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ABSTRACT. — Representations for the sharp coefficient in an estimate of the modulus of the n-th
derivative of an analytic function in the unit disk D are obtained. It is assumed that the boundary
value of the real part of the function on 0D belongs to L?. The maximum of a bounded factor in the
representation of the sharp coeflicient is found. Thereby, a pointwise estimate of the modulus of the
n-th derivative of an analytic function in D with a best constant is obtained. The sharp coefficient in
the estimate of the modulus of the first derivative in the explicit form is found. This coefficient is
represented, for p € (1, 00), as the product of monotonic functions of |z|.
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0. INTRODUCTION

In this paper we deal with a class of analytic functions in the unit disk D =
{z € C: |z| < 1} represented by the Schwarz formula (see, e.g. Levin [7])

0.1) 1) =) +5- [ Rl

=1 —2

and such that the boundary values on ¢D of the real part of f belong to the space
L?(0D), 1 < p < co. Here and henceforth we use the same notation D for the
unit disk in R? and C. In what follows, by #”(D), 1 < p < oo, we mean the
Hardy space of harmonic functions in the real unit disk D which are represented
by the Poisson integral with a density in L”(dD). Thus, we consider analytic
functions in D with Rf € A7(D). We shall adopt the notation |z| =r < 1.

We consider the inequality

(0.2) [R{e™f ()} < Hup(z, ) IR,
with the sharp coefficient #, ,(z,«), where n > 1, z € D and || - ||, stands for the

norm in L?(dD). Here and in what follows we adopt the notation ||%/]|, for
IR |snll,- We find representations for J, ,(z,«) and for the sharp coefficient
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H, p(z) in the inequality

(0.3) F @) < Ay (IR

In the case n =1 and p € (1, 0), we factorize the coefficient #7 ,(z) with two
explicit monotonic functions of r. For higher order derivatives, we find upper
estimates for ., ,(z) with a sharp constant depending only on p.

The present paper extends the topics of the monograph [4] by Kresin and
Maz’ya, where explicit formulas

n!
04 Hoa1(z = a
( ) ,1( ) n<1_r)n+l
and
(0.5) Hna(2) L n (”)2 2
. n2(z) = r
2 VAl _rz)(2n+l)/2 £\ k
were found.
The expression for the sharp coefficient
4
0.6 H o (2) = ——
(0.6) 1o (2) n(l —r?)

is due to D. Khavinson [3].

Sharp pointwise estimates for derivatives of analytic functions from the Hardy
space H?(D) were obtained by Makintyre and Rogosinski [8] and Szasz [9] for
different values of p.

Note that inequalities (0.2) and (0.3) for analytic functions belong to the class
of sharp real-part theorems in the disk (see [4] and references there) which go
back to Hadamard’s real-part theorem [1]. Sharp real-part estimates for deriva-
tives of analytic functions in a half-plane are derived by Kresin and Maz’ya [5, 6].

Now we describe the results of this paper in more detail. Introduction is fol-
lowed by three sections. The first of them concerns representations for the sharp
coefficients ., ,(z,o) and J, ,(z). In particular, we show that the sharp coeffi-
cient in (0.2) can be written in the form

n!

(07) %[,p(z7 Of) = n(l B r) (np+1)/P(1 + l") (p—1)/p

Kn,p(za O‘)>

where

1
1+ (£ tan lp)z)(nﬂ)q/zl dxp} e

n/2
(0.8) Ky p(z,2) = {2/ D (; 2, oc)|q< T+ tan?

/2
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and @, (; z, a) is defined by

(0.9) @,(;z,a) =cos|(n+ 1)y +(n—1) arctan(i—;: tan 1,0) +o— nS]

with $ =argz, 1/p+1/g=1.

A consequence of (0.7)—(0.9) is a limit relation for the sharp coefficient ., ,(z)
in a pointwise estimate (0.3) for the modulus of the n-th derivative of an analytic
function in a disk as the point approaches the boundary circle:

Eim(1 —r) "7, ,(2) = 2,

where
n! n/2 1/q
Dyp=— mﬁax / lcos(B + (n+ 1)g)|Ycos™ 42 pdp b .
’ T —n/2

Besides, we obtain the relation

sup sup (1 — |z)"7|f 0 (z)] > 240 g, .
j2|<t %], <1

In Section 2 we find the value

1/q
2 /ml (L
Ay =max max K, ,(z,0) = {M}

e re)

and thus arrive at the pointwise real-part estimate of the type

n\x,
n(l — r)(np+1)/p(1 +r) (p=1)/p

(0.10) 1"(2) < %1,

with the best possible constant. In particular, %, = 1, #5 = /7, 4, = 4.
Section 3 concerns the case n = 1 and the explicit formula for the best coeffi-

cient K ,(z) in the inequality

(0.11) ()] < 1RSI,

y4
n(l _ r)(p+1)/ﬂ(1 +r) p—1)/p
where the factor
Klﬁp(Z) = max Klﬁp(z, OC)
is a decreasing function of r € [0, 1] for any p € (1, o). We prove the formulas
1/p

(147 2 (p-1)y 2 % T(k+35) o
Kl,p(Z)—m{zﬁ;( 2k )(1+r2) F(k+1:1’)

2p—2
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forl < p <2, and
Ky p(2)

BT L R T NV N A S R L
EETEL {21"(2p_2>;< 2% )(1+r2) F(k+1+2ﬁ)

for 2 < p < oo. The series in k becomes a finite sum for p = 2m + 1)/(2m) or
p=(2m+2)/(2m+ 1), where m is a positive integer. The maximum of the func-
tion K ,(z, o) defined by (0.8) with n =1 is attained for « = 3if 1 < p <2 and
for o = 3+ (n/2) if 2 < p < 0. The coeflicients K; »(z,«) and K (z, «) are in-
dependent of a.

A direct corollary of (0.11) is the following inequality with the sharp coefficient

Kl’p(z)
n(l _ r)<p+1)/p(1 + r)(ﬂfl)/ﬂ

Here u is a harmonic function in the unit disk D of R? from the class 4?(D),
l<p<ow, and z=(x,y) € D. The maximum modulus of the derivative
|(Vu(z), /)| with respect to the direction / and with ||u||, < 1 is attained at the di-
rection of the normal for 1 < p < 2 and at the tangent direction for 2 < p < 0.
If p=2or p = oo, the maximum of [(Vu(z),/)| with ||luf, <1 and fixed z € D is
independent of /.

We note that the best possible constant C, in the inequality

Vu(z)| <

aall -

C
1f'(2)] < mﬂﬁfﬂp

was obtained in the work by Kalaj and Markovi¢ [2]. The last relation is a point-
wise real-part estimate of a kind different from (0.10) with » = 1. Namely, by
(0.11), C, is the maximal value of (1 + |z[)”K; ,(z) in D.

1. REPRESENTATIONS FOR SHARP COEFFICIENTS IN ESTIMATES FOR
DERIVATIVES OF ANALYTIC FUNCTIONS

The next assertion contains representations for the best coefficients in (0.2) and
(0.3).

PROPOSITION 1. Let Rf € h?(D), 1 < p < o0, and let z be an arbitrary point in
D. The sharp coefficient # ,(z, o) in the inequality

(1.1) [R{e™ ()} < o p (2, 2) RS,
is given by
(1.2) o p(z,00) = n—!H (z,0),

n(l — r2)(nﬁ+1)/p mp
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where

1/q
(1.3) H, ,(z,a) {/ |Fy(p;2,0)|9(1 + 2rcos g + )4~ ]d(p}

with
n—1 _ 1

(1.4) Fy(p;z,0) :Z(nk )rkcos[(n—k)go—i—a—nél].
k=0

Alternatively, the sharp coefficient # ,(z, ) in inequality (1.1) is given by

n!
(1.5) Honp(z,00) = (1 — r)(an)/P(l + r)(pfl)/ﬁ K p(2, ),
where
L6 K 5 /2 o 1+ (i tantp) (n+1)q/2— ld &
(1.6) K, p(z,0) = /_ﬂ/2| n (Vs 2, 0)] (m) Ve,

and the function ®,(\; z, o) is defined by formula

(1.7)  ®,(Y;z,a) = cos [(n + )y + (n— l)arctan(i _T_Z tant/;) +o— nS].

Here 3 =argz, 1/p+1/q=1.
In particular, the best coefficient in the inequality

(1.8) 7@ < A, (2)IRS,
is given by

(1.9) o p(2) = max S, p(2,00).

Proor. Differentiating with respect to the parameter z in the right-hand side of
(0.1), we obtain

n! l

My =2 = _RFQd,
10 =5 [ e @l

which leads to

) ey =L %{ﬁ}%ﬂoua.
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q 1/q
IdCI} :

Hence the best coefficient ., ,(z, o) in (1.1) is

(1.11) tﬁﬁzw—ﬁ{ﬁlﬁ%afjw}

We make the change of variable in (1.11)

| _¢=
(1.12) w:g_f
with [{] = 1. Then |w| = 1 and
1 +zw
1.13 = :
( ) ¢ w+z
Therefore,
1— |z 1
(1.14) (—z= 7|Z|_ ) = 7|Z| 5 dw.
Wz (w+2)
By (1.13) and (1.14), we can write (1.11) as
n!
(115) %7p(z’ O() = H"-,P(Zv OC)7

(1l — rz)(np+1)/p

where

1/q
(1.16) Hn,p<z,oc>={ I } |

w+ 2|
The equality (1.15) leads to (1.2). Since |w| = 1 and
(1+z2w)(w—+2) = w(iw+2)(w+2) = wlw + 2|,

(1.16) takes the form

1/q
(1.17) Iﬁﬂ;@:{/w m@%mw+a“@mw+aM“wﬂ}.
[w|=1

From this we conclude that H, ,(z,«) is a bounded function of z € D for any
q € [1,0]. A ,
Setting w = e and z = re™ in (1.17), we see that

" 1/q
Hy p(z,0) = {/ IR{e ) (¥ + re=#)"" 1V )e 4 re~t# 217 dlp} .
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Making the change of variable ¢ = { + 3 and using the 2z-periodicity of the in-
tegrand, we obtain

. . . a
(1.18) Hn,p<z,a>:{ / lﬁ%{e'<°‘"9+w><r+el¢>"1}q|r+e’¢|2<‘f”dco} |

This implies (1.3) with (1.4).
After the change of variable ¢ = 2y in (1.18) we find that

n/2 A 1/q
(1.19) Hn,p<z,a>={2 / |<I>n<w;z,oc>|‘f|r+ew|2<‘f‘W},

/2

where

i(a—n r+ezi¢ ]
(1.20) D, (y;2,0) = %{e< 9+2‘”><|r+ezl¢|> }

We are looking for the solution ¥ = ¥(r, /) of the equation

r+ eZil// _ L iy+Y)

1.21 — =
(1.21) r + 2| ¢ '
or, equivalently, of the system
(1.22) TSI sy +¥), sin 2y = sin(y + ).

V14 2rcos2y +12 V14 2rcos2y + 12

By (1.22) we have sin 2y cos(y + W) — (r + cos 2¢) sin(yy + ¥) = 0, which can be
written as sin(y — W) — rsin(y +¥) = 0. Hence

(I —r)sinyycos¥ — (1 +r)cosysin¥ =0
and therefore

|
t .
)

1
(1.23) Y= arctan(1

Combining (1.20) and (1.21), we obtain
D, (; z, o) = R{e @2 I=DWHN — cos[(n+ 1) + (n — 1)¥ + o — nd),

which together with (1.19) and (1.23) proves the equality

1/q

/2

(1.24) Hn,p<z,a>={z / / |‘Dn(lﬁ;2,a)|q(1+2VCOS2¢+r2)(”H>q/2ld'ﬂ}
—n/2
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with
®,(Y;z,0) =cos|(n+ 1)y + (n—1) arctan(i— tan 1//) +o— n.9] .

Expressing cos 2y by tany in (1.24) and using (1.1) and (1.2), we arrive at (1.5)—
(1.7). The relations (1.8) and (1.9) follow from (1.1). O

The next assertion is a direct corollary of the representation (1.5) and formulas
(1.6), (1.7) and (1.9) from Proposition 1.

COROLLARY 1. The limit relation

(1.25) im(1 = )" A, ,(2) = 20,

r—1

holds, where
! /2 1/q
(126) 2,,=— max / lcos(B + (n+ 1)p)|9cos™ V2 pdyp b .
n —n/2

REMARK 1. This result was proved in a different way by Kresin and Maz’ya [6],
where it was shown that 2, , is the sharp coefficient in inequality

2 p

(1.27) ")l < = )n+1/l7

[RiA(P

with f being an analytic function in the upper half-plane C., Rf € h? (Ri),
I <p<oo.

COROLLARY 2. The relation

(1.28) sup sup (I - |z|2)"+l/p|f(")(z)| > 2”*1/1’9@,,,1,
2<%/, <1

holds.
Proor. By (1.9)—(1.11) we have

sup (1 —[z1°)" V210 (2) = (1= |21%)" 1P oA, (2),
Iy, <1

which together with (1.5) and (1.9) implies
|
(1.29) sup (1 — [z 70 ()) = (14 [2) K, (2),
%71l <1 T '
where

K, ,(z) = max A, ,(z, o).
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We combine this with (1.6), (1.7), and pass to the limit in (1.29) as |z| — 1. This
gives

lim sup (1 — |z} ()] = 2"V g, ,
=1y, <1

with 2, , defined by (1.26). The last relation proves (1.28). O

2. A POINTWISE REAL-PART ESTIMATE FOR DERIVATIVES OF ANALYTIC
FUNCTIONS
Proposition 1 implies the inequality

(2.1) F @) < Hp (IR,

with the sharp coefficient, where

n'K, ,(z)
2.2 I, (2) = P
(2.2) #(2) (1 _r>(”l7+1)/l’(1 _|_r>(l7*1)/l’
and
(2.3) K, ,(z) = max K, ,(z, o).

The next assertion concerns the value

(2.4) Hp = max K, ,(z)

and implies (0.10) with the least possible constant.

PROPOSITION 2. Let Rf € h?(D), 1 < p < oo, and let z be an arbitrary point
in D. The best constant X, in the inequality

(n) n"%fl’ g
(2.5) o o e L
is given by
1/q
| 2yl ()
(26) ’%‘/P == KM,(O) - {T‘;Z) .

In particular,
(2.7) A =1, Hr=\/n, H,=4
PrOOF. By (1.2) and (1.5) we see that

Hn,p(za O‘)

(2.8) Ky p(z,0) = R
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which together with (1.3) implies

(29) Kop(,) < ﬁ{ JRECE a>|qd¢}l/q.

Using (1.4) and the Minkowski inequality, we find

210 { [ ines oc>|‘fd(p}l/q

rln=l q 1/q
:{/n Z( i )r"cos[(n—k)(p—i—cx—n@]‘ d(p}

n—1 n—1 n . 1/q

< kz:;( i )rk{/n |cos[(n — k)p + o — nd]| d(y} .

k=0
The integral in (2.10) can be written as

[cos y|* dyp,

n 1 (n—k)m+o—nd
I = / |cos[(n — k)p + o — nd]|?! dg _n—k/< )

n—k)n+o—n9

which, due to 2z-periodicity of the integrand, leads to

1

I =
T

(n—k)m 2n /2
/ |cos /|7 ds :/ |cos /|7 dys :4/ cos®yrdis.
—(n—k)n 0 0

Combining this with (2.9) and (2.10), we obtain

7.[/2 ]/‘1
Ky p(z,0) < {4/ cos‘]lpdlp} ,
0

which along with (2.3), (2.4) implies

n/2 1/a
(2.11) Hy < {4/ cosqlpdlp} .
0

By (2.3), (2.4), (2.8) and (1.3), (1.4) we get the lower estimate

T 1/q
% > Kn’p(O) — max Kn.p<05 O() = m?.x{/ |COS(I’I(0 + o — n19)|qd(ﬂ}

/2 1/q
- q
{4/0 cos t//d(ﬁ} ,

which together with (2.11) leads to (2.6). O
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REMARK 2. Note that in view of (2.2),
%p,p(@ = _.Kmp(o)’

where #;, ,(0) is the sharp constant in
FP)] < H, (0)|RS ],
Thus, by (2.6), one can write (2.5) as

Hnp(0)
(1-r) (nP+1)/17(1 +r) (p=1)/p

F() < [RirglFe

The sharp constant J#, ,(0) was found by Kresin and Maz’ya (see [4], Sect. 5.3).
A particular case of (2.5) with p = oo

4n!
(2.12) 6 < e W e

was derived in [4], Sect. 5.6, by a different method and without discussion of
sharpness of the constant.

3. THECASEn =1

By Proposition 1 it follows that the sharp coefficient 7 ,(z, «) in

[R{e"f ()} < 1, (2, 0 |RS 1],

is given by
o Kl,p(zy OC)
(31) Cyfliyp(z,a)_7'[(1—r)(p+1)/p(l—|—r)(p_l)/p’
where
1/q
/2 1+ (= tanlp)2 g-1
— _ q 14r

(3.2) Kiplz,a) = {2/_n/2 lcos(2y + 2= 9)]*(— Fianty )@y
and 3 =argz, 1/p+1/¢g = 1. By (1.3), (1.4), and (2.8) we can write

1 n . 1/q
(3.3) Kip(z,a) :2{/ lcos(y + o — N)|4(1 4 2rcosyy +r?)4~ dlp} :

' (1 +V) /p -

The next assertion contains an explicit expression for K ,(z) in (2.1) with
n=1.

For reader’s convenience, we give the proof of (0.4) and (0.5) with n =1 as
well as Khavinson’s formula (0.6).
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COROLLARY 3. Let Rf € h?(D), 1 < p < oo, and let z be an arbitrary point
in D.
(i) The sharp coefficient #1 ,(z) in the inequality

G4 7)< A1, IR,
is given by
(3:5) i ,(z) = Ki,p(2)

n(l — r)(ﬂH)/ﬂ(l + ,,)(pfl)/p’

where the coefficient K ,(z) is a decreasing function of r on interval [0,1] for any
pe(l,), and

_(1+r2)1/ﬁ * 1/(p—1)
(3.6) Kl,p(Z)_m{zﬁko( 2%k )

2 \2% F(k—l—iﬁ—:é) =1
><(1+r2) F(k+1+2p’%2)

forl < p <2 and

(L) [ =1y (p=1)
(3.7) Kl,p(2)=(1+r)z/p{2r(zp_z)z( 2k )

k=0
1-1
" ( 2r )2k F(k—i—%) &
L+ T(k+14325)
for2 < p < oo.
In the cases p = 1,2, and oo we have

1 VI+r? 4
i O m T MO Ty

(3.8) H(2) =

(ii) The maximum in o of the function K ,(z,a) defined by (3.2) is attained at
a=39if 1 <p<2andato=39+ (n/2)if2 < p < co. The coefficients K, »(z, o)
and K, o (z, o) are independent of a.

PRrROOF. 1. Cases p =1,2, and p = c0. By (2.3) and (3.3),

5 max sup |cos(Y + o — J)[(1 + 2rcosy +r) =1,
(L+r)° * |y<a

K171(Z> =

which together with (3.1) proves the first formula in (3.8). The maximum value in
the last equality is attained for y + « — 3 =0 and = 0, i.e., for « = .
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In view of (3.3),

_ 1 I 2 1/2_ n(l+r?)
K]’Q(Z,OC) —1—_'_”{/”005 (lp‘i‘ o — 19)(1 +2rCOSlp+V )dlp} _174—}’"
which together with (3.1) implies the second formula in (3.8) as well as indepen-
dence of K »(z,a) on o.

By (3.3),

K],oc(z,a):/ |cos(¢+a—9)|d¢:/ lcos 0] dO — 4,

which together with (3.1) shows that the third formula in (3.8) holds and that
K; o (z,0) is independent of a.

2. Cases 1 < p<2and 2 < p<oo. By (3.2), the coefficient K; ,(z,a) is a
decreasing function of r € [0, 1] for any p € (1, 00) and any fixed «. Hence the
function

Klﬁp(Z) = max Klﬁp(z, OC)
o
has the same property. Introducing the notation

(3.9) Fy(o) = /” lcos(W + )| 9(1 4 2rcosy + ) dy,
we can write (3.3) as

1
(3.10) KLP(Z,OC—Q-S) :m{Fq(a)}l/q.

The function F,(«) is n-periodic and even. Hence, while looking for its maximum
we may take o € [0, 7/2].

We differentiate (3.9) in « and take into account that partial derivatives of
|cos(¥ + a)|? in o and v are equal. Integrating by parts in

dr,

= /n(l + 2rcosy 4 1r2) 7! % |cos(yy + )| dip,

4

we obtain

%Izr(q— 1)/ lcos(y + )| (1 + 2rcos iy + r?) 12 sin yy dip.

Let us take here two integrals: over (0,7) and over (—x,0) and make the
change of variable ¢ = — in the second one. Then the sum of those integrals is

dF, §
d—oj =2r(q — 1)/ (Icos(p + a)|9 — |cos(p — a)|*)(1 + 2rcos g + r2) 4 sinp dg.
0
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Next, we integrate over (0,7/2) and (n/2,7) and make the change of variable
Y = n — ¢ in the second one. Their sum will give

dF /2 )
(3.11) d—; =2r(g—1) /O (lcos(p — a)|” — |cos(p + )| /) ¥y(p) sinp dop,
where
(3.12) ¥, (p) = (1 —2rcosp+r2)72 — (14 2rcosp + 1) 2.
Note that
(3.13) |cos(p — ) [* = [cos(p + a)|*

for o,¢ € [0,7/2]. In fact, since |cos(p — )| =cos(p —a) for o, ¢ € [0,7/2],
|cos(p + )| = cos(p + ) for ¢ + o € [0,7/2], and |cos(p + a)| = —cos(p + &) for
¢+ o € [n/2, 7], it follows that

2singsino  for ¢ +a € [0,7/2],
[cos(p — )| = [eos(p + )] = {2cos¢coso¢ for o + o € [n/2, 7],
and hence [cos(p — a)| > |cos(p + )| for o, ¢ € [0,7/2]. This implies (3.13). Be-
sides, the equality sign in (3.13) holds only for « = 0 and for o = /2 provided
that ¢ € (0,7/2).
Taking into account that the sign of the function (3.12) for ¢ € [0,7/2) is de-
rived by the relations

Y,(p) >0 forl<g<2, and WY,(p) <0 forg>2,
from (3.11) and (3.13) we obtain

dF, dF,
(3.14) d—;<0 forl < p<2, and d—;>0 for2 < p < .

Combining this with (2.3) and (3.10) we see that

Ki,(z,9) for 1 < p <2,

KLP(Z,JH—g) for2 < p < oo,

(3.15)  Kip(z) =max K ,(z,2) = {
which completes the proof of part (ii).
Thus, by (3.3) and (3.15),

1 n 1/q
(3.16) K ,(2) :—2{2/ lcos | (1 +2rcos¢+r2)q_1d(p}
' (1+n o
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forl < p<2,and

1 1/q

(B.17) Ky p(2) :m{z/ sin (1 +2rcos¢+r2)q1d¢}
r 0

for 2 < p < oo.

We write the integral in (3.16) as the sum of the integrals over (0,7/2) and
(n/2,7), and make the change of variable iy = 7 — ¢ in the second one. As a re-
sult we find

(3.18) / lcos | (1 + 2rcosp + %) dg
0

n/2
- / cos? p[(1 +2rcosg + )" + (1 = 2rcosp +r7) "] dp,
0

where p € (1,2). Using the series decomposition

(14 2rcosp+ 1’2)"71 + (1 —2rcosg+ rz)"*l

=2(1+ )" ki(qz_kl ) (%)2/{ cos* g
=0

and (3.18), we write (3.16) in the form
1/4

1 SRR e A A A
Kl”’(z)_(1+r)2/f’{4(l+r) z::( 2k )<1+r2)/0 cosTHody

which implies (3.6).
The integrand in (3.17) can be written with the help of the decomposition

2vg—1 a1~ 4—1 2r Nk g
(1+2rcosp+r)" = (1+r)! ;( i )(m) cos” o.
Evaluating the integrals in the sum, we arrive at (3.7). O

REMARK 3. Multiplying (3.16) and (3.17) by (1 + r)z/", we obtain formulas for
the sharp coefficient C; ,(z) = (1 + ENRE < »(2) in the equality

Cl,p(z)
n(l — rz)(p+1)/p’

%7,,(2) =

obtained earlier by Kalaj and Markovic [2].
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