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Abstract. — This paper is intended to highlight the di¤erences between the nonlinear Schrö-

dinger equation (NLS) posed on a compact manifold (such as a torus Td ) in contrast to being posed
on noncompact regions such as on all of Rd . The point is to indicate a number of specific facts about

the behavior of solutions in the former situation, in which they have the possibility for recurrence,
and the latter, in which solutions have the tendency to disperse. This is the topic of the short article

by McKean [8], in which the issue of resonance for partial di¤erential evolution equations is dis-
cussed. The aspect of this question that we describe in the present paper is that there are di¤erent

normal forms for these two cases, which rephrases the question as to which of the nonlinear terms
are the resonant terms, and what is the appropriate Birkho¤ normal form for the NLS. We show

that, at least in a neighborhood of zero of an appropriate Hilbert space, the fourth order Birkho¤
normal form transformation for the NLS equation is able to eliminate all of the nonresonant terms

of the Hamiltonian, and as well, all of the resonant terms. The result is a prognosis, to the negative,
for the formal theory of wave turbulence for Hamiltonian partial di¤erential equations posed in

Sobolev spaces over Rd .*
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1. Introduction

We would like to frame a discussion of transformation theory of Hamiltonian
partial di¤erential equations (PDEs) in terms of a particular equation, which for
convenience will be the nonlinear Schrödinger equation (NLS),

iqtu ¼ 1

2
Dxu� sjuj2u:ð1Þ

Denote the solution map, or flow of this equation by jtðu0Þ ¼ uðtÞ, where
uð0Þ ¼ u0 is the specified initial data. The defocusing case is given by the choice

*The results of this paper are related to the lecture that one of the Authors (W. C.) gave at the
Conference ‘‘Dynamics of PDEs’’, which took place at the Accademia dei Lincei on October 14,

2011.



s ¼ þ1 and the focusing case by s ¼ �1. The energy for this PDE is given by the
Hamiltonian functional

HðuÞ :¼
Z

1

2
j‘uj2 þ s

1

2
juj4 dx ¼ H ð2Þ þH ð4Þ;ð2Þ

with which the equation (1) is written in Hamilton’s canonical form, in complex
symplectic coordinates on L2,

qtu ¼ i‘uH:ð3Þ

The frequencies of the normal modes are given by the dispersion relation

oðkÞ ¼ 1

2
jkj2;ð4Þ

with which, using the notation D ¼ �iq=qx one can express solutions of the line-
arized equations for initial data uðx; 0Þ ¼ u0ðxÞ in the form

qtu ¼ i‘uH
ð2Þ ¼ �i

1

2
Du; uðx; tÞ ¼ expðioðDÞtÞu0ðxÞ :¼ Ftðu0ÞðxÞ:ð5Þ

Many other physically relevant Hamiltonian PDEs can be expressed in this
way, whose linearizations about the equilibrium solution u ¼ 0 take a similar
form. These include the Korteweg-deVries equation, with dispersion relation
oKdV ðkÞ ¼ k3, nonlinear wave equations and the Klein–Gordon equations, with

dispersion relation oKGðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

q
, Euler’s equations of fluid dynamics,

and the equations of free surface water waves, with dispersion relation owðkÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gjkj tanhðhjkjÞ

p
.

In general, and on a formal level, a Hamiltonian PDE takes the form

qtz ¼ J gradz H :¼ XHðzÞ; zðx; 0Þ ¼ z0ðxÞ;ð6Þ

considered as an initial value problem. This system is posed on an appropriate
phase space z a M0, which for convenience we take to be a Hilbert space with
inner product 3X ;Y4M0

. The symplectic form is represented in terms of this inner
product

oðX ;Y Þ ¼ 3X ; J�1Y4M0
; JT ¼ �J

for vector fields X , Y , which in turn gives the classical relationship defining the
Hamiltonian vector field XH , namely for all Y

dHðYÞ ¼ �oðXH ;Y Þ:
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For technical reasons, because these equations are partial di¤erential equa-
tions and we must be able to solve the initial value problem, the flow, or solution
map zðx; tÞ ¼ jtðz0ðxÞÞ is defined on an appropriate dense subspace z0 a MJM0.
The typical case for M0 ¼ L2 and M ¼ Hs a Sobolev space of su‰cient smooth-
ness to solve, at least locally in time, the initial value problem.

Given the flow of XH and reasonable functionals F , the Poisson brackets are
also defined in the usual way, namely

fF ;Hg :¼ 3gradz F ; J gradz H4M0
¼ XHðFÞ ¼ d

dt

����
t¼0

F ðjtðzÞÞ;

where jtðzÞ is of course the flow of the Hamiltonian vector field XH .
The field of Hamiltonian PDEs focuses on the analysis of the phase space of

partial di¤erential equations, which are necessarily infinite dimensional. The aim
is to go beyond the basic question of existence and uniqueness of solutions, to
describe some of the important orbit structures and other dynamically relevant
features, their dependence on parameters, and their stability. One of the questions
of interest is to what extent these features are, or are not, similar to phenomena
that occur for finite dimensional Hamiltonian systems.

Simple conservation laws for the NLS (1) are

MðuÞ :¼
Z

juj2 dx; mass

PðuÞ :¼ im

Z
u‘u dx; momentum

HðuÞ :¼ energy ¼ ð2Þ

These facts can be checked by using the definition of the Poisson bracket and
integrating by parts, fM;Hg ¼ 0, fP;Hg ¼ 0. It is clear that, while we are using
M0 ¼ L2 for the Schrödinger equation, the energy functional is only defined for
u a _HH 1BL4 :¼ M the energy space.

The intent of his article is to highlight some of the di¤erences in behavior
between the NLS (and Hamiltonian PDEs in general) posed on compact spatial
domains, such as x a Td for example, and the noncompact case of x a Rd . In
particular it is to make a concrete statement in the discussion in the folklore on
the topic on the di¤erence between cases in which solutions tend to disperse, and
cases in which they recur. A reference relevant to this discussion is the paper by
H. P. McKean on How real is resonance? [8]. The idea is that there is a di¤erent
normal form for the two cases Td and Rd . The question we want to address is as to
the nature of nonlinear resonance for a Hamiltonian partial di¤erential equation.
Namely, which of the terms of the Hamiltonian are to be considered to be the
resonant terms, playing a rôle in nonlinear coherent structures in its solutions
such as solitons, and in recurrence phenomena of orbits. That is, we discuss
which terms are necessarily present in the appropriate normal form for the equa-
tion, and are obstructions to its complete linearization.
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2. Birkhoff normal form

A normal form is the result of a transformation that is intended to simplify the
Hamiltonian, retaining only essential nonlinearities. Birkho¤ normal form refers
to the specific case of a normal form for a Hamiltonian systems in a neighbor-
hood of an elliptic stationary point, which is attainable through near—identity
canonical transformations. Without loss of generality assume that the stationary
point in question is u ¼ 0, and express the Hamiltonian in its Taylor series (with
remainder);

HðuÞ :¼ H ð2ÞðuÞ þH ð3ÞðuÞ þH ð4ÞðuÞ þ � � � þH ðNÞðuÞ þ RðNþ1ÞðuÞ:ð7Þ

Under a canonical transformation v ¼ tðuÞ to Birkho¤ normal form, we achieve
~HHðvÞ :¼ HðuÞ in the form

~HHðvÞ ¼ H ð2ÞðvÞ þ Zð3ÞðvÞ þ Zð4ÞðvÞ þ � � � þ ZðNÞðvÞ þ ~RRðNþ1ÞðvÞ:ð8Þ

The homogeneous Taylor polynomials Zð jÞðvÞ are the remaining resonant terms,
and all nonresonant terms are eliminated by the transformation t. In finite
dimensions the system

_uu ¼ J gradu H
ð2Þ

possesses finitely many frequencies foðkÞgn
k¼1, the resonance conditions are finite

at each order N, and Birkho¤ normal form can always be achieved up to the
order that is allowed given the smoothness of the Hamiltonian H. In the case of
a PDE whose linearization about zero has only discrete point spectrum, such as
the NLS on the torus Td , there are a countably infinite number of modes, discrete
frequencies foðkÞgk AZd , and the resonant terms in ZðNÞ are associated with reso-
nance conditions

X
k AZd

ðoðkÞpk � oðkÞqkÞ ¼ 3o jP�Q4 ¼ 0:

Here jPj þ jQj ¼ N, where we are introducing multi-index notation for P ¼
ðpkÞk AZd , Q ¼ ðqkÞk AZd . In the case in which the sequence foðkÞgk AZd is as non-
resonant as is possible for a Hamiltonian system, meaning that its only reso-
nances stem from the case of multi-indices P ¼ Q, then the normal form can
be expressed, at least formally, in terms of action variables alone, Zj ¼ ZjðIÞ,
j ¼ 3 . . .N, and the truncated Hamiltonian H ð2ÞðIÞ þ Zð3ÞðIÞ þ � � � þ ZðNÞðIÞ is
integrable. It of course remains an analytic issue as to the function space mapping
properties of the associated normal forms transformation, whether this normal
form has any rigorous implications for the dynamics of orbits of the equations
or not. In the case of the NLS in one dimension, with Dirichlet boundary condi-
tions, S. Kuksin and J. Pöschel [7] showed that the Birkho¤ normal form up to
fourth order is achieved in a neighborhood of the origin by a biholomorphic
transformation, and that it is nonresonant in the sense given above. For the
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NLS posed on Td the analog Birkho¤ normal forms is resonant, and the Birkho¤
normal forms transformation is given by C. Procesi and M. Procesi [9].

We contrast the discrete case with the example of the NLS posed on all of Rd ,
a situation that can occur for which the linearized operator J gradu H

ð2Þ has
purely continuous spectrum,

iqtu ¼ 1

2
Dxu� sjuj2u; u a MJL2ðRdÞ:ð9Þ

Its Hamiltonian (2) can be expressed in terms of the Fourier transform

H ¼
Z
Rd

x

1

2
j‘uj2 þ s

1

2
juj4 dx

¼
Z
Rd

k

oðkÞjûuðkÞj2 dk þ s

2ð2pÞd
ZZZ

k1þk2¼k3þk4

ûuðk1Þûuðk2Þûuðk3Þûuðk4Þ dk1 dk2 dk3:

We note that the Fourier transform uðxÞ 7! ûuðkÞ is a canonical transformation,
and we recall that the frequencies are given by oðkÞ ¼ 1

2 jkj
2.

Following the outline of Birkho¤ ’s receipe, a fourth order normal form for H
is given through a solution of the cohomological equation

fH ð2Þ;Gð4Þg ¼ H ð4Þ;ð10Þ

which has a soution in this case

Gð4Þ ¼ �i
s

ð2pÞd
ZZZ

k1þk2¼k3þk4

ûuðk1Þûuðk2Þûuðk3Þûuðk4Þ
1
2 ðjk1j

2 þ jk2j2 � jk3j3 � jk4j2Þ
dk1 dk2 dk3:

Rewrite the denominator to exhibit the convolution nature of the integral kernel,

1

2
ðjk1j2 þ jk2j2 � jk3j3 � jk4j2Þ ¼ �ðk1 � k3Þ � ðk2 � k3Þ:

The actual transformation is given by the time one flow of the Hamiltonian vec-
tor field, which we express in spatial variables:

X G ð4Þ ðuÞ :¼ J gradu G
ð4ÞðuÞ

¼ �s

ZZ
R2d

uðx1Þuðx2Þuðx� x1 � x2Þ sgnððx� x1Þ � ðx� x2ÞÞ dx1 dx2:

Subsequent to this somewhat formal discussion, the main outstanding question is
whether the flow csðuÞ of the Hamiltonian vector field X G ð4Þ

exists, and on which
Banach spaces does it give a well defined transformation of a neighborhood of
u ¼ 0. For rb 0 define the Sobolev spaces Hr; rðRdÞ :¼ fu a L2 : qa

xu; x
bu a L2

Ejaj ¼ r; jbj ¼ rg.
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Theorem 2.1. For any r > n=2 the vector field X G ð4Þ
is holomorphic on H r; r in

the variables ðu; uÞ. Therefore the Hamiltonian flow csðuÞ exists, locally in s, and
for su‰ciently small R gives rise to a biholomorphic canonical transformation
tð4Þ :¼ csjs¼1 on a neighborhood BRð0ÞJHr; r.

This result will follow by standard arguments, once we have established a

Lipschitz estimate for the vector field X G ð4Þ
.

Lemma 2.2. Consider u1; u2 a BRð0ÞJHr; r, then the Hamiltonian vector field of
Gð4Þ satisfies the estimate

kX G ð4Þ ðu1Þ � X G ð4Þ ðu2Þkr; r aCR2ku1 � u2kr; r:

The proof of this lemma is given in [4].
Several remarks are in order at this point of the discussion. The first is the

fact that the canonical transformation we have constructed, namely tð4ÞðuÞ :¼
csðuÞjs¼1 removes all of the nonresonant terms of the original fourth order
Hamiltonian. But it also succeeds in removing all of the resonant terms of the
Hamiltonian. This is closely related to the fact that a singuar integral kernel can
give rise to a bounded integral operator, when acting in the setting of continuous
spectrum. When performing the same formal exercise for the periodic case x a Td ,
Fourier transform variables are sequences, and an operator on sequences is defi-
nitely not bounded if one of its matrix elements is infinite.

There are straightforward su‰cient conditions for regular behavior of a singu-
lar integral kernel which is designed to remove the term ûuPûuQ in the Hamiltonian.
For the Nth order term of the Hamiltonian H ðNÞ, these conditions are that on the
resonant set

RNðP;QÞ :¼ fðk1; . . . kNÞ a RNd j 3P�Q j k4¼ 0 and 3P�Q joðkÞ4¼ 0g;ð11Þ

the resonance relation vanishes only to first order, namely for all j ¼ 1 . . .N,

ðpjqkoðkjÞ � qjoðkjÞÞA 0:ð12Þ

In [5] the variety RN :¼
S

P;Q RNðP;QÞ that consists of the union of all of the
above resonant sets (11) is called the time resonant set of order N. Denote by
PNðP;QÞ the set on which (12) fails for a given ðP;QÞ and for at least one
1a jaN, namely

PNðP;QÞ :¼ fðk1; . . . kNÞ a RNd j ðpjqkoðkjÞ� qjoðkjÞÞ ¼ 0; for some 1a jaNg:

Setting PN :¼
S

P;Q PNðP;QÞ, which is called the space resonant set in [5], the
di‰cult case lies in the intersection PN BRN . In the situation of the cubic non-
linear Schrödinger equation, and considering the normal forms transformation
for H ð4Þ, this intersection only occurs on the coordinate axes fðk1 � k3Þ ¼ 0gB
fðk2 � k3Þ ¼ 0g, where the special product structure of the kernel ensures that
the singular integral operator remains bounded.

There remain a number of questions at this point, on the domain and the be-
havior of the normal forms transformation tð4Þ, including the following. Question
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(1) Is the normal form transformation defined globally on the space Hr; r, or just
locally in a neighborhood which includes the ball BRð0Þ? This is relevant because
Schrödinger flow, both for the linear Schrödinger equation and for the NLS, pre-
serve the function space Hr; r, but not the ball BRð0ÞJHr; r. Indeed typically the
norm kjtðuÞkr; r is growing for large time. Question (2) Is the Birkho¤ normal
forms transformation tð4Þ defined on a larger space, such as the more natural
_HH 1BL4, which is the energy space for the NLS equation? And Question (3)
we have only touched upon the boundedness of the fourth order normal form;
although we are formally in the position to treat the higher transformations, we
have not done this so far.

The result of Theorem 2.1 reflects negatively on the e¤orts for a rigorous
theory of wave turbulence, making it a more di‰cult mathematical objective.
The reason is that many physicists view the theory of wave turbulence as an
averaging theory, in which details of individual orbits and the phases of each
active mode are not as important as more slowly varying quantities such as the
action variables and other averaged quantities, for which the essential nonlinear
interactions in the Hamiltonian are retained. Normal forms transformations play
an important rôle in these ideas, seeking to eliminate as much as possible a rapid
phase evolution resulting from the dependence of the Hamiltonian on angle
variables. To make a rigorous analytic formulation for this transformation
theory, is necessary to ascribe boundary conditions for the ensemble of wave
fields that one wishes to address as the realizations in a theory of turbulence.
This can be phrased in terms of the choice of phase space for the problem.
Candidates include uð�Þ a L2ðTd

2pÞ, where Td
2p ¼ Rd=ð2pZÞd . However the class

of periodic functions is considered to be too limited to appropriately represent
a very complicated wave field, and as well the periodic structure doesn’t admit
long wave spatial scalings, so it is ruled out by many wave turbulence theorists.
A second choice might be uð�Þ a L2ðRdÞ, however the above Theorem 2.1 shows
that there is not a su‰cient phenomenon of nonlinear resonance and recurrence
for there to be sustained turbulence. Indeed the dispersion is strong in the prob-
lem, all su‰ciently small solutions linearly scatter and decay to zero, and the only
invariant measure is a delta function measure supported on u ¼ 0. This leads to
the third suggestion, which is that one takes as phase space u a limL!þl L2ðTd

LÞ,
a thermodynamic limit of tori of increasingly large size. This is a subset of L2

loc,
functions with infinite energy but finite energy density. It is however a Fréchet
space, and therefore it represents a more di‰cult setting in which to analyse solu-
tions of these equations and their flows.

3. Envelope formulation

The concept of an envelope formulation is naturally tied to a variation of the
classical Duhamel’s principle, which we describe here. Consider a Hamiltonian
PDE for a quantity uðx; tÞ, with Hamiltonian given as

H :¼ H ð2Þ þ R;
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where H ð2Þ is quadratic in u and describes the linear part of the equation, R is
considered a higher order perturbation, and u ¼ 0 is an elliptic point of equilib-
rium. The linearized solution describes the tangent space approximation

_uu ¼ XH ð2Þ ðuÞ:

Denote the linear flow of this equation by FtðuÞ. The classical envelope function is
defined by

MðtÞ ¼ F�tðuðtÞÞ;ð13Þ

which satisfies Duhamel’s principle

_MM ¼ F�tX
RðFtðMÞÞ:ð14Þ

This is usually described in terms of the integral equation

MðtÞ ¼ Mð0Þ þ
Z t

0

F�sX
RðFsðMÞÞ ds:

Consider instead a more general system, with Hamiltonian H þ R, where the
flow jt for the Hamiltonian vector field XH is known. To study

_uu ¼ XHþRðuÞ;ð15Þ

define the generalized envelope mðtÞ using this flow,

mðtÞ ¼ j�tðmðtÞÞ:ð16Þ

Then

_uu ¼ _jjtðmÞ þ qujtðmÞ _mmð17Þ
¼ J gradu HðuÞ þ J gradu RðuÞ;

and solving for _mm,

_mm ¼ ðqujtðmÞÞ�1ðJ gradu HðuÞ þ J gradu RðuÞ � _jjtðmÞÞð18Þ
¼ ðqujtðmÞÞ�1ðJ gradu RðuÞÞ;

since u ¼ jtðmÞ. Because the flow jtðmÞ is a canonical map, qujtðmÞJqujtðmÞT
¼ J, therefore

_mm ¼ ðqujtðmÞÞ�1ðJ gradu RðuÞÞð19Þ
¼ JðqujtðmÞÞTðgradu RðuÞÞ
¼ J gradm RðjtðmÞÞ:
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The functional RðjtðmÞÞ is a new non-autonomous Hamiltonian describing the
perturbed system for m, which is in many interesting cases a higher order non-
linearity than the original system (15).

The outstanding question is for which cases do we know the flow jt of X
H .

The classical situation of an envelope equation is to take H ¼ H ð2Þ which gives
the linear flow, where one is reduced to the study of (14). Another possibility
is when to use H ¼ H ð2ÞðIÞ þ ZðIÞ a nonlinear but integrable flow, which is
available for example from a nonresonant Birkho¤ normal forms transforma-
tion. A third possibility is the situation in which ZC 0, which will occur in the
case of the NLS posed on Rd with small initial data, as we are describing
above.

4. Scattering theory

There is another setting for transformations that simplify the flow jt of XH ,
namely that of nonlinear scattering theory. In this section let us work with a
critical or a subcritical nonlinearity, which restricts us in the case of the cubic
Schrödinger equations to dimensions 2a da 4. Solutions of (1) with s ¼ �1,
with initial data which is small in energy norm kukH 1 , disperse to zero as t 7!
el and behave asymptotically as solutions of the linear Schrödinger equation
(5). The same is true for the defocusing case s ¼ þ1 without restriction on the
size of the data in energy norm; this is the content of the following result of
Ginibre & Velo [6].

Theorem 4.1 [Ginibre & Velo (1985)]. Let s ¼ þ1, the defocusing case. For all
u a H 1ðRdÞ the limits

lim
t 7!el

F�tðjtðuÞÞ ¼ ue :¼ WeðuÞ

exist, and are continuous in u. In the case of a focusing nonlinearity s ¼ �1 then
the limits exist for all u a BRð0ÞJH 1ðRdÞ and are continuous in u, for a constant
R given by the L2 norm of the nonlinear ground state.

The mappings u 7! WeðuÞ are called the forward and backwards nonlinear
scattering maps. The existence of these limits implies that as t 7! þl the nonlin-
ear solutions jtðuÞ tend to the evolution of a linear solution FtðuþÞ with initial
data uþ. There is a similar description of the behavior of solutions as t 7! �l.
The theory of nonlinear scattering has been a very active area of research in non-
linear PDEs for at least two decades, with improvements on the nonlinearities
for which scattering behavior is known, and with contributions to the regularity
of the scattering maps WeðuÞ. Of particular interest for this paper is the fact
that the scattering maps are transformations of the nonlinear flow to a linear
flow. Indeed, we have the relationship of conjugacy

WeðjtðuÞÞ ¼ FtðWeðuÞÞ;ð21Þ
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as one can check from the uniqueness of the solution map. Namely, for Wþ we
have

F�sðjsðjtðuÞÞÞ ¼ FtðF�ðsþtÞðjsþtðuÞÞ;

and taking s 7! þl (respectively sþ t 7! þl) the LHS has limit WþðjtðuÞÞ
while the RHS has limit FtðWþðuÞÞ. Incidentally, under the involution of time
reversal and complex conjugation,

t 7! �t; u 7! u

the scattering maps are exchanged;

W�ðuÞ ¼ WþðuÞ:

A short proof of the above Theorem 4.1 on scattering is available, this is
adapted from [2] and [3], and we restrict ourselves to the case d ¼ 3 (and a cubic
nonlinearity). The solution map FtðuÞ for the linear Schrödinger equation (5) pre-
serves all Sobolev norms, and in particular the norms in L2 and H 1. The solution
map of the nonlinear Schrödinger equation (1) satisfies the integral equation

uðtÞ ¼ jtðuÞ ¼ FtðuÞ þ is

Z t

0

Ft�sðjjsðuÞj
2jsðuÞÞ ds;

which is to say that

F�tðjtðuÞÞ ¼ uþ is

Z t

0

F�sðjjsðuÞj
2jsðuÞÞ ds:

In order for the LHS to have a limit in H 1, the improper integral in the above
expression should have a limit in H 1. This is implied by the following lemma.

Lemma 4.2. Suppose that s ¼ þ1, or that s ¼ �1 and u a BRð0ÞJH 1ðRdÞ. For
all e > 0 there is a time T ¼ Te such that for t1; t2 > T then

Z t2

t1

F�sðjjsðuÞj
2
jsðuÞÞ ds

����
����
H 1

< e:

Proof. The proof relies on two inequalities, the ‘interaction’ Morawetz estimate
for (1) and certain Strichartz estimates. The first inequality is that over any time
interval I JR, solutions obey

Z
I

Z
R3

jjtðuÞðxÞj
4
dx dtaC1kuk2L2

�
sup
t A I

kjtðuÞk _HH 1=2

�2
:

The leading factor on the RHS is a conservation law, and depends only upon the
initial data. The second factor is bounded in the defocusing case, and also for
small H 1 data in the focusing case.
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The second inequality is the Strichartz estimates for the linear Schrödinger
flow. Following [2],Z

I

F�sðjjsðuÞj
2jsðuÞÞ ds

����
����
H 1

aC2kjtðuÞk
2
L5
txðI�R3ÞÞkjtðuÞkL10=3

t ðI ;W 1; 10=3
x ðR3ÞÞ

aC3ðkjtðuÞk
b

L4
txðI�R3ÞÞkjtðuÞk

1�b

L10
t ðI ;W 1; 30=13

x ðR3ÞÞ
Þ2

� kjtðuÞkL10
t ðI ;W 1; 10=3

x ðR3ÞÞ:

The indices ð10=3; 10=3Þ and ð10; 30=13Þ are admissible Strichartz pairs, so the
second two norms are bounded, while by the Morawetz estimate the L4

xt norm is
arbitrarily small if I ¼ ½t1; t2� is chosen so that t1; t2 > T su‰ciently large. r

With regards to the regularity of the scattering map, there is the following re-
cent theorem

Theorem 4.3 (Carles & Gallagher (2009) [1]). The scattering maps WeðuÞ are
holomorphic in ðu; uÞ in the space H 1;1.

We therefore have three normal forms for the NLS, namely

uþ ¼ WþðuÞ; u� ¼ W�ðuÞ ¼ WþðuÞ; v ¼ tðuÞ;

where t ¼ tð4Þ, the Birkho¤ normal forms transformation of Section 2, or indeed
a higher order normal forms transformation if it is available. Each of these trans-
formations is holomorphic on the appropriate phase space. It naturally brings
up the question of the relationship between these transformations, and the more
pointed question of why one should study the Birkho¤ normal forms transforma-
tion in the first place. One answer is that the Birkho¤ normal form gives insight
into the rate of scattering of solutions.

5. Rates of scattering

The Birkho¤ normal forms transformation is at least a concrete transformation,
well approximated in a neighborhood of the origin by Poisson brackets with a
specific Hamiltonian, namely Gð4Þ. It furthermore can be used in the study of
rates of scattering, which we now explain. The scattering map satisfies Duhamel’s
principle, which we state in terms of the quadratic Hamiltonian H ð2Þ and the
perturbation R ¼ H ð4Þ given in (2);

WþðuÞ �F�tðjtðuÞÞ ¼
Z þl

t

F�sðXH ð4Þ ðjsðuÞÞ ds:

When db 2 and in the setting of solutions which disperse su‰ciently strongly so
that they scatter, a basic decay estimate for the solution,

kjtðuÞkLl a
Cd

3t4d=2
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gives an estimate for the remainder, namely

kWþðuÞ �F�tðjtðuÞÞkH 1 a

Z þl

t

kF�sðijjsðuÞj
2jsðuÞÞkH 1 ds

a

Z þl

t

� Cd

3s4d=2

�2
dsP

C2
d

3t4d�1
:

Under Birkho¤ normal form, the nonlinearity is of higher order; suppose that we
have suceeded in transforming the NLS through a succession of normal forms
v ¼ tðuÞ so that

qtv ¼ J gradðH ð2Þ þ RÞ; R ¼ Rð2Nþ2ÞðvÞ

with flow denoted by ~jjtðvÞ. In this article we only analyse the fourth order
Birkho¤ normal forms transformation, but one could imagine that the higher
order transformations are also bounded, in a correctly chosen neighborhood of
the origin. This form of equation also exhibits scattering, with its scattering map
given by

~WWeðvÞ ¼ lim
t 7!el

F�tð~jjtðvÞÞ:

Therefore the flow ~jjtðvÞ exhibits a faster rate of scattering, indeed

k~WWþðvÞ �F�tð~jjtðvÞÞkH 1 a

Z þl

t

kF�sðX Rð2Nþ2Þ ð~jjsðvÞÞÞkH 1 dsð22Þ

a

Z þl

t

CNk~jjsðvÞk
2N
Llk~jjsðvÞkH 1 dsa

CNC
2N
d

3t4Nd�1
;

a more rapid decay rate.
The flows jtðuÞ and ~jjtðvÞ are conjugate to each other via the normal forms

transformation v ¼ tðuÞ;

vðtÞ ¼ ~jjtðvÞ ¼ tðjtðuÞÞ ¼ tðjtðtð�1ÞðvÞÞÞ:

Furthermore the Birkho¤ normal forms transformation is a near identity map-
ping, so we can write

v ¼ tðuÞ ¼ uþTðuÞ; TðuÞPOðu3Þ
u ¼ tð�1ÞðvÞ ¼ vþ ~TTðvÞ; ~TTðvÞPOðv3Þ:

Using this information, we write

uþ �F�tðjtðuÞÞ ¼ uþ �F�tðtð�1Þð~jjtðvÞÞÞ
¼ ðuþ � vþÞ þ vþ �F�tð~jjtðvÞÞ �F�t

~TTð~jjtðvÞÞ
¼ ðuþ � vþÞ �F�t

~TTðFtðvþÞÞ þ EþðtÞ;
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where the error term is

EþðtÞ :¼ vþ �F�tð~jjtðvÞÞ �F�tqu ~TTð�ÞFtðetðvþÞÞ;

with etðvþÞ :¼ vþ �F�tð~jjtðvÞÞ. Therefore EþðtÞ, satisfying the better decay rate
(22), namely

ketðvþÞkH 1 aOð3t4�Ndþ1Þ:

This is to say, the asymptotic decay rate of the flow of jtðuÞ to the scattering state
FtðuþÞ is described, up to errors of order Oð3t4�Ndþ1Þ, by the expression

uþ �F�tðjtðuÞÞU ðuþ � vþÞ �F�t
~TTðFtðvþÞÞ;ð23Þ

that is, in terms of a fixed transformation in terms of the Birkho¤ normal forms
Hamiltonian Gð2NÞ and the flow of the linear Schrödinger equation Ft, which are
able to be analysed by the techniques of harmonic analysis.
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