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Abstract. — We show that an information-theoretic property of Shannon’s entropy power,

known as concavity of entropy power [7], can be fruitfully employed to prove inequalities in sharp

form. In particular, the concavity of entropy power implies the logarithmic Sobolev inequality, and
the Nash’s inequality with the sharp constant.
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1. Introduction

In information theory, inequalities constitute a powerful tool to solve communi-
cation theoretic problems. Due to its wide range of application, Shannon’s en-
tropy is at the basis of many of these inequalities [8]. Some deeper inequalities
were developed by Shannon himself in its pioneering 1948 paper [17]. Among
other facts, Shannon stated the entropy power inequality in order to bound the
capacity of non-Gaussian additive noise channels.

In its original version, Shannon’s entropy power inequality gives a lower
bound on Shannon’s entropy functional of the sum of independent n-dimensional
random variables X , Y with densities
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with equality if X and Y are Gaussian random variables. In inequality (1),
Shannon’s entropy of a random variable X with density is defined as

HðX Þ ¼ Hð f Þ ¼ �
Z
Rn

f ðvÞ log f ðvÞ dv:ð2Þ

Note that Shannon’s entropy coincides with Boltzmann’s H-functional up to a
change of sign [6]. The entropy-power

NðX Þ ¼ Nð f Þ ¼ exp
�2
n
HðX Þ

�
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(variance of a Gaussian random variable with the same Shannon’s entropy
functional) is maximum and equal to the variance when the random variable is
Gaussian, and thus, the essence of (1) is that the sum of independent random var-
iables tends to be more Gaussian than one or both of the individual components.

An interesting property of the entropy power has been discovered in 1985 by
Costa [7]. Let f ðv; tÞ denote the solution to the Cauchy problem for the heat
equation

qf ðv; tÞ
qt

¼ Df ðv; tÞ;ð4Þ

posed in the whole space [9], corresponding to the initial value f ðvÞ, which we
assume to be a probability density function. Note that for tb 0, the solution
to the heat equation (4) can be written as f ðv; tÞ ¼ f �M2tðvÞ, where as usual �
denotes convolution, and MtðvÞ is the Gaussian density in Rn of variance nt

MtðvÞ ¼
1
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Costa [7] proved that, for any given probability density function f di¤erent from
the Gaussian density, Nð f �M2tÞ is a concave function of time

d 2

dt2
Nð f �M2tÞa 0:ð6Þ

The concavity property of entropy power outlines a new property of Gaussian
functions. Indeed, the entropy power of a Gaussian function coincides with its
variance, so that the entropy power of the fundamental solution to the heat equa-
tion is a linear function of time. This linearity is restricted to Gaussian densities.

Later, the original proof of Costa [7] has been simplified in [10, 11], by an ar-
gument based on the Blachman-Stam inequality [3]. More recently, a short and
physically relevant proof has been obtained by Villani [22], resorting to some
old ideas of McKean [15]. The proof of Villani establishes a deep link between
the concavity of entropy power and the logarithmic Sobolev inequality. It is re-
markable that the same ideas of McKean have been seminal for a new proof of
logarithmic Sobolev inequality published some years ago [19].

The concavity of entropy power involves the solution to the heat equation.
This basic fact includes the concavity of entropy power in the set of inequalities
which, in alternative to other ways of proof, can be derived by means of the heat
equation. Indeed, the linear di¤usion equation [20] represents a powerful instru-
ment to obtain a number of mathematical inequalities in sharp form.

This maybe not so well-known property goes back more or less to half a
century ago, when independently from each others, researchers from information
theory [18, 3], kinetic theory [15], and probability theory [14], established a useful
connection between Boltzmann’s H-functional and Fisher information exactly by
means of the solution to the heat equation.

In this note, we proceed along the same lines to show that the concavity of
entropy power (a property of the solution to the heat equation) allows to prove
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as corollaries important inequalities, like the logarithmic Sobolev inequality and
Nash’s inequality in sharp form.

Connections between the logarithmic Sobolev inequality and Nash’s inequal-
ity in sharp form are well known. Beckner [1, 2] used the former to prove the
latter inequality with a sharp constant, thus obtaining Nash’s inequality from
an argument di¤erent from the argument used by Carlen and Loss [4]. The best
constant for Nash’s inequality was indeed calculated by Carlen and Loss, who
observed that this inequality is equivalent to the Poincaré inequality in a suitable
ball of Rn.

The next Section is devoted to the proof of the concavity of entropy power.
We will be mainly concerned with the key ideas behind this proof, as well as to
the analogies between this proof and analogous ones based on the solution to the
heat equation.

Section 3 will be devoted to show that the logarithmic Sobolev inequality is a
direct consequence of the concavity of entropy power, which in some cases allows
to prove the previous inequality with a remainder.

Last, in Section 4 we will show how Nash’s inequality with a sharp constant
follows from the concavity of entropy power. The proof is very simple, and
makes use only of elementary inequalities, as well as of well-known properties
of the logarithmic function.

2. The concavity of entropy power

In the rest of this Section, for any given probability density function f ðvÞ, we will
denote by f ðv; tÞ the solution to the Cauchy problem for the heat equation (4),
posed in the whole space, such that f ðv; t ¼ 0Þ ¼ f ðvÞ.

The proof of concavity then requires to evaluate, for any time t > 0, two time
derivatives of the entropy power of f ðv; tÞ. The first derivative of the entropy
power is easily evaluated resorting to the so–called DeBruijn’s identity

Ið f ðtÞÞ ¼ d

dt
Hð f ðtÞÞ; t > 0;ð7Þ

which connects Shannon’s entropy functional with the Fisher information of a
random variable with density

IðXÞ ¼ Ið f Þ ¼
Z
Rn

j‘f ðvÞj2

f ðvÞ dv:ð8Þ

Using identity (7) we get

d

dt
Nð f ðtÞÞ ¼ 2

n
exp

2

n
Hð f ðtÞÞ

� �
d

dt
Hð f ðtÞÞ

¼ 2

n
exp

2

n
Hð f ðtÞÞ

� �
Ið f ðtÞÞ:

85an information-theoretic proof of nash’s inequality



Hence
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Let us set

1ð f Þ ¼ exp
2
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� �
Ið f Þ:ð9Þ

Then, the concavity of entropy power can be rephrased as the decreasing in time
property of the functional 1ð f ðtÞÞ along the solution to the heat equation. If

�Jð f ðtÞÞ ¼ dIð f ðtÞÞ
dt

;ð10Þ

denotes the derivative of Fisher information along the solution to the heat equa-
tion, we obtain
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Hence, 1ð f ðtÞÞ is non increasing if and only if

Jð f ðtÞÞb 2

n
Ið f ðtÞÞ2:ð11Þ

It is interesting to remark that, aiming in proving the old conjecture that sub-
sequent derivatives of Boltzmann’s H-functional, evaluated on the solution to
heat equation, alternate in sign, the functional Jð f ðtÞÞ was first considered by
McKean [15]. In one dimension, inequality (11) is essentially due to him. Let us
repeat his highlighting idea. In the one dimensional case one has

Ið f Þ ¼
Z
R

f 0ðvÞ2

f ðvÞ dv;

while

Jð f Þ ¼ 2
�Z

R

f 00ðvÞ2

f ðvÞ dv� 1

3

Z
R

f 0ðvÞ4

f ðvÞ3
dv
�
:ð12Þ

McKean observed that Jð f Þ is positive. In fact, resorting to integration by parts,
Jð f Þ can be rewritten as

Jð f Þ ¼ 2

Z
R

� f 00ðvÞ
f ðvÞ � f 0ðvÞ2

f ðvÞ2
�2

f ðvÞ dvb 0:ð13Þ
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Having this formula in mind, consider that, for any constant l > 0

0a 2

Z
R

� f 00ðvÞ
f ðvÞ � f 0ðvÞ2

f ðvÞ2
þ l

�2
f ðvÞ dv

¼ Jð f Þ þ 2l2 þ 4l

Z
R

�
f 00ðvÞ � f 0ðvÞ2

f ðvÞ

�
dv ¼ Jð f Þ þ 2l2 � 4lIð f Þ:

Choosing l ¼ Ið f Þ shows (11) for n ¼ 1.
Note that equality in (11) holds if and only if f is a Gaussian density. In fact,

the condition

f 00ðvÞ
f ðvÞ � f 0ðvÞ2

f ðvÞ2
þ l ¼ 0;

can be rewritten as

d 2

dv2
log f ðvÞ ¼ �l;

which corresponds to

log f ðvÞ ¼ �lv2 þ bvþ c:ð14Þ

Joining condition (14) with the fact that f ðvÞ has to be a probability density, we
conclude.

The argument of McKean was used by Villani [22] to obtain (11) for n > 1. In
the general n-dimensional situation, Villani proved the formula
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By means of (15), the nonnegative quantity
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with the choice l ¼ Ið f Þ=n, allows to recover inequality (11) for n > 1. This
proves the concavity property of entropy power.

To show that the concavity of entropy power has significant consequences, we
need to outline a further property of the functional 1ð f Þ [20]. Given a function
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gðvÞb 0, v a Rn, let us consider the scaling (dilation)

gðvÞ ! gaðvÞ ¼ angðavÞ; a > 0;ð16Þ

which preserves the total mass of the function g. By direct inspection, it is imme-
diate to conclude that Shannon’s entropy (2) is such that, if the probability den-
sity fa is defined as in (16)

Hð faÞ ¼ Hð f Þ � n log a:ð17Þ

Since Fisher’s information (8) scales according to

Ið faÞ ¼
Z
Rn

j‘faðvÞj2

faðvÞ
dv ¼ a2

Z
Rn

j‘f ðvÞj2

f ðvÞ dv ¼ a2Ið f Þ;ð18Þ

one concludes that the functional 1ð f ðtÞÞ is invariant with respect to the scaling
(16) of the solution f ðv; tÞ of the heat equation. Therefore, for any constant
a > 0

1ð f ðtÞÞ ¼ 1ð faðtÞÞ:ð19Þ

Property (19) allows to identify the long-time behavior of the functional 1ð f ðtÞÞ.
Unless the initial value f ðvÞ in the heat equation is a Gaussian function, the func-
tional 1ð f ðtÞÞ is monotone decreasing, and it will reach its eventual minimum
value as time t ! l. The computation of the limit value uses in a substantial
way the scaling invariance property. In fact, at each time t > 0, the value of
1ð f ðtÞÞ does not change if we scale the argument f ðv; tÞ according to

f ðv; tÞ ! Fðv; tÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t

p
Þn f ðv

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2t

p
; tÞ;ð20Þ

which is such that the initial value f ðvÞ is left unchanged. On the other hand, it is
well-known that (cfr. for example [5])

lim
t!l

F ðv; tÞ ¼ M1ðvÞð21Þ

where, according to (5) M1ðvÞ is the Gaussian density in Rn of variance equal
to n. Likewise, the limit value of 1ð f ðtÞÞ does not change if we scale the
limit Gaussian function according to (16) in order to have a variance di¤er-
ent from one. Therefore, passing to the limit one obtains, for any s > 0, the
inequality

1ð f Þb1ðMsÞ;

or, what is the same

exp
2

n
Hð f Þ

� �
Ið f Þb exp

2

n
HðMsÞ

� �
IðMsÞ:ð22Þ

88 g. toscani



3. The logarithmic Sobolev inequality

Inequality (22) has various important consequences. First, let us rewrite it in the
form

Ið f Þ
IðMsÞ

b exp � 2

n
ðHð f Þ �HðMsÞÞ

� �
:ð23Þ

Since

IðMsÞ ¼
n

s
;

while

HðMsÞ ¼
n

2
log 2psþ n

2
;

using that e�x b 1� x, we obtain from (23)

Z
Rn

f ðvÞ log f ðvÞ dvþ nþ n

2
log 2psa

s

2

Z
Rn

j‘f ðvÞj2

f ðvÞ dv:ð24Þ

Inequality (24) is nothing but the logarithmic Sobolev inequality by Gross [12],
written in an equivalent form.

Consider now the case in which the probability density f ðvÞ of the random
variable X is such that the second moment of X is bounded. Then, for any s
such that

sb
1

n

Z
Rn

jvj2 f ðvÞ dv;ð25Þ

it holds

�Hð f Þ þHðMsÞ ¼
Z
Rn

f ðvÞ log f ðvÞ dv�
Z
Rn

MsðvÞ logMsðvÞ dv

¼
Z
Rn

f ðvÞ log f ðvÞ
MsðvÞ

dvþ 1

2s

Z
Rn

jvj2ðMs � f ðvÞÞ dv

b

Z
Rn

f ðvÞ log f ðvÞ
MsðvÞ

dv:

By the Csiszar-Kullback inequality [13]

2

Z
Rn

f ðvÞ log f ðvÞ
MsðvÞ

dvb k f �Msk2L1 :ð26Þ
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By expanding the right-hand side of inequality (23) up to the second order, we
end up with the inequality

s

2

Z
Rn

j‘f ðvÞj2

f ðvÞ dv�
Z
Rn

f ðvÞ log f ðvÞ dvþ nþ n

2
log 2psb

n2

8
k f �Msk4L1 :ð27Þ

The right-hand side of (27) constitutes an improvement of the logarithmic
Sobolev inequality, in that, at least when the density function involved into in-
equality (23) has bounded second moment, and it is di¤erent from a Gaussian den-
sity, it is possible to quantify the positivity of the di¤erence between the right and
left sides of (23) in terms of the distance of it from the manifold of the Gaussian
densities, with a precise estimate of this distance in terms of the L1-norm.

4. Nash’s inequality revisited

A second interesting consequence of the concavity of entropy power is a new
proof of Nash’s inequality [16]. To this aim, note that the right-hand side of in-
equality (22), thanks to the scaling invariance property of 1ð f Þ, does not depend
of s. The choice

s ¼ s ¼ ð2peÞ�1;ð28Þ

gives

IðMsÞ ¼ 2pen;

and

HðMsÞ ¼ 0:

Thus, substituting the value s ¼ s in (22) we obtain the inequality

exp
2

n
Hð f Þ

� �
Ið f Þb 2pen:ð29Þ

Inequality (29) is know under the name of Isoperimetric Inequality for Entropies
(cfr. [11] for a di¤erent proof ).

The case in which f ðvÞb 0 is a density of mass di¤erent from 1, leads to a
modified inequality. Let us set

m ¼
Z
Rn

f ðvÞ dv:

Then, the function fðvÞ ¼ f ðvÞ=m is a probability density, which satisfies (29).
Therefore
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IðmfÞ ¼ mIðfÞb mIðMsÞ exp
2

n
HðMsÞ

� �
exp � 2

n
HðfÞ

� �
ð30Þ

¼ mIðMsÞ exp
2

n
ðHðMsÞ � log mÞ

� �
exp � 2

n
ðHðfÞ � log mÞ

� �

¼ mIðMsÞ exp
2

n

1

m
HðmMsÞ

� �
exp � 2

n

1

m
HðmfÞ

� �
:

In (30) we used the identity

HðmfÞ ¼ mHðfÞ � m log m:

Setting now s ¼ s, as given by (28), we conclude with the inequality

Ið f Þb 2penk f kL1 exp � 2

nk f kL1

½Hð f Þ � k f kL1 log k f kL1 �
� �

;ð31Þ

which clearly holds for any integrable function f ðvÞb 0.
Given a probability density function gðvÞ, let us set f ðvÞ ¼ g2ðvÞ. In this

case

Hð f Þ ¼ Hðg2Þ ¼ �
Z
Rn

g2ðvÞ log g2ðvÞ dv ¼ �2

Z
Rn

ðgðvÞ log gðvÞÞgðvÞ dv:

Since the function hðrÞ ¼ r log r is convex, and kgkL1 ¼ 1, Jensen’s inequality
implies

�Hðg2Þb 2

Z
Rn

g2ðvÞ dv log
Z
Rn

g2ðvÞ dv:ð32Þ

Using (32) into (31) gives

Iðg2Þb 2pen

Z
Rn

g2ðvÞ dv eð2=nÞ log
R
Rn g

2ðvÞ dv ¼
�Z

Rn

g2ðvÞ dv
�1þ2=n

:ð33Þ

Using the identity

Iðg2Þ ¼ 4

Z
Rn

j‘gðvÞj2 dv

we obtain from (33) the classical Nash’s inequality in sharp form

�Z
Rn

g2ðvÞ dv
�1þ2=n

a
2

pen

Z
Rn

j‘gðvÞj2 dvð34Þ
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Inequality (34) clearly holds for all probability density functions gðvÞ. Note that,
if kgkL1 A 1, (34) implies

�Z
Rn

g2ðvÞ dv
�1þ2=n

a
2

pen

�Z
Rn

jgðvÞj dv
�4=n Z

Rn

j‘gðvÞj2 dv:ð35Þ

The constant 2=ðpenÞ in (35) is sharp.

5. Conclusions

The concavity of entropy power is a property of Shannon’s entropy which has un-
expected consequences in terms of functional inequalities. In this paper we made
explicit the links between this property and the logarithmic Sobolev inequality by
Gross [12], as well as Nash’s inequality [16]. In both cases, the concavity of en-
tropy power allows to obtain these inequalities in sharp form. Moreover, in the
case of the logarithmic Sobolev inequality, it is shown that, for densities with
bounded second moment, it is possible to give a precise estimate of the distance
between the density and the manifold of Gaussian functions, which are known to
saturate the inequality. Also, the clearness of the physical idea, and the relative
simplicity of the underlying computations, are in favor of the information-
theoretic proof of these inequalities.
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