
o
� z

jzj

�
:

The function oðxÞ defined on the unit sphere S1 is smooth and its support is

contained in C0BS1, in addition,

Z
S1

oðxÞ dS ¼ 1. Hence K vanishes on the

surface of C0. It can be extended by zero in R2nC0; the extended function is
smooth everywhere except the vertex and

jDaKðzÞja c

jzj1þjajð3:2Þ

where a ¼ ða1; a2Þ, ai a NA 0.
The domain W described in Section 2 possesses the cone property which means

that with every point x a W we can associate a finite cone Cxðd0ÞHW with a fixed
(independent of x) aperture y1 and fixed d0 > 0 (it may be oriented in an arbitrary
way). From the Smith representation formula mentioned above it follows that
arbitrary vðxÞ a W 1

2;mðWÞ can be represented in the form

vðxÞ ¼
Z
Cxðd0Þ

K1ðx� yÞ‘vðyÞ dyþ
Z
Cxðd0Þ

K2ðx� yÞvðyÞ dyð3:3Þ

C v1ðxÞ þ v2ðxÞ;

where

K1ðx� yÞ ¼ Kðx� yÞcðjx� yj=d0Þ;ð3:4Þ
K2ðx� yÞ ¼ �divðKðx� yÞð1� cðjx� yj=d0ÞÞÞ

and cðrÞ is a monotone function of a positive argument r > 0 equal to 1 for
r < 1=2 and to 0 for r > 3=4. By (3.2),

jK1ðx� yÞja cjx� yj�1; jK2ðx� yÞja cd�2
0ð3:5Þ

and suppy K1ðx� yÞHCxðd0Þ, suppy K2ðx� yÞHCxðd0ÞnCxðd0=2Þ.

Proposition 3.1. If 2a q <
2ð1þmÞ

m
then the following compact imbedding holds

W 1
2;mðWÞHLq;2m=qðWÞ;

with

kvkLq; 2m=qðWÞ c ckvkW 1
2; m

ðWÞ:ð3:6Þ

If 2a q < 2s
ðs�1Þm , sb 1, then

W 1
2;mðWÞHLq;m=sðWÞ;
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with

kvkLq; m=sðWÞ c ckvkW 1
2; m

ðWÞ:ð3:7Þ

Proof. We consider the case q > 2. We represent vðxÞ in the form (3.3) and
estimate v1ðxÞ. By the Hölder inequality,

jv1ðxÞja
�Z

Cxðd0Þ
jK1ðx� yÞjaj‘vj2jyj2m dy

�1=q
ð3:8Þ

�
�Z

Cxðd0Þ
jK1ðx� yÞjbjyj�2m

dy
�1=2

�
�Z

Cxðd0Þ
j‘vj2jyj2m dy

�1=2�1=q

;

where 0 < a < 2, 0 < b < 2, a
q
þ b

2 ¼ 1, q > 2. Actually we choose

b ¼ 2ð1� eÞ; a ¼ qe;

where e denotes a positive, su‰ciently small constant. By (3.5),Z
Cxðd0Þ

jK1ðx� yÞjbjyj�2m
dya c

Z
R2

dy

jx� yjbjyj2m
a cjxj�b�2mþ2;ð3:9Þ

and we evaluate the norm of v1 coming back to the inequality (3.8). We haveZ
W

jv1ðx; tÞjqjxj2m dxa c
�Z

W

j‘vj2jyj2m dy
�q=2�1

ð3:10Þ

�
Z
W

jxj�ðbþ2m�2Þq=2þ2m
dx

Z
Cxðd0Þ

jK1ðx� yÞjaj‘vj2jyj2m dy

a ck‘vkq�2
L2; mðWÞ

Z
W

j‘vðyÞj2jyj2m dy
Z
jy�xjad0

jxj2m dx
jx� yjajxjðbþ2m�2Þq=2

a cd
2ð1þmÞ�qm
0 k‘vkq

L2; mðWÞ;

because ð�b� 2mþ 2Þq=2þ 2m ¼ qðe� mÞ þ 2m a ð�2; 0Þ and

ð�b� 2mþ 2Þq=2þ 2mþ 2� a ¼ �qeþ 2� qþ qe� qmþ qþ 2m > 0

for q <
2ð1þmÞ

m
; henceZ

jx�yjad0

jx� yj�ajxjð�b�2mþ2Þq=2þ2m
dxa cd

2þ2m�qm
0

for arbitrary y a W.
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Hence

kv1kLq; 2m=qðWÞ a cd
2ð1þmÞ=q�m
0 k‘vkL2; mðWÞ:

By exactly the same arguments we show that

kv2kLq; 2m=qðWÞ a cd
2ð1þmÞ=q�m�1
0 kvkL2; mðWÞ;

and (3.6) is proved.
Replacing d0 with �d0, �f 1, we obtain

kvkLq; 2m=qðWÞ a cð�2ð1þmÞ=q�mk‘vkL2; mðWÞ þ �2ð1þmÞ=q�m�1kvkL2; mðWÞÞ:ð3:11Þ

To prove (3.7), we repeat the above calculations and arrive, instead of (3.10),
at Z

W

jv1ðx; tÞjqjxjqm=s dxa ck‘vkL2; mðWÞ

�
Z
W

j‘vj2jyj2m dy
Z
jy�xjad0

jx� yj�ajxjð�b�2mþ2Þq=2þqm=s
dx

a cd
qg
0 k‘vkq

L2; mðWÞ;

where g ¼ qm 1�s
s

þ 2 > 0, if s > 1, and g ¼ 2, if s ¼ 1.
We also have Z

W

jv2ðx; tÞjqjxjqm=s dxa cd
qðg�1Þ
0 kvkq

L2; mðWÞ;

which completes the proof of (3.7).
Along with (3.7), there holds

kvkLq; m=sðWÞ a cð�gk‘vkL2; mðWÞ þ �g�1kvkL2; mðWÞÞ; �f 1:ð3:12Þ

The proposition is proved.
By similar arguments we can prove the inequality

k‘vkL2; mðWÞ a cðd0kD2vkL2; mðWÞ þ d�1
0 kvkL2; mðWÞÞ;ð3:13Þ

where D2v ¼
�

q2v
qxiqxj

�
i; j¼1;2

. Instead of (3.3), we should use the representation for-
mula

qvðxÞ
qxi

¼
Z
Cxðd0Þ

K1ðx� yÞ‘
� qvðyÞ

qyi

�
dyþ

Z
Cxðd0Þ

K i
3ðx� yÞvðyÞ dy

where K i
3ðx� yÞ ¼ qK2ðx�yÞ

qxi
and K2ðx� yÞ is defined in (3.4). This kernel satisfies

the inequality

jK i
3ðx� yÞja cd�3

0 :
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Remark 3.1. We note that inequality (3.13) still holds for functions v defined in
the infinite wedge D if we replace the domain W by the wedge D and the constant
d0 by any positive number x.

Proposition 3.2. If 0a s < 2� m, then the following imbedding holds

W 2
2;mðWÞHWs

2 ðWÞ
with

kvkW s
2
ðWÞ c ckvkW 2

2; m
ðWÞð3:14Þ

and this implies that

kvk2
W s; 0

2
ðQT Þ c c

Z T

0

kvð�; tÞk2W 2
2; m

ðWÞ dt ¼ ckvk2
W 2; 0

2; m
ðQT Þ:

Moreover, if s > 1 then

sup
x

jvj2 c ckvk2W s
2
ðWÞ:ð3:15Þ

Proof. We start by showing that

kukW s
2
ðWÞ a ckukW 1

2; m
ðWÞ; s a ½0; 1� mÞ:ð3:16Þ

The inequality

kukL2ðWÞ a cðd 1�m
0 k‘ukL2; mðWÞ þ d

�m
0 kukL2; mðWÞÞð3:17Þ

is obtained in the same way as (3.6), (3.7). Now we represent u as the sum
uðxÞ ¼ uðxÞcðx=d1Þ þ uðxÞð1� cðx=d1ÞÞ :¼ u1 þ u2 where c is a smooth mono-
tone function of jxj equal to 1 for jxja 3=4 and to zero for jxjb 1. The constant
d1 is chosen in such a way that the boundary of W consists of two straight lines
for jxja d1, and d1 > d0. We can consider u1ðxÞ ¼ uðxÞcðx=d1Þ as a function
given in D, setting u1ðxÞ ¼ 0 for jxj > d1. Let us estimate the seminorm

ku1k _WW s
2 ðDÞ ¼

�Z
D

Z
D

ju1ðxÞ � u1ðzÞj2

jx� zj2þ2s
dx dz

�1=2
:

It is easily seen that�Z
D

Z
D; jx�zj>d0

ju1ðxÞ � u1ðzÞj2

jx� zj2þ2s
dx dz

�1=2
a cd�s

0 ku1kL2ðWÞð3:18Þ

and

d�s
0 ku1kL2ðWÞ a cðd 1�m�s

0 k‘u1kL2; mðWÞ þ d
�m�s
0 ku1kL2; mðWÞÞ:ð3:19Þ

Now we estimate the integralZ
D

Z
D; jx�zj<d0

ju1ðxÞ � u1ðzÞj2

jx� zj2þ2s
dx dz:
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By (3.1),

u1ðxÞ � u1ðzÞ ¼
Z
Cx

Kðx� yÞ � ‘u1ðyÞ dy�
Z
Cz

Kðz� yÞ � ‘u1ðyÞ dy

¼
Z
CxBB4rðX Þ

Kðx� yÞ � ‘u1ðyÞ dy�
Z
CzBB4rðX Þ

Kðz� yÞ � ‘u1ðyÞ dy

þ
Z
ðCxACzÞnB4rðXÞ

ðKðx� yÞ � Kðz� yÞÞ � ‘u1ðyÞ dy

:¼ I1 þ I2 þ I3;

where r ¼ jx� zj, X ¼ ðxþ zÞ=2, BaðXÞ is a circle of radius a centered at X . In
the integral I3, the kernels Kðx� yÞ and Kðz� yÞ are extended by zero in R2

(with respect to the variable y).
It is easily verified that

CxBB4rðXÞHCxð9r=2Þ; CzBB4rðXÞHCzð9r=2Þ;

hence

jI1j2 a c

Z
Cxð9r=2Þ

jKðx� yÞj1þkj‘u1ðyÞj2jyj2m dy
Z
Cxð9r=2Þ

jKðx� yÞj1�kjyj�2m
dy

a cr1þk�2m

Z
Cxð9r=2Þ

j Kðx� yÞj1þkj‘u1ðyÞj2jyj2m dy;

where maxð0; 2m� 1Þ < k < m, andZ
D

Z
D; jx�zj<d0

jI1j2
dx dz

jx� zj2þ2s

a c

Z
D

Z
D; jx�zj<d0

dx dz

jx� zj1þ2sþ2m�k

Z
Cxð9r=2Þ

jKðx� yÞj1þkj‘u1ðyÞj2 j jyj2m dy:

We introduce in the last integral a new variable of integration x ¼ z� x instead
of z and obtainZ

D

Z
D; jx�zj<d0

jI1j2
dx dz

jx� zj2þ2s
ð3:20Þ

a c

Z
D

j‘u1j2jyj2m dy
Z
jxjad0

dx

jxj1þ2sþ2m�k

Z
jx�yjað9=2Þjxj

jx� yj�1�k
dx

a cd
2�2m�2s
0

Z
D

j‘u1j2jyj2m dy:
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In the same way we show thatZ
D

Z
D; jx�zj<d0

jI2j2
dx dz

jx� zj2þ2s
a cd

2�2m�2s
0

Z
D

j‘u1j2jyj2m dy:ð3:21Þ

Now we pass to the estimate of I3. If y a ðCxACzÞnB4rðX Þ, then

jKðx� yÞ � Kðz� yÞja cjx� zj jX � yj�2;

hence

jI3ja cjx� zj
Z
ðCxACzÞnB4rðX Þ

jX � yj�2j‘u1ðyÞj dy

a cjx� zj
�Z

DnB4jx�zjðXÞ
j‘u1ðyÞj2

jyj2m dy
jX � yj2þ2n

�1=2

�
�Z

jX�yjb4jx�zj

dy

jyj2mjX � yj2�2n

�1=2

a cjx� zj1þn�m
�Z

DnB4jx�zjðXÞ
j‘u1ðyÞj2

jyj2m dy
jX � yj2þ2n

�1=2
where 0 < n < m, andZ

D

Z
D; jx�zj<d0

jI3j2
dx dz

jx� zj2þ2s

a c

Z
D

Z
D; jx�zj<d0

dx dz

jx� zj2sþ2m�2n

Z
DnB4jx�zjðX Þ

j‘u1ðyÞj2
jyj2m dy

jX � yj2þ2n
:

We introduce new variables of integration

X ¼ ðxþ zÞ=2; x ¼ ðx� zÞ=2

and obtain Z
D

Z
D; jx�zj<d0

jI3j2
dx dz

jx� zj2þ2s
ð3:22Þ

a c

Z
jxjad0

dx

jxj2ðsþm�nÞ

Z
D

j‘u1j2jyj2m dy
Z
jX�yjb4jxj

dX

jX � yj2þ2n

a cd
2ð1�s�mÞ
0 k‘u1k2L2; mðDÞ:

Hence by (3.20), (3.21), (3.22), (3.18) and (3.19)

ku1k _WW s
2 ðDÞ a cðd 1�s�m

0 k‘u1kL2; mðDÞ þ d
�s�m
0 ku1kL2; mðDÞÞ:ð3:23Þ
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Now we pass to the estimate of u2ðxÞ ¼ uðxÞð1� cðx=d1ÞÞ. Since u2ðxÞ ¼ 0
for jxja 3d1=4, it su‰ces to estimate this function in W 0 ¼ fx a W : jxjb d1=2g.
It is known that (see e.g. [27])

ku2k _WW s
2 ðW

0Þ a cðd 1�s
0 k‘u2kL2ðW 0Þ þ d�s

0 ku2kL2ðW 0ÞÞ;

and since jxjb d0=2 in W 0, we also have

ku2k _WW s
2 ðW

0Þ a cðd 1�s�m
0 k‘u2kL2; mðW 0Þ þ d

�s�m
0 ku2kL2; mðW 0ÞÞ:

Together with (3.23), (3.17), this inequality yields

kukW s
2
ðWÞ a cðd 1�s�m

0 k‘ukL2; mðWÞ þ d
�s�m
0 kukL2; mðWÞÞ;ð3:24Þ

hence (3.16) is proved. In addition, replacing d0 with �d0, we obtain

kukW s
2
ðWÞ a cð�1�s�mk‘ukL2; mðWÞ þ ��s�mkukL2; mðWÞÞ:

Inequality (3.14) is a consequence of (3.24), (3.13). Indeed, taking s ¼ s� 1,
we obtain

k‘vkW s�1
2

ðWÞ a cðd 2�s�m
0 kD2vkL2; mðWÞ þ d

1�s�m
0 k‘vkL2; mðWÞÞ

a cðd 2�s�m
0 kD2vkL2; mðWÞ þ d

�s�m
0 kvkL2; mðWÞÞ:

We also have

kvkW s
2
ðWÞ a �kvkW 2

2; m
ðWÞ þ cð�ÞkvkL2; mðWÞ; �f 1:ð3:25Þ

Finally, (3.15) follows from (3.14) and from the imbedding of Ws
2 ðWÞ, s > 1,

in C0ðWÞ. The proposition is proved.

Remark 3.2. We note that for s > 1 the Sobolev space W s
2 ðWÞ is an algebra with

respect to the product of functions, because of the Sobolev-Slobodeckiı̂ embedding
results. Moreover it holds for 1 < s < 2� m

kuvkW s
2
ðWÞ c cðkukW s

2
ðWÞðkvkW 1

2
ðWÞ þ kvkLlðWÞÞð3:26Þ

þ kvkW s
2
ðWÞðkukW 1

2
ðWÞ þ kukLlðWÞÞÞ

Indeed,

kuvkL2ðWÞ c ckukLlðWÞkukL2ðWÞ;

k‘ðuvÞkL2ðWÞ c cðkukLlðWÞkvkW 1
2
ðWÞ þ kvkLlðWÞkukW 1

2
ðWÞÞ;Z

W

Z
W

juðxÞj2j‘vðxÞ � ‘vðyÞj2 dx dy

jx� yj2s
a ckuk2LlðWÞkvk

2
W s

2
ðWÞ
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Let us show thatZ
W

Z
W

j‘vðxÞj2juðxÞ � uðyÞj2 dx dy

jx� yj2s
a ckvk2W s

2
ðWÞkuk

2
W 1

2
ðWÞ:

Denoting by u� and v� the extensions of the functions u and v to W s
2 ðR2Þ such that

ku�kW s
2
ðR2Þ a ckukW s

2
ðWÞ; ku�kW 1

2
ðR2Þ a ckukW 1

2
ðWÞ

and

kv�kW s
2
ðR2Þ a ckvkW s

2
ðWÞ; kv�kW 1

2
ðR2Þ a ckvkW 1

2
ðWÞ

we obtain Z
W

Z
W

j‘vðxÞj2juðxÞ � uðyÞj2 dx dy

jx� yj2s
ð3:27Þ

a

Z
R2

dz

jzj2s
Z
R2

j‘v�ðxÞj2ju�ðxþ zÞ � u�ðxÞj2 dx

a ck‘v�k2W s
2
ðR2Þ

Z
R2

ku�ð� þ zÞ � u�ð�Þk2W 2�s
2

ðR2Þ
dz

jzj2s
:

The last integral in (3.27) can be bounded by

c

Z
R2

dz

jzj2s
Z
R2

je�ix�z � 1j2ð1þ jxj2Þ2�sjûu�ðxÞj2 dx

a c

Z
R2
ð1þ xj2Þjûu�ðxÞj2 dxa cku�k2W 1

2
ðR2Þ;

where ûu� is the Fourier transform of u�. HenceZ
W

Z
W

j‘vðxÞj2juðxÞ � uðyÞj2 dx dy

jx� yj2s
a ckvk2W s

2
ðWÞkuk

2
W 1

2
ðWÞ:

In the same way we obtainZ
W

Z
W

j‘uðxÞj2jvðxÞ � vðyÞj2 dx dy

jx� yj2s
a ckuk2W s

2
ðWÞkvk

2
W 1

2
ðWÞ:

Collecting the previous estimate we obtain inequality (3.26).

4. Trace results

In this section we prove some trace theorems for the space W 2;1
2;m ðQTÞ.
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Proposition 4.1. (i) If u a W
2;1
2;m ðQTÞ, then uð0; �Þ a W

ð1�mÞ=2
2 ð0;TÞ and the fol-

lowing estimate holds

kuð0; �Þk
W

ð1�mÞ=2
2

ð0;TÞ c ckuk
W

2; 1
2; m

ðQT Þ:ð4:1Þ

(ii) For any function j a W
ð1�mÞ=2
2 ð0;TÞ there exists a function F a W 2;1

2;m ðQTÞ
such that Fð0; tÞ ¼ jðtÞ, Fðx; 0Þ ¼ 0 and

kFk
W

2; 1
2; m

ðQT Þ c ckjk
W

ð1�mÞ=2
2

ð0;TÞ:ð4:2Þ

Proposition 4.2. (i) If u a W 2;1
2;m ðQTÞ, then uð�; 0Þ a W 1

2;mðWÞ and the following
estimate holds

kuð�; 0ÞkW 1
2; m

ðWÞ c ckuk
W 2; 1

2; m
ðQT Þ:ð4:3Þ

(ii) For any function u0 a W 1
2;mðWÞ there exists a function u a W

2;1
2;m ðQTÞ such

that uðx; 0Þ ¼ u0ðxÞ and

kuk
W

2; 1
2; m

ðQT Þ c cku0kW 1
2; m

ðWÞ:ð4:4Þ

The following proposition concerns the trace on the surface GT ¼ qW� ð0;TÞ
of ‘u for a function u a W

2;1
2;m ðQTÞ.

Proposition 4.3. (i) If u a W
2;1
2;m ðQTÞ, then ‘ujGT

a W
1=2;1=4
2;m ðGTÞ and the fol-

lowing estimate holds

k‘ujGT
k
W

1=2; 1=4

2; m
ðGT Þ c ckuk

W
2; 1
2; m

ðQT Þ:ð4:5Þ

(ii) For any function f a W
1=2;1=4
2;m ðGTÞ there exists a function u a W

2;1
2;m ðQTÞ

such that qu
qn
¼ f and

kuk
W

2; 1
2; m

ðQT Þ c ckfk
W

1=2; 1=4

2; m
ðGT Þ:ð4:6Þ

By kfk
W

1=2; 1=4

2; m
ðGT Þ we mean the norm

kfk
W

1=2; 1=4

2; m
ðGT Þ ¼

Z T

0

kfð�; tÞk2
W

1=2

2; m
ðqWÞ dtþ

Z
qW

kfðx; �Þk2
W

1=4

2
ð0;TÞjxj

2m
dSðxÞ

� 	1=2

where kfð�; tÞk
W

1=2

2; m
ðqWÞ is defined as

kfð�; tÞk
W

1=2

2; m
ðqWÞ ¼ kfjxjmj k

W
1=2

2
ðqWÞ:ð4:7Þ

Another equivalent definition is

kfk
W

1=2

2; m
ðqWÞ ¼

X2

i¼1

kfck2
W

1=2

2; m
ðRiÞ

þ kfð1� cÞk
W

1=2

2
ðqWÞ

( )1=2
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where c ¼ c
�
x
d1

�
is the same cut-o¤ function that is introduced in Proposition

3.2, Ri are the two straight sides that constitute the boundary of the infinite angle
D with the vertex x ¼ 0 and

kjk2
W

1=2

2; m
ðRþÞ

¼ kjk2L2; m
ðRþÞ þ

Z þl

0

r2m
Z r

0

jjðrþ rÞ � jðrÞj2r�2 dr

Rþ ¼ ½0;þlÞ (see for instance formula (2.5) in [14]).
Before giving the proof of Propositions 4.1, 4.2 and 4.3 we introduce the

spaces Hk
m ðWÞ, H 2;1

m ðQTÞ and H 1;1=2
m ðGTÞ of the Kondrat’iev type, (see [21] or

[22] where these spaces are denoted by V k
2;mðWÞ, V 2;1

2;m ðQTÞ and V
1;1=2
2;m ðGTÞ) the

norms in these spaces coincide with the norms in the spaces Wk
2 ðWÞ, W 2;1

2 ðQTÞ
and W

1;1=2
2 ðGTÞ of the function multiplied by jxjm (as in (4.7)).

We apply to the product uðxÞjxjm the standard Sobolev-Slobodevskiı̂ trace
theorems and obtain (see for instance [35] and [39]):

Proposition 4.4. (i) If u a H 2;1
m ðQTÞ, then uð�; 0Þ a H 1

m ðWÞ and the following
estimate holds

kuð�; 0ÞkH 1
m ðWÞ a ckuk

H
2; 1
m ðQT Þ:ð4:8Þ

(ii) If u a H 2;1
m ðQTÞ, then ‘ujGT

a H 1=2;1=4
m ðGTÞ and the following estimate

holds

k‘ujGT
k
H

1=2; 1=4
m ðGT Þ c ckuk

H
2; 1
m ðQT Þ:ð4:9Þ

Moreover (iii) for any function u0 a H 1
m ðWÞ there exists a function u a H 2;1

m ðQTÞ
such that uðx; 0Þ ¼ u0ðxÞ and

kuk
H

2; 1
m ðQT Þ c cku0kH 1

m ðWÞ:ð4:10Þ

(iv) For any function f a H 1=2;1=4
m ðGTÞ there exists a function u a H 2;1

m ðQTÞ
such that qu

qn
¼ f, uð�; 0Þ ¼ 0 and

kuk
H

2; 1
m ðQT Þ c ckfk

H
1=2; 1=4
m ðGT Þ:ð4:11Þ

It is clear that the H-spaces are continuously imbedded in the corresponding
W -spaces. From the Hardy inequalities (that we recall below) it follows that the
norms kukW 1

2; m
ðWÞ and kukH 1

m ðWÞ are equivalent as well as the norms kukW 2
2; m

ðWÞ and

kukH 2
m ðWÞ for functions vanishing for x ¼ 0 and these spaces coincide. In fact for

any function u a W 1
2;mðWÞ and m a ð0; 1Þ we have (see for instance [39])

kukL2; m�1ðWÞ c ckukW 1
2; m

ðWÞð4:12Þ
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and for u a W 2
2;mðWÞ vanishing for x ¼ 0

kukL2; m�2ðWÞ c ckukW 1
2; m�1

ðWÞ c ckukW 2
2; m

ðWÞ:ð4:13Þ

Now we prove Proposition 4.1.

Proof. To prove inequality (4.1) we extend the function u a W
2;1
2;m ðQTÞ to the

infinite time interval t a ð�l;þlÞ in such a way that the extended function
u� vanishes for jtjdT0 > T and

ku�k
W

2; 1
2; m

ðQlÞ c ckuk
W

2; 1
2; m

ðQT Þð4:14Þ

where Ql ¼ W� ð�l;þlÞ. The extension can be made by reflection with re-
spect to the planes t ¼ T and t ¼ 0 and subsequent multiplication by an appro-
priate cut-o¤ function zðtÞ. We set u�

1 ðx; �Þ ¼ u�ðx; �Þc
�

x
d1

�
where the function c is

the function used in the proof of Proposition 3.2. We may assume that function
u�
1 is given in the infinite angle D with the vertex x ¼ 0 and u�

1 ðx; �Þ ¼ 0 for
jxj > d1; moreover

ku�
1kW 2; 1

2; m
ðDlÞ c ckuk

W
2; 1
2; m

ðQT Þð4:15Þ

where Dl ¼ D� ð�l;þlÞ. Since u�ð0; �Þ ¼ u�
1 ð0; �Þ it is enough to prove (4.1)

for u�
1 . Let ûu

�
1 ðx; x0Þ denote the Fourier transform of u�

1 with respect to t. Using
estimate (A9) in [15] we obtain for arbitrary positive r

jûu�
1 ð0; x0Þj

2ð4:16Þ

c c r2ð1�mÞ
X
jaj¼2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ r2ð�1�mÞkûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;:

If we take, in estimate (4.16), r ¼ jx0j�1=2 we obtain

jx0j1�mjûu�
1 ð0; x0Þj

2
c c

X
jaj¼2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ jx0j2kûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;;ð4:17Þ

if we take, in estimate (4.16), r ¼ 1 we obtain

jûu�
1 ð0; x0Þj

2
c c

X
jaj¼2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ kûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;:ð4:18Þ

Integrating these inequalities with respect to x0 a ð�l;þlÞ and making use of
the Parceval identity we obtain

ku�ð0; �Þk2
W

ð1�mÞ=2
2

ðRÞ c c
X
jajc2

kDau�
1k

2
L2; mðDlÞ þ

qu�
1

qt











2

L2; mðDlÞ

8<
:

9=
;:ð4:19Þ
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Estimates (4.19) and (4.15) imply

kuð0; �Þk
W

ð1�mÞ=2
2

ð0;TÞ c ckuk
W

2; 1
2; m

ðQT Þð4:20Þ

so inequality (4.1) is proved. Now we prove the second statement of Proposition

4.1. We extend the function j a W
ð1�mÞ=2
2 ð0;TÞ in the time interval t > T (still

denoting by j the extended function) so that

kjk
W

ð1�mÞ=2
2

ðRþÞ
c ckjk

W
ð1�mÞ=2
2

ð0;TÞ;

then we extend it by zero in the interval ð�l; 0Þ. By Lemma 7.1 in [2]

kjk
W

ð1�mÞ=2
2

ðRÞ c ckjk
W

ð1�mÞ=2
2

ðRþÞ c ckjk
W

ð1�mÞ=2
2

ð0;TÞ:

Let ~jjðsÞ, ð<esd 0Þ, be the Laplace transform of j then (see Theorem 7.1 in
[2]) denoting <es by s and =ms by t

sup
s>0

Z þl

�l
j~jjðsþ itÞj2jsþ itj1�m

dtc ckjk2
W

ð1�mÞ=2
2

ðRÞ c ckjk2
W

ð1�mÞ=2
2

ð0;TÞ:ð4:21Þ

We define ~FFðx; sÞ in the sector R2
þ :¼ fx ¼ ðx1; x2Þ : x1 b 0; x2 b 0g by

~FFðx; sÞ ¼ ~jjðsÞ expðð�
ffiffi
s

p
� 1Þðx1 þ x2ÞÞ;

we note that ~FFð0; sÞ ¼ ~jjðsÞ and in the sector R2
þ the sum x1 þ x2 is equivalent to

jxj. The function
ffiffi
s

p
¼ jsj1=2eiargs=2 (defined for �p < args < p) is holomorphic

for <es > 0 and as (for <es > 0)

jeð�
ffiffi
s

p
�1Þðx1þx2Þj ¼ eð�<e

ffiffi
s

p
�1Þðx1þx2Þ a eð�cjsj1=2�1Þðx1þx2Þ;

we have

keð�
ffiffi
s

p
�1Þðx1þx2ÞkL2; mðR2

þÞ a
c

ðjsj1=2 þ 1Þ1þm
:ð4:22Þ

We then extend the function ~FFðx; sÞ by using the Hestenes-Whitney formula
(see [3], [37] and [20]) in the half plane x1 > 0 and then in the whole domain D.

The extended function ~FF is analytic with respect to s (when <es > 0) so the
pre-image (inverse Laplace Transform) of ~FF vanishes for tc 0 (see Theorem 7.1
in [2] or Theorem V in [33]).

Moreover we deduce from estimate (4.22):Z þl

�l
fjsj2k~FFk2L2; mðDÞ þ k~FFk2W 2

2; m
ðDÞg dtc c

Z þl

�l
j~jjðsÞj2jsj1�m

dtð4:23Þ

and for <es ¼ 0 (see Theorem 8.1 in [2])

kFk2
W

2; 1
2; m

ðQT Þ c c

Z þl

�l
fjtj2k~FFk2L2; mðDÞ þ k~FFk2W 2

2; m
ðDÞg dt
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and by formulas (4.21) and (4.23)

kFk
W

2; 1
2; m

ðQT Þ c ckjk
W

ð1�mÞ=2
2

ð0;TÞ:

The proof of Proposition 4.1 is then completed.
We prove now Propositions 4.2 and 4.3.

Remark 4.1. We have to prove only estimates (4.3) and (4.5) because the second
statement of Proposition 4.2 and the second statement of Proposition 4.3 (the in-
verse trace theorems) follow from the similar statements for H-spaces (we mean
Proposition 4.4 statements (iii) and (iv) and inequalities (4.10) and (4.11)) (see
also Lemma 2.3 in [14]).

Proof of Propositions 4.2. Let u a W
2;1
2;m ðQTÞ. Using Proposition 4.1 we

construct a function v a W
2;1
2;m ðQTÞ such that vð0; �Þ ¼ uð0; �Þ, vðx; 0Þ ¼ 0 and

kvk
W 2; 1

2; m
ðQT Þ c ckuð0; �Þk

W
ð1�mÞ=2
2

ð0;TÞ c ckuk
W 2; 1

2; m
ðQT Þ:ð4:24Þ

Let w ¼ u� v, since wð0; �Þ ¼ 0 we deduce from (4.24) (see inequalities (4.12),
(4.13))

kwk
H

2; 1
m ðQT Þ c ckwk

W
2; 1
2; m

ðQT Þ c ckuk
W

2; 1
2; m

ðQT Þð4:25Þ

and by (4.8)

kuð�; 0ÞkW 1
2; m

ðWÞ c ckwð�; 0ÞkH 1
m ðWÞ c ckwk

W 2; 1
2; m

ðQT Þ c ckuk
W 2; 1

2; m
ðQT Þ:ð4:26Þ

Taking into account Remark 4.1 and inequality (4.26) the proof of Proposition
4.2 is achieved.

Proof of Propositions 4.3. As in Proposition 3.2 we use the splitting

uðx; tÞ ¼ uðx; tÞc
� x

d1

�
þ uðx; tÞ

�
1� c

� x

d1

��
:¼ u1 þ u2:

The function u2 vanishes in a neighborhood of the angular point x ¼ 0 and
for this function estimate (4.5) is a consequence of the similar inequality for the
ordinary Sobolev space W

2;1
2 (without weight):

ku2kW 1=2; 1=4

2; m
ðGT Þ c cku2kW 1=2; 1=4

2
ðGT Þ c cku2kW 2; 1

2
ðQT Þ c ckuk

W 2; 1
2; m

ðQT Þ:ð4:27Þ

The function u1 vanishes for jxj > d1 and it can be extended into the whole D
putting u1 ¼ 0 outside W; then we also extend u1 ¼ 0 as previously (see Proposi-
tion 4.1) with respect to t a ð�l;þlÞ. We denote by u�

1 the extended function.
By Theorem 2.2 in [39]

k‘u�
1 ð�; tÞkW 1=2

2; m
ðqDÞ c ck‘u�

1 ð�; tÞkW 1
2; m

ðDÞð4:28Þ
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and the same inequality holds for the Fourier transform ûu�
1 ð�; x0Þ; in addition we

have

k‘ûu�
1 ð�; x0ÞkL2; mðqDÞð4:29Þ

c c jx0j�1=2
X
jaj¼2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ jx0j1=2k‘ûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;
1=2

:

In fact estimate (4.29) can be obtained by a scaling argument from estimate (7.2)
in [39] (that we rewrite for completeness of presentation)

k‘UkL2; mðqDÞ c c
X
jaj¼2

kDaUk2L2; mðDÞ þ k‘Uk2L2; mðDÞ

8<
:

9=
;
1=2

:ð4:30Þ

Hence

k‘ûu�
1 ð�; x0Þk

2

W
1=2

2; m
ðqDÞ þ jx0j1=2k‘ûu�

1 ð�; x0Þk
2
L2; mðqDÞð4:31Þ

c c
X
jajc2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ jx0j k‘ûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;:

By Remark 3.1 the right hand side in (4.31) does not exceed

c
X
jajc2

kDaûu�
1 ð�; x0Þk

2
L2; mðDÞ þ jx0j2kûu�

1 ð�; x0Þk
2
L2; mðDÞ

8<
:

9=
;:

After integration with respect to x0 a R we obtain

ku1kW 1=2; 1=4

2; m
ðGT Þ c cku�

1kW 1=2; 1=4

2; m
ðDlÞ c cku1kW 2; 1

2; m
ðQT Þ c ckuk

W
2; 1
2; m

ðQT Þ:ð4:32Þ

Together with (4.27) inequality (4.32) yields (4.5).

5. The parabolic Neumann problem

In this section we establish existence, uniqueness results and coercive estimates
for the solution of the parabolic Neumann problem

qv

qt
þ Lv ¼ dðx; tÞ x a WHR2; t a ð0;TÞ

qv

qn

����
x A qW

¼ 0; vðx; 0Þ ¼ v0ðxÞ
ð5:1Þ
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and the corresponding parameter-dependent problem

luþ Lu ¼ f ðxÞ x a WHR2;

qu

qn

����
x A qW

¼ 0;
ð5:2Þ

with a complex-value parameter l; the functions f , u are also complex-valued.
Here L ¼ �sþ 1,s is the Laplace operator and we assume that W is a bounded
domain whose boundary qW is smooth everywhere except for a singular angular
point x ¼ 0. The opening of the angle denoted by y is supposed to be greater
than p.

The main results of this section are the following

Theorem 5.1. If d a L2;mðQTÞ, v0 a W 1
2;mðWÞ, 1� p=y < m < 1 then problem

(5.1) has a unique solution v a W
2;1
2;m ðQTÞ, and vðx; tÞ satisfies the inequality

kvk
W 2; 1

2; m
ðQT Þ a cfkdkL2; mðQT Þ þ kv0kW 1

2; m
ðWÞgð5:3Þ

where the constant c is independent of T.

Theorem 5.2. Let f a L2;mðWÞ, 1� p=y < m < 1 and l satisfy the condition

<el > minf�g;�Kj=mljgð5:4Þ

with g; K a ð0; 1Þ. Then problem (5.2) has a unique solution u a W 2
2;mðWÞ, and uðxÞ

satisfies the inequality

kukW 2
2; m

ðWÞ þ ð1þ jljÞkukL2; mðWÞ a ck f kL2; mðWÞð5:5Þ

where the constant c is independent of l, but it may depend on g and K.

We start by proving Theorem 5.2.

Proof. We say that a function u a W 1
2 ðWÞ is a weak solution of problem (5.2)

if u satisfies the integral identity

Qlðu; jÞ :¼ ð1þ lÞ
Z
W

uj dxþ
Z
W

‘u‘j dx ¼
Z
W

f j dxð5:6Þ

for any j a W 1
2 ðWÞ (all the functions are complex-valued and ‘u‘j ¼P2

i¼1 uxijxiÞ.
We show that for arbitrary f a L2;mðWÞ there exists a unique weak solution

via the Lax-Milgram theorem because the form Ql possesses the property:

jQlðu; uÞjb cð1þ jljÞkuk2L2ðWÞ þ 1=2k‘uk2L2ðWÞð5:7Þ
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if l satisfies condition (5.4). In fact

<eQlðu; uÞ þ j=mQlðu; uÞj ¼ ð<elþ j=mlj þ 1Þkuk2L2ðWÞ þ k‘uk2L2ðWÞ

and if condition (5.4) holds then

ð<elþ j=mlj þ 1Þb cðjlj þ 1Þ:

Hence

<eQlðu; uÞ þ j=mQlðu; uÞjb cðjlj þ 1Þkuk2L2ðWÞ þ k‘uk2L2ðWÞ

and

jQlðu; uÞjb 1=2ð<eQlðu; uÞ þ j=mQlðu; uÞjÞð5:8Þ
b 1=2fcðjlj þ 1Þkuk2L2ðWÞ þ k‘uk2L2ðWÞg:

Setting j ¼ u in (5.6) we obtain

jQlðu; uÞja k f kL2; mðWÞ

�Z
W

u2jxj�2m
dx

�1=2
:ð5:9Þ

Now to evaluate the last term in inequality (5.9) we use estimate (4.11) in [39]
where we put x ¼ ð1þ jljÞ1=2. This gives

ðjlj þ 1Þ1�m

Z
W

u2jxj�2m
dxa cfðjlj þ 1Þkuk2L2ðWÞ þ k‘uk2L2ðWÞg:ð5:10Þ

Finally inequalities (5.8), (5.9) and (5.10) yield

ðjlj þ 1Þ1�mfðjlj þ 1Þkuk2L2ðWÞ þ k‘uk2L2ðWÞga ck f k2L2; mðWÞ:ð5:11Þ

Next step is to prove the inequality

ðjlj þ 1Þfðjlj þ 1Þkuk2L2; mðWÞ þ k‘uk2L2; mðWÞga ck f k2L2; mðWÞ:ð5:12Þ

We set j ¼ ujxj2m in (5.6) and we repeat the previous arguments to obtain

ðjlj þ 1Þkuk2L2; mðWÞ þ k‘uk2L2; mðWÞð5:13Þ

a c

Z
W

j f j juj jxj2m dxþ
Z
W

j‘uj juj jxj2m�1
dx

� 	
:

By Cauchy inequality we haveZ
W

j‘uj juj jxj2m�1
dxa �

Z
W

j‘uj2jxj2m dxþ c=�

Z
W

juj2jxj2m�2
dx
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where we choose �f 1. To evaluate the last integral in the previous inequality
we again use estimate (4.11) in [39] where now we replace m by 1� m and put
x ¼ ð1þ jljÞ1=2. This gives, using also estimate (5.11)Z

W

juj2jxj2m�2
dxa cðjlj þ 1Þ�m

Z
W

fj‘uj2 þ ðjlj þ 1Þjuj2g dxð5:14Þ

a cðjlj þ 1Þ�1k f k2L2; mðWÞ:

Another term in (5.13) is estimated as follows

Z
W

juj j f j jxj2m dxa ðjlj þ 1Þ
Z
W

u2jxj2m dx
� 	1=2

ð5:15Þ

� ðjlj þ 1Þ�1

Z
W

f 2jxj2m dx
� 	1=2

:

From (5.13) (5.14) and (5.15) we obtain

ðjlj þ 1Þ
Z
W

u2jxj2m dxþ
Z
W

j‘uj2jxj2m dxa cðjlj þ 1Þ�1

Z
W

f 2jxj2m dxð5:16Þ

and this estimate (5.16) is equivalent to (5.12).
To evaluate the second derivatives of the function u, we consider u as weak

solution of the Neumann problem for the equation

su ¼ � f ðxÞ þ ðlþ 1Þu

u satisfies the integral identityZ
W

‘u‘j dx ¼
Z
W

f f � ð1þ lÞugj dx

for any j a W 1
2 ðWÞ with f � ð1þ lÞu a L2;mðWÞ. From the results of V. A.

Kondrat’iev (see [21]) it follows that Dau a L2;mðWÞ for jaj ¼ 2 and

kDaukL2; mðWÞ a ck f � ð1þ lÞukL2; mðWÞ c ck f kL2; mðWÞ

Together with (5.12) this inequality yields (5.5) and the proof of Theorem 5.2 is
now complete.

Proof of Theorem 5.1. We reduce Problem (5.1) to a similar problem with
zero initial data. Using Proposition 4.2, Proposition 4.1 and Proposition 4.4, we
construct the function w a W

2;1
2;m ðQTÞ such that wðx; 0Þ ¼ v0ðxÞ for x a W, qw

qn
¼ 0

for x a qW and

kwk
W

2; 1
2; m

ðQT Þ a ckv0kW 1
2; m

ðWÞ:ð5:17Þ
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The di¤erence u ¼ v� w is solution of the problem

qu

qt
þ Lu ¼ f ðx; tÞ x a WHR2; t a ð0;TÞ

qu

qn

����
x A qW

¼ 0; uðx; 0Þ ¼ 0

ð5:18Þ

where f ¼ d � qw
qt
� Lw a L2;mðQTÞ and

k f kL2; mðQT Þ a kdkL2; mðQT Þ þ kwk
W

2; 1
2; m

ðQT Þ a cðkdkL2; mðQT Þ þ kv0kW 1
2; m

ðWÞÞ:ð5:19Þ

We solve problem (5.18) by the Laplace transform as in [2]. We introduce the
extension of f on W� R denoted by f and defined as follows: we first extend it
into the time interval t a ðT ; 2TÞ by reflection, then it is multiplied by an appro-
priate cut-o¤ function of t and finally we set f ¼ 0 for t < 0. Clearly the extended
function satisfies the inequality

k f kL2; mðW�RÞ a ck f kL2; mðQT Þ:ð5:20Þ

The Laplace transform converts problem (5.18) in

s~uuþ L~uu ¼ ~ff x a WHR2;

q~uu

qn

����
x A qW

¼ 0:
ð5:21Þ

We assume that <esd 0 and from Theorem 5.2 we deduce the existence of the
unique solution of problem (5.21) and the estimate

ðjsj þ 1Þk~uuk2L2; mðWÞ þ k~uuk2W 2
2; m

ðWÞ a ck ~ff kL2; mðWÞ:ð5:22Þ

The inverse Laplace transform yields the solution of problem (5.18) that
is unique. Setting <es ¼ 0 and integrating with respect to =ms in the line
ð�l;þlÞ we obtain

kuk2
W

2; 1
2; m

ðQT Þ a ck f k2L2; mðQT Þ:ð5:23Þ

Together with (5.17) and (5.19) this inequality yields (5.3). The proof of
Theorem 5.1 is complete.

6. The linear problem

In this section we consider the linear initial-boundary value problem

qu

qt
þ A

�
x;

q

qx

�
u ¼ f ðx; tÞ x a WHR2; t a ð0;TÞ

qv

qn

����
x A qW

¼ 0; uðx; 0Þ ¼ u0ðxÞ
ð6:1Þ
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where uðx; tÞ ¼ ðvðx; tÞ;wðx; tÞÞ, u0 ¼ ðv0;w0Þ, f ðx; tÞ ¼ ðgðx; tÞ; hðx; tÞÞ, A is a
matrix di¤erential operator of the form (1.2), i.e.

A ¼ L l1ðxÞ
l2ðxÞ l3ðxÞ

� �
;

L ¼ �sþ 1, s is the Laplace operator and l1ðxÞ, l2ðxÞ, l3ðxÞ are real-valued
functions given in W. We assume that W is a bounded domain (WHR2) and qW
is smooth everywhere except for a singular angular point x ¼ 0. In a neighbor-
hood of this point, the boundary of W consists of two straight lines. The opening
of the angle denoted by y is supposed to be greater than p.

Our objective is to establish existence, uniqueness results and coercive esti-
mates for the solution of the problem (6.1). These estimates, which in our opinion
are of interest in themselves, are crucial for proving the stability result for non-
linear problem (1.1) (see Theorem 7.1).

The first result of this section is

Theorem 6.1. If l1 a LlðWÞ, l2; l3 a Ws
2 ðWÞ, v0 a W 1

2;mðWÞ, g a L2;mðQTÞ,
w0 a Ws

2 ðWÞ, h a W
s;0
2 ðQTÞ, 1� p=y < m < 1, 1 < s < 2� m, then problem (6.1)

has a unique solution u ¼ ðv;wÞ with v a W 2;1
2;m ðQTÞ, w, qw

qt
a Ws;0

2 ðQTÞ, and the
following estimate holds:

kvk
W

2; 1
2; m

ðQT Þ þ kwk
W

s; 0
2

ðQT Þ þ
qw

qt











W

s; 0
2

ðQT Þ
ð6:2Þ

a cðTÞfkgkL2; mðQT Þ þ khk
W

s; 0
2

ðQT Þ þ kv0kW 1
2; m

ðWÞ þ kw0kW s
2
ðWÞg:

The proof of Theorem 6.1 is based on the analysis of the Cauchy problem

qw

qt
ðx; tÞ þ l3ðxÞwðx; tÞ ¼ jðx; tÞ; wjt¼0 ¼ w0ðxÞ; x a W; t a ð0;TÞ;ð6:3Þ

and of the parabolic initial-boundary value problem (5.1).
We start by proving the following proposition

Proposition 6.1. If w0 a Ws
2 ðWÞ, l3 a Ws

2 ðWÞ and j a W
s;0
2 ðQTÞ, 1 < s, then

problem (6.3) has a unique solution w a W
s;0
2 ðQTÞ, moreover the time derivative qw

qt
belongs to the space W

s;0
2 ðQTÞ and

kwk
W

s; 0
2

ðQT Þ þ
qw

qt











W s; 0

2
ðQT Þ

þ sup
t A ð0;TÞ

kwð�; tÞkW s
2
ðWÞð6:4Þ

a cðTÞðkw0kW s
2
ðWÞ þ kjk

W
s; 0
2

ðQT ÞÞ:
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Proof. It is well known that the solution of the problem (6.3) is given by the
formula

wðx; tÞ ¼ VðtÞw0ðxÞ þ
Z t

0

Vðt� tÞjðx; tÞ dt;ð6:5Þ

where VðtÞ ¼ e�tl3 is the resolving operator of problem (6.3).
Estimate (6.4) follows easily from (6.5) by using the Young inequality for

convolutions (see e.g. [4]), because

kVðtÞwkW s
2
ðWÞ a cðTÞkwkW s

2
ðWÞ:ð6:6Þ

Proposition 6.1 is proved; let us note that in general, cðTÞ grows exponen-
tially, as T ! þl.

Proof of Theorem 6.1. We start by the reduction of the problem (6.1) to the
problem (5.1) with an additional non-local lower order term in the equation for v.
We consider w as a solution of (6.3) with j ¼ h� l2ðxÞv, which yields the follow-
ing expression for w:

wðx; tÞ ¼ VðtÞw0ðxÞ þ
Z t

0

Vðt� tÞhðx; tÞ dt�
Z t

0

Vðt� tÞl2ðxÞvðx; tÞ dt:

When we plug this expression into the first equation of the system (6.1), we obtain
the initial-boundary value problem for v:

qv

qt
ðx; tÞ þ Lvðx; tÞ � l1ðxÞ

Z t

0

Vðt� tÞl2ðxÞvðx; tÞ dt

¼ dðx; tÞ; ðx; tÞ a QT ;

qv

qn

����
x A qW

¼ 0; vðx; 0Þ ¼ v0ðxÞ;

ð6:7Þ

where

dðx; tÞC gðx; tÞ � l1ðxÞ
�
VðtÞw0ðxÞ þ

Z t

0

Vðt� tÞhðx; tÞ dt
�
:ð6:8Þ

It is easily shown that

kdkL2; mðQT Þ a kgkL2; mðQT Þ þ cðTÞðkw0kL2; mðWÞ þ khkL2; mðQT ÞÞ:ð6:9Þ

Problem (6.7) di¤ers from (5.1) by the presence of the integral operator of the
Volterra type

Iv ¼ �l1ðxÞ
Z t

0

Vðt� tÞl2ðxÞvðx; tÞ dtð6:10Þ
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in the equation. It satisfies the inequality

kIvkL2; mðQtÞ a cðTÞkvkL2; mðQtÞð6:11Þ

that allows us to solve problem (6.7) by successive approximations, according to
the following scheme.

We define v1 as the solution of the problem

qv1

qt
þ Lv1 ¼ dðx; tÞ; x a W; t a ð0;TÞ;

qv1

qn

����
x A qW

¼ 0; v1ðx; 0Þ ¼ v0ðxÞ

and we find vmþ1 from

qvmþ1

qt
þ Lvmþ1 ¼ l1ðxÞ

Z t

0

Vðt� tÞl2ðxÞvmðx; tÞ dtþ dðx; tÞ; x a W; t a ð0;TÞ;

qvmþ1

qn

����
x A qW

¼ 0; vmþ1ðx; 0Þ ¼ v0ðxÞ:

Set

xmþ1 ¼ vmþ1 � vm; mb 1

and

x1 ¼ v1

The function xmþ1, mb 1, is a solution of the problem

qxmþ1

qt
þ Lxmþ1 ¼ �Ixm; x a W; t a ð0;TÞ;

qxmþ1

qn

����
x A qW

¼ 0; xmþ1ðx; 0Þ ¼ 0:

From Theorem 5.1 (see (5.3)) and (6.11) we obtain

kxmþ1kW 2; 1
2; m

ðQtÞ a cðTÞkxmkL2; mðQtÞ; mb 1;

which implies

XM
m¼0

kxmþ1kW 2; 1
2; m

ðQtÞ a cðTÞ
�
kx1kW 2; 1

2; m
ðQtÞ þ

XM
m¼1

kxmþ1kL2; mðQtÞ

�
:
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The last sum in the right hand side does not exceed

XM
m¼1

sup
t<t

kxmþ1ð�; tÞk1=2L2; mðWÞ

�Z t

0

kxmþ1kL2; mðWÞ dt
�1=2

aT 1=4
�XM

m¼1

qxmþ1

qt











L2; mðQtÞ

�1=2�XM
m¼1

Z t

0

kxmþ1kL2; mðWÞ dt
�1=2

:

Hence applying the Cauchy inequality we obtain

XM
m¼0

kxmþ1kW 2; 1
2; m

ðQtÞ a cðTÞ
�
kx1kW 2; 1

2; m
ðQtÞ þ

XM
m¼1

Z t

0

kxmþ1kL2; mðWÞ dt
�

a cðTÞ
�
kx1kW 2; 1

2; m
ðQtÞ þ

Z t

0

XM
m¼0

kxmþ1kW 2; 1
2; m

ðQtÞ dt
�
:

Finally, using the Gronwall lemma, we arrive at

XM
m¼0

kxmþ1kW 2; 1
2; m

ðQT Þ a cðTÞkx1kW 2; 1
2; m

ðQT Þ a cðTÞðkdkL2; mðQT Þ þ kv0kW 1
2; m

ðWÞÞ:ð6:12Þ

This shows that the sequence fvmg is convergent in the Sobolev space
W 2;1

2;m ðQTÞ to a solution of problem (6.7).

The uniqueness of the solution follows from inequalities (5.3) and (6.11) ap-
plied to the di¤erence of two solutions v and v 0 of (6.7). Since

kv� v 0k
W 2; 1

2; m
ðQtÞ a cðTÞtkv� v 0k

W 2; 1
2; m

ðQtÞ;

there exits a positive time T0 such that v ¼ v 0 for t < T0. In a finite number of
steps we prove that v ¼ v 0 for t a ð0;TÞ.

Consequently also problem (6.1) admits a unique solution. By (6.12), (6.9)

kvk
W

2; 1
2; m

ðQT Þ a cðTÞðkgkL2; mðQT Þ þ kv0kW 1
2; m

ðWÞ þ kw0kW s
2
ðWÞ þ khk

W
s; 0
2

ðQT ÞÞ:ð6:13Þ

Inequality (6.2) follows from estimates (6.13) and (6.4). Theorem 6.1 is proved.

Theorem 6.1 allows us to define the operator e�At and write the solution of
(6.1) in the form

u ¼ e�Atu0 þ
Z t

0

e�Aðt�tÞf ð�; tÞ dt

where u0 ¼ ðv0;w0Þ a W 1
2;mðWÞ �Ws

2 ðWÞ, f ðx; tÞ ¼ ðgðx; tÞ; hðx; tÞÞ a L2;mðQTÞ�
Ws;0

2 ðQTÞ.
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Assuming suitable conditions on the spectrum of the operator �A and on the
coe‰cient l3 we establish the exponential decay of the operator e�At. More
precisely we denote

X :¼ L2;mðWÞ �Ws
2 ðWÞð6:14Þ

then the following result holds.

Theorem 6.2. We assume that l1 a LlðWÞ, l2; l3 a Ws
2 ðWÞ, v0 a W 1

2;mðWÞ, g a
L2;mðQTÞ, w0 a Ws

2 ðWÞ, h a W
s;0
2 ðQTÞ, 1� p=y < m < 1, 1 < s < 2� m. Moreover

we suppose that the following conditions are satisfied

a) l3ðxÞb b1 > 0,
b) the spectrum of the operator �A is located in the half-plane <el < �b1.

Then

ke�AtkX a ce�b1tð6:15Þ

where b1 < b1 and X is defined in (6.14). As a consequence

kebtukL2ð0;T ;XÞ a cðku0kX þ kebtf kL2ð0;T ;X ÞÞð6:16Þ

where b < b1 and the constant c does not depend on T.

Proof. We prove inequality (6.15) by using the resolvent estimate. We consider
the following parameter-dependent problem where ûu ¼ ðv̂v; ŵwÞ, f̂f ¼ ðĝg; ĥhÞ, l a C:

lûuþ Aûu ¼ f̂f a X
qv̂v
qn
jx A qW ¼ 0;

(
ð6:17Þ

and we prove that there exists such positive K that this problem is uniquely solv-
able for arbitrary f̂f a X and for any l in the set

CK;b1 ¼ fRelbminf�b1;�KjImljgg; b1 < b1:

Moreover, the solution satisfies the inequality

ðjlj þ 1ÞkûukX þ kAûukX aCk f̂f kXð6:18Þ

which implies

ðjlj þ 1ÞkûukX þ kv̂vkW 2
2; m

ðWÞ þ kŵwkW s
2
ðWÞ aCk f̂f kX :ð6:19Þ

The constants in these inequalities are independent of l, but they may depend on
K and b1.
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Let <HR� denote the closure (in R) of the range of the function �l3ðxÞ; it is
clear that for any b1 < b1, <BCK;b1 ¼ j.

If l is not in <, then the equation

lŵwþ l2v̂vþ l3ŵw ¼ ĥh

has a unique solution

ŵw ¼ ĥh� l2ðxÞv̂v
lþ l3ðxÞ

:ð6:20Þ

We plug (6.20) in the first equation in (6.17) and we obtain

lv̂vþ Lv̂v ¼ c
qv̂v
qn
jx A qW ¼ 0:

�
ð6:21Þ

where

c ¼ ĝg� l1ðxÞ
ĥh� l2ðxÞv̂v
lþ l3ðxÞ

:ð6:22Þ

We consider at first problem (6.21) with a given c a L2;mðWÞ. It is uniquely
solvable for all l such that Relb�KjImlj, ðK a ð0; 1ÞÞ (in fact, for all l outside
the half-axis <elc�1, =ml ¼ 0), and the solution satisfies the inequality

ðjlj þ 1Þkv̂vkL2; mðWÞ þ kv̂vkW 2
2; m

ðWÞ a cððjlj þ 1Þkv̂vkL2; mðWÞ þ kLv̂vkL2; mðWÞÞð6:23Þ

a c0kckL2; mðWÞ:

This statement is proved in Section 5 for K a ð0; 1Þ (see Theorem 5.2). By using
the contraction mapping theorem we can prove that problem (6.21), (6.22) is
also uniquely solvable and the inequality (6.18) is satisfied for

l a SK;r ¼ fRelb�KjImlj; jljb rg

with su‰ciently large r. We stress the fact that the lower bound of r depends only
on the the constant c0 in (6.23) and on the Ll-norms of the data l1, l2, l3. It is
easily seen that f̂f ¼ 0 implies ûu ¼ 0.

Now we consider the equations (6.21), (6.22) for arbitrary l a Cn<. We choose
a (real) number a > r such that the operator Lþ aI has the inverse ðLþ aIÞ�1

and we write these equations in the form

v̂v�LðnÞv̂v ¼ ðLþ aIÞ�1ð�l1ĥhðl3 þ ðnþ aÞÞ�1 þ ĝgÞð6:24Þ

where n ¼ l� a;

LðnÞ ¼ �ðLþ aIÞ�1ðnI � l1l2ðl3 þ ðnþ aÞÞ�1Þ:
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Let <a ¼ fn a C : nþ a a <g. For arbitrary n a Cn<a the operator LðnÞ is a
holomorphic operator function completely continuous in L2;mðWÞ. Moreover, the
equation

v̂v�LðnÞv̂v ¼ 0ð6:25Þ

has only a trivial solution, if <en is su‰ciently large. By the Gohberg theorem
(Theorem 1.5.1 in [18]), every compact set MHCn<a may contain at most a
countable number of points n such that the equation (6.25) has a finite number
of non-trivial solutions.

If v̂v�LðnÞv̂v ¼ 0, then lûuþ Aûu ¼ 0 where ûu ¼ ðv̂v; ŵwÞ, ŵw ¼ ðlþ l3ðxÞÞ�1 �
l2ðxÞv̂vðxÞ. Since l a Cn<, v̂vðxÞ ¼ 0 implies ŵwðxÞ ¼ 0. Hence the operator A has
a countable number of eigenvalues accumulating at infinity and at <.

Now we go back to the estimate (6.19). It can be derived from (6.23) and
(6.20) for l a SK;r; we show that it holds also for l a CK;b1 with K so small that
<el ¼ �Kj=mlj, jlj ¼ r implies <eld�b1. By assumption (b) for su‰ciently
small K no l from the compact set

CK;b1nSK;rCS

can be an eigenvalue of �A hence for any n ¼ l� a with l a S equation (6.25)
has only a trivial solution. By applying Fredholm alternative theorem to the
operator LðnÞ (n ¼ l� a) we have, for any f̂f a X , the existence of the solution
v̂v of problem (6.21) and (6.22) with l a S. Finally for any f̂f a X the solution of
problem (6.17) is then ûu ¼ ðv̂v; ŵwÞ where ŵw is given in (6.20).

To prove (6.19) for l a CK;b1 it su‰ces to obtain a uniform estimate

kûukX a ck f̂f kXð6:26Þ

for all l from the compact set S.
If (6.26) is not true, then there exist sequences lm a S, and ûum ¼ ðv̂vm; ŵwmÞ such

that kûumkX bmk f̂f kX . The elements Um ¼ kûumk�1
X ûum ¼ ðVm;WmÞ satisfy the

equation lmUm þ AUm ¼ kûumk�1
X f̂f , i.e.,

nmðLþ aIÞ�1
Vm þ Vm þ ðLþ aIÞ�1l1Wm ¼ kûumk�1

X ðLþ aIÞ�1
ĝg;

ðnm þ aÞWm þ l2Vm þ l3Wm ¼ kûumk�1
X ĥh;

qVm

qn
jx A qW ¼ 0:

8><
>:ð6:27Þ

There exist mk ! þl (as k ! þl) such that the sequence lmk
¼ nmk

þ a is
convergent to l a S, the sequence Umk

is convergent weakly in X , the sequence
Wmk

is convergent strongly in L2;mðWÞ and the sequence ðLþ aIÞ�1
Vmk

is conver-
gent strongly in L2;mðWÞ.

The existence of such sequences follows from the compactness of the imbedd-
ing of Ws

2 ðWÞ in L2;mðWÞ and from the compactness of the operator ðLþ aIÞ�1.
Setting m ¼ mk in (6.27) we see that all the terms in the first equation (with the

exception of Vmk
) are convergent strongly in L2;mðWÞ, so we can conclude that

68 v. a. solonnikov and m. a. vivaldi



Vmk
is also convergent strongly. Since ðLþ aIÞ�1 is a bounded operator from

L2;mðWÞ in W 2
2;mðWÞ, all the terms in this equation are convergent strongly in

W 2
2;mðWÞ. As a consequence, l2Vmk

is convergent strongly in Ws
2 ðWÞ, (see Propo-

sition 3.2) as well as ðnmk
þ aþ l3ÞWmk

and Wmk
. Hence we can pass to the limit

in (6.27) and obtain lU þ AU ¼ 0. Since l can not be an eigenvalue of �A, we
conclude that U ¼ 0. But this contradicts to the fact that kUkX ¼ 1 (since U is
a strong limit of Umk

in X ). Hence the estimate (6.26) holds for l a S, and the
resolvent estimate (6.18) holds for l a CK;b1 .

This estimate implies (6.15) (see Theorem 1.3.4 in [19]), and this complete the
proof of Theorem 6.2.

Theorem 6.3. We assume all the hypotheses of Theorem 6.2. Then problem (6.1)

has a unique solution u ¼ ðv;wÞ with v a W
2;1
2;m ðQTÞ, w, qw

qt
a W

s;0
2 ðQTÞ, and the

following estimate holds:

kebtvk
W

2; 1
2; m

ðQT Þ þ kebtwk
W

s; 0
2

ðQT Þ þ ebt
qw

qt











W

s; 0
2

ðQT Þ
ð6:28Þ

a cðkebtgkL2; mðQT Þ þ kebthk
W

s; 0
2

ðQT Þ þ kw0kW s
2
ðWÞ þ kv0kW 1

2; m
ðWÞÞ

with the constant c independent of T. Here T aþl and b < b1 is a positive
number.

Proof. Estimate (6.28) is established by the same arguments as (6.13). We go
back to Theorem 6.1 and consider the problem (6.3). In view of the assumption
(a), we have,

kVðtÞw0kW s
2
ðWÞ a ce�b1tkw0kW s

2
ðWÞ;

kebtjk
W s; 0

2
ðQT Þ a kebthk

W s; 0
2

ðQT Þ þ ckebtvk
W s; 0

2
ðQT Þ

and

kebtwk
W s; 0

2
ðQT Þ þ ebt

qw

qt











W

s; 0
2

ðQT Þ
þ sup

t<T

ebtkwð�; tÞkW s
2
ðWÞð6:29Þ

a cðkw0kW s
2
ðWÞ þ kebtjk

W
s; 0
2

ðQT ÞÞ

with the constants independent of T (these estimates are established by elemen-
tary calculations and applying the Young inequality for convolutions see e.g.
[4]). Moreover, the functions d and Iv (defined in (6.8) and (6.10)) satisfy

kebtdkL2; mðQT Þ a kebtgkL2; mðQT Þ þ cðkw0kL2; mðWÞ þ kebthkL2; mðQT ÞÞ;
kebtIvkL2; mðQT Þ a ckebtvkL2; mðQT Þ:ð6:30Þ

Since the function vbðx; tÞ ¼ ebtvðx; tÞ, where v is a solution of (6.7), satisfies the
relations
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qvb

qt
þ Lvb ¼ �ebtIvþ ebtd þ bvb;

qvb

qn

����
x A qW

¼ 0; vbðx; 0Þ ¼ v0ðxÞ;

we have, by (5.3), (6.30)

kebtvk
W

2; 1
2; m

ðQT Þ a c1ðkw0kW s
2
ðWÞ þ kv0kW 1

2; m
ðWÞð6:31Þ

þ kebthkL2; mðQT Þ þ kebtgkL2; mðQT ÞÞ þ c2kebtvkL2; mðQT Þ;

with constants independent of T .
We estimate the last term in (6.31) by inequality (6.16):

kebtvkL2; mðQT Þ a kebtukL2ð0;T ;XÞ a cðku0kX þ kebtf kL2ð0;T ;XÞÞ:ð6:32Þ

Estimate (6.28) follows from (6.29), (6.31), (6.32). Theorem 6.3 is proved.

Remark 6.1. In the assumptions and notation of Theorem 6.3, by means of
interpolation inequalities (see e.g. [27]), we can derive from (6.28) the following
estimate that we will use in Section 7

kebtvk
W 2; 1

2; m
ðQT Þ þ sup

t<T

ebtkvð�; tÞkW 1
2; m

ðWÞ þ kebtwk
W s; 0

2
ðQT Þð6:33Þ

þ ebt
qw

qt











W s; 0

2
ðQT Þ

þ sup
t<T

ebtkwð�; tÞkW s
2
ðWÞ

a cðkebtgkL2; mðQT Þ þ kebthk
W s; 0

2
ðQT Þ þ kw0kW s

2
ðWÞ þ kv0kW 1

2; m
ðWÞÞ:

with the constant c independent of T. Here T aþl and b < b1 is a nonnegative
number.

Remark 6.2. Theorems 6.1, 6.2 and 6.3 hold true under more general assump-
tions concerning the operator L (in particular we can choose a second order di¤er-
ential operator with smooth coe‰cients) as well as the Dirichlet boundary condi-
tions but in order to focus the attention on the ideas and tools we have preferred
to treat only a model problem.

7. The non-linear problem

In this section, we apply Theorem 6.3 to the analysis of the non-linear problem

qu

qt
þ A

�
x;

q

qx

�
uþRðuÞ ¼ 0; x a WHR2; t a ð0;TÞ

qv

qn

����
x A qW

¼ 0; uðx; 0Þ ¼ u0ðxÞ;
ð7:1Þ
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where A is linear operator (1.2) and RðuÞ ¼ ðPðuÞ;QðuÞÞ is a vector field of non-
linear terms.

From now on we assume that P is a linear combination of the terms pj,
j ¼ 1; . . . ; 7, satisfying the following conditions (1)–(7) where m is a positive
integer.

We denote the partial derivative qv
qxk

simply by vk, the second derivative q2v
qxk ;qxl

by vk; l and
�

q2v
qxkqvxl

�
k; l¼1;2

by D2v.

(1) jp1ðvÞja cjvjs1 ,
��dp1
dv

��a cjvjs1�1 with 2c s1 < 2þ 1=m,

(2) jp2ðv;‘vÞja cjvjt1 j‘vj,
��qp2
qv

��a cjvjt1�1j‘vj,
��qp2
qvk

��a cjvjt1 , where 1a t1 < 1=m,

(3) jp3ðv;wÞja cjwjmjvjs2 ,
��qp3
qv

��a cjvjs2�1jwjm,
��qp3
qw

��a cjvjs2 jwjm�1 with 2a s2 <
2þ 1=m,

(4) jp4ðv;‘v;wÞja cjwjmjvjt2 j‘vj,
��qp4
qv

��a cjvjt2�1j‘vj jwjm,
��qp4
qvk

��a cjvjt2 jwjm,��qp4
qw

��a cjvjt2 j‘vj jwjm�1 with 1a t2 < 1=m,

(5) jp5ðD2v;wÞja cjwjmjD2vj,
�� qp5
qvk; l

��a cjwjm,
��qp5
qw

��a cjD2vj jwjm�1,

(6) jp6ðv;‘wÞja cjvjs3 j‘wj,
��qp6
qv

��a cjvjs3�1j‘wj,
��qp6
qwk

��a cjvjs3 , with 1a s3 <

1þ ðs�1Þ
m

,
(7) jp7ð‘v;‘wÞja cj‘vj j‘wj,

��qp7
qvk

��a cj‘wj,
��qp7
qwk

��a cj‘vj.

These conditions are satisfied if pi are polynomials of degreed 2.
The non-linear operator Q is a linear combination of terms qj of the type

(8) q8ðv;wÞ ¼ wmv,
(9) q9ðwÞ ¼ wmþ1,

where m is a positive integer.
We refer to the Introduction and to the references cited there for a discussion

of mixed type systems modeling biological phenomena, ecological studies and
physical problems.

We will prove the following stability result.

Theorem 7.1. Let the operator A, defined in (1.2) satisfy all the assumptions of
Theorem 6.2 and the operator RðuÞ be a vector field of nonlinear terms satisfying
the above conditions (1)–(9). Then there exists h > 0 such that if

ku0kX ¼ kv0kW 1
2; m

ðWÞ þ kw0kW s
2
ðWÞ a hð7:2Þ

problem (7.1) has a unique solution u ¼ ðv;wÞ, v a W
2;1
2;m ðQlÞ, w a W

s;0
2 ðQlÞ,

qw
qt

a W
s;0
2 ðQlÞ, and the following estimate holds

kebtvk
W

2; 1
2; m

ðQlÞ þ kebtwk
W

s; 0
2

ðQlÞ þ ebt
qw

qt











W

s; 0
2

ðQlÞ
ð7:3Þ

a cðkw0kW s
2
ðWÞ þ kv0kW 1

2; m
ðWÞÞa ch

where 0c b < b1.

71mixed type, nonlinear systems in polygonal domains



We can regard (7.1) as the problem for perturbations of the zero solution of
(7.1) (with u0 ¼ 0), and estimate (7.3) proves the exponential stability of this
solution.

The proof is based on inequality (6.28) and on the estimate of the norms
kebtRðuÞkL2ð0;þl;XÞ and kebtdRðu;UÞkL2ð0;þl;XÞ, where

dRðu;UÞ ¼
Z 1

0

d

dr
Rðuþ rUÞ dr ¼ RðuþUÞ �RðuÞ:ð7:4Þ

We also make use of the following Lemma that can be established by elemen-
tary calculations.

Lemma 7.2. Let ah be a sequence of non negative real numbers such that

a1 a c1d; and ahþ1 a c1dþ c2a
s
h ; s > 1:ð7:5Þ

Then for any choice of c2, c1 and s > 1 there exists a positive constant c3 > c1 that
guarantees the uniform estimate

ah a c3dð7:6Þ

if d is su‰ciently small.

We start with the estimates of kpjkL2; mðQT Þ and kqjkL2ð0;T ;W s
2
ðWÞÞ.

Proposition 7.1. In the previous notation and assumptions the following esti-
mates hold:

X7

j¼1

kebt pjkL2; mðQT Þð7:7Þ

a cðY s1 þ Y t1þ1 þ Ymþs2 þ Ymþt2þ1 þ Ymþ1 þ Y s3þ1 þ Y 2Þ;
X9

j¼8

kebtqjkW s; 0
2

ðQT Þ a cY mþ1;ð7:8Þ

where Y ¼ Y ðu; bÞ is the sum

Y ðu; bÞ ¼ kebtvk
W

2; 1
2; m

ðQT Þ þ sup
t<T

ebtkvð�; tÞkW 1
2; m

ðWÞ þ kebtwk
W

s; 0
2

ðQT Þð7:9Þ

þ ebt
qw

qt











W

s; 0
2

ðQT Þ
þ sup

t<T

ebtkwð�; tÞkW s
2
ðWÞ;

s1, s2, s3, t1, t2, m are the exponents in items (1)–(9) and T aþl.
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Proof. We estimate at first the norm of p1ðvÞ. By the embedding results (see
Propositions 3.1 and 3.2, formulas (3.6) and (3.15)),

kp1ðvÞkL2; mðWÞ a c sup
x AW

jvðx; tÞj k jvjs1�1kL2; mðWÞ a ckvkW 2
2; m

ðWÞkvk
s1�1
W 1

2; m
ðWÞ;

which implies

kebtp1ðvÞkL2; mðQT Þ a c sup
t<T

ebtðs1�1Þkvð�; tÞks1�1
W 1

2; m
ðWÞke

btvk
W

2; 0
2; m

ðQT Þ a cY s1 ;

(since ebt d 1).
Now we evaluate the norm of p2ðv;‘vÞ. By the Hölder inequality,

kp2ðv;‘vÞkL2; mðWÞ a c
�Z

W

j‘vj2pjxj2m dx
�1=2p�Z

W

jvj2t1p
0
jxj2m dx

�1=2p 0

;

where 1=pþ 1=p 0 ¼ 1 and

m

mþ 1
<

1

p
< 1� t1m

mþ 1

(since t1 <
1
m
, such p can be found, and it is easily seen that t1p

0 <
mþ1
m
). Hence by

the embedding result (see in Proposition 3.1 estimate (3.6) with q ¼ 2p < 2þ 2=m
and q ¼ 2t1p

0 < 2þ 2=m) we have

kp2ðv;‘vÞkL2; mðWÞ a ckvkt1
W 1

2; m
ðWÞkvkW 2

2; m
ðWÞ

and

kebtp2ðv;‘vÞkL2; mðQT Þ a c sup
t<T

ebtt1kvð�; tÞkt1
W 1

2; m
ðWÞke

btvk
W

2; 0
2; m

ðQT Þ a cY 1þt1 :

Now we evaluate the norm of p3ðv;wÞ. It is easily seen that

kp3ðv;wÞkL2; mðWÞ a sup
x AW

jwðx; tÞjm sup
x AW

jvðx; tÞj k jvjs2�1kL2; mðWÞ;

hence by (3.6),

kp3ðv;wÞkL2; mðWÞ a ckwkm
W s

2
ðWÞkvk

s2�1
W 1

2; m
ðWÞkvkW 2

2; m
ðWÞ

where we have used the embedding results (see Propositions 3.1 and 3.2, estimate
(3.6), with q ¼ 2s2 � 2, s2 < 2þ 2=m and estimates (3.14) (3.15)) and

kebtp3ðv;wÞkL2; mðQT Þ

a c sup
t<T

ebtmkwkm
W s

2
ðWÞ sup

t<T

ebtðs2�1Þkvks2�1
W 1

2; m
ðWÞke

btvk
W

2; 0
2; m

ðQT Þ a cY mþs2 :
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The norm of p4ðv;‘v;wÞ is estimated in the same way as p2:

kp4ðv;‘v;wÞkL2; mðWÞ a ckvkt2
W 1

2; m
ðWÞkvkW 2

2; m
ðWÞ sup

x AW
jwðx; tÞjm

and

kebtp4ðv;‘v;wÞkL2; mðQT Þ

a c sup
t<T

ebtt2kvkt2
W 1

2; m
ðWÞ sup

t<T

ebtmkwkm
W s

2
ðWÞkebtvkW 2

2; m
ðQT Þ a cY mþ1þt2 :

We pass to the estimate of p5ðD2v;wÞ:

kp5ðD2v;wÞkL2; mðWÞ a sup
x AW

jwðx; tÞjm k jD2vj kL2; mðWÞ

kebtp5ðD2v;wÞkL2; mðQT Þ a c sup
t<T

ebtmkwð�; tÞkm
W s

2
ðWÞkebtvkW 2

2; m
ðQT Þ a cY mþ1:

Now we evaluate the norm of p6ðv;‘wÞ. We have

kp6ðv;‘wÞkL2; mðWÞ a
�Z

W

j‘wj2p dx
�1=2p�Z

W

jvj2p
0s3 jxj2mp

0
dx

�1=2p 0

;ð7:10Þ

where p ¼ ð2� sÞ�1, so that the space Ws�1
2 ðWÞ is continuously imbedded in

L2pðWÞ. We also have 2p 0s3 <
2s3

ðs3�1Þm , hence the last integral in (7.10) can be esti-
mated by (3.7). This gives

kp6ðv;‘wÞkL2; mðWÞ a ckwkW s
2
ðWÞkvk

s3
W 1

2; m
ðWÞ

and

kebtp6kL2; mðQT Þ a ckebtwk
W s; 0

2
ðQT Þ sup

t<T

ebts3kvð�; tÞks3
W 1

2; m
ðWÞ a cY 1þs3 :

Now we evaluate the norm of p7ð‘v;‘wÞ. We apply the Hölder inequality with
the same p as above and obtain

kp7ð‘v;‘wÞkL2; mðWÞ a
�Z

W

j‘wj2p dx
�1=2p�Z

W

j‘vj2p
0
jxj2mp

0
dx

�1=2p 0

a ckwkW s
2
ðWÞkvkW 2

2; m
ðWÞ;

kebtp7ð‘v;‘wÞkL2; mðQT Þ a c sup
t<T

ebtkwð�; tÞkW s
2
ðWÞkebtvkW 2; 0

2; m
ðQT Þ a cY 2:

Collecting the estimates of pi we arrive at (7.7). It remains to estimate q8 and
q9. By Proposition 3.2 we have

kq8ðv;wÞkW s
2
ðWÞ a ckwkm

W s
2
ðWÞkvkW s

2
ðWÞ a ckwkm

W s
2
ðWÞkvkW 2

2; m
ðWÞ;

kebtq8ðv;wÞkW s; 0
2

ðQT Þ a c sup
t<T

ebtmkwð�; tÞkm
W s

2
ðWÞkebtvkW 2; 0

2; m
ðQT Þ a cY mþ1;

kq9ðwÞkW s
2
ðWÞ a ckwkmþ1

W s
2
ðWÞ;

kebtq9ðwÞkW s; 0
2

ðQT Þ a cY mþ1:
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These estimates yield (7.8), hence the proposition is proved.
To evaluate the term dRðu;UÞ in (7.4) we have to consider the vector field

RðuðrÞÞ where uðrÞ ¼ uþ rU and to estimate the norms of the derivatives of the
functions PðuðrÞÞ, QðuðrÞÞ i.e. the functions

V
qpi

qv
; i ¼ 1; 2; 3; 4; 6;

qV

qxk

qpj

qvk
; j ¼ 2; 4; 7;

W
qpn

qw
; n ¼ 3; 4; 5;

q2V

qxkqxl

qp5

qvk; l
;

qW

qxk

qp6

qwk

;
qW

qxk

qp7

qwk

;

ð7:11Þ

as well as

V
qq8

qv
; W

qq8

qw
; W

qq9

qw
ð7:12Þ

for large and small T where the terms pj ¼ pjðuðrÞÞ, j ¼ 1; . . . ; 7 and qiðuðrÞÞ,
i ¼ 8; 9. Concerning the vector U ¼ ðV ;WÞ we assume that it has finite norm
(7.9) (denoted by Z ¼ ZðU ; bÞ if b > 0 and by Z0 if b ¼ 0) and in addition
U jt¼0 ¼ ðV jt¼0;W jt¼0Þ ¼ ð0; 0Þ.

Proposition 7.2. In the previous assumptions and notation there hold the in-
equalities

X
i

ebtV
qpi

qv











L2; mðQT Þ

þ
X
j

ebt
qV

qxk

qpj

qvk











L2; mðQT Þ

þ
X
n

ebtW
qpn

qw











L2; mðQT Þ

ð7:13Þ

þ ebt
q2V

qxkqxl

qp5

qvk; l











L2; mðQT Þ

þ ebt
qW

qxk

qp6

qwk











L2; mðQT Þ

þ ebt
qW

qxk

qp7

qwk











L2; mðQT Þ

þ ebtV
qq8

qv











W

s; 0
2

ðQT Þ

þ ebtW
qq8

qw











W

s; 0
2

ðQT Þ
þ ebtW

qq9

qw











W

s; 0
2

ðQT Þ

a cZðY s1�1ðuðrÞ; bÞþY t1ðuðrÞ; bÞþYmþs2�1ðuðrÞ; bÞ þYmþt2ðuðrÞ; bÞ
þ Y s3ðuðrÞ; bÞ þ YðuðrÞ; bÞ þ YmðuðrÞ; bÞÞ:

Moreover, if norm Y0 ¼ Y ðuðrÞ; 0ÞaM, (see (7.9) with b ¼ 0) and
kurð0ÞkX a ch (see (7.2)) then
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V
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þ
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j

qV

qxk

qpj

qvk











L2; mðQT Þ

þ
X
n

W
qpn

qw











L2; mðQT Þ

ð7:14Þ

þ q2V

qxkqxl

qp5

qvk; l











L2; mðQT Þ

þ qW

qxk

qp6

qwk











L2; mðQT Þ

þ qW

qxk

qp7

qwk











L2; mðQT Þ

þ V
qq8

qv











W

s; 0
2

ðQT Þ
þ W

qq8

qw











W

s; 0
2

ðQT Þ
þ W

qq9

qw











W

s; 0
2

ðQT Þ

a c1ðMÞc2ð�; h;TÞZ0;

where � is a small positive number and c2ð�; h;TÞ can be made arbitrarily small by
the choice of small �, h and T.

Proof. Inequality (7.13) is established in the same way as (7.7), (7.8), for in-
stance,

V
dp1ðvðrÞÞ
dvðrÞ











L2; mðWÞ

a c sup
x AW

jVðx; tÞj k jvðrÞjs1�1kL2; mðWÞð7:15Þ

a ckVkW 2
2; m

ðWÞkvðrÞk
s1�1
L2; mðWÞ;

ebtV
dp1ðvðrÞÞ
dvðrÞ











L2; mðQT Þ

a c sup
t<T

ebtðs1�1ÞkvðrÞð�; tÞks1�1
W2; mðWÞke

btVk
W

2; 0
2; m

ðQT Þð7:16Þ

a cZY s1�1ðuðrÞÞ:

We omit the estimates of other terms.
To obtain a small constant in (7.14), we use the interpolation inequalities, for

instance,

sup
x AW

jVðx; tÞja ckVkW s
2
ðWÞ a �kVkW 2

2; m
ðWÞ þ cð�ÞkVkL2; mðWÞ:ð7:17Þ

This inequality follows from (3.25); it implies

�Z T

0

sup
x AW

jVðx; tÞj2 dt
�1=2

a �kVk
W

2; 0
2; m

ðQT Þ þ cð�ÞkVkL2; mðQT Þ

a �kVk
W 2; 0

2; m
ðQT Þ þ cð�ÞT qV

qt











L2; mðQT Þ

a ð�þ cð�ÞTÞZ0:

Hence

V
qp1

qv











L2; mðQT Þ

a cðMÞð�þ cð�ÞTÞZ0:
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Taking at first � and then T su‰ciently small, we can make �þ cð�ÞT as small as
necessary. The terms with the derivatives of p2 are evaluated in the same manner
with the help of estimates (3.11), (3.12). The terms with the derivatives of p3; p4
and p5 with respect to w are evaluated in the same manner with the help of the
estimate

sup
QT

jWðx; tÞja c sup
t<T

kWð�; tÞkW s
2
ðWÞ a c

ffiffiffiffi
T

p qW

qt











W

s; 0
2

ðQT Þ
:

Now we turn to the estimate of q2V
qxkqxl

qp5
qvk; l

. We have

q2V

qxkqxl

qp5

qvk; l











L2; mðQT Þ

a c sup
t<T

kwð�; tÞkm
W s

2
ðWÞkVk

W
2; 0
2; m

ðQT Þ:

We use the inequality

sup
t<T

kwð�; tÞkW s
2
ðWÞ a kw0kW s

2
ðWÞ þ

ffiffiffiffi
T

p qw

qt











W s; 0

2
ðQT Þ

;

which implies

q2V

qxkqxl

qp5

qvk; l











L2; mðQT Þ

a cðhþ
ffiffiffiffi
T

p
Y0ÞmZ0:

We omit further details.

Proof of Theorem 7.1. The solution of (7.1) can be constructed by successive
approximations. We define u1 as the solution of the linear problem

qu1

qt
þ A

�
x;

q

qx

�
u1 ¼ 0; x a W; t a ð0;TÞ;

qv1

qn

����
x A qW

¼ 0; u1ðx; 0Þ ¼ u0ðxÞ

and we find uh, hb 1 from

quhþ1

qt
þ A

�
x;

q

qx

�
uhþ1 ¼ �RðuhÞ; x a W; t a ð0;TÞ;

qvhþ1

qn

����
x A qW

¼ 0; uhþ1ðx; 0Þ ¼ u0ðxÞ:
ð7:18Þ

By Proposition 7.1 if Y ðuhÞ is finite, then RðuhÞ a L2ð0;T ;XÞ and the problem
(7.18) is solvable. In view of Theorem 6.3 it is clear that the functions uh are de-
fined for all h and that the sequence Yh ¼ Y ðuhÞ (see (7.9)) satisfies the conditions

Y1 a ch;

Yhþ1 a cðY 2
h þ Y s1

h þ Y t1þ1
h þ Ymþs2

h þ Ymþt2þ1
h þ Ymþ1

h þ Y s3þ1
h Þ þ ch;

ð7:19Þ
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where

h ¼ kv0kW 1
2; m

ðWÞ þ kw0kW s
2
ðWÞ:

If h is small, then by Lemma 7.2 (7.19) guarantees a uniform estimate

Yh a ch:ð7:20Þ

To prove the convergence of the sequence um, we consider the problem for the
di¤erences Uhþ1 ¼ uhþ1 � uh, hb 2:

qUhþ1

qt
þ A

�
x;

q

qx

�
Uhþ1 ¼ �dRðuh�1;UhÞ; x a WHR2; t a ð0;TÞ

qVhþ1

qn

����
x A qW

¼ 0; Uhþ1ðx; 0Þ ¼ 0:

In view of Theorem 6.3 (see also Remark 6.1)

YðUhþ1Þa ckebtdRðuh�1;UhÞkL2ð0;þl;XÞ:ð7:21Þ

It is easily verified that dRðuh�1;UhÞ is the integral with respect to r a ½0; 1�
of the functions (7.11) and (7.12) with U ¼ ðV ;W Þ ¼ Uh, u ¼ ðv;wÞ and
uh�1 þ rUhC u

ðrÞ
h . By (7.20),

Y ðuðrÞh Þa rY ðuhÞ þ ð1� rÞYðuh�1Þa chð7:22Þ

and by (7.21) and (7.13),

YðUhþ1Þa chgYðUhÞð7:23Þ

with some g > 0. Hence

XK
h¼2

Y ðUhþ1Þa chg
XK
h¼2

YðUhÞ:

If chg < 1, then we can conclude from this estimate that the sum
PK

h¼2 Y ðUhÞ is
uniformly (with respect to K) bounded, and the sequence uh is convergent
strongly in the norm Y to the solution of the problem (7.1). In view of (7.20),
the solution satisfies (7.3).

Now we prove the uniqueness of the solution. Assume that along with the
solution u ¼ ðv;wÞ constructed above there exists another solution u 0 with finite
norm Y0ðu 0ÞCY 0 in the interval t a ð0;T0Þ (this norm is defined by (7.9) with
b ¼ 0). We consider the problem for the di¤erence U ¼ u 0 � u

U þ AU ¼ �dRðu;UÞ; x a WHR2; t a ð0;TÞ
qV

qn

����
x A qW

¼ 0; Uðx; 0Þ ¼ 0:
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We observe that the norm Y0ðuþ rUÞ, r a ½0; 1�, is bounded by a certain con-
stant B in the interval t a ½0;T0� (see (7.22)). By (6.33) and (7.14), (see also (7.21))
for arbitrary T aT0

Y0;TðUÞa c1ðBÞc2ð�; h;TÞY0;TðUÞ;

where Y0;TðUÞ is the norm of U in the interval ð0;TÞ and c1ðBÞ is a constant de-
pendent only on B. We proceed as previously and choosing � and T in an appro-
priate way we may make the constant c1ðBÞc2ð�; h;TÞ less that 1. It follows that
Y0;TðUÞ ¼ 0, i.e., u 0 ¼ u for t < T . By a finite number of steps we can show that
u 0 ¼ u for t < T0. This concludes the proof of the theorem.

Remark 7.1. Theorem 7.1 holds true under more general assumptions concerning
the operators P ¼

P
i ciðPiðv;‘v;D2v;wÞÞ and Q ¼

P
k ckðQkðv;wÞÞ where Pi, Qk

are of the type described in items from (1) to (7) and (8)(9) (respectively) with re-
spect to their arguments. In particular we may assume that the functions Pi , Qk

have coe‰cients belonging to the space W s
2 ðWÞ with respect to the space variable

x and independent of t.
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