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Algebraic Geometry — Canonical vector heights on K3 surfaces—A nonexistence
result, by SHU KAwWAGUCHI, communicated on 14 December 2012%*.

ABSTRACT. — A. Baragar introduced a canonical vector height on a K3 surface X defined over a
number field, and showed its existence if X has Picard rank two with infinite automorphism group.
In another paper, A. Baragar and R. van Lujik performed numerical computation on certain K3
surfaces with Picard rank three, which strongly suggests that, in general, a canonical vector height
does not exist. In this note, we prove this last assertion. We compare the set of periodic points of one
automorphism with another on certain K3 surfaces.
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1. INTRODUCTION AND THE STATEMENT OF THE MAIN RESULTS

Let K be a number field with a fixed algebraic closure K. Let X be a K3 surface
defined over K. We put Xz := X Xgpe(k) Spec(K). Let Pic(Xg) be the Picard
group of X. Since X is a K3 surface, Pic(X}) is isomorphic to the Néron-Severi
lattice NS(Xz) (€ H*(X%,Z)) of Xg, and Pic(Xz) ®; R is a finite dimensional

R-vector space. Following Baragar [2], a vector height on X (K) is a function

h: X(K) — Pic(Xp) ®; R

with the following two properties:

(i) For any ¢ € Aut(Xy) and P € X(K), we have
h(a(P)) = a.h(P) + O(1),

where ¢, := (¢7!)" and O(1) denotes a bounded vector-valued function on
X(K).
(if) For any divisor D of X3 and any Weil height /1 associated to D, we have

ho(P) = h(P) - D+ O(1),

where O(1) denotes a bounded function on X(K), and the dot - denotes the
intersection paring on Pic(Xz) ®; R.

*Proposed by U. Zannier.
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There always exist vector heights on X. Indeed, let {D;, ..., D,} be an R-basis
of Pic(Xz) ®z R, and {Dj,...,D;} be the dual basis of {Di,...,D,} with
respect to the intersection paring of Pic(Xz) ®; R. Then the assignment of
P e X(K) toh(P):=3""_ hp-(P)D; gives a vector height on X.

A vector height h: X(K) — Pic(X ) ®z R is called a canonical vector height
(over K) if (i) is replaced by the stronger condition

(1.1) h((P)) = o.h(P)

for any ¢ € Aut(Xz) and P € X(K). We say that a vector height his a canonical
vector height over K if it satisfies (1.1) for any ¢ € Aut(X) and P € X (K).

In [2], Baragar showed that, if X is a K3 surface with Picard rank 2 and
Aut(X) is infinite, then a canonical vector height exists on X (K). In [4] (see also
[3]), Baragar and van Lujik performed numerical computation which strongly
suggests that, in general, a canonical vector height does not exist. To be precise,
Baragar and van Lujik considered a K3 surface ¥ over @ in P! x P' x P! given
by an explicit equation of multi-degree (2,2,2), and showed that Y5 has Picard
rank 3. Then for a suitable P € Y(Q), they computed of h(P) in two ways and
obtained a result which strongly suggests that a canonical vector height over Q
does not exist on Y.

To the author’s knowledge, there has been no proven K3 surface on which
there does not exist a canonical vector height. The purpose of this note is to give
such a K3 surface.

Let X be a K3 surface given by a (2,2,2) hypersurface of P! x P! x P! de-
fined over a number field K. For 1 <i< j<3, let p;: X — P' x P! be the
projection to the (i, j)-th factor. Since pj;; is generically a double cover, p; induces
an involution oy : X — X, where {i, j,k} ={1,2,3}. We put p=0300;,00],
and let Per(p) be the set of K-valued periodic points of p. Let .o/ be the subgroup
of Aut(Xy) generated by o1, 05 and o3:

(12) of = <O’1,0’2,0’3>.
We put
(1.3) 2={Pe X(K)|{a(P)|x e o/} is a finite set}.

Note that we have 2 = Per(p).

THEOREM 1.1. Let X be K3 surface given by a (2,2,2) hypersurface of
P! x P! x P! defined over a number field K. Assume that pij is a finite morphism
Sor any i < j and 2 # Per(p). Then there does not exist a canonical vector height
on X.

We note that it is plausible that the condition 2 # Per(p) is always satisfied.
(Indeed, Per(p) is an infinite set by the holomorphic Lefschetz fixed point for-
mula. On the other hand, it might be hoped that 2 is a finite set. See Remark
3.2 and Question 3.3.) For an explicitly given equation, one can often check
that this assumption is satisfied as follows.
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COROLLARY 1.2. Let X be a K3 surface over Q(v/=2,v/3) in P! x P! x P!
defined by the equation

(1.4) X222 4+ x4 X222y 2x 2yt 220
+ (2\/§+2)x+§\/—2y+32—2\/§—420

in the affine part A* in P! x P! x P!, Then P = (1,0,0) belongs to Per(p)\2, and
there does not exist a canonical vector height on X. More strongly, there does not
exist a canonical vector height over Q(v/=2,/3) on X.

In fact, we will consider a family of projective surfaces defined by

X222 4 X2y  x22 P 2P + 2P + 22 ax+ by +cz+d =0

with a,b,c,d € Q and abc # 0. By suitably varying a, b, ¢, d, we can produce
similar examples as Corollary 1.2.

The organization of this paper is as follows. In Sect. 2, we briefly review some
geometric and arithmetical properties of X. In Sect. 3, we consider two automor-
phisms and show that, under the assumption of Theorem 1.1, the sets of periodic
points of these automorphisms do not coincide with each other. Then we prove
Theorem 1.1. We also give a criterion that P € X(K) does not belong to 2
(Proposition 3.5 and Proposition 4.1), which might be of interest in itself. In
Sect. 4, we prove Corollary 1.2. For the proof of Theorem 1.1, we use properties
of canonical height functions associated to automorphisms of positive topological
entropy (cf. [14, 1, 5, 11]). For the proof of Corollary 1.2, we use properties of
canonical height functions associated to several morphisms (cf. [10]).

ACKNOWLEDGMENT. I thank Professor J. H. Silverman for helpful discussions during my visit to
the ICERM on the semester program “Complex and Arithmetic Dynamics™ in February, 2012. 1
thank the organizers of the program and the ICERM for their hospitality. I thank the referee for
carefully reading the manuscript and giving helpful comments. This work is supported in part by
KAKENHI 24740015.

2. PRELIMINARIES

Let X be K3 surface given by a (2,2,2) hypersurface of P! x P! x P!, In this
section, we briefly review some geometric and arithmetical properties of X. We
refer the reader to [3, 5, 13, 15] for details.

Geometry over C. Let X be K3 surface given by a (2,2,2) hypersurface of
P! x P! x P! defined over C. For 1 <i< j<3, letp,j:X—>[P’1 x P! be the
projection to the (i, j)-th factor. Since pj; is generically a double cover, p;; induces
an involution oy : X — X, where {i, j,k} = {1,2,3}. We note that, if X is suffi-
ciently general, then Aut(X) = (a1, 02,03 (cf. [16, p. 81]).
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For 1 <k <3, let p; : X — P! be the projection to the k-th factor. We define
the divisor Dy on X by Dy = p;{co}. The intersection paring D; - D; is given by

0 2 2
(D; - Dj)lgi,js3 =12 0 2
2 20

Assume that pj; are finite morphisms for all i < j, i.e., p; L(P) is a finite set
for any P € X(C). Then, for P € X(C), as a zero-cycle, we have the equality
pi(pyP) = (P) + (o P) for {i,j,k} ={1,2,3}. By [5, Proposition 1.5 and its
proof |, we then have in Pic(Xy)

(21) O-;Di = D;,
(2.2) O-ZDf = Dy,
(2.3) O';Dk =2D; + 2D/ — Dy.

Automorphisms over C. Let 6: X — X be an automorphism over C. Then o
induces an action o¢*:NS(X)— NS(X), and then o :NS(X)®;C —
NS(X) ®; C.

Let A be the spectral radius of o, i.e.,

/. := max{|y|| y is an eigenvalue of g : NS(X) ®; C — NS(X) ®7 C}.

The Néron-Severi lattice NS(X) (€ H?*(X,Z)) equipped with the intersection
form has signature (1, rank NS(X') — 1). Thus, if 2 > 1, then ¢¢ : NS(X) ®,C —
NS(X) ®7 C has a unique eigenvalue y with |y| > 1, and y = 1 is a real number
with multiplicity 1. Then, starting from any general ample divisor 4 of X,
E :=1lim,_, 720" (4) # 0 exists in NS(X) ®; R. Since the limit of ample divi-
sors are nef, E is nef. The fopological entropy of o is equal to log A. To sum up,
we have the following.

ProproOSITION 2.1 ([7], Theorem 2). Let o : X — X be an automorphism over C
with positive topological entropy log 4 > 0. Then, up to a multiple of positive num-
bers, there exists a unique nonzero nef R-divisor E such that ¢*E = LE.

ExamMPLE 2.2 (cf. [15], Lemma 2.1). We give an example which will be used
later. We set p = g3 0 g 0 g7 as in the introduction. We put

(2.4) Bl _2\51)1 4Dy 42 +2\/§D3,
14+/5 1-/5
(2.5) E = 2\/_D1+D2+ 2*[1)3.

Then E*, E~ are nef. Assume that p;’s are finite. Then using (2.1)—(2.3), we have
p*Et = (9+4V5)E* and (p)*E- = (94 4V5)E~. Thus p and p~! are both
automorphisms with positive topological entropy log(9 + 4/5).
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Similarly, we set T = g1 0 g3 0 g,. We put

1 5 1—+/5
(2.6) Ft.= +2\/—D1 + 2\/_D2 + Ds,
1 -5 1+ +v5
(27) F = 2\/_D1 + 2\/_D2 + Ds.
Then F*, F~ are nef with o*F* = (9 +4V/5)F* and (t " )*F~ = (9 +4V5)F~.

Thus 7 and 77" are both automorphisms with positive topologlcal entropy
log(9 + 4V/5).

Canonical height functions. Let X be a K3 surface given by a (2,2,2) hypersur-
face of P! x P! x P! defined over a number field K. We fix an embedding K < C,
and let K be the algebraic closure of K in C. For an automorphism o : Xz — X,
the topological entropy of ¢ is defined by that of o¢ : X} X spec(®) Spec(@)
X Xspec(R) Spec(C).

For each R-divisor D, one can associate an absolute logarithmic Weil
height function Ap : X(K) — R. For a given D, hp is determined only up to
a bounded function O(1) on X(K). Height functions are R-linear with respect
to D, and have the functoriality /,.p) = /p oo+ O(1) for any automorphism
o: Xz — Xp. We refer the reader, for example, to [8, 6] for more details on
height functions.

THEOREM 2.3 ([11], Theorem C). Let o : Xz — X be an automorphism of posi-
tive topological entropy log /. > 0. Then we have the following.

(1) There exlsls nef R-divisors E*, E~ € Pic(Xz) ®7 R such that 6*(E*) = AE*
and (6= (E~) = AE".

(2) There exists a unique height function ha g+ (resp. hg 1 g-) associated to E™
(resp. E™) such that ha g+(0(P)) = Aha g+(P) (resp. hg g-(6(P)) = Ahg g (P))
forall P € X(K).

(3) The functions h, -, hy-1 - are non-negative, i.e., for any P € X (K), we have
hg. g+ (P) >0 and h, £ (P)=0.

(4) Assume that E* + E~ is R-ample. Then

Per(o) = {P € X(K)| hy.p+(P) = 0} = {P € X(K) | hy1 p-(P) = O}

Further, for any finite extension field L of K, the set Per(c) n X (L) is a finite
set.

REMARK 2.4. The height functions izm E+ ilo-—l7 - are called canonical height
functions, and defined by

hg i+ (P) := lim ihE+( "(P)), hy g (P):=lim — ! hg-(a7"(P)),

n—a A" n— o0 }Ln
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where hp+ and hg+ are any Weil heights associated to E™ and E~. The construc-
tion is due to Silverman [14], who defined canonical height functions on Wehler
K3 surfaces with the composition of two involutions. In [11], we have treated
automorphisms with positive topological entropy on smooth projective surfaces,
where E* + E~ may not be R-ample in general.

EXAMPLE 2.5. Let p=0300700]: X — X be the automorphism in Example
2.2. Then we can take E",E~ € Pic(X) ®; R as in (2.4) and (2.5). Since
E* 4 E~ = Dy + 2D, + D5 is ample, Theorem 2.3(4) holds for 4, g+ and h,1 .
We have similar statements for 7 =g 00300, : X — X. The canonical height
functions %, g+ and h,1 g are studied in [1, 5, 15].

3. PROOF OF THEOREM 1.1

Let X be a K3 surface given by a (2,2,2) hypersurface of P! x P! x P! defined
over a number field K. In this section, we prove Theorem 1.1.

Similarly to p and 7 in Example 2.2, we put v = g, o g1 0 g3. Then p, 7, v are
all automorphisms of X of positive topological entropy log(9 + 4+/5).

First we compare the sets of periodic points Per(p), Per(z), Per(v) of p, 7, v in
X (K). Note that, since p, , v has positive topological entropy, it follows from the
holomorphic Lefschetz fixed point formula that Per(p), Per(z), Per(v) are infinite
sets. Recall that 2 is a subset of X (K) defined by (1.3).

LemMMmA 3.1. Assume that 2 # Per(p). Then we have either Per(p) # Per(),
Per(p) # Per(v), or Per(t) # Per(v).

PrOOF. We assume that 2 := Per(p) = Per(7) = Per(v), and derive a contradic-
tion. Since g1pa;! = 7, we have g1 (Per(p)) = Per(z). Thus 012 = 2. We simi-
larly have 0,2 = 2 and ;2 = 2.

Let P be any element in Per(p) = 2. Then {¢(P)|o € o/} = 2 = Per(p) =
{0 € X(K) |h, g+(Q) =0}. We take a finite extension field L of K such that
Pe X(L). Then {o(P)|oe o/} <{QeX(L)|h,g(Q)=0}. By Theorem
2.3(4), the right-hand side of the above equation is a finite set, and so
{a(P)|o € o/} is a finite set, i.e., P € 2. This contradicts with the assumption
92 # Per(p) = 2. O

REMARK 3.2. Lemma 3.1 is related to so-called unlikely intersections. Let
f.g: PY — PV be noninvertible morphisms defined over a number field K. Let
PrePer(f) and PrePer(g) denote the sets of preperiodic points for f and g in
PN (K). Let i and h, denote canonical height functions.

Yuan-—Zhang [17] showed that PrePer( f) = PrePer(g) if and only if PrePer(f)
N PrePer(g) is Zariski dense in P if and only if hy = h It is known that the
identical canonical heights give quite strict restrictions on f and ¢g. For example,
if /' and g are polynomials in one variable, then hf = h implies that /" and ¢
commute, except for the power maps and Chebychev maps (cf. [12]).
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Let us pose a question related to this remark. If the answer to Question 3.3 is
affirmative, then we will always have 2 # Per(p). One might even hope that
2 < Per(p) nPer(z) nPer(v) is a finite set.

QUESTION 3.3.

(1) Let X be smooth projective surface over C, and let ¢ and ¢’ be automor-
phisms of X with positive topological entropy. Then is it true that Per(a) n
Per(¢’) is Zariski dense in X if and only if Per(a) = Per(a’)?

(2) Let X be K3 surface given by a (2,2,2) hypersurface of P! x P! x P! de-
fined over C. let ¢ and ¢’ be automorphisms of X with positive topological
entropy log/ and logi’. Assume that the one-dimensional J-eigenspace
of ¢ is not equal to the one-dimensional A’-eigenspace of ¢’ nor the one-
dimensional A’-eigenspace of ¢'~!. Then is it true that Per(a) n Per(a’) is not
Zariski dense in X?

We now assume that there exists a vector height h on X. We show some prop-
erties of h.

PROPOSITION 3.4 [3]. Let o : X — X be an automorphism of positive topological
entropy log 2 > 0. We take a nonzero nef R-divisor E € Pic(X) ®; R with c*E =
AE. Then we have h(P) - E = hCE( ) for any P € X (K).

PRrROOF. This is shown in [3, §1]. For the reader’s convenience, we give a quick
proof using Theorem 2.3(2). We regard h- E as a function on X (K) which maps

Pe X(K) to h(P)-E. Then h-E is a height function associated to E, and
satisfies

h(o(P)) - E = 6.h(P) - E = (6")*h(P) - E = h(P) - ¢*E = A(h(P) - E).

By uniqueness of fzg, g in Theorem 2.3(2), we have h E= iz,,} E- O

PrOOF OF THEOREM 1.1. Let us begin the proof of the main theorem. We
suppose that there exists a canonical vector height h on X, and we will derive a
contradiction. By Lemma 3.1, at least two of the sets Per( ), Per(z), Per(v) are
different. We treat the case Per(p) # Per(7). The other cases can be treated simi-
larly via the symmetry of a1, a3, 03.

Let E%, F* € Pic(X) ®; R be as in (2.4)—(2.7). Then we have

34+45 3+f5F_
2 2

Et+E =F"+

Thus we get
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By Proposition 3.4, we have

3445 - " 3+fil

B p E+ + h/f‘,E* = he p+ 5 -1 F--

Since Per(p) # Per(r), there exists either Py e Per(p)\Per(z) or Qe
Per(7)\Per(p). In the former case, it follows from Theorem 2.3(4) that 4, g+(Po)
=h,1 g-(Po) =0, and that &, p+(Po) > 0 and h,1 - (Py) > 0. We have

3+V5 -
0= 3 h/,,E+ (P()) + hI,fl’Ef (Po)
. 3 + V5.
= he.p (Po) + ——he1 p-(Po) > 0,

which is a contradiction. In the latter case, we similarly have the contradiction

3+ f
0<— By, £+(Q0) + hyt g (Qo)
. 3+ \/_ .
= he e (Qo) + ——5—he1 - (Qo) =
This completes the proof of Theorem 1.1. O

In the rest of this section, we glve a criterion that a point P e X (K) does not
belong to 2, which will be used in the next section. Let /2 : P!(K) — R denote
the usual Weil height function. Since Dy = p;{o0} for k=1,2,3, we have
hp, = ho pi + O(1) on X(K). Note that /p, is determined only up to a bounded
function. We choose a representative of /ip, by setting

(3.1) hp, :=ho py.

By slight abuse of the notation, we write /1p, for this representative. We assume
that pj; is a finite morphism for any i < j. By (2.3), there exists constants ¢, > 0
and ¢; > 0 such that

(32) 2hDi + 2//10/. + ¢ = th ooy + th > 2hDi + 2hD/. — Cllc

for k =1,2,3 and {i, j,k} = {1,2,3}.

PROPOSITION 3.5. Let the notation and assumption be as above. Let Py € X (K).
Then, if

1
> = (] + ¢+ ¢4),

th (P()) + th(PO) + hDs(PO) 2(

then Py ¢ 2.
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ProorF. We wuse [10]. We set D:=D;+D,+ Ds;, and we set hp:=
hp, + hp, + hp,. Recall that .7 is defined in (1.2). We put .« := {id} < .«/, and
for each n > 1

oA, = {O-fl 00dy O--- 00y, 6,52/|/1,/2,...,/n € {1,2,3}}.

Since 61D + ;D + 3D = 5D in Pic(X), [10, Theorem 1.2.1] shows that, for any
P e X(K), the limit

hp..s(P) = lim (—) S hp(a(P))

n— oo
g€ .S,

exists. In fact, by (3.2), we have
hp(1(P)) + hp(a2(P)) + hp(a3(P)) = Shp(P) = (¢} + ¢; + ¢3)
for any P € X(K). Then

(%)er Z o (o(P) (1)n+1 Zil (:((P))

O'E&‘/,H]

n

(é)n ZM hp(a(P)) 5i+1 (c] +c5+¢3)

v

= = hp(P ZSH—I c+a+a)
Since 210;0% (¢f + ¢+ ¢§) =5 (¢ + ¢4 + ¢4), letting n to the infinity, we have
- 1
(3.3) hp. s (P) = hp(P) —E(C{ +C£+C§).

Further, it follows from [10, Theorem 1.2.1] that, for P € X(K), we have
hp, s(P) =0 if and only if P € 2. Thus, if P € 2, then hp(P) < §(c| + ¢} + ).
This completes the proof. O

REMARK 3.6. In the following section, we consider a particular X and estimate
ci, ¢4, ¢4 in (3.2) to show that a given point Q does not belong to Per(p). The
referee points out that it may be possible to show Q ¢ Per(p) by reducing modulo
p for various primes and use [9].

4. PROOF OF COROLLARY 1.2

In this section, we prove Corollary 1.2. We first give an explicit estimate of ¢,
n (3.2). One way to give such an estimate would be to use an effective Hilbert
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Nullstellensatz, but for automorphisms of X, the computation would be compli-
cated and seems not to yield a nice estimate. For K3 surfaces including the one in
Corollary 1.2, we can give the following good estimate.

PROPOSITION 4.1. Let K be a number field, and let a,b,c,d € K with abc # 0.
Let X be a projective surface over K in P! x P! x P! defined by the equation

(4.1) x4+ 30+ X224y 4ot + 2P 422 fax+ by + ez +d =0

in the affine part A* in P! x P' x P'. We assume that X is smooth. For k =
1,2,3, let hp, be the height function defined in (3.1). Then pj: X — P' x P! s
finite for any i < j, and we have
(4.2) hp, (P) + hp,(c1(P))

> 2hp,(P) +2hp,(P) —2h((a:b:c:d: 1)) —logl62,
(4.3) hp, (P) + hp,(02(P))

> 2hp,(P) +2hp,(P) —2h((a:b:c:d: 1)) —logl62,
(44> hD3 (P) + hD3 (03 (P))

> 2hp,(P) + 2hp,(P) —2h((a:b:c:d: 1)) —logl162

for any P e X(K).

Proor. We first check that pj; is a finite morphism. It suffices to check for py,. If
x=(o:1), y=(f:1)are in the affine part, then
P (1), (B: 1)) = {((2: 1), (B: 1), (20 : 21)) € P! x P! x P!
| 23(2f% + 0?4 % +2) + czoz1
+ (o®B* + 202 4 2B% + aw + b + d)z7 = 0}.

Since ¢ # 0, we see that p;'(((«:1),(f:1))) is a finite set. If x = (1:0) is the
point at infinity, but y = (£ : 1) is in the affine part, then

P (((1:0),(8: 1))
={((1:0),(B:1),(z0:21)) € P! x P! x P (> + 1)z5 + (57 +2)= = 0}
Since 2 + 1 # % + 2, we see that p;;' (((1:0),(8: 1))) is a finite set. The case,

where x = (o : 1) is in the affine part, but y = (1 :0) is the point at infinity, is
similar. Finally, if x = (1 : 0) and y = (1 : 0) are the points at infinity, we have

PR (((1:0),(1:0) ={((1:0),(1:0),(z0:21)) € P! x P x P! |22 4 22 = 0}.

Thus p;' (((1:0),(1:0))) = {(+V—1:1)} is a finite set.
We will show (4.2). The other inequalities are proven similarly.
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(Step 1). We treat the case where P and oy (P) lie in the affine part A°. Let
P = (x,y,z) in the affine coordinate. We take a finite extension field L of K
such that P e A*(L) = P3(L). Let M denote the set of places of L. For a non-
Archimedean place v € M which lies over a prime p € Z, we set n, = [L, : Q).
For such v, let | - |, be the v-adic norm on L normalized as |p|, = p~!. If v is Ar-
chimedean, we set n, = 1 if v is real, and n, = 2 if v is complex. For an Archime-
dean place v € My, let | - |, denote the usual absolute value.

We write o1 (P) = (x, y,z) € A*(L) < P*(L). If v is non-Archimedean, then
|x + x'|, < max{|x|,, |x’|,}, so that

max{1l, |x|,, |x'|,, [xx],} = max{l, |x+x'|,, |xx'],}.
If v is Archimedean, then |x + x'|, < 2max{|x|,, |x'|,}, so that
! / 1 / /
max{1, |x],, [x'],, |xx],} = 3 max{l, [x + x'[,, |xx'[,}.

Then we compute

hp,(P) + hp,(a1(P)) = h((x : 1)) + h((x" : 1))

1
=T Z ny(logmax{1,|x|,} + logmax{1, |x'|,})
[ : Q] UEML
1
> Z nylogmax{l,|x + x'|, [xx'|,} — log2
[L:Q] &7

=h((x+x":xx":1)) —log2.

Here, we have

, —a ,_y222+2y2—|—222+by—|—cz—|—d

x+x:yzzz+y2+zz+2’ AX V2 r 212242

We thus obtain

(4.5)  hp,(P) + hp,(1(P))

—a Y222 4292 4222 by +ez+d
2h<( .2 21240 2,2 24 2 :1>>
yizi 4yt +z2 42 yizi 4yt +z2 42

—log2
=h((—a:y*2> + 29>+ 222 + by +cz+d : y* 22+ y? +22 +2))
— log?2.
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On the other hand, we have
hp,(P) = h((y: 1)), hpy(P) =h((z:1)).

Let us compare h((—a : 222 + 29> + 222 + by +cz+d : y?z2> + y* + 22 +2))
and 2h((y : 1)) + 2h((z : 1)). To this end, for each v € M, we will compare

(4.6) max{|a|, |y*z* + 20> + 227 + by +cz +d|,, |y*2> + y* + 22+ 2|}
and
(@7 max{l, ]} max{l, [2],}” = max{1, [y, |2%],, [*2?],}-

We set

CL‘ = max{|a|v, |b|u7 |C|v7 |d|v7 1}

Case 1. Let v € M} be a non-Archimedean place.
Subcase 1. Assume that |y|, > 1 and |z|, > 1. In this case,

(4.6) = |y?2% + y* + 22 + 2|, = |y’2?|, = (47).

Subcase 2. Assume that |y|, > C, and |z|, < 1. We further divide this subcase
into two.
First suppose that |z? + 1|, = 1. Then

(4.6) > [y 22+ )y + 27+ 2, =y + 1)+ 22+ 2|, =y, = (47).

Next suppose that |22+ 1|, < 1. Then |22 + 2|, = max{|z> + 1|, [1],} = L.
Since |y|, > Cy, we have |y?[, > [b], |yl |¥?], > lel, > |c|,|z], and [y?], > |d],.
Thus

(4.6) = [y?22 +2p* + 222 + by + ez + d|,
= V(2 +2) + 222+ by +ez+d|, = ¥, = (4.7).

Subcase 3. Assume that |y|, <1 and |z|, > C,. Similar to Subcase 2, we have
(4.6) > (4.7).

Subcase 4. Assume that |y|, < C, and |z|, < C,. In this case, (4.7) < C>. We
have

jal,
C;

v

(4.6) > |a], >

- (4.7).
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Case 2. Let v € M be an Archimedean place.
Subcase 1. Assume that |y|, > 2 and |z|, > 2. In this case,

(4.6) > |p?2% + y* + 22 + 2],
> |y222|‘— ¥, — 2%, — 2

3
U212 = (12 = 4) 42 (5212 — 16) + 2 121l

Subcase 2. Assume that |y|, > 6C,+3 and |z|, <2. We have either
|22 + 1|, > Jor|z2 + 2|, > 5. We divide this case into two.
Suppose that |z? + 1|, > 1. Noting that |y[, > 9, we get

(4.6) = |22+  + 2242, = V(P + 1)+ 22+ 2],

NI —

1, » ) 1
> —[y]> = 2) > — 4.
2 SR (2 +2) 2 5P 62 JliE = - (4),
Next suppose that |z2 + 2|, > 1. Then

(4.6) = |p?22 +2p* + 22> + by + ez + d|,
=[y*(z2 +2) + 222 + by +cz +d|,

1
= 5 le = Gl = (8 +3G)

1
H(12l —2G) — B 43C,+ ) + b

)
Z(4C +3) (8+3CU+CD)+—|y|U
23 1
2 R — —
2(3CD+3CU 4)+4| | |y| 16 - (4.7).

Subcase 3. Assume that |y|, <2 and |z|, > 6C, + 3. Then a similar argument
as in Subcase 2 gives (4.6) > - (4.7).

Subcase 4. Assume that |y|, £6C,+3 and |z|, < 6C, + 3. As in Case 1, we
have (4.7) < (6C, 4 3)*. Thus

C L (47) > ""vz.(4.7).

WOy = el = oc, 3y 9C,)

Since (9‘2‘:)2 < g < 1, we have (4.6) > (JZ‘L -(4.7) in Case 2. Combining

Cases 1 and 2, we get )
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hp, (P) + hp,(a1(P))
1
= [L: Q]

Z n,logmax{|al,,|y*z* + 2y* + 22> + by + cz +d|,,
UEML

|22 + y? + 22 +2|,} — log2

>

1
[L:Q] Z ny(loglal, — 2log C,)

ve My, v:non-Arch
+logmax{1,|y?|,, |22, |»*z*|,}
+ > mfloglal, - 210g(9C,))

ve My, v:Arch

2| —log2

+ logmax{l, |y2|v7 |Z v |y222|v}

( 3" mloglal, = Y m2log C, — [L : @J4log3

L‘EML L‘EML

+ Z logmax{1, |y?[,,]7%,, |y222|y}> —log?2
veMy

=-2h((a:b:c:d:1))—4log3+ 2hp,(P)+ 2hp,(P) — log?2,

where we used the product formula [],.,,, ||, =1 in the last equality. Hence
we obtain (4.2) when P and o (P) are both in the affine part.

(Step 2). We treat the case where P = (x, y,z) or o;(P) does not lie in the
affine part A*. We write g;(P) = (x/, y,z) with x’, y,z € P,

Case 1. We consider the case where x or x’ is the point at infinity, but
y=(y:1)and z=(z:1) are in the affine part. In this case, we may assume
that x’ is the point at infinity. Then y?z? 4 y* + z> +2 = 0, and we have

V222 4292 4222 by +ez+d
- .

It follows that

(48) th (P> + th (Ul (P))

= h((x: 1) =h((-

= h(y*22 + 202+ 222+ by + ez +d : —a))

=h((—a: y* 22+ y*+ 22 +2: y’ 22 + 22 4222 + by + ez + d))
> h((—a: 2+ y* + 22+ 210 p222 + 22 + 222 + by + ez + d))
—log2,

y222+2y2+222+by+cz+d_ 1))
p :
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where we use y?z? + y? + z2 +2 = 0 in the fourth equality. The quantity (4.8) is
equal to (4.5). Thus the argument in Step 1 shows that (4.2) holds in Case 1.
Case 2. We consider the case where y = (1:0) is the point at infinity,
=(z:1) is in the affine part, and x = (xo:x1), x' = (x{:x]) € P'. Since
P = (x,y,z) is a point in X, it follows from the projectivized equation of (4.1)
that

(22 + 1)xg + (22 +2)xi = 0.
We divide this case into two subcases.

Subcase 1. Assume that x = (x : 1) is in the affine part. Then z # +v—1. In

this case, x and x" = (x’ : 1) satisfies

242
xx'=0, x+x' :ZZ—+.
z2 41

Then we have, as in (4.5),

hp,(P) + hp,(1(P)) = h((x + x": xx": 1)

) —
((Z 2.0, 1)) log2
W(z2+2:22+1)) —

1)
Since h((z>+2: 22+ 1)) > 2h((z : 1)) — 2log2 and hp,(P) = 0, we obtain
hp, (P) + hp, (91(P)) = 2hp,(P) + 2hp,(P)

In particular, (4.2) holds.
Subcase 2. Assume that x is the point at infinity. Then we have z = +v—1.
We have

hp,(P) + hp, (a1(P)) = 02hp,(P) + h((+V—1 : 0)) = 2hp,(P) + 2hp,(P).

In particular, (4.2) holds.

Case 3. We consider the case where z = (1:0) is the point at infinity,
y=(y:1)is in the affine part, and x = (xo: x1), x’ = (x : x|) € P'. Similar
arguments as in Case 2 give that (4.2) holds also in Case 3.

Case 4. We consider the case where each of y = (1:0) and z = (1:0) is the
point at infinity. Then

th (P) +hD1 (0-1<P)) >0= 2th(P) +2hD3(P)v

so that (4.2) holds in this case.
This completes the proof of Proposition 4.1. O

log?2

|
=

log2.

—3log?2.

REMARK 4.2. Let X be a K3 surface over a number field K in P! x P! x P!
defined by the equation

X222 4 ax?y? + i 2t ol + et + AP +ax+by+cz+d =0
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in the affine part A® in P! x P! x PL. If a #06, f #¢, y # A, abc # 0, then the
proof of Proposition 4.1 works and give an explicit estimate of ¢, ¢} and cj}.

Using Proposition 3.5 and Proposition 4.1, let us prove Corollary 1.2.

PROOF OF COROLLARY 1.2. Let X be a surface in P' x P! x P! defined by
(1.4) in the affine part. One can check that X is smooth.
Let P = (1,0,0). One can check that, in the affine coordinate,

7((P) = (V3.0.0), mon(p)= (V352 0).
p(P)—a3oazoal(P)—(\/g,g,l), alop(P)—<1,g,l),

cy0a10p(P)=(1,0,1), p*(P)=0300,00 0p(P)=(1,0,0).

Thus P is a p-periodic point with exact period 2.
Next, we show that P ¢ 2. We use Proposition 3.5. By Proposition 4.1, we can
take ¢; in (3.2) as

o =ch=ci=2n((2v3+2:3 223 20/3-4: 1))+ 4log3 + log2
=2h((4(1 +V3) : 5V=2:6: —4(v/3+2) : 2)) + log(2 - 3%)
<log(2%?-3*.5. (2 +3)).

On the other hand, in the affine coordinate, we compute

o3(P) = (1,0,1),
1 + 2\/— )

01003

02001 005(P 2.2617

1+2f 32.5.(53 4 8V3)V-2
22617 ’

33(2 - 449 - 86729 + 17064953 - \/5))
2-11-61-71-15913 ’

g3 007 0] 0 g3(P

)= (=5
( 1+2f 32.5. (53+8\/§)\/—_271)’
)= (-

We set Py := g3 0 g3 0 gj 0 g3(P). Then we have
3
o, (Po) + hp, (Po) + hp, (Py) > 5 log(2%%.3%.5.(24+V3)).

It follows from Proposition 3.5 that Py ¢ 2. Hence P ¢ 2. Since P and o1, 0,, 03
are all defined over Q(v/—2,+/3), proof of Theorem 1.1 shows that there does not
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exist a canonical vector height over @(v/—2,/3) on X. This completes the proof
of Corollary 1.2. O
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