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1. Introduction

The theory of sets of finite perimeter and BV functions in Wiener spaces, i.e.,
Banach spaces endowed with a Gaussian Borel probability measure g, was initi-
ated by Fukushima and Hino in [9, 10, 11], and has been further investigated in
[12, 1, 2, 3].

The basic question one would like to consider is the research of infinite-
dimensional analogues of the classical fine properties of BV functions and sets
of finite perimeter in finite-dimensional spaces. The class of sets of finite Gaussian
perimeter E in a Gaussian Banach space ðX ; gÞ is defined by the integration by
parts formula

Z
E

qhf dg ¼ �
Z
X

fd3DgwE ; h4H þ
Z
E

fĥh dg

for all f a C1
b ðX Þ and h a H. Here H is the Cameron-Martin space of ðX ; gÞ and

DgwE is a H-valued measure with finite total variation in X .
When looking for the counterpart of De Giorgi’s and Federer’s classical

results to infinite-dimensional spaces, it was noticed in [3] that the Ornstein-
Uhlenbeck

TtwEðxÞ :¼
Z
X

wEðe�txþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
yÞ dgðyÞ

can be used to rephrase the notion of density, the main result of that paper being

lim
t#0

Z
X

TtwE � 1

2

����
����djDgwE j ¼ 0:ð1Þ



According to this formula, we might say that jDgwE j is concentrated on the set
of points of density 1=2, where the latter set is not defined using volume ratio
in balls (as in the finite-dimensional theory), but rather the Ornstein-Uhlenbeck
semigroup.

In this paper we improve (1) as follows (we refer to Section 2.5 for the nota-
tion relative to halfspaces):

Theorem 1.1. Let E be a set of finite perimeter in ðX ; gÞ and let SðxÞ ¼ SnEðxÞ be
the halfspaces determined by nEðxÞ. Then

lim
t#0

Z
X

Z
X

jwEðe�txþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
yÞ � wSðxÞðyÞj dgðyÞdjDgwE jðxÞ ¼ 0:ð2Þ

A nice interpretation of this result can be obtained stating it in terms of the
Gaussian rescaled sets

Ex; t ¼
E � e�txffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p ;

namely

lim
t#0

Z
X

kwEx; t
� wSðxÞkL1ðgÞdjDgwE jðxÞ ¼ 0:ð3Þ

Clearly, if we pull the modulus out of the integral in (2) we recover (1), because
the measure of halfspaces is 1=2 and TtwEðxÞ ¼ gðEx; tÞ. More specifically, (3)
formalizes the fact, established by De Giorgi in finite dimensions, that on small
scales a set of finite perimeter is close to an halfspace at almost every (w.r.t. sur-
face measure).

The proof of (3) relies mainly on a combination of the careful finite-
dimensional estimates of [3] with a variant of the cylindrical construction per-
formed in [12] (with respect to [12], here we use the reduced boundary instead of
the essential boundary of the finite-dimensional sections of E).

Acknowledgements. The first author acknowledges the support of the ERC ADG GeMe-
ThNES. The second author acknowledges the support of the NSF Grant DMS-0969962.

2. Preliminary results

We assume that ðX ; k � kÞ is a separable Banach space and g is a Gaussian prob-
ability measure on the Borel s-algebra of X . We shall always assume that g is
nondegenerate (i.e., all closed proper subspaces of X are g-negligible) and

centered (i.e.,

Z
X

x dg ¼ 0). We denote by H the Cameron-Martin subspace of X ,
that is

H :¼
Z
X

f ðxÞx dgðxÞ : f a L2ðX ; gÞ
� �

;
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and, for h a H, we denote by ĥh a L2ðX ; gÞ the Fomin derivative of g along h,
namely

Z
X

qhf dg ¼ �
Z
X

ĥhf dgð4Þ

for all f a C1
b ðX Þ. Here and in the sequel C1

b ðX Þ denotes the space of continu-
ously di¤erentiable cylindrical functions in X , bounded and with a bounded gra-
dient. The space H can be endowed with a Hilbertian norm j � jH that makes the
map h 7! ĥh an isometry; furthermore, the injection of ðH; j � jHÞ into ðX ; k � kÞ is
compact.

We shall denote by ~HHHH the subset of vectors of the form

Z
X

3x�; x4x dgðxÞ; x� a X �:ð5Þ

This is a dense (even w.r.t. to the Hilbertian norm) subspace of H. Furthermore,
for h a ~HH the function ĥhðxÞ is precisely 3x�; x4 (and so, it is continuous).

Given an m-dimensional subspace F H ~HH we shall frequently consider an or-
thonormal basis fh1; . . . ; hmg of F and the factorization X ¼ F aY , where Y is
the kernel of the continuous linear map

x a X 7! PF ðxÞ :¼
Xm
i¼1

ĥhiðxÞhi a F :ð6Þ

The decomposition x ¼ PF ðxÞ þ ðx�PF ðxÞÞ is well defined, thanks to the fact
that PF �PF ¼ PF and so x�PF ðxÞ a Y ; in turn this follows by ĥhiðhjÞ ¼
3ĥhi; ĥhj4L2 ¼ dij.

Thanks to the fact that jhijH ¼ 1, this induces a factorization g ¼ gF n gY ,
with gF the standard Gaussian in F (endowed with the metric inherited from H)
and gY Gaussian in ðY ; k � kÞ. Furthermore, the orthogonal complement F ? of F
in H is the Cameron-Martin space of ðY ; gY Þ.

2.1. BV functions and Sobolev spaces

Here we present the definitions of Sobolev and BV spaces. Since we will consider
bounded functions only, we shall restrict to this class for ease of exposition.

Let u : X ! R be a bounded Borel function. Motivated by (4), we say that
u a W 1;1ðX ; gÞ if there exists a (unique) H-valued function, denoted by ‘u, such
that j‘ujH a L1ðX ; gÞ and

Z
X

uqhf dg ¼ �
Z
X

f3‘u; h4H dgþ
Z
X

ufĥh dg

for all f a C1
b ðX Þ and h a H.
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Analogously, following [10, 11], we say that u a BVðX ; gÞ if there exists a
(unique) H-valued Borel measure Dgu with finite total variation in X satisfying

Z
X

uqhf dg ¼ �
Z
X

fd3Dgu; h4H þ
Z
X

ufĥh dg

for all f a C1
b ðX Þ and h a H.

In the sequel we will mostly consider the case when u ¼ wE : X ! f0; 1g is the
characteristic function of a set E, although some statements are more natural in
the general BV context. Notice the inclusion W 1;1ðX ; gÞHBVðX ; gÞ, given by
the identity Dgu ¼ ‘u g.

2.2. The OU semigroup and Mehler’s formula

In this paper, the Ornstein-Uhlenbeck semigroup Tt f will always be understood
as defined by the pointwise formula

Tt f ðxÞ :¼
Z
X

f ðe�txþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
yÞ dgðyÞð7Þ

which makes sense whenever f is bounded and Borel. This convention will be im-
portant when integrating Tt f against potentially singular measures.

We shall also use the dual OU semigroup T �
t , mapping signed measures into

signed measures, defined by the formula

3T �
t m; f4 :¼

Z
X

Ttf dm f bounded Borel:ð8Þ

In the next proposition we collect a few properties of the OU semigroup
needed in the sequel (see for instance [4] for the Sobolev case, and [2] for the
BV case).

Proposition 2.1. Let u : X ! R be bounded and Borel, and t > 0. Then
Ttu a W 1;1ðX ; gÞ and:

(a) if u a W 1;1ðX ; gÞ then, componentwise, it holds ‘Ttu ¼ e�tTt‘u;
(b) if u a BVðX ; gÞ then, componentwise, it holds ‘Ttu g ¼ e�tT �

t ðDguÞ.

The next result is basically contained in [4, Proposition 5.4.8], see also [3,
Proposition 2.2] for a detailed proof. We state it in order to emphasize that,
gY -a.e. y a Y , the regular version of the restriction of Ttu to yþ F (provided
by the above proposition) is precisely the one pointwise defined in Mehler’s
formula.

Proposition 2.2. Let u be a bounded Borel function and t > 0. With the above
notation, for gY -a.e. y a Y the map z 7! Ttuðz; yÞ is smooth in F.
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The next lemma provides a rate of convergence of Ttu to u when u belongs
to BVðX ; gÞ; the proof follows the lines of the proof of Poincaré inequalities, see
[3, Lemma 2.3], [4, Theorem 5.5.11].

Lemma 2.3. Let u a BVðX ; gÞ. ThenZ
X

Z
X

juðxÞ � uðe�txþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
yÞj dgðxÞ dgðyÞa ctjDgujðXÞð9Þ

with ct :¼
ffiffi
2
p

q Z t

0

e�sffiffiffiffiffiffiffiffiffiffiffi
1�e�2s

p ds, ct P 2
ffiffiffiffiffiffiffi
t=p

p
as t # 0. In particular

Z
X

jTtu� uj dga ctjDgujðXÞ:

Let us now recall the fundamental facts about sets of locally finite perimeter
E in Rm. De Giorgi called reduced boundary of E the set FE of points in the
support of jDwE j satisfying

bnEðxÞ :¼ lim
r#0

DwEðBrðxÞÞ
jDwE jðBrðxÞÞ

and jnEðxÞj ¼ 1:

By Besicovitch theorem, jDwE j is concentrated on FE and DwE ¼ nE jDwE j. The
main result of [6] are: first, the blown-up sets

E � x

r
ð10Þ

converge as r # 0 locally in measure, and therefore in L1ðGmL
mÞ, to the half-

space SnEðxÞ having nE as inner normal; second, this information can be used to
show that FE is countably Sm�1-rectifiable, namely there exist countably many
C1 hypersurfaces Gi HRm such that

Sm
�
FE

�[
i

Gi

�
¼ 0:

In the following results we assume that ðX ; gÞ is an m-dimensional Gaussian
space; if we endow X with the Cameron-Martin distance d, then ðX ; g; dÞ is
isomorphic to ðRm;GmL

m; k � kÞ, k � k being the euclidean distance. Under this
isomorphism, we have DgwE ¼ GmDwE whenever E has finite Gaussian perimeter,
so that jDwE j is finite on bounded sets and E has locally finite Euclidean perime-
ter. Since this isomorphism is canonical, we can and shall use it to define FE also
for sets with finite perimeter in ðX ; gÞ (although a more intrinsic definition along
the lines of the appendix of [3] could be given).

Having in mind the Ornstein-Uhlenbeck semigroup, the scaling (10) now be-
comes

Ex; t :¼
E � e�txffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p ;ð11Þ
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so that

TtwEðxÞ ¼ gðEx; tÞ:

It corresponds to the scaling (10) with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
P

ffiffiffiffi
2t

p
and with eccentric

balls, whose eccentricity equals xðe�t � 1Þ. Since e�t � 1 ¼ OðtÞ ¼ oðrÞ, this
eccentricity has not e¤ect in the limit and allows to rewrite, arguing as in
[3, Proposition 3.1], the Euclidean statement in Gaussian terms:

Proposition 2.4. Let ðX ; gÞ be an m-dimensional Gaussian space and EHX of
finite Gaussian perimeter. Then, for jDgwE j-a.e. x a X the rescaled sets Ex; t in (11)
converge in L2ðgÞ to SnE ðxÞ.

This way, we easily obtain the finite-dimensional version of Theorem 1.1.
As in [3], the following lemma (stated with the outer integral in order to avoid

measurability issues) plays a crucial role in the extension to infinite dimensions:

Lemma 2.5. Let ðX ; gÞ be a finite-dimensional Gaussian space, let ðY ;F ; mÞ be
a probability space and, for t > 0 and y a Y, let gt;y : X ! ½0; 1� be Borel maps.
Assume also that:

(a) fsygy AY are positive finite Borel measures in X, with

Z �

Y

syðXÞ dmðyÞ finite;

(b) sy ¼ GmS
m�1 Gy for m-a.e. y, with Gy countably Sm�1-rectifiable.

Then

lim sup
t#0

Z �

Y

Z
X

Ttgt;yðxÞ dsyðxÞ dmðyÞð12Þ

a lim sup
t#0

1ffiffi
t

p
Z �

Y

Z
X

gt;yðxÞ dgðxÞ dmðyÞ:

The proof, given in detail in [3, Lemma 3.4], relies on the heuristic idea that in
an m-dimensional Gaussian space ðX ; gÞ, for the adjoint semigroup T �

t (i.e. the
one acting on measures) we haveffiffi

t
p

T �
t ðGmS

m�1 GÞa ð1þ oð1ÞÞg

whenever G is a C1 hypersurface. This is due to the fact in the case when G is flat,
i.e. G is an a‰ne hyperplane, the asymptotic estimate above holds, and that for a
non-flat surface only lower order terms appear. In the flat case, using invariance
under rotation and factorization of the semigroup (see the next section) one is left
to the estimate of

ffiffi
t

p
T �
t s when X ¼ R and s is a Dirac mass. Then, considering

for instance s ¼ d0, a simple computation gives

ffiffi
t

p
T �
t ðGmð0Þd0Þ ¼

1

2p

ffiffi
t

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p e�jyj2=ð1�e�2tÞL1
a

1

2
ffiffiffiffiffi
2p

p gþ oð1Þ as t # 0:

(See the proof [3, Lemma 3.4] for more details.)
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2.3. Factorization of Tt and Dgu

Let us consider the decomposition X ¼ F aY , with F H ~HH finite-dimensional.
Denoting by T F

t and TY
t the OU semigroups in F and Y respectively, it is easy

to check (for instance first on products of cylindrical functions on F and Y , and
then by linearity and density) that also the action of Tt can be ‘‘factorized’’ in the
coordinates x ¼ ðz; yÞ a F � Y as follows:

Tt f ðz; yÞ ¼ TY
t ðw 7! T F

t f ð�;wÞðzÞÞðyÞð13Þ

for any bounded Borel function f .
Let us now discuss the factorization properties of Dgu. First of all, we can write

Dgu ¼ nujDguj with nu : X ! H Borel vectorfield satisfying jnujH ¼ 1 jDguj-a.e.
Moreover, given a Borel set B, define

By :¼ fz a F : ðz; yÞ a Bg; Bz :¼ fy a Y : ðz; yÞ a Bg:

The identity

Z
B

jpF ðnuÞjdjDguj ¼
Z
Y

jDgF uð�; yÞjðByÞ dgY ðyÞð14Þ

is proved in [2, Theorem 4.2] (see also [1, 12] for analogous results), where
pF : H ! F is the orthogonal projection. Along the similar lines, one can also
show the identity

Z
B

jpF ?ðnuÞjdjDguj ¼
Z
F

jDgY uðz; �ÞjðBzÞ dgF ðzÞð15Þ

with pF þ pF ? ¼ Id. In the particular case u ¼ wE , with the notation

Ey :¼ fz a F : ðz; yÞ a Eg; Ez :¼ fy a Y : ðz; yÞ a Egð16Þ

the identities (14) and (15) read respectively as

Z
B

jpF ðnEÞjdjDgwE j ¼
Z
Y

jDgF wEy
jðByÞ dgY ðyÞ for all B Borel;ð17Þ

Z
B

jpF ?ðnEÞjdjDgwE j ¼
Z
F

jDgY wEz
jðBzÞ dgF ðzÞ for all B Borelð18Þ

with DgwE ¼ nE jDgwE j.

Remark 2.6. Having in mind (17) and (18), it is tempting to think that the for-
mula holds for any orthogonal decomposition of H (so, not only when F H ~HH),
or even when none of the parts if finite-dimensional. In order to avoid merely
technical complications we shall not treat this issue here because, in this more gen-
eral situation, the ‘‘projection maps’’ x 7! y and x 7! z are no longer continuous.
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However, the problem can be solved removing sets of small capacity, see for in-
stance [8] for a more detailed discussion.

2.4. Finite-codimension Hausdor¤ measures

Following [8], we start by introducing pre-Hausdor¤ measures which, roughly
speaking, play the same role of the pre-Hausdor¤ measures Sn

d in the finite-
dimensional theory.

Let F H ~HH be a finite-dimensional subspace of dimension m, and for k a N,
0a kam, we define (with the notation of the previous section)

Sl�k
F ðBÞ :¼

Z
Y

Z
By

Gm dSm�k dgY ðyÞ for all B Borel;ð19Þ

where Gm is the standard Gaussian density in F (so that Sl�0
F ¼ g). It is proved

in [8] that y 7!
Z
By

Gm dSm�k is gY -measurable whenever B is Suslin (so, in

particular, when B is Borel), therefore the integral makes sense. The first key
monotonicity property noticed in [8], based on [7, 2.10.27], is

Sl�k
F ðBÞaSl�k

G ðBÞ whenever F HGH ~HH;

provided Sm�k in (19) is understood as the spherical Hausdor¤ measure of
dimension m� k in F . This naturally leads to the definition

Sl�kðBÞ :¼ sup
F

Sl�k
F ðBÞ; B Borel;ð20Þ

where the supremum runs among all finite-dimensional subspaces F of ~HH. Notice
however that, strictly speaking, the measure defined in (20) does not coincide
with the one in [8], since all finite-dimensional subspaces of H are considered
therein. We make the restriction to finite-dimensional subspaces of ~HH for the rea-
sons explained in Remark 2.6. However, stillSl�k is defined in a coordinate-free
fashion.

These measures have been related for the first time to the perimeter measure
DgwE in [12]. Hino defined the F -essential boundaries (obtained collecting the
essential boundaries of the finite-dimensional sections Ey HF � fyg)

q�
FE :¼ fðz; yÞ : z a q�Eygð21Þ

and noticed another key monotonicity property (see also [2, Theorem 5.2])

Sl�1
F ðq�

FEnq�
GEÞ ¼ 0 whenever F HGH ~HH:ð22Þ

Then, choosing a sequence F ¼ fF1;F2; . . .g of finite-dimensional subspaces of ~HH
whose union is dense he defined

Sl�1
F :¼ sup

n
Sl�1

Fn
; q�

FE :¼ lim inf
n!l

q�
Fn
E;ð23Þ
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and showed that

jDgwE j ¼ Sl�1
F q�

FE:ð24Þ

In order to prove our main result we will follow Hino’s procedure, but work-
ing with the reduced boundaries in place of the essential boundaries.

2.5. Halfspaces

Let h a H and ĥh be its corresponding element in L2ðX ; gÞ. Then there exist a
linear subspace X0 HX such that gðXnX0Þ ¼ 0 and a representative of ĥh which
is linear in X0. Indeed, let hn ! h in L2ðX ; gÞ with ĥhn a X �. It is not restrictive
to assume that ĥhn ! ĥh g-a.e. in X , so if we define

X0 :¼ fx a X : ĥhnðxÞ is a Cauchy sequenceg

we find that X0 is a vector space of full g-measure and that the pointwise limit of
ĥhn provides a version of h, linear in X0.

Having this fact in mind, it is natural to define halfspaces in the following
way.

Definition 2.7. Given a unit vector h a H we shall denote by Sh the halfspace
having h as ‘‘inner normal’’, namely

Sh :¼ fx a X : ĥhðxÞ > 0g:ð25Þ

Proposition 2.8. For any Sh halfspace it holds gðShÞ ¼ 1=2, PðShÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2pÞ

p
,

and DwSh
¼ hjDwSh

j. Furthermore, the following implication holds:

lim
n!l

jhn � hj ¼ 0 ) lim
n!l

wShn
¼ wSh

:

Proof. Let us first show that convergence of hn to h implies convergence of the
corresponding halfspaces. Since for all e > 0 it holds

fĥhn > 0gnfĥh > 0gH ðfĥhn > 0gnfĥh > �egÞA fĥh a ð�e; 0Þg
H fjĥhn � ĥhj > egA fĥh a ð�e; 0Þg

and since the convergence of ĥhn to ĥh in L2ðX ; gÞ implies gðfjĥhn � ĥhj > egÞ ! 0 we
obtain

lim sup
n!l

gðfĥhn > 0gnfĥh > 0gÞa gðĥh�1ð�e; 0ÞÞ:

Now, since ĥh has a standard Gaussian law and e is arbitrary it follows that
gðfĥhn > 0gnfĥh > 0gÞ ! 0. A similar argument (because the laws of all ĥhn are
standard Gaussian) yields gðfĥh > 0gnfĥhn > 0gÞ ! 0.
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Now, if g is the standard Gaussian in X ¼ H ¼ Rn and Sh is a halfspace, it is
immediate to check that gðShÞ ¼ 1=2. In addition, since DgwSh

¼ hjDgwSh
j and

ĥhðxÞ ¼ 3h; x4, we can use E ¼ Sh and fC 1 in the integration by parts formula

Z
E

qhf dgþ
Z
X

fd3h;DgwE4 ¼
Z
E

ĥh dg

to get jDgShjðX Þ ¼
Z
Sh

3h; x4 dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2pÞ

p
. By a standard cylindrical approxi-

mation we obtain that gðShÞ ¼ 1
2 , Sh has finite perimeter, and DwSh

¼ hjDwSh
j in

the general case. r

2.6. Convergence to halfspaces

In this section we prove Theorem 1.1. We consider an increasing family of sub-
spaces Fn H ~HH and, for any n, we consider the corresponding decomposition
x ¼ ðx1; x2Þ with x1 a Fn and x2 a Yn. Denote by g ¼ gn � g?n the corresponding
factorization of g. Then, adapting the definition of boundary given in Hino’s
work [12] (with reduced in place of essential boundary) we define

FHE :¼ lim inf
n!l

Bn where Bn ¼ fx ¼ ðx1; x2Þ : x1 a FEx2g

(recall that Ex2 ¼ fx1 a Fn : ðx1; x2Þ a Eg). We also set Cn ¼
T

mbn Bm, so that
Cn " FHE as n ! l. Recall that by (14) the measure sn :¼ jpFn

ðnEÞj jDgwE j is
concentrated on Bn, because by De Giorgi’s theorem the derivative of finite-
dimensional sets of finite perimeter is concentrated on the reduced boundary.
Since sn is nondecreasing with respect to n, sn is concentrated on all sets Bm

with mb n, and therefore on Cn. It follows that jDgwE j ¼ supn sn is concentrated
on FHE, one of the basic observations in [12].

Let us denote by nnðxÞ ¼ nnðx1; x2Þ the approximate unit normal to En
x2

at
x1. Notice that, in this way, nn is pointwise defined at all points x a Bn and
DgnwEx2

¼ nnðxÞjDgnwEx2
j (again by De Giorgi’s finite-dimensional result). Since

the identity (an easy consequence of Fubini’s theorem)

pF ðDgwEÞ ¼ DgnwEx2
g?n

and the definition of nn give

pFn
ðnEÞjDgwE j ¼ DgnwEx2

g?n ¼ nnjDgnwEx2
jg?n

we can use (14) once more to get

pFn
ðnEÞjDgwE j ¼ nnjpFn

ðnEÞj jDgwE j;

so that nn ¼ pFn
ðnEÞ=jpFn

ðnEÞj sn-a.e. in X . Since sn " jDgwE j as n ! l, it fol-
lows that on each set Cn the function nm is defined for mb n, and converges to
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nE as m ! l jDgwE j-a.e. on Cn. Then, Proposition 2.8 and the convergence of nn
give

lim
n!l

Z
X

Z
X

jwSnn
� wSnE

j dg dsn ¼ 0:ð26Þ

In addition, by the finite-dimensional result of convergence to half spaces, we get

lim
t#0

Z
X

Z
Fn

jwEx2
ðe�tx1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
x 0
1Þ � w ~SSnnðxÞ

ðx 0
1Þj dgnðx 0

1Þ dsnðxÞ ¼ 0;ð27Þ

where ~SSnn is the projection of Snn on Fn. Now, notice that Snn ¼ ~SSnn � Yn, since
nn a F . This observation, in combination with (26), gives that

lim sup
t#0

Z
X

Z
X

jwEx2
ðe�tx1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
x 0
1Þ � wSnE ðxÞ

ðx 0Þj dgðx 0Þ dsnðxÞ

is infinitesimal as n ! l. Therefore to prove (2) it su‰ces to show that

lim sup
t#0

Z
X

Z
X

jwEx2
ðe�tx1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
x 0
1Þð28Þ

� wEðe�txþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
x 0Þj dgðx 0Þ dsnðxÞ

is infinitesimal as n ! l.
In order to show this last fact, using again sn ¼ jDgnwEx2

jg?n , we can write the
expression as

lim sup
t#0

Z
Yn

Z
Fn

T Fn
t gtðx1; x2ÞdjDgnwEx2

jðx1Þ dg?n ðx2Þ

with gtðx1; x2Þ :¼
Z
Yn

jwEðx1; x 0
2Þ � wEðx1; e�tx2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2t

p
x 0
2Þj dg?n ðx 0

2Þ. As in

[3] we now use Lemma 2.5 and the rectifiability of the measures jDgnwEx2
j to

bound the limsup above by

lim sup
t#0

Z
Yn

Z
Fn

gtðx1; x2Þffiffi
t

p dgnðx1Þ dg?n ðx2Þ:ð29Þ

Now we integrate w.r.t. gn the inequality (ensured by (9))Z
Yn

gtðx1; x2Þ dg?n ðx2Þa c
ffiffi
t

p
jDg?n

wEx1
jðYnÞ;

valid for all x1 such that Ex1 has finite perimeter in ðYn; g
?
n Þ, to bound the lim sup

in (29) by

c

Z
Fn

jDg?n
wEx1

jðYnÞ dgnðx1Þ ¼ c

Z
X

jp?
Fn
ðnEÞjdjDgwE j:

Since jp?
Fn
nE j # 0 as n ! l, this concludes the proof.
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