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1. INTRODUCTION

In this paper we will investigate the singular points of the following unstable free
boundary problem:

(11) Au = —X{u>0} n Bl(o)

where ., is the characteristic function of the set {u > 0}.

This problem was first investigated by G. S. Weiss and R. Monneau [14]. In
[14], C"!-regularity locally energy minimising and maximal solutions of (1.1)
is shown. There is also some discussion regarding the possibility of the existence
of singular points, that is points x’ € B;(0) such that u ¢ C'!(B,(x")) for any
r > 0. Such points are proved to be totally unstable [14].

Let us formally define singular points before we proceed.

H. Shahgholian has been supported in part by the Swedish Research Council. Both J. Andersson
and G. S. Weiss thank the Goran Gustafsson Foundation for visiting appointments to KTH.
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DEFINITION 1.1. Let u be a solution to (1.1). Then we define S(u), the set of sin-
gular points of u, according to

S(u) = {x € Bi(0);u ¢ C"1(B,(x)) for any r > 0}.

Furthermore we will denote by S,_»(u) the singular points of co-dimension 2:

Sp_2(u) =<y € S(u); lim u(rx+y)
=0 [|u(rix + ¥)| 228, (0))
2 2
T ﬁmeQGQWdWHO}

o)
||x571 - xﬁ”Ll(Bl(o))

=0
where 2 is the matrix group of rotations of R".

It was shown in [14] or [3] that if y € S(u) then

1 u(rx +y)
=0 [[u(rx + ¥) | 128, 0)

€ .@2

if the right hand side is defined, here 2, is the set of homogeneous second order
harmonic polynomials of degree 2. Since the only homogeneous second order
harmonic polynomial, up to translations, rotations and multiplicative con-
stants, in R? is x7 — x3 it follows that S,  singles out the singular points with
co-dimension 2 singularities.

In [4] two of the authors showed rigorously that singular points exists, that is
there exist a solution u to (1.1) such that S(u) # 0. This investigation was fol-
lowed by the authors in [2] and [3] where we investigated and provided a total
classification of singular points in R?> and R* respectively.

In this paper we intend to prove that in R” the singular points of smallest
co-dimension are locally contained in a C'-manifold of dimension # — 2 and that
the free boundary I',,, defined

I, ={xe Bi(0);u(x) =0},

consists of two C'! manifolds of dimension n — 1 intersecting orthogonally at such
singular points.
Our main theorem is

THEOREM 1.2. Let u be a solution to (1.1) and assume that

(1.2) lim—LOX) N

17—0 ||“(rjx>||L3(B1) a ||x5_1 - x}’ZIHLZ(Bl)

for some sequence rj — 0 (In particular, 0 € S,_>(u)). Then

u(r;x) Xy 1= X,

(1.3) lim = n-1

=0 ||u(V_iX)||L2(BI) a %2y — xrzz”LZ(Bl)
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and for each n > 0 there exists an r, > 0 such that

SN B, ( { Zx <n(x nl+x)}

consists of two C' hypersurfaces intersecting at right angles at the origin.
Furthermore there is a constant ro(u) > 0 such that the set

u(rx +y)
=0 [[u(rx + )|l 12(5,(0))

Spa = {y;u(y) = |Vu(y)| = 0 and 11

2

n—1
31 = %21 128, 0))

2
Xy — X

=Qo

for some q € :2}

is contained in a C' manifold of dimension (n — 2) in B,,(0).

We would like to place this result in a long tradition of regularity result for
parametric non-linear PDE. In particular we may view the free boundary I', =
{x € Bi(0);u(x) = 0} as a parametric surface with singular points in S(u).

Some of the most famous result in this area are the results by Bombieri, De
Giorgi, Giusti and Simmons ([6], [17]) that states that no minimal cones exists
for minimal surfaces in n < 8. We should also mention the result by B. White
[18] where uniqueness of tangent cones for 2-dimensional minimal surfaces is
proved. From our point of view White’s proof is interesting in that he uses a
Fourier series expansion in constructing comparison surfaces. However, we
work in n-dimensions which means that our Fourier expansions are considerably
more subtle and involved than those that appear in [18].

Singularities in parametric problems have appeared in other areas of mathe-
matics as well and our results have some similarities to the theory for harmonic
mappings ([16] for a good overview). One could also mention a certain similarity
with the theory of singularities that arise for ¢-uniform measures [13].

Equation (1.1) also arises in several applications for instance in solid combus-
tion (see the references in [14]), the composite membrane problem ([8], [7], [5],
[15], [9], [10]), climatology ([11]) and fluid dynamics ([1]).

Our proof will be based on a dynamic systems approach where we project a

I(u,r,0) r(see Definition 3.2). By a careful analysis of the PDE we will be
able to estimate IT(u,r,0) — I1(u,r/2,0). Close to a singular point we have that
L_x) ~ T (u,r, O)+Znu,0 where
AZn r0) = ~X{M(ur0>0y 0 R
urO() |VZHMI0()|:O

Zl'[(u7 r,0) (X)

X[—oo x|

(Zr1u,r,0), 1,0) = 0.

=0
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If we disregard lower order terms we may consider the map 7 (Il(u,r,0)) =
I1(u,r/2,0) defined by

F ((u,r,0)) = M(u,r,0) + I(Zn, 0, 1/2,0).

The blow-up is unique if limy_.. Z “(IT(x, r,0)) exists.

Since the harmonic second order polynomials form a finite dimensional space.
The map % is a map between finite dimensional vector spaces. The main diffi-
culty is that # is highly non-linear and we need quite subtle estimates to charac-
terise the map. On the positive side we may write down II(u,r,0) explicitly,
modulo lower order terms, by means of Theorem 3.5 by Karp and Margulis
[12]. The definition of 7 involves a Fourier series expansion of —yyy, , o) on the
unit sphere. Our main effort will be to estimate the Fourier coefficients in this
expansion when Il(u,r,0)/supp [T1] & x2_, — x2. For further details on the idea
of the proof we refer the reader to [3].

2. LIST OF NOTATION

(1) ¢ will denote a vector in R"2, we will always assume that || < 1. We also
define 6 = 5277,

(2) 2, will denote the second order homogeneous polynomials.

(3) S(u) and S,_»(u) are the singular set and the singular set of co-dimension 2
respectively, defined in Definition 1.1.

(4) The mapplng F is defined in equation (4.20).

(5) TI(u,r,x°) is defined in Definition 3.2.

(6) The average of u in Q will be denoted (u),.

(7) By d4 we mean an area element of the surface under considration.

(8) We will use Landau’s O(r) notation to indicate a term that is bounded
from by Cr for a universal constant C. That is f(x) = O(r) if and only if
|f(x)| < Cr for a universal constant C. Similarly, f(r) > O(r) means that
f(r) = Cr for some universal constant C > 0 etc.

9) ps(x) =X 12(5x + (1 =0)x2 | — x2, in particular po(x) = x2 | — x2.
(10) Z s is defined in (3.9).
(11) 2 is the matrix-group of rotations of R”".
(12) The functions B;(d), B(0), Ci(0) and C(0) are defined in (4.12), (4.13), Prop-

osition 4.3 and the remark after that Proposition respectively.

3. BACKGROUND MATERIAL AND GENERAL STRATEGY

In this section we will state some of the results of [3] and outline our strategy
(which is similar to the strategy of [3]).
Our starting observation is the following proposition (Proposition 5.1 in

[14])
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PROPOSITION 3.1. Let u be a solution of (1.1) in B1(0) and let us consider a point
x" e S(u). Then

lim 40X SL x’)

=0 [|u(rix + X°) || 125, (0))

E?fz

for each sequence r; — 0 such that the limit exists.

The proof is a fairly standard application of a monotonicity formula.

If u is a solution to (1.1) then Au € L* which directly implies that D?u €
BMO(B,5(0)) which in particular implies, via the Sobolev inequality, that for
x? € S(u) N By »(0)

u(rx + xo) — % (x — xo)(Dzu)Br(xo)(x — xo)

72

(3.4)

is locally bounded in L? and pre-compact. It will be convenient for some calcula-

tions later to subtract a harmonic polynomial in (3.4) instead of the polynomial

3(x =x%)(D%u) g 0 (x — x°). We make the following definition.

DEFINITION 3.2. By II(u,r,x°) we will denote the projection operator onto

P, defined as follows: TI(u,r,x°) = t,p, where t, € R" and p e P, satisfies
2

supg, |p| = 1 as well as
a /B (0)

0
inf/ DZ(M)_D%
he?, By(0)

%)
We will often write T1(u,r) when X° is either the origin or given by the context.
By definition t, = supg [I1(u,r)| and p, = (u,r)/z..

D ( u(rx:z- x%) ) D%

It is a simple consequence of the BMO estimate (3.4) that if x° € S(u) N By 5 (u)
then (Proposition 3.7 in [3])

u(rx +x°)

(3.5) — (u,r,x°) < C,|( supu|,n).
r? Che(By) J'( By >
If x° € S(u) then
(3.6) sup |u| > er*In(1/r)

B,(x%)

for 0 < r < ro(u,x") and some small ¢ > 0. To be more precise it is known that
(c.f. Lemma 5.1 in [3]).

LEmMMA 3.3. Let u be a solution to (1.1) in By such that supg |u| < M and
u(0) = |Vu(0)| = 0. Then there exist py, > 0 and ry > 0 such that if

1
(3.7) sup [TI(u,r)| = —
B Po
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foranr <y then

sup |T1(u, r/2)| > sup [[(u, )| +10/2,
B[ Bl

where 1, is a universal constant.

The Lemma is proved for n = 3 in [3] but the proof is the same in arbitrary
dimension.

This estimate together with (3.5) implies that u(- + x°) = IT(u, r,x°) 4 a lower
order perturbation. Using the pre-compactness in C* (c.f. Equation (3.5)) of

u(ryx +x°)
2

I

(3.8) — I (u, rj,x°)

for some sequence r; — 0 we may extract a sub-sequence, which we still denote
by r;, such that

_ 0
lil’I(l) (u(rlx—jx) — I(u, rj,xo)) = Z,(x)
rj— r] ’

for some function Z,. It is not difficult to see that Z, is the unique solution to
AZ, = —x(pw>0y IR
Zy(0) = [VZ,(0)| = 0
3.9 Z

=0
M- |x|?
I(z,,1)=0
where
T (u, r;, X"
p(x) = lim (1,7, X7)

r=0 [T (ut, 7, XO) [ 12,

In order to show regularity for the free boundary near a singular point we
would have to control the limit

. (u, r,x%)
lim 5 .
=0 [T (ut, 7, XO) || 12,

If one can show that the limit is unique then it follows that the blow-up

lin(l)(u(rx +x%)/r* = (u,r,x°)) = Z,

is unique.
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The following result, Corollary 7.3 in [3], gives a quantitative measure on how
the function Zpy,,, o) controls the difference between I1(u, r,0) and IT(u,r/2,0).

PROPOSITION 3.4. Let u solve (1.1) in By = R" and assume that supp |u| < M,
u(0) = |Vu(0)| = 0, and that for some p < py and r < ry,

sup [Tl(u, r)| >
B,

b\'—‘

Then

sup [TT(u, r/2) — (u,r) — T(Zny(u, ), 1/2)] < C(M,n,oc)(sup \H(u,r)|)
B B

Sor each o < 1/4.

In order to estimate supg, o) |[I1(,r,0) — I1(u,r/2,0)| we thus need to be able

to calculate TI(Zpy,,r,0),1/2,0). We will do this with the help of the following
theorem from [12].

THEOREM 3.5. Let € L™ (R") be homogeneous of zeroth order, that is o(x) =
a(rx) for all r > 0. Assume that ¢ has the Fourier series expansion

6]
= E a;a;,
i=0

on the unit sphere, where a; is a homogeneous harmonic polynomial of order i.
Moreover assume that AZ = o and that Z(0) = [VZ(0)| = limy_., Z(x)/|x|’
=0. Then

Z(x) = g(x) In|x| + |x|*¢(x),

where

and

Z(n+l (i—2 (%)

Our strategy in the rest of the paper will be to use Theorem 3.5 to calculate

(310) H(ZH(u,r,0)7 1/270) ==




130 J. ANDERSSON, H. SHAHGHOLIAN AND G. S. WEISS

where o is the second order term in the Fourier series expansion

XTI (,r,0)>0} = Zaaz on 0B1(0).

Using the expression (3.10) in Proposition 3.4 will give us enough information to
deduce that the blow-up of u is unique at all points x° € S, »(u).

4. ESTIMATES OF THE PROJECTIONS

In order to estimate I1(Z,,1/2) we need to calculate a»g, from Theorem 3.5.
That involves calculating the second order Fourler coefficients for —y;, ~o; on
the unit sphere. To that end we choose nx? |x| fori=1,...,n and x;x; for
i # j as a basis for the second order harmomc polynomials.

We may choose coordinates so that

I(u,r,0)

4.11 - 7
@I S M, 0)]

= ps(x) = 51x12 + 52x§ + - —1—5,1,2)6572

+ (1 —5))@2!_1 - X’%,

where 0 = (01,03, ...,0,_2) and 6 = S %5;. We also define the polynomial ps,
for a given vector J € R"™ % in equation (4 11). We will assume, for definiteness
that 6 > 0 (this is implicit in the definition of p; in equation (4.11)). If § < 0 then
all the following arguments follows through with minor and trivial changes.

It follows from symmetry (i.e. —x;, .o} is even and the x;x;’s are odd on the
unit sphere) that the Fourier coefficient of xlx] is zero.

Since we are only interested in points x° € S,_(u) where

I(u, rj,x°)
1—0SUpg, |TT(u, T, x0)]

= Po,

for some sequence r; — 0, we may assume that |d] « 1.
We also denote by B;(d) the following integral

(4.12) Bi(0) = — / (ps>0)X; dA
0B1(0)

and by B(0) the following integral

(413) B(é) = — /B %{[l>>0} dA.
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Here dA is the surface element. It follows that the Fourier coefficient of nx? — |x|
of (>0} 18

1

(nB;(0) — B(9))-

2
||nxi2 — x| ||L2(031(0))

Using that I1(Z,,, 1) = 0 by definition and Theorem 3.5 we may deduce that

(4.14) (Z,,,1/2) = —KOZ n’Bi(0) — nB(9))x?,

where
In(2)
(n+2)||nx} — |X|2||L2(6B1(O))

It is clear that we need to estimate the functions B;(d) and B(d) in order to
estimate

H(ua V) - H(“)r/z) = H(Zpo‘v 1/2) + O(HH(M,V)HZ;((B](O))),

where the above equality is a direct consequence of Proposition 3.4.

Before we can estimate the integrals in (4.12) and (4.13) we need to introduce
some notation for integration on the unit sphere. We parametrise the unit sphere
in R? according to

0B1(0) = {&(¢); ¢ € (0,2m)},

where &, (¢) = (cos(¢), sin(¢)). Inductively we define, for k > 2, the polar coordi-
nates

Ek<¢7 Vi, W) = (Sin(¢k—l)5k71(¢al//17 o Wia) o8Py ).

The unit sphere in R¥ is then defined by

0B1(0) = {&1(d ¥y, Yy 2); b € (0,27), v € (0,7m)},

modulo a set of measure zero.
With this parametrisation an area element on the unit sphere becomes

01 01 01 0
o9 oy Wy s

where &;_; is considered to be a column vector. Somewhat more explicitly the
k x (k — 1)-matrix in (4.15) is

(4.15)  dA = det dgpdy, ... dyy_,,



(_4.16)
—sin(Y) P cos(¢y) cos(§) Py -+ cos(Wy_3) cos(@) Py Ly cos(Py ) cos(¢) PLy’
cos(@) PP sin(gy) cos(@) Py -+ cos(y 3)sin(¢)P" ks cos(Yy_,) sin(¢) P
0 —sin(y) P\ cos(Wi_3) PI7) ks cos(Yy_») Py
0 0 cos(Wi_3)PiF 2 s cos(Yy_) P
0 0 —sin(y_3)sin(Y_y)  cos(¥y_,) cos(¥y_3)
0 0 0 —sin(y_»)
where we have used the notation
ij:—12 - 1 Sln(‘ﬂ])

J. ANDERSSON,
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We will denote the matrix in (4.16) by M. By the anti-commutativity of the
rows in the determinant function we have the identity

(4.17)  det(M) = sin* 2 (. _3) sin > (Y _»)
0 0
N 0 0
X 0 0
0 0 0 0 —sin(y,_3)sin(Y,_,) cos(¥y_,)cos(Yy_s)
00 0 0 0 —sin(y,_,)
= sin" " (y_3) sin* (Y _,) det(N)
where  N(¢,Yy,...,r4) is the (k—2)x (k—3)-matrix satisfying

sin(Yy,_3) sin(y,_»)n; =my; for 1 <i<k—2 and 1< j<k—3. Notice that
N is independent of ;5 and V;_,.
In order to estimate B; we will use the identity in (4.17) to write, with k = n,

(418) Bl(é) = — /B ){{p6>0}x dAFBl

2n
/ / / Lips0yX; ldet(M)| dipy_ dify 5 ...
2n pmw P
X {/0 /o X po0y XIS (Y, 3) sin” (W, o) di, 5 di, 5
< \det(N)| i ..do.
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We will need some further simplifications

(419) Bl((S) = —/B ))({po>0}x dA(ﬁBl

/zn/ / Kippooy X [det(M)| diyy_y dpy_5 ... d¢
- /(o,n/z

/2 rm/2
X [/0 /0 X{p(5>0}xi2Sn717n(lpn727 lpnfl) dl//nfl dlan]

x |det(N)| ds,_5...d¢

/ ) / X{po->0}xi2Sn_1'n(lpn72?lpnfl)dlpnfl i,
0,7/2)"" | JA(w)

x |det(N)| ds,, 5 ...d¢

/ 2 X{P<$>0}xl'zs<lpn—29 lpn—l) dwr[—l dwn_2‘|
(0,7/2)"\A (1)

0,7/2)">

X |det(N)|dl//n_3...d¢
- Il,[(énu) + 127,'(57/1),

where
Snil?n(llfn—b l/jn—l) = |Sinn_1(lpn—2) Sil’ln(l//n_l)|7

and A(u) = F~1((0, ,u)2 ) where F is the stereographic projection

_rcos(¥, 3) cos(Y, )
(4.20) F(,_3,¥,2) = ( Sm(wj) "sin(y, ) smilpn,3) )

If  is small then A(u) ~ (7/2 — u,7/2)?, the exact form of A(x) is unimportant
as long as A(u) contains a small neighbourhood of the point (n/2,7/2). We
choose the particular form of 4(x) in order to simplify some calculations further
on (see equation (4.24)).

We will estimate /; ;(6,u) and I ;(d, 1) separately for |6 small. Fix a >0
such that 0| « u « 1. The value of u is not very important and can be chosen
universal, depending only on 7 in particular u < ¢, in (4.32).

To estimate I, ;(0, ) we notice that

Vps = 2'(51351 102X2, ..., 0n_2Xu_2, (1 - 5))6,1,1, _xn>-



134 J. ANDERSSON, H. SHAHGHOLIAN AND G. S. WEISS
By our choice of polar coordinates we have that when y,_, € (0,7/2 — x) then

Xy = cos(Y,_y) > cu.

This means that the gradient of ps is bounded from below by a constant times u
on its zero level set. It is therefore very easy to estimate I, ;(J, 1) by means of the
co-area formula.

By the co-area formula it follows that for 7 € (0,1) and with the notation

252
9 = D=1 9%

d 1 0]
= 546, 10)| = S Y s | < CEL
‘dl ! )‘ /{(xzsz/(q{séxﬂ)r} | o)) K
‘1(’_5)"571
In particular
b
(421) 6.0 ~ 16.0) < €12,

We need to work a little harder in order to estimate I;(d,u). We begin to
prove a simple lemma that will allow us to do some integrations explicitly module
O(|5])-terms.

LeEmmMmA 4.1. Let ¢07¢(1),W37--~alﬁ274 be fixed. Furthermore we let u> 0 be a
small constant and 1 < i < n. We use polar coordinates x;(¢, Wy, Vs, ..., ¥,_5).
We also assume that

n—2
(4.22) S o (¢0 Wy m/2,m/2)7 > 0.
=1

J

Then there exist a constant ¢ > 0 such that

(1 cp) /A( )
u

X (X{p(5>0} (¢0’ lp(l)’ ce 7lpn—2)
- X{p0>0} (¢0a lp?v tee 7¢n72))Sn_1’n dlprLfZ dlpnfl

H u
< /0 /0 X%(%{pé()zbo} (¢07 w% ces g, (//n_z)
o X{[’0>0}(¢07 lp?? e 7‘#”,2)) d)NC”,I d_)’en
S (1 —|—(/‘,Ll)/ x?(¢07w?7'-->¢,1737lpn,2)2
A(p)

X (X{p{5>0} (¢07 ‘//107 ce 7lpn—37 l//)1—2)
- X{po>0} (¢0? lrb?’ T l/jn—Z))Sn_lyn dlpn—'!» dwn—Z’
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where
Shi = |sin’(,_3) sin’ (W, ,)],
Xi( Wi Wyn) = -

/ ) ’
Z;lzl sz
and the set A is the stereographic projection of the two dimensional spherical area
2
{x(¢0’ w(l)’ ce l//n,3, l//an); (¢n737 ¢n72) € (75/_:“7 7'[/2) }

under the projection x — X.

REMARK. Assumption (4.22) is non-essential and only made for definiteness and
the result still holds if

2
> 060 .y m/2,m/2)7 <0,

j=1

PRrOOF. Itis trivial that 1 — ¢y < sin(y,_;) < 1 and that 1 — cu <sin(y,_;) < 1.
Therefore

(423) 1 - Ci it < S <1.
Use the change of variables

cos(,_3) cos(,,_»)
sin((//n,3) 7Sin(lpan) Sin(l//n73)

(Vo3 ¥n2) — (

) - (56,,717)‘6”,2)
in
(424) / X,-2(¢O, lrb?? ) l//n—3? l1011—2)2

A(p)

X (X{po->0} (¢Ov 'ﬁ?, ce )lpnf}? lpan)
- X{p0>0} (¢07 lp?v ) lprﬁZ))Sn_Ln dlpnf3 dlpan

[y
:/0 /0 2P0 s )’

X (X {ps(3)>0) — X{po(fc)>0})5n74’n72 dx, 1 dxy,

it is in this change of variables that we use the rather awkward definition of A4 (u)
in order to get a nice area of integration to the right.

Since \/Z]f’;lz sz = sin(y,_3) sin(y,_,) we may estimate
(425) (1 — c,u)fci < x; < X;
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Notice that since

n—2
> 00 WY, Wy m/2,m/2)7 > 0.
J=1

the integrand is non-negative so we may use (4.23) and (4.25) in (4.24) to deduce
the desired estimates. O

LEMMA 4.2. Let 0] « u < 1. Also denote

n—2
4= 0pF
=1
and ¢0, lﬁ?, e xp274ﬁxed constants. Then, fori=1,...,n—2,
[ ey ) = 2ea)ST
(m/2~p,m/2)
_ 140w 44" W, m/2,7/2)

4 1-9¢
+ O([ol/u+ po| [n(jo])])

n(lgs(4°, 91, ..., 7/2,7/2)])]

and for i =n — 1,n we have

[ S e @b a) = Zipo)S™ s b = O]
(n/2—p,m/2)

ProoOF. By Lemma 4.1 it is enough to prove the estimate for

uopu
(426) /0 /0 xi2 (X{p(;(x)} - Xpo(x)) dx,— dxm

-2
where Y31 x? = 1.

To simplify notation we will write

K= ¢s(x).

And we will assume that > 0, if x = 0 then the argument is simple and the case
r < 0 is treated analogously.
Notice that

1 if0<x, <\/k+(1+6x2,

A{ps(%)>0} = {
0 else.

Fori=1,...,n— 2 we may write (4.26) as
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/Ou(\/lc—i— (1-0)x2 ) — \/xil))??? dx,_ |

1 «x 2 u
i1 5 In(x)X; +m+ O([6]/p + wld| In(|o])]),

where we have used the identity

1 1
/\/1+x2dx—§x 1+x2+§1n(x+ 1 + x?)

to evaluate the integral.
For i = n — 1 we can calculate

" =
| e 0, =505 v = o).

Finally, for i = n we get

iopu
/0 /0 xﬁ(X{m(X)} — Xpo(x)) dXn—1 Xy

u k+(1-0)x2 | Xn—1
= / / xﬁ dx, —/ x,zl dx,, | dx, 1 = O(ku?).
o |Jo 0

ProrosITION 4.3. If|0| is small enough and C;(0) is defined according to
Ci(0) = Bi(6) — Bi(0)

then there exists a universal constant ¢ such that

1 n—2

B CIEDSECIER

Moreover, if 6; > 0; then C;(9) < Cj(9).
PrOOF. In (4.19) we showed that we can write
Bi(0) = Bi(0) = [1,1(9, ) = 1,i(0, )] + [11 (6, 1) = 1 (0, )]
We also showed, (4.21), that
12,10, 1) = 1,40, )] = O(|9]/ ).

Also in (4.19) we showed that we can write

137
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(427) LS. — [(0.) = /

Bn—Z
1

X det(N) dA@B]H (¢7 SERE) lpnf4)’

[[4 (X{p§>0} - Xp0>O)Snilﬂn dlﬁn,3 dlpn72

Furthermore we showed, in Lemmas 4.1 and 4.2, that the inner integral in (4.27)
satisfies

/A ot — )™ s i

= (1+0(w) /A X7 (L ps()50) = X{po>0y) dXn—1 Xy

1+0
= O ) s

+ O(0[ /e + o] |In(jo])])
for (x1,...,x,_2) € dB}~2. Disregarding lower order terms we may conclude that

(4.28)  1,i(6,1) — 1,:(0, )

1
=3 sl der(¥) sy » + O+ 10| 3.

Let us denote the integrand F(g;), that is F(¢) = #|In(|¢])|. We may estimate
(4.29) [F(g5) = 10| [In(|0])g5] | < 10g5In(|g,])]

where g; = ﬁqg. Since g is a second order polynomial with coefficients bounded
by one it directly follows that

(4.30)

[ 101001, det(N) itz - = O(9).
|

By (4.30), (4.29) and (4.28) we may estimate

(4.31)  1Li(6,p) — 11,:(0, 1)

In(|o _
DD gyden()a? it =+ 001+ 10| ).

We define the linear functional L : R"~2 — R"2 by
f(’)Bf*z qsxi dA(’)B{’*z
Lo =

7 2
fagln—z qo*n—2 dAﬁB;’*Z
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Writing L in matrix form we get
L=+ J

where A1, 4, > 0, [ is the identity matrix and

(1 1 1 17
1 11 1
J=: o
111 -1
111 - 1]
It is easy to see that v =[1,1,1,... 1] T is an eigenvector corresponding to the
eigenvalue 4y + (n — 2)4, and that v/ =e; —¢; for j =2,...,n — 2 are eigenvec-

tors corresponding to the eigenvalue ;. In particular L have (n — 2)-linearly in-
dependent eigenvectors that correspond to strictly positive eigenvalues. We may
conclude that det(L) > 0. It follows that there exist a universal constant ¢; > 0
such that

(4.32) LS| > e o).

To finish the proof we notice that

-2
Z )| = ZIB 0) = [in(joP)[ |Lo] + O(lol/u + wlo| [n(jo[)])

> %Iél [In(|o])] + O(10]/p + plo] n(jo])])-

And

—2
Z )| = ZIB 0) = |in(joP[ |Lo] + O(I6]/ + wlo| [n(jo])])

J=1

< clof[In([o])] + O(lo] /u + pd] [In([o])])-

The proposition follows for x small enough if |0 « p.
The final statement follows easily since 4; > 0. |

REMARK. We will also use the notation C(0) = B(d) — B(0). Notice that

(4.33) C() = Z Ci(0)
i—1

since Y1 x? = 1 on the unit sphere.
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5. PROOF OF THE MAIN THEOREM

In this section we prove Theorem 1.2.
By assumption we have

wrpx) X, =X
=0 ”u(rjx)HLZ(Bl) (B X%HLZ(Bl)
for some sequence r; — 0. Therefore
. I(u,r;,0
(5.34) lim w0 2 2
1;7—0SUPp, |H(Ll, Tjs )HLZ(BI)
For any r > 0 we can define a J(r) according to
I(u,r,0)
= Po(r) (X)

Supp, T (u, r, 0>HL2(Bl)
With this notation (5.34) implies that (see 4.11)
o(r7)l — 0

so we may, by choosing j large enough, assume that 6(r;) is as small
Also, from (3.6) and (3.5) we may deduce that

sup [I(u, rj, 0)] = ¢[In(ry)|
B,(0)

for j large enough.
If we denote supg, o) |T1(u,s,0)| = 7, = c|In(s)| for s small enough
increasing in j (Lemma 3.3). Then Proposition 3.4 implies that

(5.35) (u,r;/2,0) = I(u, 1, 0) + 11(Z,,,1/2,0) + O(z,*).
The main step in our uniqueness proof for blow-up limits is

LeEmMMA 5.1. Let u be a solution to (1.1) and assume that M(er,0)

some O(r) satisfying |0(r)| < o for some universal .
We also assume that

(5.36) > Ci(s(r) < 0.

Then for each y < 1/8 there exist a constant C, such that if

(5.37) max(01(r),02(r),...,00-2(r)) > Cy7,”

supg, (o) M (u,,0

as we need.

and 7, 1S

i = Ds(r) fOV
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then

max(01(r/2),02(r/2),...,0,_2(r/2)) - max(01(r),02(r),...,0n_2(r)) .

(5.38) a
1-46(r/2) 1 —06(r)
Moreover, if 6; < 0 and

0; <min(01(r/2),05(r/2),...,0,-2(r/2))
then it follows that

1—-0(r/2) 1-0(r)

)

provided that (5.37) holds.

REMARK. If >, Ci(d(r)) > 0 a similar result holds and the proof goes through
with trivial changes.

ProoF. From (5.35) and (4.14) we can conclude that the coefficient of the
x7-term in T1(u,r/2,0) is

(5.40) 7,0;(r) + Ko(n*B;((r)) — nB(6)) + O(¢, 7).
Next we make the following claim
CLAIM. For j=1,...,n—2 we have n*B;(0) — nB(0) = 0.
Proor oF THE CLAIM. This is easy to verify since we can calculate Z,,, and thus
B;(0) explicitly (cf. [2, Lemma 4.4)):
Define v : (0,400) x [0,40) — R by

U(Xn_1,Xn) 1= —4x,_1X, log(x2 | + x2)

+2(x2, —x2) (g — Zarctan(xx" )) — r(x2 +x2).
n—1

Moreover, let

W(xn—lyxn) = —U(—Xn_l,xy,), Xp—1 < 0, Xn = Oa

{v(xnl,xn), Xn1Xn 2 0, x,1 # 0,
—0(Xp_1, Xn), X,o1 >0, x, <0,
and define

W(Xn—1, %) — (X2 | + X2) + 8Xy_1X,
8 '

an,lxn (xnfl s xn) =
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In particular, anflxn(xn,l, X,) is a rotation of Z,. It is clear that
~ In(2
H(an—]xn’ 1/270) = ﬂxn—lxn,
n

or equivalently

(Z,,,1/2,0) =

It follows that n?B;(0) — nB(0) = 0 for j = 1,...,n — 2. This proves the claim.
By the definition of Cj(d) we may thus write, for j =1,...,n — 2, the coeffi-
cient of the x7-term in I(u,r/2,0) (that is equation (5.40))
1,0;(r) — Ko(n*C;(0(r)) — nC(6)) + O(z,%7).

Similarly we can express the x>, coefficient of IT(u, r/2,0) according to

7,(1 —6(r)) + % — Ko(n*Co1(6(r)) — nC(8)) + O(z, ).

The quotient of the x7 and the x;_, coefficients of IT(x,r/2,0) is thus equal

to
0,9;(r) — Ko(n*G(8(r) —nC(9)) + O(z, )
71 =8(r) + 57—~ Ko(n Gt (6(r)) — nC(0)) + 0w ™)
Let us first prove the Lemma under the assumption
(5.41) 0j(r) = max(01(r),02(r),...,0u-2(r)).

Then the claim of the Lemma is

7,9(r) — Ko(n* G(6(r) —nC(9)) + O(z, %) 9(r)

(5.42) ) >
(1 =6(r) + 57 = Ko(n2Co1 (6(r) = nC(0)) + Oz, ) 1 =0(r)

The inequality (5.42) hold if

(5.43) —Ko(1 = 3(r))n2Ci(3(r)) + Kon(1 — &(r) — ,(r)) C(9)
+0(00; +1,%) > 0.

From (5.41) and Proposition 4.3 we have

n—2 n
(n=1GO) < > Cio) + 0(o]) =D Ci(d) = C©)
i=1

i=1
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where we used Lemma 4.2 in the first equality and (4.33) in the last equality.
Using this and 6; > 0 in (5.43) we can deduce that the Lemma holds if

—Ko(1 = 6)Gi(0) > 0(|0)0; +7,),
or equivalently if
~G(0) > 0(g, ),

where we used that |C;()| ~ |d] [In(|d])
In particular if |6| is small and (5.41) holds then (5.38) holds if J; > C,777.
This is exactly what we wanted to prove.
Next we chose any 6; < 0 in order to prove (5.39).
Then the claim of the Lemma is

7,9;(r) — Ko(n?Gi(8(r) — nC(0)) + O(z, ) <90

5.44 — .
S 50 + B Ky2Cy 1 007) - nC) 1 0 ) 1-00)

The inequality (5.44) hold if

(545) —Ko(1 = 8(r))n*C;(5(r)) + Kon(1 = &(r) — &;(r)) C(6)
+ O(olo; + 77%) < 0.

We either have that

(5.46) C(©) < —Cr;7
or
(5.47) Ci(0) > Cr,”

for some universal C. This since if d = max(d;(r/2),02(r/2),...,0u 2(r/2)) =
C,t,7 then Ci(0) < —cC,t,7|In(7,)| so if C(0) > —Cz,7 then at least one of
Ci(6), for I=1,...,n—2, must satisfy C;(0) > cC,t,"|In(7,)| » C,7,7 since
0] « 1. By the monotonicity of C;(d) it follows that C;(6) > Ct; 7.

In either case (5.46) or (5.47) it follows that (5.45) holds true. The Lemma

follows. |

We may now proceed with our proof of the main Theorem. From Lemma 5.1
and (1.2) it follows that
(5.48) lo(r)| < Ct.7.

- r

If not then we have by Lemma 5.1 that

max(01(r/2),02(r/2),...,0n-2(r/2)) > max(d;(r),0a(r), . ..,0n-2(r))



144 J. ANDERSSON, H. SHAHGHOLIAN AND G. S. WEISS

if
max(01(r),02(r),...,0,_2(r)) >0
and
min(91(r/2),02(r/2), ..., 0n—2(r/2)) < min(01(r),02(r), . . ., n-2(r))
if

min(0,(r),02(r),...,0,_2(r)) <O0.

Since 7,5+ > 7,5/ for k > [ we may iterate this and conclude that if (5.48) is not
true then

kll_{l;@ max (0 (r/25),9,(r/2%), ... ,0,_2(r/2%)) = max(d;(r),0:(r), ..., 0u_2(r))

and/or

Jlim min (9, (r/25),02(r/25), ... 0,02 (r/25)) < min(d;(r),02(r), ..., 04 2(r)).

This would contradict (1.2).
So (5.48) has to hold. This implies in particular that

< g
supg, [T (u, r, 0)]

O(u,r,0)  (u,r/2,0) '<C 77
SupBl|H(u7r70)| SupBl|H(u7r/27O)| B

We may iterate and conclude that

I (u, r,0) M(u,r/2%,0) ‘ - CXk) Col

5.49 —
G4 supp T, 0)] ~ supy [, 725, 0)

< Czk:(kln(2) +1In(1/r))" "7

~
[N

since 7, > c|In(r)|. Since y > 0 it follows that (5.49) is convergent and we may
directly conclude that

u(rx)
im———
=0 [|u(rx)l| L2s,)

exists. The first claim (1.3) of Theorem 1.2 follows.
That

n—2
SnB,(0)n {x; lez < 77()651 + xﬁ)}
i=1
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consists of two C! manifolds intersection at right angles at the origin is now
standard (see Corollary 9.2 or in [3]).
To prove that

Sn,Q M BrU (0)

is contained in a C! manifold of dimension (n — 2) for some small ry we may
proceed as in Theorem 12.2 in [3]. This proves Theorem 1.2.
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