Rend. Lincei Mat. Appl. 24 (2013), 147–163 DOI 10.4171/RLM/649

Algebraic Geometry — Chern classes of rank two globally generated vector bundles on \mathbb{P}^2 , by PHILIPPE ELLIA, communicated on 9 November 2012*.

ABSTRACT. — We determine the Chern classes of globally generated rank two vector bundles on the projective plane.

KEY WORDS: Chern classes, rank two vector bundles, globally generated, projective plane.

MATHEMATICS SUBJECT CLASSIFICATION: 14F99, 14J99.

INTRODUCTION

Vector bundles generated by global sections come up in a variety of problems in projective algebraic geometry. In this paper we consider the following question: which are the possible Chern classes of rank two globally generated vector bundles on \mathbb{P}^2 ? (Here $\mathbb{P}^2 = \mathbb{P}^2_k$ with k algebraically closed, of charateristic zero.)

Clearly these Chern classes have to be positive. Naively one may think that this is the only restriction. A closer inspection shows that this is not true: since we are on \mathbb{P}^2 , the construction of rank two vector bundles starting from codimension two, locally complete intersection subschemes is subject to the Cayley-Bacharach condition (see Section 2). So if we have an exact sequence $0 \to \mathcal{O} \to$ $F \to \mathscr{I}_Y(c) \to 0$, with F a rank two vector bundle and $Y \subset \mathbb{P}^2$ of codimension two, then Y satisfies Cayley-Bacharach for c - 3.

Now *F* is globally generated if and only if $\mathscr{I}_Y(c)$ is. If *Y* is contained in a *smooth* curve, *T*, of degree *d*, we have $0 \to \mathcal{O}(-d+c) \to \mathscr{I}_Y(c) \to \mathscr{I}_{Y,T}(c) \to 0$ and we see that, if $c \ge d$, $\mathscr{I}_Y(c)$ is globally generated if and only if the line bundle $\mathscr{L} = \mathscr{I}_{Y,T}(c)$ on *T* is globally generated. But there are gaps in the degrees of globally generated line bundles on a smooth plane curve of degree *d* (it is classically known that no such bundle exists if $d \ge 3$ and $1 \le \deg \mathscr{L} \le d - 2$). A remarkable theorem due to Greco-Raciti and Coppens ([5], [2] and Section 3) gives the exact list of gaps.

This is another obstruction, at least if Y lies on a *smooth* curve, T, of low degree with respect with $c = c_1(F)$ (in this case F tends to be not stable). The problem then is to have such a curve for *every* vector bundle with fixed Chern classes and then, to treat the case where T is not smooth. The first problem is solved in the *necessarily unstable* range ($\Delta(F) = c_1^2 - 4c_2 > 0$) (see Section 3). In the stable range there are no obstructions, this was already known to Le

^{*} Proposed by F. Catanese.

Potier (see [9]). For the second problem we use the following remark: if a line bundle $\mathcal{O}_T(Z)$ on a smooth plane curve of degree *d* is globally generated, then *Z* satisfies Cayley-Bacharach for d - 3. Working with the minimal section of *F* we are able to have a similar statement even if *T* is singular (see 4.9). Finally with a slight modification of Theorem 3.1 in [5] we are able to show the existence of gaps.

To state our result we need some notations. Let c > 0 be an integer. Let's say that (c, y) is effective if there exists a globally generated rank two vector bundle on \mathbb{P}^2 , F, with $c_1(F) = c$, $c_2(F) = y$. It is easy to see (cf Section 1) that it must be $0 \le y \le c^2$ and that (c, y) is effective if and only if $(c, c^2 - y)$ is. So we may assume $y \le c^2/2$. For every integer t, $2 \le t \le c/2$, let $G_t(0) = [c(t-1) + 1, t(c-t) - 1]$ (we use the convention that if b < a, then $[a, b] = \emptyset$). For every integer t, $4 \le t \le c/2$, denote by t_0 the integral part of $\sqrt{t-3}$, then for every integer a such that $1 \le a \le t_0$ define $G_t(a) = [(t-1)(c-a) + a^2 + 1, (t-1)(c-a+1) - 1]$. Finally let

$$G_t = \bigcup_{a=0}^{t_0} G_t(a)$$
 and $G = \bigcup_{t=2}^{c/2} G_t$.

Then we have:

THEOREM 0.1. Let c > 0 be an integer. There exists a globally generated rank two vector bundle on \mathbb{P}^2 with Chern classes $c_1 = c$, $c_2 = y$ if and only if one of the following occurs:

(1)
$$y = 0 \text{ or } c - 1 \le y < c^2/4 \text{ and } y \notin G$$

(2) $c^2/4 \le y \le 3c^2/4$
(3) $3c^2/4 < y \le c^2 - c + 1 \text{ and } c^2 - y \notin G \text{ or } y = c^2$.

Although quite awful to state, this result is quite natural (see Section 3). As a by-product we get (Section 6) all the possible "bi-degrees" for generically injective morphisms from \mathbb{P}^2 to the Grassmannian G(1,3) (or more generally to a Grassmannian of lines). To conclude let's mention that some partial results on this problem can be found in [4].

ACKNOWLEDGMENT. I thank L. Gruson for drawing this problem to my attention and E. Mezzetti for pointing out a misprint in the statement of the theorem.

1. GENERAL FACTS AND A RESULT OF LE POTIER FOR STABLE BUNDLES

Let *F* be a rank two globally generated vector bundle on \mathbb{P}^2 with Chern classes $c_1(F) =: c, c_2(F) =: y$. Since the restriction F_L to a line is globally generated, we get $c \ge 0$. A general section of *F* yields:

$$0 \to \mathcal{O} \to F \to \mathscr{I}_Y(c) \to 0$$

where $Y \subset \mathbb{P}^2$ is a smooth set of y distinct points (cf [8], 1.4) or is empty. In the first case y > 0, in the second case $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$ and y = 0. In any case the Chern classes of a globally generated rank two vector bundle are positive.

Also observe $(Y \neq \emptyset)$ that $\mathscr{I}_Y(c)$ is globally generated (in fact F globally generated $\Leftrightarrow \mathscr{I}_Y(c)$ is globally generated). This implies by Bertini's theorem that a general curve of degree c containing Y is smooth (hence irreducible). Since $rk(F) + \dim(\mathbb{P}^2) = 4$, F can be generated by $V \subset H^0(F)$ with

Since $rk(F) + \dim(\mathbb{P}^2) = 4$, F can be generated by $V \subset H^0(F)$ with dim V = 4 and we get:

$$0 \to E^* \to V \otimes \mathcal{O} \to F \to 0.$$

It follows that *E* is a rank two, globally generated vector bundle with Chern classes: $c_1(E) = c$, $c_2(E) = c^2 - y$. We will say that *E* is the *G*-dual bundle of *F*. Since a globally generated rank two bundle has positive Chern classes we get: $0 \le y \le c^2$, $c \ge 0$.

DEFINITION 1.1. We will say that (c, y) is effective if there exist a globally generated rank two vector bundle on \mathbb{P}^2 with $c_1 = c$ and $c_2 = y$. A non effective (c, y) will also be called a gap.

REMARK 1.2. By considering G-dual bundles we see that (c, y) is effective if and only if $(c, c^2 - y)$ is effective. Hence it is enough to consider the range $0 \le y \le c^2/2$. If c = 0, then $F \simeq 2.0$ and y = 0. If $y = c^2$ then $c_2(E) = 0$, hence $E \simeq 0 \oplus O(c)$ and:

$$0 \to \mathcal{O}(-c) \to 3.\mathcal{O} \to F \to 0.$$

Such bundles exists for any $c \ge 0$. If y = 0, $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$.

DEFINITION 1.3. If F is a rank two vector bundles on \mathbb{P}^2 we denote by F_{norm} the unique twist of F such that $-1 \le c_1(F_{norm}) \le 0$. The bundle F is stable if $h^0(F_{norm}) = 0$.

By a result of Schwarzenberger, if *F* is stable with $c_1(F) = c$, $c_2(F) = y$, then $\Delta(F) := c^2 - 4y < 0$ (and $\Delta(F) \neq -4$). Moreover there exist a stable rank two vector bundle with Chern classes (c, y) if and only if $\Delta := c^2 - 4y < 0$, $\Delta \neq -4$.

Concerning stable bundles we have the following result of Le Potier [9]:

PROPOSITION 1.4 (Le Potier). Let $\mathcal{M}(c_1, c_2)$ denote the moduli space of stable rank two bundles with Chern classes c_1, c_2 on \mathbb{P}^2 . There exists a non empty open subset of $\mathcal{M}(c_1, c_2)$ corresponding to globally generated bundles if and only if one of the following holds:

- (1) $c_1 > 0$ and $\chi(c_1, c_2) \ge 4$ ($\chi(c_1, c_2) = 2 + \frac{c_1(c_1+3)}{2} c_2$)
- (2) $(c_1, c_2) = (1, 1)$ or (2, 4).

Using this proposition we get:

COROLLARY 1.5. If c > 0 and

$$\frac{c^2}{4} \le y \le \frac{3c^2}{4}$$

then (c, y) is effective.

PROOF. The existence condition $(\Delta < 0, \Delta \neq -4)$ translates as: $y > c^2/4$, $y \neq c^2/4 + 1$. Condition (1) of 1.4 gives: $\frac{c(c+3)}{2} - 2 \ge y$, hence if $\frac{c(c+3)}{2} - 2 \ge y > \frac{c^2}{4}$ and $y \neq \frac{c^2}{4} + 1$, (c, y) is effective.

Let's show that $(c, \frac{c^2}{4})$ is effective for every $c \ge 2$ (c even). Consider:

$$0 \to \mathcal{O} \to F \to \mathscr{I}_Y(2) \to 0$$

where Y is one point. Then F is globally generated with Chern classes (2, 1). For every $m \ge 0$, F(m) is globally generated with $c_1^2 = 4c_2$. In the same way let's show that $(c, \frac{c^2}{4} + 1)$ is effective for every $c \ge 2$ (c even).

This time consider:

$$0 \to \mathcal{O} \to F \to \mathscr{I}_Y(2) \to 0$$

where Y is a set of two points; F is globally generated with Chern classes (2, 2). For every $m \ge 0$, F(m) is globally generated with the desired Chern classes.

We conclude that if $\frac{c(c+3)}{2} - 2 \ge y \ge \frac{c^2}{4}$, then (c, y) is effective. By *duality*, (c, y) is effective if $\frac{3c^2}{4} \ge y \ge \frac{c(c-3)}{2} + 2$. Putting every thing together we get the result.

REMARK 1.6. Since $3c^2/4 > c^2/2$, we may, by duality, concentrate on the range $v < c^2/4$, i.e. on not stable bundles with $\Delta > 0$, that's what we are going to do in the next section.

2. CAYLEY-BACHARACH

DEFINITION 2.1. Let $Y \subset \mathbb{P}^2$ be a locally complete intersection (l.c.i.) zerodimensional subscheme. Let $n \ge 1$ be an integer. We say that Y satisfies Cayley-Bacharach for curves of degree n (CB(n)), if any curve of degree n containing a subscheme $Y' \subset Y$ of colength one (i.e. of degree deg Y - 1), contains Y.

REMARK 2.2. Since Y is l.c.i. for any $p \in Supp(Y)$ there exists a unique subscheme $Y' \subset Y$ of colength one (locally) linked to p in Y. So Def. 2.1 makes sense even if Y is non reduced.

Let's recall the following ([6]):

PROPOSITION 2.3. Let $Y \subset \mathbb{P}^2$ be a zero-dimensional l.c.i. subscheme. There exists an exact sequence:

$$0 \to \mathcal{O} \to F \to \mathscr{I}_Y(c) \to 0$$

with F a rank two vector bundle if and only if Y satisfies CB(c-3).

See [6] (under the assumption that Y is reduced) and [1] for the general case. The proposition gives conditions on the Chern classes of bundles having a section, in our case:

LEMMA 2.4. Let F be a globally generated rank two vector bundle on \mathbb{P}^2 with $c_1(F) = c, c_2(F) = y$, then:

$$c-1 \le y \le c^2 - c + 1$$
 or $y = c^2$ or $y = 0$.

PROOF. Since F is globally generated a general section vanishes in codimension two or doesn't vanish at all. In the second case $F \simeq 2.0$ and y = 0. Let's assume, from now on, that a general section vanishes in codimension two. We have an exact sequence:

$$0 \to \mathcal{O} \to F \to \mathscr{I}_Y(c) \to 0$$

where Y is a zero-dimensional subscheme (we may assume Y smooth) which satisfies Cayley-Bacharach condition for c - 3.

If $c-3 \ge y-1$, $\forall p \in Y$ there exists a curve of degree c-3 containing $Y_p := Y \setminus \{p\}$ and not containing Y (consider a suitable union of lines). Since Y must satisfy the Cayley-Bacharach condition, it must be $y \ge c-1$.

Let F be a globally generated rank two vector bundle with $c_1(F) = c$, $c_2(F) = y$. Consider the G-dual bundle:

$$0 \to F^* \to 4.\mathcal{O} \to E \to 0$$

then *E* is a rank two, globally generated, vector bundle with $c_1(E) = c$, $c_2(E) = c^2 - y$. By the previous part: $c_2(E) = 0$ (i.e. $y = c^2$) or $c^2 - y = c_2(E) \ge c_1(E) - 1 = c - 1$. So $c^2 - c + 1 \ge y$.

REMARK 2.5. It is easy to check that for $1 \le c \le 3$, every value of $y, c-1 \le y \le c^2 - c + 1$ is effective (take $Y \subset \mathbb{P}^2$ of maximal rank with $c-1 \le y \le c^2/2$ and use Castelnuovo-Mumford's lemma to show that $\mathcal{I}_Y(c)$ is globally generated). In fact gaps occur only for $c \ge 6$. In the sequel we will assume that $c \ge 4$.

3. The statement

From now on we may restrict our attention to the range: $c - 1 \le y < c^2/4$ (1.6, 2.4) for $c \ge 4$ (2.5). In this range $\Delta(F) = c^2 - 4y > 0$, hence F is necessarily unstable (i.e. not semi-stable). In particular, if c is even: $h^0(F(-\frac{c}{2})) = h^0(\mathscr{I}_Y(\frac{c}{2})) \ne 0$

(resp. $h^0(F(-\frac{(c+1)}{2})) = h^0(\mathscr{I}_Y(\frac{c-1}{2})) \neq 0$, if *c* is odd). So *Y* is forced to lie on a curve of relatively low degree. In fact something more precise can be said, for this we need the following elementary remark:

LEMMA 3.1 (The trick). Let F be a rank two vector bundle on \mathbb{P}^2 with $h^0(F) \neq 0$. If $c_2(F) < 0$, then $h^0(F(-1)) \neq 0$.

PROOF. A non-zero section of *F* cannot vanish in codimension two (we would have $c_2 > 0$), nor can the section be nowhere non-zero (*F* would split as $F \simeq \mathcal{O} \oplus \mathcal{O}(c)$, hence $c_2(F) = 0$). It follows that any section vanishes along a divisor. By dividing by the equation of this divisor we get $h^0(F(-1)) \neq 0$.

Actually this works also on \mathbb{P}^n , $n \ge 2$. For $2 \le t \le c/2$ ($c \ge 4$) we define:

$$\bar{A}_t := [(t-1)(c-t+1), t(c-t)] = [(t-1)c - (t-1)^2, (t-1)c - (t^2 - c)].$$

The ranges \overline{A}_t cover $[c-1, \frac{c^2}{4}]$, the interval we are interested in. From our point of view we may concentrate on the interior points of \overline{A}_t . Indeed if y = ab, with a + b = c, we may take $F \simeq \mathcal{O}(a) \oplus \mathcal{O}(b)$. So we define:

$$A_t =](t-1)(c-t+1), t(c-t)[, 2 \le t \le c/2.$$

LEMMA 3.2. If $y \in A_t$, and if Y is the zero-locus of a section of F, a rank two vector bundle with Chern classes (c, y), then $h^0(\mathscr{I}_Y(t-1)) \neq 0$.

PROOF. We have an exact sequence $0 \to \mathcal{O} \to F \to \mathscr{I}_Y(c) \to 0$. Now $c_2(F(-(c-t)) = (-c+t)t + y$. By our assumptions, y < t(c-t), hence $c_2(F(-c+t)) < 0$. Looking at the graph of $c_2(F(x)) = x^2 + cx + y$, we see that $c_2(F(x)) < 0$ for $(-c - \sqrt{\Delta(F)})/2 < x \le -c/2$. Since $c_2(F(-c+t)) < 0$, -c+t < -c/2 and $h^0(F(-c/2)) \neq 0$, by induction, using Lemma 3.1, we conclude that $h^0(F(-c+t-1)) = h^0(\mathscr{I}_Y(t-1)) \neq 0$.

So if $y \in A_t$, Y is forced to lie on a degree (t-1) curve (but not on a curve of degree t-2). If general principles are respected we may think that if $y \in A_t$, $Y \subset T$, where T is a *smooth* curve of degree t-1 and that $h^0(\mathscr{I}_Y(t-2)) = 0$. If this is the case we have an exact sequence:

$$0 \to \mathcal{O}(-t+1) \to \mathscr{I}_Y \to \mathscr{I}_{Y,T} \to 0$$

twisting by $\mathcal{O}_T(c)$:

$$0 \to \mathcal{O}(c-t+1) \to \mathscr{I}_Y(c) \to \mathcal{O}_T(c-Y) \to 0.$$

Since c - t + 1 > 0 (because $c \ge 2t$), we see that: $\mathscr{I}_Y(c)$ is globally generated if and only if $\mathscr{O}_T(c - Y)$ is globally generated. The line bundle $\mathscr{L} = \mathscr{O}_T(c - Y)$

has degree l := c(t-1) - y. So the question is: for which l does there exists a degree l line bundle on T generated by global sections? This is, by its own, a quite natural problem which, strangely enough, has been solved only recently ([5], [2]). First a definition:

DEFINITION 3.3. Let C be a smooth irreducible curve. The Lűroth semi-group of C, LS(C), is the semi-group of nonnegative integers which are degrees of rational functions on C. In other words: $LS(C) = \{n \in \mathbb{N} \mid \exists \mathcal{L}, of degree n, such that \mathcal{L} is globally generated\}.$

Then we have:

THEOREM 3.4 (Greco-Raciti-Coppens). If C is a smooth plane curve of degree $d \ge 3$, then

$$LS(C) = LS(d) := \mathbb{N} \setminus \bigcup_{a=1}^{n_0} [(a-1)d + 1, a(d-a) - 1]$$

where n_0 is the integral part of $\sqrt{d-2}$.

Of course $LS(1) = LS(2) = \mathbb{N}$. We observe that LS(C) doesn't depend on C but only on its degree.

Going back to our problem we see that if $c(t-1) - y \notin LS(t-1)$, then $\mathscr{L} = \mathscr{O}_T(c-Y)$ can't be globally generated and the same happens to $\mathscr{I}_Y(c)$. In conclusion if $c(t-1) - y \in \bigcup_{a=1}^{n_0} [(a-1)(t-1) + 1, a(t-1-a) - 1]$, or if c(t-1) - y < 0, under our assumptions, (c, y) is not effective. The assumption is that the *unique* curve of degree t-1 containing Y is *smooth*. (Observe that deg $\mathscr{O}_T(t-1-Y) < 0$, hence $h^0(\mathscr{I}_Y(t-1)) = 1$.)

Our theorem says that general principles are indeed respected. In order to have a more manageable statement let's introduce some notations:

DEFINITION 3.5. Fix an integer $c \ge 4$. An integer $y \in A_t$ for some $2 \le t \le c/2$, will be said to be admissible if $c(t-1) - y \in LS(t-1)$. If $c(t-1) - y \notin LS(t-1)$, y will be said to be non-admissible.

Observe that $y \in A_t$ is non-admissible if and only if: $y \in G_t(0) = [c(t-1)+1, t(c-t)-1]$ (this corresponds to c(t-1)-y < 0), or $y \in G_t(a) = [(t-1)(c-a)+a^2+1, (t-1)(c-a+1)-1]$ for some $a \ge 1$ such that $a^2+2 \le t-1$ (i.e. $a \le t_0$).

In order to prove Theorem 0.1 it remains to show:

THEOREM 3.6. For any $c \ge 4$ and for any $y \in A_t$ for some $2 \le t \le c/2$, (c, y) is effective if and only if y is admissible.

The proof splits into two parts:

- (1) (*Gaps*) If $c(t-1) y \notin LS(t-1)$, one has to prove that (c, y) is not effective. This is clear if Y lies on a smooth curve, T, of degree t-1, but there is no reason for this to be true and the problem is when T is singular.
- (2) (*Existence*) If $c(t-1) y \in LS(t-1)$, one knows that there exists \mathscr{L} globally generated, of degree c(t-1) y on a smooth curve, T, of degree t-1. The problem is to find such an \mathscr{L} such that $\mathscr{M} := \mathscr{O}_T(c) \otimes \mathscr{L}^*$ has a section vanishing along a Y satisfying the Cayley-Bacharach condition for (c-3).

4. The proof (gaps)

In this section we fix an integer $c \ge 4$ and prove that non-admissible $y \in A_t$, $2 \le t \le c/2$ are gaps. For this we will assume that such a y is effective and will derive a contradiction. From 3.2 we know that $h^0(\mathscr{I}_Y(t-1)) \ne 0$. The first task is to show that under our assumption (y not-admissible), $h^0(\mathscr{I}_Y(t-2)) = 0$ (see 4.3); this will imply that F(-c+t-1) has a section vanishing in codimension two.

To begin with let's observe that non-admissible $y \in A_t$ may occur only when t is small with respect to c.

LEMMA 4.1. Assume
$$c \ge 4$$
. If $t > \frac{2\sqrt{3}}{3}\sqrt{c-2}$, then every $y \in A_t$ is admissible.

PROOF. Recall (see 3.5) that $y \in A_t$, $2 \le t \le c/2$, is non admissible if and only if $y \in G_t(a)$ for some $a, 0 \le a \le t_0$.

We have $G_t(0) \neq \emptyset \Leftrightarrow t(c-t) - 1 \ge c(t-1) + 1 \Leftrightarrow t \le \sqrt{c-2}$.

For $a \ge 1$, $G_t(a) \cap A_t \ne \emptyset \Rightarrow (t-1)(c-a) + a^2 + 1 < t(c-t)$. This is equivalent to: $a^2 - at + t^2 - c + a + 1 < 0$ (*). The discriminant of this equation in a is $\Delta = -3t^2 + 4(c-a-1)$ and we must have $\Delta \ge 0$, i.e. $\frac{2\sqrt{3}}{3}\sqrt{c-2} \ge t$.

Let's get rid of the y's in $G_t(0)$:

LEMMA 4.2. If $y \in A_t$ is non-admissible and effective, then $y \in G_t(a)$ for some a, $1 \le a \le \sqrt{t-3}$.

PROOF. We have to show that if c(t-1) - y < 0 and $y \in A_t$, then y is not effective. By 3.2 $h^0(\mathscr{I}_Y(t-1)) \neq 0$. If y is effective then $\mathscr{I}_Y(c)$ is globally generated and Y is contained in a complete intersection of type (t-1, c), hence deg $Y = y \le c(t-1)$: contradiction.

Now we show that if *y* is non-admissible and effective, then $h^0(\mathscr{I}_Y(t-1)) = 1$:

LEMMA 4.3. Let $c \ge 4$ and assume $y \in A_t$ for some $t, 2 \le t \le c/2$. Assume furthermore that y is non-admissible and effective i.e.:

$$y = (t-1)(c-a) + \alpha, \quad a^2 + 1 \le \alpha \le t - 2$$

for a given a such that $t - 1 \ge a^2 + 2$. Under these assumptions, $h^0(\mathscr{I}_Y(t-1)) = 1$.

PROOF. If $h^0(\mathscr{I}_Y(t-2)) \neq 0$, then $y \leq c(t-2)$ (the general $F_c \in H^0(\mathscr{I}_Y(c))$ is integral since $\mathscr{I}_Y(c)$ is globally generated. Moreover t-1 < c so $F_c \neq T$). It follows that:

$$y = (t-1)(c-a) + \alpha \le c(t-2) = c(t-1) - c.$$

This yields $a(t-1) \ge c + \alpha$. We have $c + \alpha \ge c + a^2 + 1$, hence:

$$0 \ge a^2 - a(t-1) + c + 1 \quad (*).$$

The discriminant of (*) (viewed as an equation in *a*) is: $\Delta = (t-1)^2 - 4(c+1)$. If $\Delta < 0$, (*) is never satisfied and $h^0(\mathscr{I}_Y(t-2)) = 0$. Now $\Delta < 0 \Leftrightarrow (t-1)^2 < 4(c+1)$. In our context $\Delta < 0 \Leftrightarrow t < 1 + 2\sqrt{c+1}$. In conclusion if $t < 1 + 2\sqrt{c+1}$ and if *y* is non-admissible, then $h^0(\mathscr{I}_Y(t-2)) = 0$.

 $1 + 2\sqrt{c+1}$ and if y is non-admissible, then $h^0(\mathscr{I}_Y(t-2)) = 0$. Now by 4.1 if y is non-admissible, we have: $t \le \frac{2\sqrt{3}}{3}\sqrt{c-2}$. Since $\frac{2\sqrt{3}}{3}\sqrt{c-2} < 1 + 2\sqrt{c+1}$, $\forall c > 0$, we are done.

Since $h^0(\mathscr{I}_Y(t-1)) \neq 0$, F(-c+t-1) has a non-zero section, since $h^0(\mathscr{I}_Y(t-2)) = 0$ the section vanishes in codimension two. Hence we have:

$$0 \to \mathcal{O} \to F(-c+t-1) \to \mathscr{I}_W(-c+2t-2) \to 0$$

where deg W = y - (t - 1)(c - t + 1). Since -c + 2t - 2 < 0 (because $c \ge 2t$), we get $h^0(F(-c + t - 1)) = 1 = h^0(\mathscr{I}_Y(t - 1))$.

NOTATIONS 4.4. Let F be a globally generated rank two vector bundle with Chern classes (c, y). A section $s \in H^0(F)$ defines $Y_s = (s)_0$. If $y \in A_t$, $h^0(\mathscr{I}_{Y_s}(t-1)) \neq 0$, moreover if y is non-admissible $h^0(\mathscr{I}_{Y_s}(t-1)) = 1$ and there is a unique $T_s \in$ $H^0(\mathscr{I}_{Y_s}(t-1))$. It follows that F(-c+t-1) has a unique section (hence vanishing in codimension two): $0 \to 0 \xrightarrow{u} F(-c+t-1) \to \mathscr{I}_W(-c+2t-2) \to 0$.

LEMMA 4.5. If $y \in A_t$ is non-admissible and effective, with notations as in 4.4:

- (1) Y_s and W are bilinked on T_s
- (2) The curves T_s are precisely the elements of $H^0(\mathscr{I}_W(t-1))$
- (3) $\mathscr{I}_W(t-1)$ is globally generated, in particular for $s \in H^0(F)$ general, T_s is reduced.

PROOF. (1) (2) We have a commutative diagram:

This diagram is obtained as follows: the section T_s lifts to, u, the unique section of F(-c+t-1), hence $Coker(u) \simeq \mathscr{I}_W(-c+2t-2)$, then take the first horizontal line corresponding to s and complete the full diagram.

We see that *s* corresponds to an element of $H^0(\mathscr{I}_W(t-1))$ and the quotient $\mathscr{O}(-t+1) \xrightarrow{s} \mathscr{I}_W$ has support on T_s and is isomorphic to $\mathscr{I}_{Y,T_s}(-t+c+1)$, hence $\mathscr{I}_{W,T_s}(-h) \simeq \mathscr{I}_{Y,T_s}$ where h = c - t + 1. This shows that W and Y_s are bilinked on T_s . Indeed by composing with the inclusion $\mathscr{I}_{Y,T_s} \to \mathscr{O}_{T_s}$ we get an injective morphism $\varphi: \mathscr{I}_{W,T_s}(-h) \to \mathscr{O}_{T_s}$, now take a curve $C \in H^0(\mathscr{I}_W(k))$, without any irreducible component in common with T_s and take C' such that $\varphi(C) = C'$ in $H^0_*(\mathscr{O}_{T_s})$, then W is bilinked to Y by $C \cap T_s$ and $C' \cap T_s$.

This can be seen in another way: take $C' \in H^0(\mathscr{I}_Y(k))$ with no irreducible common component with T_s , the complete intersection $T_s \cap C'$ links Y to a subscheme Z. By mapping cone:

$$0 \to F^*(h-k) \to \mathcal{O}(-t+1) \oplus \mathcal{O}(-k) \oplus \mathcal{O}(-(k-h)) \xrightarrow{(T_s, C', C)} \mathscr{I}_Z \to 0.$$

Observe that C and T_s do not share any common component. Indeed if $T_s = AT'$ and $C = A\tilde{C}$, then $(C' \cap A) \subset Z$ (as schemes), because Z is the schematic intersection of T_s , C' and C. This is impossible because $C' \cap A$ contains points of Y (otherwise $Y \subset T'$ but $h^0(\mathscr{I}_Y(t-2)) = 0$). The complete intersection $T_s \cap C$ links Z to a subscheme W' and by mapping cone, we get that W' is a section of F(-h). By uniqueness it follows that W' = W. The same argument starting from W and $T \in H^0(\mathscr{I}_W(t-1))$, instead of Y and T_s , works even better and shows that W is bilinked on T to a section Y_s of F. In conclusion the curves T_s are given by $s \wedge u$, where u is the unique section of F(-h) and where $s \in H^0(F)$ vanishes in codimension two.

(3) The exact sequence $0 \to \mathcal{O}(c-t+1) \to F \to \mathscr{I}_W(t-1) \to 0$ shows that $\mathscr{I}_W(t-1)$ is globally generated, hence the general element in $H^0(\mathscr{I}_W(t-1))$ is reduced.

Since W could well be non reduced with embedding dimension two, concerning T, this is the best we can hope. However, *and this is the point*, we may reverse the construction and start from W.

LEMMA 4.6. Let $W \subset \mathbb{P}^2$ be a zero-dimensional, locally complete intersection (l.c.i.) subscheme. Assume $\mathscr{I}_W(n)$ is globally generated, then if $T, T' \in H^0(\mathscr{I}_W(n))$ are sufficiently general, the complete intersection $T \cap T'$ links W to a smooth subscheme Z such that $W \cap Z = \emptyset$.

PROOF. If $p \in Supp(W)$, denote by W_p the subscheme of W supported at p. Since W is l.c.i, $\mathscr{I}_{W,p} = (f,g) \subset \mathscr{O}_p$. By assumption the map $H^0(\mathscr{I}_W(n)) \otimes \mathscr{O}_p \xrightarrow{ev} \mathscr{I}_{W,p}$ which takes $T \in H^0(\mathscr{I}_W(n))$ to its germ, T_p , at p, is surjective. Hence there exists T such that $T_p = f$ (resp. T' such that $T'_p = g$). It follows that in a neighbourhood of $p: T \cap T' = W_p$. If G is the Grassmannian of lines of $H^0(\mathscr{I}_W(n))$ for $\langle T, T' \rangle \in G$ the property $T \cap T' = W_p$ (in a neighbourhood of p) is open (it means that the local degree at p of $T \cap T'$ is minimum). We conclude that there exists a dense open subset, $U_p \subset G$, such that for $\langle T, T' \rangle \in U_p$, $T \cap T' = W_p$ (locally at p). If $Supp(W) = \{p_1, \ldots, p_r\}$ there exists a dense open subset $U \subset U_1 \cap \cdots \cap U_r$ such that if $\langle T, T' \rangle \in U$, then $T \cap T'$ links W to Z and $W \cap Z = \emptyset$.

By Bertini's theorem the general curve $T \in H^0(\mathscr{I}_W(n))$ is smooth out of W. If $C \subset T$ is an irreducible component, the curves of $H^0(\mathscr{I}_W(n))$ cut on C, residually to $W \cap C$, a base point free linear system. By the previous part the general member, Z_C , of this linear system doesn't meet Sing(C) (because $Z_C \cap W = \emptyset$), it follows, by Bertini's theorem, that Z_C is smooth. So for general $T, T' \in H^0(\mathscr{I}_W(n))$, $T \cap T'$ links W to a smooth subscheme, Z, such that $W \cap Z = \emptyset$.

COROLLARY 4.7. Let $y \in A_t$ be non-admissible. If y is effective, with notations as in 4.4, if $T, T' \in H^0(\mathscr{I}_W(t-1))$ are sufficiently general, then $T \cap T'$ links W to a smooth subscheme, Z, such that $W \cap Z = \emptyset$. Furthermore $\mathscr{I}_Z(c)$ is globally generated and if $S_c \in H^0(\mathscr{I}_Z(c))$ is sufficiently general, then $T \cap S_c$ links Z to a smooth subscheme Y, where Y is the zero locus of a section of F and where $Z \cap Y = \emptyset$.

PROOF. The first statement follows from 4.6. From the exact sequence

$$0 \to \mathcal{O}(c - 2t + 2) \to F(-t + 1) \to \mathscr{I}_W \to 0$$

we get by mapping cone:

$$0 \to F^*(-t+1) \to \mathcal{O}(-c) \oplus 2.\mathcal{O}(-t+1) \to \mathscr{I}_Z \to 0 \quad (*)$$

which shows that $\mathscr{I}_Z(c)$ is globally generated. Since Z is smooth and contained in the smooth locus of T and since $\mathscr{I}_Z(c)$ is globally generated, if C is an irreducible component of T, the curves of $H^0(\mathscr{I}_Z(c))$ cut on C, residually to $C \cap Z$, a base point free linear system. In particular the general member, D, of this linear system doesn't meet Sing(C). By Bertini's theorem we may assume D smooth. It follows that if $S_c \in H^0(\mathscr{I}_Z(c))$ is sufficiently general, $S_c \cap T$ links Z to a smooth Y such that $Z \cap Y = \emptyset$. By mapping cone, we see from (*) that Y is the zero-locus of a section of F.

The previous lemmas will allow us to apply the following (classical, I think) result:

LEMMA 4.8. Let $Y, Z \subset \mathbb{P}^2$ be two zero-dimensional subschemes linked by a complete intersection, X, of type (a, b). Assume:

(1) $Y \cap Z = \emptyset$ (2) $\mathscr{I}_Y(a)$ globally generated.

Then Z *satisfies* Cayley-Bacharach for (b - 3).

PROOF. Notice that Z and Y are l.c.i. Now let P be a curve of degree b - 3 containing $Z' \subset Z$ of colength one. We have to show that P contains Z. Since $\mathscr{I}_Y(a)$

is globally generated and since $Y \cap Z = \emptyset$, there exists $F \in H^0(\mathscr{I}_Y(a))$ not passing through p. Now PF is a degree a + b - 3 curve containing $X \setminus \{p\}$. Since complete intersections (a, b) verify Cayley-Bacharach for a + b - 3 (the bundle $\mathscr{O}(a) \oplus \mathscr{O}(b)$ exists!), PF passes through p. This implies that P contains Z. \Box

Gathering everything together:

COROLLARY 4.9. Let $y \in A_t$ be non-admissible. If y is effective, then there exists a smooth zero-dimensional subscheme Z such that:

- (1) Z lies on a pencil $\langle T, T' \rangle$ of curves of degree t 1, the base locus of this pencil is zero-dimensional.
- (2) $\deg Z = c(t-1) y$
- (3) Z satisfies Cayley-Bacharach for t 4

PROOF. By 4.7 there is a *Y* zero-locus of a section of *F* which is linked by a complete intersection of type (c, t-1) to a *Z* such that $Y \cap Z = \emptyset$. Since $\mathscr{I}_Y(c)$ is globally generated, by 4.8, *Z* satisfies Cayley-Bacharach for t-4.

Now we conclude with:

PROPOSITION 4.10. Let $Z \subset \mathbb{P}^2$ be a smooth zero-dimensional subscheme contained in a curve of degree d. Let $a \ge 1$ be an integer such that $d \ge a^2 + 2$. Assume $h^0(\mathscr{I}_Z(a-1)) = 0$. If $(a-1)d + 1 \le \deg Z \le a(d-a) - 1$, then Z doesn't verify Cayley-Bacharach for d - 3.

REMARK 4.11. This proposition is Theorem 3.1 in [5] with a slight modification: we make no assumption on the degree d curve (which can be singular, even non reduced), but we assume $h^0(\mathscr{I}_Z(a-1)) = 0$ (which follows from Bezout if the degree d curve is integral).

Since this proposition is a key point, and for convenience of the reader, we will prove it. We insist on the fact that the proof given is essentially the proof of Theorem 3.1 in [5].

NOTATIONS 4.12. We recall that if $Z \subset \mathbb{P}^2$, the numerical character of Z, $\chi = (n_0, \ldots, n_{\sigma-1})$ is a sequence of integers which encodes the Hilbert function of Z (see [7]):

(1)
$$n_0 \geq \cdots \geq n_{\sigma-1} \geq \sigma$$
 where σ is the minimal degree of a curve containing Z
(2) $h^1(\mathscr{I}_Z(n)) = \sum_{i=0}^{\sigma-1} [n_i - n - 1]_+ - [i - n - 1]_+ ([x]_+ = max\{0, x\}).$
(3) In particular deg $Z = \sum_{i=0}^{\sigma-1} (n_i - i).$

The numerical character is said to be connected if $n_i \le n_{i+1} + 1$, for all $0 \le i < \sigma - 1$. For those more comfortable with the Hilbert function, H(Z, -) and its first difference function, $\Delta(Z, i) = H(Z, i) - H(Z, i - 1)$, we recall that $\Delta(i) = i + 1$

for $i < \sigma$ while $\Delta(i) = \#\{l \mid n_l \ge i+1\}$. It follows that the condition $n_{r-1} > n_r + 1$ is equivalent to $\Delta(n_r + 1) = \Delta(n_r)$. Also recall that for $0 \le i < \sigma$, $n_i = \min\{t \ge i \mid \Delta(t) \le i\}$.

LEMMA 4.13. Let $Z \subset \mathbb{P}^2$ be a smooth zero-dimensional subscheme. Let $\chi = (n_0, \ldots, n_{\sigma-1})$ be the numerical character of Z. If $n_{r-1} > n_r + 1$, then Z doesn't verify Cayley-Bacharach for every $i \ge n_r - 1$.

PROOF. It is enough to show that Z doesn't verify $CB(n_r - 1)$. By [3] there exists a curve, R, of degree r such that $R \cap Z = E'$ where $\chi(E') = (n_0, \ldots, n_{r-1})$. Moreover if E'' is the residual of Z with respect to the divisor R, $\chi(E'') = (m_0, \ldots, m_{\sigma-1-r})$, with $m_i = n_{r+i} - r$. It follows that $h^1(\mathscr{I}_{E''}(n_r - r - 1)) = 0$. This implies that given $X \subset E''$ of colength one, there exists a curve, P, of degree $n_r - r - 1$ passing through X but not containing E''. The curve RP has degree $n_r - 1$, passes through $Z' := E' \cup X$ but doesn't contain Z (because $R \cap Z = E'$).

PROOF OF PROPOSITION 4.10. Observe that the assumptions imply $d \ge 3$, moreover if d = 3, then $a = \deg Z = 1$ and the statement is clear; so we may assume $d \ge 4$.

Assume to the contrary that Z satisfies CB(d-3). This implies $h^1(\mathscr{I}_Z(d-3)) \neq 0$. If a = 1, then deg $Z \leq d-2$ and necessarily $h^1(\mathscr{I}_Z(d-3)) = 0$, so we may assume $a \geq 2$. Now if $h^1(\mathscr{I}_Z(d-3)) \neq 0$, then $n_0 \geq d-1$, where $\chi(Z) = (n_0, \ldots, n_{\sigma-1})$ is the numerical character of Z. Since $\sigma \geq a$, $n_{a-1} \in \chi(Z)$.

We claim that $n_{a-1} < d-2$. Indeed otherwise $n_0 \ge d-1$ and $n_0 \ge \cdots \ge n_{a-1} \ge d-2$ implies

$$\deg Z = \sum_{i=0}^{\sigma-1} (n_i - i) \ge \sum_{i=0}^{a-1} (n_i - i) \ge 1 + \sum_{i=0}^{a-1} (d - 2 - i)$$
$$= 1 + a(d - 2) - \frac{a(a - 1)}{2}.$$

If $a \ge 1$, then $1 + a(d-2) - \frac{a(a-1)}{2} > a(d-a) - 1 \ge \deg Z$: contradiction. Let's show that $n_{a-1} \ge d-a$. Assume to the contrary $n_{a-1} < d-a$. Then

Let's show that $n_{a-1} \ge d - a$. Assume to the contrary $n_{a-1} < d - a$. Then there exists k, $1 \le k \le a - 1$ such that $n_k \le d - 2$ and $n_{k-1} \ge d - 1$ (indeed $n_0 \ge d - 1$ and $n_{a-1} < d - a \le d - 2$). If $n_{k-1} \ge n_k \ge \cdots \ge n_{a-1}$ is connected, then $n_{k-1} < d - a + r$ where a = k + r. Hence $d - a + r > n_{k-1} \ge d - 1$, which implies $r \ge a$ which is impossible since $k \ge 1$. It follows that there is a gap in $n_{k-1} \ge n_k \ge \cdots \ge n_{a-1}$, i.e. there exists $r, k \le r \le a - 1$, such that $n_{r-1} > n_r + 1$. Since $d - 2 \ge n_k \ge n_r$, we conclude by 4.13 that Z doesn't satisfy CB(d - 3): contradiction.

So far we have $d - a \le n_{a-1} < d-2$ and $n_0 \ge d-1$. Set $n_{a-1} = d - a + r$ $(r \ge 0)$. We claim that there exists k such that $n_k \ge d-1$ and $n_k \ge \cdots \ge n_{a-1} = d - a + r$ is connected. Since $n_0 \ge d - 1$, this follows from 4.13, otherwise Z doesn't verify CB(d-3). We have $\chi(Z) = (n_0, \ldots, n_k, \ldots, n_{a-1}, \ldots, n_{\sigma-1})$ with $n_k \ge d-1$, $n_{a-1} = d-a+r$. Since (n_k, \ldots, n_{a-1}) is connected and $n_k \ge d-1$, we have $n_i \ge d-1+k-i$ for $k \le i \le a-1$. Since $n_{a-1} = d-a+r \ge d-1+k-(a-1)$, we get $r \ge k$. It follows that:

$$\deg Z = \sum_{i=0}^{\sigma-1} (n_i - i) = \sum_{i=0}^{k-1} (n_i - i) + \sum_{i=k}^{a-1} (n_i - i) + \sum_{i\geq a} (n_i - i)$$
$$\geq \sum_{i=0}^{k-1} (d - 1 - i) + \sum_{i=k}^{a-1} (d - 1 - 2i + k) + \sum_{i\geq a} (n_i - i)$$
$$\geq \sum_{i=0}^{k-1} (d - 1 - i) + \sum_{i=k}^{a-1} (d - 1 - 2i + k) = (+).$$

We have:

$$\sum_{i=k}^{a-1} (d-1-2i+k) = (a-k)(d-a) \quad (*).$$

If k = 0, we get deg $Z \ge a(d - a)$, a contradiction since deg $Z \le a(d - a) - 1$ by assumption. Assume k > 0. Then:

$$\sum_{i=0}^{k-1} (d-1-i) = k(d-1) - \frac{k(k-1)}{2} = k\left(d-1 - \frac{(k-1)}{2}\right).$$

From (+) and (*) we get:

$$\deg Z \ge (a-k)(d-a) + k\left(d-1 - \frac{(k-1)}{2}\right) = a(d-a) + k\left(a-1 - \frac{(k-1)}{2}\right)$$

and to conclude it is enough to check that $a - 1 \ge (k - 1)/2$. Since $r \ge k$, this will follow from $a - 1 \ge (r - 1)/2$. If a < (r + 1)/2, then $n_{a-1} = d - a + r > d + a - 1 \ge d$, in contradiction with $n_{a-1} < d - 2$. The proof is over.

We can now conclude and get the "gaps part" of 3.6:

COROLLARY 4.14. For $c \ge 4$ let $y \in A_t$ for some $t, 2 \le t \le c/2$. If y is non admissible, then y is a gap (i.e. (c, y) is not effective).

PROOF. Since y is non-admissible, $y \in G_t(a)$ for some $a \ge 1$ (see 4.2), or equivalently deg $Z = c(t-1) - y \in [(a-1)(t-1) + 1, a(t-1-a) - 1]$ for some $a \ge 1$ such that $a^2 + 1 \le t - 1$. In view of 4.9 it is enough to show that Z cannot verify Cayley-Bacharach for t - 4. For this we want to apply 4.10. The only thing we have to show is $h^0(\mathscr{I}_Z(a-1)) = 0$. Let P be a curve of degree $\sigma < a$ containing Z. If P doesn't have a common component with some curve of

 $H^0(\mathscr{I}_Z(t-1))$, then deg $Z \le \sigma(t-1) \le (a-1)(t-1)$. But this is impossible since deg $Z \ge (a-1)(t-1) + 1$. On the other hand Z is contained in a pencil $\langle T, T' \rangle$ of curves of degree t-1 and this pencil has a base locus of dimension zero (see 4.9). So we may always find a curve in $H^0(\mathscr{I}_Z(t-1))$ having no common component with P.

5. The proof (existence)

In this section we assume that $y \in A_t$ is admissible and prove that y is indeed effective. Since y is admissible we know by [2] that there exists a smooth plane curve, T, of degree t - 1 and a globally generated line bundle, \mathcal{L} , on T of degree z := c(t-1) - y.

LEMMA 5.1. Assume $y \in A_t$ is admissible. If T is a smooth plane curve of degree t-1 and if \mathcal{L} is a globally generated line bundle on T with deg $\mathcal{L} = c(t-1) - y$, then $\mathcal{L}^*(c)$ is non special and globally generated.

PROOF. We have deg $\mathscr{L}^*(c) = y$. It is enough to check that $y \ge 2g_T + 1 = (t-2)(t-3) + 1$. We have $y \ge (t-1)(c-t+1) + 1$. Since $c \ge 2t$ it follows that $y \ge (t-1)(t+1) + 1 = t^2$.

LEMMA 5.2. Assume $y \in A_t$ is admissible. If there exists a smooth plane curve, T, of degree t - 1, carrying a globally generated line bundle, \mathcal{L} , with deg $\mathcal{L} = c(t-1) - y$ and with $h^1(\mathcal{L}) \neq 0$, then y is effective.

PROOF. Let Z be a section of \mathscr{L} . If $h^1(\mathscr{L}) = h^0(\mathscr{L}^*(t-4)) \neq 0$, then Z lies on a curve, R, of degree t-4. Set $X = T \cap R$. By 5.1 $\mathscr{L}^*(c)$ is globally generated, so we may find a $s \in H^0(\mathscr{L}^*(c))$ such that $(s)_0 \cap X = \emptyset$. Set $Y = (s)_0$. We have $\mathscr{O}_T(c) \simeq \mathscr{O}_T(Z+Y)$ and $Y \cap Z = \emptyset$. So Y and Z are linked by a complete intersection $I = F_c \cap T$. Let's prove that Y satisfies CB(c-3). First observe that there exists a degree t-1 curve, T', containing Z such that $T' \cap Y = \emptyset$: indeed since $Y \cap X = \emptyset$, we just take $T' = R \cup C$ where C is a suitable cubic. Now let $p \in Y$ and let P be a degree c-3 curve containing $Y' = Y \setminus \{p\}$. The curve T'P contains $I \setminus \{p\}$ and has degree c+t-4. Since the complete intersection I satisfies CB(c+t-4) and since $T' \cap Y = \emptyset$, $p \in P$.

It follows that we have: $0 \to \mathcal{O} \to F \to \mathscr{I}_Y(c) \to 0$ where *F* is a rank two vector bundle with Chern classes (c, y). Since $\mathscr{I}_{Y,T}(c) \simeq \mathscr{L}$ is globally generated, $\mathscr{I}_Y(c)$ and therefore *F* are globally generated.

We need a lemma:

LEMMA 5.3. For any integer $r, 1 \le r \le h^0(\mathcal{O}(t-1)) - 3$, there exists a smooth zero-dimensional subscheme, R, of degree r such that $\mathscr{I}_R(t-1)$ is globally generated with $h^0(\mathscr{I}_R(t-1)) \ge 3$.

PROOF. Take *R* of degree *r*, of maximal rank. If $h^0(\mathcal{O}(t-2)) \ge r$, then $h^1(\mathscr{I}_R(t-2)) = 0$ and we conclude by Castelnuovo-Mumford's lemma. Assume

 $h^0(\mathcal{O}(t-2)) < r$ and take *R* of maximal rank and minimally generated (i.e. all the maps $\sigma(m) : H^0(\mathscr{I}_R(m)) \otimes H^0(\mathcal{O}(1)) \to H^0(\mathscr{I}_R(m+1))$ are of maximal rank). If $\sigma(t-1)$ is surjective we are done, otherwise it is injective and the minimal free resolution looks like:

$$0 \to d.\mathcal{O}(-t-1) \to b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t+1) \to \mathscr{I}_R \to 0.$$

By assumption $a \ge 3$.

Since $\mathscr{H}om(d - \mathcal{O}(-t-1), b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t+1))$ is globally generated, if $\varphi \in Hom(d.\mathcal{O}(-t-1), b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t+1))$ is sufficiently general, then $Coker(u) \simeq \mathscr{I}_R$ with *R* smooth of codimension two. Furthermore since $b.\mathcal{O}(1)$ is globally generated, it can be generated by b+2 sections; it follows that the general morphism $f : d.\mathcal{O} \to b.\mathcal{O}(1)$ is surjective $(d = a + b - 1 \ge b + 2)$. In conclusion the general morphism $\varphi = (f,g) : d.\mathcal{O}(-t-1) \to b.\mathcal{O}(-t) \oplus a.\mathcal{O}(-t+1)$ has $Coker(\varphi) \simeq \mathscr{I}_R$ with *R* smooth, with the induced morphism $a.\mathcal{O}(-t+1) \to \mathscr{I}_R$ surjective. \Box

PROPOSITION 5.4. Let $c \ge 4$ be an integer. For every $2 \le t \le c/2$, every admissible $y \in A_t$ is effective.

PROOF. By [2] there exists a globally generated line bundle, \mathscr{L} , of degree l = c(t-1) - y on a smooth plane curve, T, of degree t-1. If $h^1(\mathscr{L}) \neq 0$ we conclude with 5.2. Assume $h^1(\mathscr{L}) = 0$. Then $h^0(\mathscr{L}) = l - g_T + 1 \ge 2$ (we may assume $\mathscr{L} \neq \mathscr{O}_T$, because if y = c(t-1), we are done). So $l \ge \frac{(t-2)(t-3)}{2} + 1$. Since $(t-1)(c-t+1) + 1 \le y \le t(c-t) - 1$, we have:

$$(t-1)^2 - 1 \ge l \ge \frac{(t-2)(t-3)}{2} + 1$$
 (*).

It follows that:

$$l = (t-1)^2 - r, \quad 1 \le r \le \frac{t(t+1)}{2} - 3 = h^0(\mathcal{O}(t-1)) - 3 \quad (**).$$

For $r, 1 \le r \le h^0(\mathcal{O}(t-1)) - 3$, let $R \subset \mathbb{P}^2$ be a general set of r points of maximal rank, with $h^0(\mathscr{I}_R(t-1)) \ge 3$ and $\mathscr{I}_R(t-1)$ globally generated (see 5.3). It follows that R is linked by a complete intersection $T \cap T'$ of two smooth curves of degree t-1, to a set, Z, of $(t-1)^2 - r = l$ points. Since $\mathscr{I}_R(t-1)$ is globally generated, $\mathscr{I}_{R,T}(t-1) \simeq \mathscr{O}_T(t-1-R)$ is globally generated. Since $\mathscr{O}_T(t-1) \simeq \mathscr{O}_T(R+Z)$, we see that $\mathscr{L} := \mathscr{O}_T(Z)$ is globally generated. Moreover, by construction, $h^0(\mathscr{I}_Z(t-1)) \ge 2$. By 5.1, $\mathscr{L}^*(c)$ is globally generated so there exists $s \in H^0(\mathscr{L}^*(c))$ such that: $Y := (s)_0$ satisfies $Y \cap (T \cap T') = \emptyset$. As in the proof of 5.2, we see that T satisfies CB(c-3): indeed T' is a degree t-1 curve containing Z such that $T' \cap Y = \emptyset$. Since $\mathscr{I}_{Y,T}(c) \simeq \mathscr{L}$ is globally generated, we conclude that $\mathscr{I}_Y(c)$ is globally generated.

Proposition 5.4 and Corollary 4.14 (and Remark 2.5) prove Theorem 3.6. It follows that the proof of Theorem 0.1 is complete.

6. Morphisms from \mathbb{P}^2 to G(1,3)

It is well known that finite morphisms $\varphi : \mathbb{P}^2 \to G(1,3)$ are in bijective correspondence with exact sequences of vector bundles on \mathbb{P}^2 :

$$0 \to E^* \to 4.\mathcal{O} \to F \to 0 \quad (*)$$

where *F* has rank two and is globally generated with $c_1(F) = c > 0$. If φ is generically injective, then $\varphi(\mathbb{P}^2) = S \subset G \subset \mathbb{P}^5$ (the last inclusion is given by the Plűcker embedding) has degree c^2 (as a surface of \mathbb{P}^5) and bidegree $(y, c^2 - y)$, $y = c_2(F)$ (i.e. there are *y* lines of *S* through a general point of \mathbb{P}^3 and $c^2 - y$ lines of *S* contained in a general plane of \mathbb{P}^3). Theorem 0.1 gives all the possible (c, y) (but it doesn't tell if φ exists). Finally, by [10], if φ is an embedding then $(c, y) \in \{(1, 0), (1, 1), (2, 1), (2, 3)\}$.

References

- [1] F. CATANESE: Footnotes to a theorem of I. Reider, Lecture Notes in Math., 1417 (1990), 67–74, Springer.
- M. COPPENS: The existence of base point free linear systems on smooth plane curves, J. Algebraic Geom., 4 (n1) (1995), 1–15.
- [3] PH. ELLIA CH. PESKINE: Groupes de points de P²: caractère et position uniforme, L.N.M. 1417 (1990), 111–116, Springer-Verlag.
- [4] A. EL MAZOUNI F. LAYTIMI D. S. NAGARAJ: Morphisms from \mathbb{P}^2 to $Gr(2, \mathbb{C}^4)$, J. of Ramanujan Math. Soc., 26 (2011), 321–332.
- [5] S. GRECO G. RACITI: The Lűroth semigroup of plane algebraic curves, Pacific J. of Math., 43–56 (1991), vol. 151, n 1.
- [6] PH. GRIFFITHS J. HARRIS: Residues and zero-cycles on algebraic varieties, Ann. of Math., 108 (1978), 461–505.
- [7] L. GRUSON CH. PESKINE: Genre des courbes de l'espace projectif, L.N.M., 687 (1978), 29–59, Springer.
- [8] R. HARTSHORNE: Stable vector bundles of rank 2 on \mathbb{P}^3 , Math. Ann., 238 (1978), 229–280.
- [9] J. LE POTIER: Stability et amplitude sur P²(C), in Progress in Math., 7 (1980), 145–182, Birkhaeuser.
- [10] H. TANGO: On (n 1)-dimensional projective spaces contained in the Grassmann variety Gr(n, 1), J. Math. Kyoto Univ., 14-3 (1974), 415–460.

Received 6 June 2012, and in revised form 29 October 2012.

Dipartimento di Matematica 35 via Machiavelli 44100 Ferrara phe@unife.it