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Abstract. — We determine the Chern classes of globally generated rank two vector bundles on
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Introduction

Vector bundles generated by global sections come up in a variety of problems in
projective algebraic geometry. In this paper we consider the following question:
which are the possible Chern classes of rank two globally generated vector bundles
on P2? (Here P2 ¼ P2

k with k algebraically closed, of charateristic zero.)
Clearly these Chern classes have to be positive. Naively one may think that

this is the only restriction. A closer inspection shows that this is not true: since
we are on P2, the construction of rank two vector bundles starting from codi-
mension two, locally complete intersection subschemes is subject to the Cayley-
Bacharach condition (see Section 2). So if we have an exact sequence 0 ! O !
F ! IY ðcÞ ! 0, with F a rank two vector bundle and Y HP2 of codimension
two, then Y satisfies Cayley-Bacharach for c� 3.

Now F is globally generated if and only if IY ðcÞ is. If Y is contained in a
smooth curve, T , of degree d, we have 0 ! Oð�d þ cÞ ! IY ðcÞ ! IY ;TðcÞ ! 0
and we see that, if cb d, IY ðcÞ is globally generated if and only if the line bundle
L ¼ IY ;TðcÞ on T is globally generated. But there are gaps in the degrees
of globally generated line bundles on a smooth plane curve of degree d (it is
classically known that no such bundle exists if db 3 and 1a degLa d � 2). A
remarkable theorem due to Greco-Raciti and Coppens ([5], [2] and Section 3)
gives the exact list of gaps.

This is another obstruction, at least if Y lies on a smooth curve, T , of low
degree with respect with c ¼ c1ðFÞ (in this case F tends to be not stable). The
problem then is to have such a curve for every vector bundle with fixed Chern
classes and then, to treat the case where T is not smooth. The first problem is
solved in the necessarily unstable range (DðF Þ ¼ c21 � 4c2 > 0) (see Section 3).
In the stable range there are no obstructions, this was already known to Le
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Potier (see [9]). For the second problem we use the following remark: if a line
bundle OTðZÞ on a smooth plane curve of degree d is globally generated, then Z
satisfies Cayley-Bacharach for d � 3. Working with the minimal section of F we
are able to have a similar statement even if T is singular (see 4.9). Finally with a
slight modification of Theorem 3.1 in [5] we are able to show the existence of
gaps.

To state our result we need some notations. Let c > 0 be an integer. Let’s say
that ðc; yÞ is e¤ective if there exists a globally generated rank two vector bundle
on P2, F , with c1ðF Þ ¼ c, c2ðF Þ ¼ y. It is easy to see (cf Section 1) that it must be
0a ya c2 and that ðc; yÞ is e¤ective if and only if ðc; c2 � yÞ is. So we may assume
ya c2=2. For every integer t, 2a ta c=2, let Gtð0Þ ¼ ½cðt� 1Þ þ 1; tðc� tÞ � 1�
(we use the convention that if b < a, then ½a; b� ¼ j). For every integer t,
4a ta c=2, denote by t0 the integral part of

ffiffiffiffiffiffiffiffiffiffi
t� 3

p
, then for every integer a such

that 1a aa t0 define GtðaÞ ¼ ½ðt� 1Þðc� aÞ þ a2 þ 1; ðt� 1Þðc� aþ 1Þ � 1�.
Finally let

Gt ¼
[t0
a¼0

GtðaÞ and G ¼
[c=2
t¼2

Gt:

Then we have:

Theorem 0.1. Let c > 0 be an integer. There exists a globally generated rank
two vector bundle on P2 with Chern classes c1 ¼ c, c2 ¼ y if and only if one of the
following occurs:

(1) y ¼ 0 or c� 1a y < c2=4 and y B G
(2) c2=4a ya 3c2=4
(3) 3c2=4 < ya c2 � cþ 1 and c2 � y B G or y ¼ c2.

Although quite awful to state, this result is quite natural (see Section 3). As a
by-product we get (Section 6) all the possible ‘‘bi-degrees’’ for generically injec-
tive morphisms from P2 to the Grassmannian Gð1; 3Þ (or more generally to a
Grassmannian of lines). To conclude let’s mention that some partial results on
this problem can be found in [4].

Acknowledgment. I thank L. Gruson for drawing this problem to my attention and E. Mezzetti
for pointing out a misprint in the statement of the theorem.

1. General facts and a result of Le Potier for stable bundles

Let F be a rank two globally generated vector bundle on P2 with Chern classes
c1ðF Þ ¼: c, c2ðFÞ ¼: y. Since the restriction FL to a line is globally generated, we
get cb 0. A general section of F yields:

0 ! O ! F ! IY ðcÞ ! 0
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where Y HP2 is a smooth set of y distinct points (cf [8], 1.4) or is empty. In the
first case y > 0, in the second case F UOaOðcÞ and y ¼ 0. In any case the
Chern classes of a globally generated rank two vector bundle are positive.

Also observe (Y A j) that IY ðcÞ is globally generated (in fact F globally gen-
erated , IY ðcÞ is globally generated). This implies by Bertini’s theorem that a
general curve of degree c containing Y is smooth (hence irreducible).

Since rkðFÞ þ dimðP2Þ ¼ 4, F can be generated by V HH 0ðFÞ with
dimV ¼ 4 and we get:

0 ! E � ! V nO ! F ! 0:

It follows that E is a rank two, globally generated vector bundle with Chern
classes: c1ðEÞ ¼ c, c2ðEÞ ¼ c2 � y. We will say that E is the G-dual bundle of F .
Since a globally generated rank two bundle has positive Chern classes we get:
0a ya c2, cb 0.

Definition 1.1. We will say that ðc; yÞ is e¤ective if there exist a globally gen-
erated rank two vector bundle on P2 with c1 ¼ c and c2 ¼ y. A non e¤ective ðc; yÞ
will also be called a gap.

Remark 1.2. By considering G-dual bundles we see that ðc; yÞ is e¤ective if and
only if ðc; c2 � yÞ is e¤ective. Hence it is enough to consider the range 0a ya c2=2.

If c ¼ 0, then F U 2:O and y ¼ 0.
If y ¼ c2 then c2ðEÞ ¼ 0, hence EUOaOðcÞ and:

0 ! Oð�cÞ ! 3:O ! F ! 0:

Such bundles exists for any cb 0. If y ¼ 0, F UOaOðcÞ.

Definition 1.3. If F is a rank two vector bundles on P2 we denote by Fnorm

the unique twist of F such that �1a c1ðFnormÞa 0. The bundle F is stable if
h0ðFnormÞ ¼ 0.

By a result of Schwarzenberger, if F is stable with c1ðF Þ ¼ c, c2ðF Þ ¼ y, then
DðFÞ :¼ c2 � 4y < 0 (and DðF ÞA�4). Moreover there exist a stable rank two
vector bundle with Chern classes ðc; yÞ if and only if D :¼ c2 � 4y < 0, DA�4.

Concerning stable bundles we have the following result of Le Potier [9]:

Proposition 1.4 (Le Potier). Let Mðc1; c2Þ denote the moduli space of stable
rank two bundles with Chern classes c1, c2 on P2. There exists a non empty open
subset of Mðc1; c2Þ corresponding to globally generated bundles if and only if one
of the following holds:

(1) c1 > 0 and wðc1; c2Þb 4 ðwðc1; c2Þ ¼ 2þ c1ðc1þ3Þ
2 � c2Þ

(2) ðc1; c2Þ ¼ ð1; 1Þ or ð2; 4Þ.
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Using this proposition we get:

Corollary 1.5. If c > 0 and

c2

4
a ya

3c2

4

then ðc; yÞ is e¤ective.

Proof. The existence condition (D < 0;DA�4) translates as: y > c2=4, yA

c2=4þ 1. Condition (1) of 1.4 gives:
cðcþ3Þ

2 � 2b y, hence if
cðcþ3Þ

2 � 2b y > c2

4
and yA c2

4 þ 1, ðc; yÞ is e¤ective.
Let’s show that

�
c; c

2

4

�
is e¤ective for every cb 2 (c even). Consider:

0 ! O ! F ! IY ð2Þ ! 0

where Y is one point. Then F is globally generated with Chern classes ð2; 1Þ. For
every mb 0, F ðmÞ is globally generated with c21 ¼ 4c2.

In the same way let’s show that
�
c; c

2

4 þ 1
�
is e¤ective for every cb 2 (c even).

This time consider:

0 ! O ! F ! IY ð2Þ ! 0

where Y is a set of two points; F is globally generated with Chern classes ð2; 2Þ.
For every mb 0, FðmÞ is globally generated with the desired Chern classes.

We conclude that if
cðcþ3Þ

2 � 2b yb c2

4 , then ðc; yÞ is e¤ective. By duality,

ðc; yÞ is e¤ective if 3c2

4 b yb
cðc�3Þ

2 þ 2. Putting every thing together we get the
result. r

Remark 1.6. Since 3c2=4 > c2=2, we may, by duality, concentrate on the range
y < c2=4, i.e. on not stable bundles with D > 0, that’s what we are going to do in
the next section.

2. Cayley-Bacharach

Definition 2.1. Let Y HP2 be a locally complete intersection (l.c.i.) zero-
dimensional subscheme. Let nb 1 be an integer. We say that Y satisfies Cayley-
Bacharach for curves of degree n ðCBðnÞÞ, if any curve of degree n containing a
subscheme Y 0HY of colength one (i.e. of degree degY � 1), contains Y.

Remark 2.2. Since Y is l.c.i. for any p a SuppðY Þ there exists a unique sub-
scheme Y 0 HY of colength one (locally) linked to p in Y. So Def. 2.1 makes sense
even if Y is non reduced.
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Let’s recall the following ([6]):

Proposition 2.3. Let Y HP2 be a zero-dimensional l.c.i. subscheme. There
exists an exact sequence:

0 ! O ! F ! IY ðcÞ ! 0

with F a rank two vector bundle if and only if Y satisfies CBðc� 3Þ.

See [6] (under the assumption that Y is reduced) and [1] for the general case.
The proposition gives conditions on the Chern classes of bundles having a sec-
tion, in our case:

Lemma 2.4. Let F be a globally generated rank two vector bundle on P2 with
c1ðFÞ ¼ c, c2ðF Þ ¼ y, then:

c� 1a ya c2 � cþ 1 or y ¼ c2 or y ¼ 0:

Proof. Since F is globally generated a general section vanishes in codimension
two or doesn’t vanish at all. In the second case F U 2:O and y ¼ 0. Let’s assume,
from now on, that a general section vanishes in codimension two. We have an
exact sequence:

0 ! O ! F ! IY ðcÞ ! 0

where Y is a zero-dimensional subscheme (we may assume Y smooth) which sat-
isfies Cayley-Bacharach condition for c� 3.

If c� 3b y� 1, Ep a Y there exists a curve of degree c� 3 containing
Yp :¼ Ynfpg and not containing Y (consider a suitable union of lines). Since Y
must satisfy the Cayley-Bacharach condition, it must be yb c� 1.

Let F be a globally generated rank two vector bundle with c1ðF Þ ¼ c,
c2ðFÞ ¼ y. Consider the G-dual bundle:

0 ! F � ! 4:O ! E ! 0

then E is a rank two, globally generated, vector bundle with c1ðEÞ ¼ c, c2ðEÞ ¼
c2 � y. By the previous part: c2ðEÞ ¼ 0 (i.e. y ¼ c2) or c2 � y ¼ c2ðEÞb
c1ðEÞ � 1 ¼ c� 1. So c2 � cþ 1b y. r

Remark 2.5. It is easy to check that for 1a ca 3, every value of y, c� 1a
ya c2 � cþ 1 is e¤ective (take Y HP2 of maximal rank with c� 1a ya c2=2
and use Castelnuovo-Mumford’s lemma to show that IY ðcÞ is globally generated).
In fact gaps occur only for cb 6. In the sequel we will assume that cb 4.

3. The statement

From now on we may restrict our attention to the range: c� 1a y < c2=4 (1.6,
2.4) for cb 4 (2.5). In this range DðF Þ ¼ c2 � 4y > 0, hence F is necessarily unsta-
ble (i.e. not semi-stable). In particular, if c is even: h0

�
F
�
� c

2

��
¼ h0

�
IY

�
c
2

��
A 0
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(resp. h0
�
F
�
� ðcþ1Þ

2

��
¼ h0

�
IY

�
c�1
2

��
A 0, if c is odd). So Y is forced to lie on a

curve of relatively low degree. In fact something more precise can be said, for this
we need the following elementary remark:

Lemma 3.1 (The trick). Let F be a rank two vector bundle on P2 with h0ðF ÞA 0.
If c2ðF Þ < 0, then h0ðF ð�1ÞÞA 0.

Proof. A non-zero section of F cannot vanish in codimension two (we would
have c2 > 0), nor can the section be nowhere non-zero (F would split as
F UOaOðcÞ, hence c2ðF Þ ¼ 0Þ. It follows that any section vanishes along a
divisor. By dividing by the equation of this divisor we get h0ðF ð�1ÞÞA 0. r

Actually this works also on Pn, nb 2.
For 2a ta c=2 (cb 4) we define:

At :¼ ½ðt� 1Þðc� tþ 1Þ; tðc� tÞ� ¼ ½ðt� 1Þc� ðt� 1Þ2; ðt� 1Þc� ðt2 � cÞ�:

The ranges At cover
�
c� 1; c

2

4

�
, the interval we are interested in. From our

point of view we may concentrate on the interior points of At. Indeed if y ¼ ab,
with aþ b ¼ c, we may take F UOðaÞaOðbÞ. So we define:

At ¼ �ðt� 1Þðc� tþ 1Þ; tðc� tÞ½; 2a ta c=2:

Lemma 3.2. If y a At, and if Y is the zero-locus of a section of F , a rank two
vector bundle with Chern classes ðc; yÞ, then h0ðIY ðt� 1ÞÞA 0.

Proof. We have an exact sequence 0 ! O ! F ! IY ðcÞ ! 0. Now
c2ðF ð�ðc� tÞÞ ¼ ð�cþ tÞtþ y. By our assumptions, y < tðc� tÞ, hence
c2ðF ð�cþ tÞÞ < 0. Looking at the graph of c2ðF ðxÞÞ ¼ x2 þ cxþ y, we see
that c2ðFðxÞÞ < 0 for ð�c�

ffiffiffiffiffiffiffiffiffiffiffi
DðF Þ

p
Þ=2 < xa�c=2. Since c2ðFð�cþ tÞÞ < 0,

�cþ t < �c=2 and h0ðFð�c=2ÞÞA 0, by induction, using Lemma 3.1, we con-
clude that h0ðF ð�cþ t� 1ÞÞ ¼ h0ðIY ðt� 1ÞÞA 0. r

So if y a At, Y is forced to lie on a degree ðt� 1Þ curve (but not on a curve of
degree t� 2). If general principles are respected we may think that if y a At,
Y HT , where T is a smooth curve of degree t� 1 and that h0ðIY ðt� 2ÞÞ ¼ 0. If
this is the case we have an exact sequence:

0 ! Oð�tþ 1Þ ! IY ! IY ;T ! 0

twisting by OTðcÞ:

0 ! Oðc� tþ 1Þ ! IY ðcÞ ! OTðc� YÞ ! 0:

Since c� tþ 1 > 0 (because cb 2t), we see that: IY ðcÞ is globally generated
if and only if OTðc� Y Þ is globally generated. The line bundle L ¼ OTðc� YÞ
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has degree l :¼ cðt� 1Þ � y. So the question is: for which l does there exists a
degree l line bundle on T generated by global sections? This is, by its own, a quite
natural problem which, strangely enough, has been solved only recently ([5], [2]).
First a definition:

Definition 3.3. Let C be a smooth irreducible curve. The Lűroth semi-group of
C, LSðCÞ, is the semi-group of nonnegative integers which are degrees of rational
functions on C. In other words: LSðCÞ ¼ fn a N j bL, of degree n, such that L is
globally generatedg.

Then we have:

Theorem 3.4 (Greco-Raciti-Coppens). If C is a smooth plane curve of degree
db 3, then

LSðCÞ ¼ LSðdÞ :¼ N

�[n0
a¼1

½ða� 1Þd þ 1; aðd � aÞ � 1�

where n0 is the integral part of
ffiffiffiffiffiffiffiffiffiffiffi
d � 2

p
.

Of course LSð1Þ ¼ LSð2Þ ¼ N. We observe that LSðCÞ doesn’t depend on C
but only on its degree.

Going back to our problem we see that if cðt� 1Þ � y B LSðt� 1Þ, then
L ¼ OTðc� Y Þ can’t be globally generated and the same happens to IY ðcÞ.

In conclusion if cðt� 1Þ � y a
Sn0
a¼1

½ða� 1Þðt� 1Þ þ 1; aðt� 1� aÞ � 1�, or if

cðt� 1Þ � y < 0, under our assumptions, ðc; yÞ is not e¤ective. The assumption
is that the unique curve of degree t� 1 containing Y is smooth. (Observe that
degOTðt� 1� Y Þ < 0, hence h0ðIY ðt� 1ÞÞ ¼ 1.)

Our theorem says that general principles are indeed respected. In order to
have a more manageable statement let’s introduce some notations:

Definition 3.5. Fix an integer cb 4. An integer y a At for some 2a ta c=2,
will be said to be admissible if cðt� 1Þ � y a LSðt� 1Þ. If cðt� 1Þ � y B LSðt� 1Þ,
y will be said to be non-admissible.

Observe that y a At is non-admissible if and only if: y a Gtð0Þ ¼
½cðt� 1Þ þ 1; tðc� tÞ � 1� (this corresponds to cðt� 1Þ � y < 0), or y a GtðaÞ ¼
½ðt� 1Þðc� aÞ þ a2 þ 1; ðt� 1Þðc� aþ 1Þ � 1� for some ab 1 such that
a2 þ 2a t� 1 (i.e. aa t0).

In order to prove Theorem 0.1 it remains to show:

Theorem 3.6. For any cb 4 and for any y a At for some 2a ta c=2, ðc; yÞ is
e¤ective if and only if y is admissible.

The proof splits into two parts:
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(1) (Gaps) If cðt� 1Þ � y B LSðt� 1Þ, one has to prove that ðc; yÞ is not e¤ective.
This is clear if Y lies on a smooth curve, T , of degree t� 1, but there is no
reason for this to be true and the problem is when T is singular.

(2) (Existence) If cðt� 1Þ � y a LSðt� 1Þ, one knows that there exists L glob-
ally generated, of degree cðt� 1Þ � y on a smooth curve, T , of degree t� 1.
The problem is to find such an L such that M :¼ OTðcÞnL� has a section
vanishing along a Y satisfying the Cayley-Bacharach condition for ðc� 3Þ.

4. The proof (gaps)

In this section we fix an integer cb 4 and prove that non-admissible y a At,
2a ta c=2 are gaps. For this we will assume that such a y is e¤ective and will
derive a contradiction. From 3.2 we know that h0ðIY ðt� 1ÞÞA 0. The first task
is to show that under our assumption (y not-admissible), h0ðIY ðt� 2ÞÞ ¼ 0 (see
4.3); this will imply that F ð�cþ t� 1Þ has a section vanishing in codimension
two.

To begin with let’s observe that non-admissible y a At may occur only when t
is small with respect to c.

Lemma 4.1. Assume cb 4. If t >
2
ffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffi
c� 2

p
, then every y a At is admissible.

Proof. Recall (see 3.5) that y a At, 2a ta c=2, is non admissible if and only if
y a GtðaÞ for some a, 0a aa t0.

We have Gtð0ÞA j , tðc� tÞ � 1b cðt� 1Þ þ 1 , ta
ffiffiffiffiffiffiffiffiffiffiffi
c� 2

p
.

For ab 1, GtðaÞBAtA j ) ðt� 1Þðc� aÞ þ a2 þ 1 < tðc� tÞ. This is equiv-
alent to: a2 � atþ t2 � cþ aþ 1 < 0 ð�Þ. The discriminant of this equation in a

is D ¼ �3t2 þ 4ðc� a� 1Þ and we must have Db 0, i.e.
2
ffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffi
c� 2

p
b t. r

Let’s get rid of the y 0s in Gtð0Þ:

Lemma 4.2. If y a At is non-admissible and e¤ective, then y a GtðaÞ for some a,

1a aa
ffiffiffiffiffiffiffiffiffiffi
t� 3

p
.

Proof. We have to show that if cðt� 1Þ � y < 0 and y a At, then y is not
e¤ective. By 3.2 h0ðIY ðt� 1ÞÞA 0. If y is e¤ective then IY ðcÞ is globally gener-
ated and Y is contained in a complete intersection of type ðt� 1; cÞ, hence
degY ¼ ya cðt� 1Þ: contradiction. r

Now we show that if y is non-admissible and e¤ective, then h0ðIY ðt� 1ÞÞ ¼ 1:

Lemma 4.3. Let cb 4 and assume y a At for some t, 2a ta c=2. Assume fur-
thermore that y is non-admissible and e¤ective i.e.:

y ¼ ðt� 1Þðc� aÞ þ a; a2 þ 1a aa t� 2

for a given a such that t� 1b a2 þ 2. Under these assumptions, h0ðIY ðt� 1ÞÞ ¼ 1.
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Proof. If h0ðIY ðt� 2ÞÞA 0, then ya cðt� 2Þ (the general Fc a H 0ðIY ðcÞÞ is
integral since IY ðcÞ is globally generated. Moreover t� 1 < c so FcAT ). It fol-
lows that:

y ¼ ðt� 1Þðc� aÞ þ aa cðt� 2Þ ¼ cðt� 1Þ � c:

This yields aðt� 1Þb cþ a. We have cþ ab cþ a2 þ 1, hence:

0b a2 � aðt� 1Þ þ cþ 1 ð�Þ:

The discriminant of ð�Þ (viewed as an equation in a) is: D ¼ ðt� 1Þ2 � 4ðcþ 1Þ.
If D < 0, ð�Þ is never satisfied and h0ðIY ðt� 2ÞÞ ¼ 0. Now D < 0 , ðt� 1Þ2 <
4ðcþ 1Þ. In our context D < 0 , t < 1þ 2

ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

p
. In conclusion if t <

1þ 2
ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

p
and if y is non-admissible, then h0ðIY ðt� 2ÞÞ ¼ 0.

Now by 4.1 if y is non-admissible, we have: ta
2
ffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffi
c� 2

p
. Since

2
ffiffi
3

p

3

ffiffiffiffiffiffiffiffiffiffiffi
c� 2

p
<

1þ 2
ffiffiffiffiffiffiffiffiffiffiffi
cþ 1

p
, Ec > 0, we are done.

Since h0ðIY ðt� 1ÞÞA 0, Fð�cþ t� 1Þ has a non-zero section, since
h0ðIY ðt� 2ÞÞ ¼ 0 the section vanishes in codimension two. Hence we have:

0 ! O ! F ð�cþ t� 1Þ ! IW ð�cþ 2t� 2Þ ! 0

where degW ¼ y� ðt� 1Þðc� tþ 1Þ. Since �cþ 2t� 2 < 0 (because cb 2t),
we get h0ðF ð�cþ t� 1ÞÞ ¼ 1 ¼ h0ðIY ðt� 1ÞÞ. r

Notations 4.4. Let F be a globally generated rank two vector bundle with Chern
classes ðc; yÞ. A section s a H 0ðFÞ defines Ys ¼ ðsÞ0. If y a At, h

0ðIYs
ðt� 1ÞÞA 0,

moreover if y is non-admissible h0ðIYs
ðt� 1ÞÞ ¼ 1 and there is a unique Ts a

H 0ðIYs
ðt� 1ÞÞ. It follows that Fð�cþ t� 1Þ has a unique section (hence vanishing

in codimension two): 0 ! O !u F ð�cþ t� 1Þ ! IW ð�cþ 2t� 2Þ ! 0.

Lemma 4.5. If y a At is non-admissible and e¤ective, with notations as in 4.4:

(1) Ys and W are bilinked on Ts

(2) The curves Ts are precisely the elements of H 0ðIW ðt� 1ÞÞ
(3) IW ðt� 1Þ is globally generated, in particular for s a H 0ðF Þ general, Ts is

reduced.

Proof. (1) (2) We have a commutative diagram:

0 0

# #
O ¼ O

# u #Ts

0 ! Oð�cþ t� 1Þ !s Fð�cþ t� 1Þ ! IY ðt� 1Þ ! 0

k # #
0 ! Oð�cþ t� 1Þ !s IW ð�cþ 2t� 2Þ ! IY ;Ts

ðt� 1Þ ! 0

# #
0 0
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This diagram is obtained as follows: the section Ts lifts to, u, the unique sec-
tion of Fð�cþ t� 1Þ, hence CokerðuÞUIW ð�cþ 2t� 2Þ, then take the first
horizontal line corresponding to s and complete the full diagram.

We see that s corresponds to an element of H 0ðIW ðt� 1ÞÞ and the quotient
Oð�tþ 1Þ !s IW has support on Ts and is isomorphic to IY ;Ts

ð�tþ cþ 1Þ,
hence IW ;Ts

ð�hÞUIY ;Ts
where h ¼ c� tþ 1. This shows that W and Ys are

bilinked on Ts. Indeed by composing with the inclusion IY ;Ts
! OTs

we get an
injective morphism j : IW ;Ts

ð�hÞ ! OTs
, now take a curve C a H 0ðIW ðkÞÞ,

without any irreducible component in common with Ts and take C 0 such that
jðCÞ ¼ C 0 in H 0

� ðOTs
Þ, then W is bilinked to Y by CBTs and C 0BTs.

This can be seen in another way: take C 0 a H 0ðIY ðkÞÞ with no irreducible
common component with Ts, the complete intersection TsBC 0 links Y to a sub-
scheme Z. By mapping cone:

0 ! F �ðh� kÞ ! Oð�tþ 1ÞaOð�kÞaOð�ðk � hÞÞ ����!ðTs;C
0;CÞ

IZ ! 0:

Observe that C and Ts do not share any common component. Indeed if Ts ¼ AT 0

and C ¼ A ~CC, then ðC 0BAÞHZ (as schemes), because Z is the schematic inter-
section of Ts, C

0 and C. This is impossible because C 0BA contains points of
Y (otherwise Y HT 0 but h0ðIY ðt� 2ÞÞ ¼ 0). The complete intersection TsBC
links Z to a subscheme W 0 and by mapping cone, we get that W 0 is a section
of Fð�hÞ. By uniqueness it follows that W 0 ¼ W . The same argument starting
from W and T a H 0ðIW ðt� 1ÞÞ, instead of Y and Ts, works even better and
shows that W is bilinked on T to a section Ys of F . In conclusion the curves Ts

are given by sbu, where u is the unique section of F ð�hÞ and where s a H 0ðFÞ
vanishes in codimension two.

(3) The exact sequence 0 ! Oðc� tþ 1Þ ! F ! IW ðt� 1Þ ! 0 shows that
IW ðt� 1Þ is globally generated, hence the general element in H 0ðIW ðt� 1ÞÞ is
reduced. r

Since W could well be non reduced with embedding dimension two, concern-
ing T , this is the best we can hope. However, and this is the point, we may reverse
the construction and start from W .

Lemma 4.6. Let W HP2 be a zero-dimensional, locally complete intersection
(l.c.i.) subscheme. Assume IW ðnÞ is globally generated, then if T ;T 0 a H 0ðIW ðnÞÞ
are su‰ciently general, the complete intersection T BT 0 links W to a smooth sub-
scheme Z such that W BZ ¼ j.

Proof. If p a SuppðW Þ, denote by Wp the subscheme of W supported at p.
Since W is l.c.i, IW ;p ¼ ð f ; gÞHOp. By assumption the map H 0ðIW ðnÞÞn
Op !

ev
IW ;p which takes T a H 0ðIW ðnÞÞ to its germ, Tp, at p, is surjective. Hence

there exists T such that Tp ¼ f (resp. T 0 such that T 0
p ¼ g). It follows that in

a neighbourhood of p: T BT 0 ¼ Wp. If G is the Grassmannian of lines of
H 0ðIW ðnÞÞ for 3T ;T 04 a G the property T BT 0 ¼ Wp (in a neighbourhood
of p) is open (it means that the local degree at p of TBT 0 is minimum). We con-
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clude that there exists a dense open subset, Up HG, such that for 3T ;T 04 a Up,
T BT 0 ¼ Wp (locally at p). If SuppðWÞ ¼ fp1; . . . ; prg there exists a dense open
subset U HU1B � � �BUr such that if 3T ;T 04 a U , then TBT 0 links W to Z
and W BZ ¼ j.

By Bertini’s theorem the general curve T a H 0ðIW ðnÞÞ is smooth out of W . If
CHT is an irreducible component, the curves of H 0ðIW ðnÞÞ cut on C, residually
to W BC, a base point free linear system. By the previous part the general mem-
ber, ZC , of this linear system doesn’t meet SingðCÞ (because ZC BW ¼ j), it fol-
lows, by Bertini’s theorem, that ZC is smooth. So for general T ;T 0 a H 0ðIW ðnÞÞ,
T BT 0 links W to a smooth subscheme, Z, such that W BZ ¼ j. r

Corollary 4.7. Let y a At be non-admissible. If y is e¤ective, with notations as
in 4.4, if T ;T 0 a H 0ðIW ðt� 1ÞÞ are su‰ciently general, then T BT 0 links W to a
smooth subscheme, Z, such that W BZ ¼ j. Furthermore IZðcÞ is globally gener-
ated and if Sc a H 0ðIZðcÞÞ is su‰ciently general, then T BSc links Z to a smooth
subscheme Y, where Y is the zero locus of a section of F and where ZBY ¼ j.

Proof. The first statement follows from 4.6. From the exact sequence

0 ! Oðc� 2tþ 2Þ ! Fð�tþ 1Þ ! IW ! 0

we get by mapping cone:

0 ! F �ð�tþ 1Þ ! Oð�cÞa 2:Oð�tþ 1Þ ! IZ ! 0 ð�Þ

which shows that IZðcÞ is globally generated. Since Z is smooth and contained in
the smooth locus of T and since IZðcÞ is globally generated, if C is an irreducible
component of T , the curves of H 0ðIZðcÞÞ cut on C, residually to CBZ, a base
point free linear system. In particular the general member, D, of this linear system
doesn’t meet SingðCÞ. By Bertini’s theorem we may assume D smooth. It follows
that if Sc a H 0ðIZðcÞÞ is su‰ciently general, ScBT links Z to a smooth Y such
that ZBY ¼ j. By mapping cone, we see from ð�Þ that Y is the zero-locus of a
section of F . r

The previous lemmas will allow us to apply the following (classical, I think)
result:

Lemma 4.8. Let Y ;ZHP2 be two zero-dimensional subschemes linked by a com-
plete intersection, X , of type ða; bÞ. Assume:

(1) Y BZ ¼ j
(2) IY ðaÞ globally generated.

Then Z satisfies Cayley-Bacharach for ðb� 3Þ.

Proof. Notice that Z and Y are l.c.i. Now let P be a curve of degree b� 3 con-
taining Z 0 HZ of colength one. We have to show that P contains Z. Since IY ðaÞ

157chern classes of rank two globally generated vector bundles on P2



is globally generated and since Y BZ ¼ j, there exists F a H 0ðIY ðaÞÞ not pass-
ing through p. Now PF is a degree aþ b� 3 curve containing Xnfpg. Since
complete intersections ða; bÞ verify Cayley-Bacharach for aþ b� 3 (the bundle
OðaÞaOðbÞ exists!), PF passes through p. This implies that P contains Z. r

Gathering everything together:

Corollary 4.9. Let y a At be non-admissible. If y is e¤ective, then there exists
a smooth zero-dimensional subscheme Z such that:

(1) Z lies on a pencil 3T ;T 04 of curves of degree t� 1, the base locus of this pencil
is zero-dimensional.

(2) degZ ¼ cðt� 1Þ � y
(3) Z satisfies Cayley-Bacharach for t� 4

Proof. By 4.7 there is a Y zero-locus of a section of F which is linked by a com-
plete intersection of type ðc; t� 1Þ to a Z such that Y BZ ¼ j. Since IY ðcÞ is
globally generated, by 4.8, Z satisfies Cayley-Bacharach for t� 4. r

Now we conclude with:

Proposition 4.10. Let ZHP2 be a smooth zero-dimensional subscheme con-
tained in a curve of degree d. Let ab 1 be an integer such that db a2 þ 2. Assume
h0ðIZða� 1ÞÞ ¼ 0. If ða� 1Þd þ 1a degZa aðd � aÞ � 1, then Z doesn’t verify
Cayley-Bacharach for d � 3.

Remark 4.11. This proposition is Theorem 3.1 in [5] with a slight modification:
we make no assumption on the degree d curve (which can be singular, even non re-
duced), but we assume h0ðIZða� 1ÞÞ ¼ 0 (which follows from Bezout if the degree
d curve is integral).

Since this proposition is a key point, and for convenience of the reader, we will
prove it. We insist on the fact that the proof given is essentially the proof of Theo-
rem 3.1 in [5].

Notations 4.12. We recall that if ZHP2, the numerical character of Z,
w ¼ ðn0; . . . ; ns�1Þ is a sequence of integers which encodes the Hilbert function of
Z (see [7]):

(1) n0 b � � �b ns�1 b s where s is the minimal degree of a curve containing Z

(2) h1ðIZðnÞÞ ¼
Ps�1

i¼0

½ni � n� 1�þ � ½i � n� 1�þ (½x�þ ¼ maxf0; xg).

(3) In particular degZ ¼
Ps�1

i¼0

ðni � iÞ.

The numerical character is said to be connected if ni a niþ1 þ 1, for all 0a i <
s� 1. For those more comfortable with the Hilbert function, HðZ;�Þ and its first
di¤erence function, DðZ; iÞ ¼ HðZ; iÞ �HðZ; i � 1Þ, we recall that DðiÞ ¼ i þ 1
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for i < s while DðiÞ ¼afl j nl b i þ 1g. It follows that the condition nr�1 > nr þ 1
is equivalent to Dðnr þ 1Þ ¼ DðnrÞ. Also recall that for 0a i < s, ni ¼ minftb i j
DðtÞa ig.

Lemma 4.13. Let ZHP2 be a smooth zero-dimensional subscheme. Let w ¼
ðn0; . . . ; ns�1Þ be the numerical character of Z. If nr�1 > nr þ 1, then Z doesn’t
verify Cayley-Bacharach for every ib nr � 1.

Proof. It is enough to show that Z doesn’t verify CBðnr � 1Þ. By [3] there exists
a curve, R, of degree r such that RBZ ¼ E 0 where wðE 0Þ ¼ ðn0; . . . ; nr�1Þ.
Moreover if E 00 is the residual of Z with respect to the divisor R, wðE 00Þ ¼
ðm0; . . . ;ms�1�rÞ, with mi ¼ nrþi � r. It follows that h1ðIE 00 ðnr � r� 1ÞÞ ¼ 0.
This implies that given X HE 00 of colength one, there exists a curve, P, of degree
nr � r� 1 passing through X but not containing E 00. The curve RP has degree
nr � 1, passes through Z 0 :¼ E 0AX but doesn’t contain Z (because RBZ ¼ E 0).

r

Proof of Proposition 4.10. Observe that the assumptions imply db 3,
moreover if d ¼ 3, then a ¼ degZ ¼ 1 and the statement is clear; so we may
assume db 4.

Assume to the contrary that Z satisfies CBðd � 3Þ. This implies h1ðIZðd � 3ÞÞ
A 0. If a ¼ 1, then degZa d � 2 and necessarily h1ðIZðd � 3ÞÞ ¼ 0, so we
may assume ab 2. Now if h1ðIZðd � 3ÞÞA 0, then n0 b d � 1, where wðZÞ ¼
ðn0; . . . ; ns�1Þ is the numerical character of Z. Since sb a, na�1 a wðZÞ.

We claim that na�1 < d � 2. Indeed otherwise n0 b d � 1 and n0 b � � �b
na�1 b d � 2 implies

degZ ¼
Xs�1

i¼0

ðni � iÞb
Xa�1

i¼0

ðni � iÞb 1þ
Xa�1

i¼0

ðd � 2� iÞ

¼ 1þ aðd � 2Þ � aða� 1Þ
2

:

If ab 1, then 1þ aðd � 2Þ � aða�1Þ
2 > aðd � aÞ � 1b degZ: contradiction.

Let’s show that na�1 b d � a. Assume to the contrary na�1 < d � a. Then
there exists k, 1a ka a� 1 such that nk a d � 2 and nk�1 b d � 1 (indeed
n0 b d � 1 and na�1 < d � aa d � 2). If nk�1 b nk b � � �b na�1 is connected,
then nk�1 < d � aþ r where a ¼ k þ r. Hence d � aþ r > nk�1 b d � 1, which
implies rb a which is impossible since kb 1. It follows that there is a gap in
nk�1 b nk b � � �b na�1, i.e. there exists r, ka ra a� 1, such that nr�1 > nr þ 1.
Since d � 2b nk b nr, we conclude by 4.13 that Z doesn’t satisfy CBðd � 3Þ:
contradiction.

So far we have d � aa na�1 < d � 2 and n0 b d � 1. Set na�1 ¼ d � aþ r
(rb 0). We claim that there exists k such that nk b d � 1 and nk b � � �b na�1 ¼
d � aþ r is connected. Since n0 b d � 1, this follows from 4.13, otherwise Z
doesn’t verify CBðd � 3Þ.
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We have wðZÞ ¼ ðn0; . . . ; nk; . . . ; na�1; . . . ; ns�1Þ with nk b d � 1, na�1 ¼
d � aþ r. Since ðnk; . . . ; na�1Þ is connected and nk b d � 1, we have ni b
d � 1þ k � i for ka ia a� 1. Since na�1 ¼ d � aþ rb d � 1þ k � ða� 1Þ,
we get rb k. It follows that:

degZ ¼
Xs�1

i¼0

ðni � iÞ ¼
Xk�1

i¼0

ðni � iÞ þ
Xa�1

i¼k

ðni � iÞ þ
X
iba

ðni � iÞ

b
Xk�1

i¼0

ðd � 1� iÞ þ
Xa�1

i¼k

ðd � 1� 2i þ kÞ þ
X
iba

ðni � iÞ

b
Xk�1

i¼0

ðd � 1� iÞ þ
Xa�1

i¼k

ðd � 1� 2i þ kÞ ¼ ðþÞ:

We have:

Xa�1

i¼k

ðd � 1� 2i þ kÞ ¼ ða� kÞðd � aÞ ð�Þ:

If k ¼ 0, we get degZb aðd � aÞ, a contradiction since degZa aðd � aÞ � 1 by
assumption. Assume k > 0. Then:

Xk�1

i¼0

ðd � 1� iÞ ¼ kðd � 1Þ � kðk � 1Þ
2

¼ k
�
d � 1� ðk � 1Þ

2

�
:

From ðþÞ and ð�Þ we get:

degZb ða� kÞðd � aÞ þ k
�
d � 1� ðk � 1Þ

2

�
¼ aðd � aÞ þ k

�
a� 1� ðk � 1Þ

2

�

and to conclude it is enough to check that a� 1b ðk � 1Þ=2. Since rb k, this
will follow from a� 1b ðr� 1Þ=2. If a < ðrþ 1Þ=2, then na�1 ¼ d � aþ r >
d þ a� 1b d, in contradiction with na�1 < d � 2. The proof is over. r

We can now conclude and get the ‘‘gaps part’’ of 3.6:

Corollary 4.14. For cb 4 let y a At for some t, 2a ta c=2. If y is non
admissible, then y is a gap (i.e. ðc; yÞ is not e¤ective).

Proof. Since y is non-admissible, y a GtðaÞ for some ab 1 (see 4.2), or equiv-
alently degZ ¼ cðt� 1Þ � y a ½ða� 1Þðt� 1Þ þ 1; aðt� 1� aÞ � 1� for some
ab 1 such that a2 þ 1a t� 1. In view of 4.9 it is enough to show that Z cannot
verify Cayley-Bacharach for t� 4. For this we want to apply 4.10. The only
thing we have to show is h0ðIZða� 1ÞÞ ¼ 0. Let P be a curve of degree s < a
containing Z. If P doesn’t have a common component with some curve of
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H 0ðIZðt� 1ÞÞ, then degZa sðt� 1Þa ða� 1Þðt� 1Þ. But this is impossible
since degZb ða� 1Þðt� 1Þ þ 1. On the other hand Z is contained in a pencil
3T ;T 04 of curves of degree t� 1 and this pencil has a base locus of dimension
zero (see 4.9). So we may always find a curve in H 0ðIZðt� 1ÞÞ having no com-
mon component with P. r

5. The proof (existence)

In this section we assume that y a At is admissible and prove that y is indeed ef-
fective. Since y is admissible we know by [2] that there exists a smooth plane
curve, T , of degree t� 1 and a globally generated line bundle, L, on T of degree
z :¼ cðt� 1Þ � y.

Lemma 5.1. Assume y a At is admissible. If T is a smooth plane curve of degree
t� 1 and if L is a globally generated line bundle on T with degL ¼ cðt� 1Þ � y,
then L�ðcÞ is non special and globally generated.

Proof. We have degL�ðcÞ ¼ y. It is enough to check that yb 2gT þ 1 ¼
ðt� 2Þðt� 3Þ þ 1. We have yb ðt� 1Þðc� tþ 1Þ þ 1. Since cb 2t it follows
that yb ðt� 1Þðtþ 1Þ þ 1 ¼ t2. r

Lemma 5.2. Assume y a At is admissible. If there exists a smooth plane curve,
T, of degree t� 1, carrying a globally generated line bundle, L, with degL ¼
cðt� 1Þ � y and with h1ðLÞA 0, then y is e¤ective.

Proof. Let Z be a section of L. If h1ðLÞ ¼ h0ðL�ðt� 4ÞÞA 0, then Z lies on a
curve, R, of degree t� 4. Set X ¼ T BR. By 5.1 L�ðcÞ is globally generated, so
we may find a s a H 0ðL�ðcÞÞ such that ðsÞ0BX ¼ j. Set Y ¼ ðsÞ0. We have
OTðcÞUOTðZ þ Y Þ and Y BZ ¼ j. So Y and Z are linked by a complete inter-
section I ¼ FcBT . Let’s prove that Y satisfies CBðc� 3Þ. First observe that
there exists a degree t� 1 curve, T 0, containing Z such that T 0BY ¼ j: indeed
since Y BX ¼ j, we just take T 0 ¼ RAC where C is a suitable cubic. Now let
p a Y and let P be a degree c� 3 curve containing Y 0 ¼ Ynfpg. The curve
T 0P contains Infpg and has degree cþ t� 4. Since the complete intersection I
satisfies CBðcþ t� 4Þ and since T 0BY ¼ j, p a P.

It follows that we have: 0 ! O ! F ! IY ðcÞ ! 0 where F is a rank two vec-
tor bundle with Chern classes ðc; yÞ. Since IY ;TðcÞUL is globally generated,
IY ðcÞ and therefore F are globally generated. r

We need a lemma:

Lemma 5.3. For any integer r, 1a ra h0ðOðt� 1ÞÞ � 3, there exists a smooth
zero-dimensional subscheme, R, of degree r such that IRðt� 1Þ is globally gener-
ated with h0ðIRðt� 1ÞÞb 3.

Proof. Take R of degree r, of maximal rank. If h0ðOðt� 2ÞÞb r, then
h1ðIRðt� 2ÞÞ ¼ 0 and we conclude by Castelnuovo-Mumford’s lemma. Assume
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h0ðOðt� 2ÞÞ < r and take R of maximal rank and minimally generated (i.e. all the
maps sðmÞ : H 0ðIRðmÞÞnH 0ðOð1ÞÞ ! H 0ðIRðmþ 1ÞÞ are of maximal rank). If
sðt� 1Þ is surjective we are done, otherwise it is injective and the minimal free
resolution looks like:

0 ! d:Oð�t� 1Þ ! b:Oð�tÞa a:Oð�tþ 1Þ ! IR ! 0:

By assumption ab 3.
Since Homðd � Oð�t� 1Þ; b:Oð�tÞa a:Oð�tþ 1ÞÞ is globally generated,

if j a Homðd:Oð�t� 1Þ; b:Oð�tÞa a:Oð�tþ 1ÞÞ is su‰ciently general, then
CokerðuÞUIR with R smooth of codimension two. Furthermore since b:Oð1Þ is
globally generated, it can be generated by bþ 2 sections; it follows that the
general morphism f : d:O ! b:Oð1Þ is surjective (d ¼ aþ b� 1b bþ 2). In con-
clusion the general morphism j ¼ ð f ; gÞ : d:Oð�t� 1Þ ! b:Oð�tÞa a:Oð�tþ 1Þ
has CokerðjÞUIR with R smooth, with the induced morphism a:Oð�tþ 1Þ !
IR surjective. r

Proposition 5.4. Let cb 4 be an integer. For every 2a ta c=2, every admissi-
ble y a At is e¤ective.

Proof. By [2] there exists a globally generated line bundle, L, of degree
l ¼ cðt� 1Þ � y on a smooth plane curve, T , of degree t� 1. If h1ðLÞA 0 we
conclude with 5.2. Assume h1ðLÞ ¼ 0. Then h0ðLÞ ¼ l � gT þ 1b 2 (we may

assume LAOT , because if y ¼ cðt� 1Þ, we are done). So lb
ðt�2Þðt�3Þ

2 þ 1. Since
ðt� 1Þðc� tþ 1Þ þ 1a ya tðc� tÞ � 1, we have:

ðt� 1Þ2 � 1b lb
ðt� 2Þðt� 3Þ

2
þ 1 ð�Þ:

It follows that:

l ¼ ðt� 1Þ2 � r; 1a ra
tðtþ 1Þ

2
� 3 ¼ h0ðOðt� 1ÞÞ � 3 ð��Þ:

For r, 1a ra h0ðOðt� 1ÞÞ � 3, let RHP2 be a general set of r points of max-
imal rank, with h0ðIRðt� 1ÞÞb 3 and IRðt� 1Þ globally generated (see 5.3). It
follows that R is linked by a complete intersection T BT 0 of two smooth curves
of degree t� 1, to a set, Z, of ðt� 1Þ2 � r ¼ l points. Since IRðt� 1Þ is globally
generated, IR;Tðt� 1ÞUOTðt� 1� RÞ is globally generated. Since OTðt� 1ÞU
OTðRþ ZÞ, we see that L :¼ OTðZÞ is globally generated. Moreover, by con-
struction, h0ðIZðt� 1ÞÞb 2. By 5.1, L�ðcÞ is globally generated so there exists
s a H 0ðL�ðcÞÞ such that: Y :¼ ðsÞ0 satisfies Y B ðT BT 0Þ ¼ j. As in the proof
of 5.2, we see that Y satisfies CBðc� 3Þ: indeed T 0 is a degree t� 1 curve con-
taining Z such that T 0BY ¼ j. Since IY ;TðcÞUL is globally generated, we
conclude that IY ðcÞ is globally generated. r

Proposition 5.4 and Corollary 4.14 (and Remark 2.5) prove Theorem 3.6. It
follows that the proof of Theorem 0.1 is complete.
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6. Morphisms from P2
to Gð1; 3Þ

It is well known that finite morphisms j : P2 ! Gð1; 3Þ are in bijective correspon-
dence with exact sequences of vector bundles on P2:

0 ! E � ! 4:O ! F ! 0 ð�Þ

where F has rank two and is globally generated with c1ðFÞ ¼ c > 0. If j is gener-
ically injective, then jðP2Þ ¼ SHGHP5 (the last inclusion is given by the
Plűcker embedding) has degree c2 (as a surface of P5) and bidegree ðy; c2 � yÞ,
y ¼ c2ðF Þ (i.e. there are y lines of S through a general point of P3 and c2 � y
lines of S contained in a general plane of P3). Theorem 0.1 gives all the possible
ðc; yÞ (but it doesn’t tell if j exists). Finally, by [10], if j is an embedding then
ðc; yÞ a fð1; 0Þ; ð1; 1Þ; ð2; 1Þ; ð2; 3Þg.
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