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Abstract. — In this paper we prove a restriction theorem for the full Laplacian on a group of

Métivier type. In particular, we compute the spectral resolution of this operator and estimate the
norm of the spectral projections between Lebesgue spaces.
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1. Introduction

In 1980 G. Métivier, motivated by the study of analytic hypoellipticity, intro-
duced a class of two-step nilpotent Lie groups, whose quotients with respect to
the codimension one subspaces of the centre are Heisenberg groups. The groups
of H-type, introduced by A. Kaplan [K], are examples of groups satisfying the
Métivier property, but there are Métivier groups which are not of H-type (for
an example we refer the reader to [MuS]).

In this paper we focus our attention on the mapping properties of operators
arising in the spectral decomposition of some left invariant di¤erential operators
on the class of groups of Métivier type.

On a group G of Métivier type, let Dz be the Laplacian on the centre and L a
sublaplacian. We call full Laplacian their di¤erence DG ¼ L� Dz. The operators
L and DG may be simultaneously diagonalized with positive spectrum. Thus it
is possible to work out a joint spectral decomposition and then define the oper-
ators PD

m , D ¼ L or D ¼ Dz, as Dirac deltas dmðDÞ at a point m > 0. The family
fPD

m gm ARþ
is the spectral resolution of D.

There exists a vast literature concerning mapping properties between Lebesgue
spaces of analogous operators in various settings. Hence, we can only mention
the results that are most significant for this work.

The main example, of course, is that of the usual Laplacian D acting on the
Euclidean space Rd . As it is well known, the spectral resolution of D essentially
consists of the family of the convolution operators with the Fourier transform bsrsr
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of the spherical measures dsr. Indeed, we have Df � bsrsr ¼ �r2f � bsrsr. These opera-
tors appear in the restriction theory of the Fourier transform to the spheres and
their mapping properties are described by the celebrated Stein-Tomas Theorem
[St, Ch. 9].

Theorem 1.1. Suppose that 1a pa 2 dþ1
dþ3 and let 1

p
þ 1

p 0 ¼ 1. Then the estimate

k f � bsrsrkp 0 aCrk f kp

holds for all Schwartz functions on Rd .

Since, according to the Knapp example [St], the above estimates fail if
2 dþ1
dþ3 < pa 2, this theorem yields the sharp result in this setting.
Analogously, in the framework of compact Riemannian manifolds, C. Sogge

proved Lp � L2 bounds, 1a pa 2, for the spectral projections associated to
second order elliptic operators [So1], [So2].

Analogous estimates have been studied also for hypoelliptic, but not elliptic,
laplacians. In this context, the most relevant result is due to D. Müller, who
proved an analogue of the Stein-Tomas Theorem for the sublaplacian acting
on the Heisenberg group [Mu]. First of all, he showed that the only available es-
timate between Lp spaces on Hn is the trivial L1 � Ll one. Thus he introduced
the mixed Lebesgue norms

k f kLr
t L

p
x; y

¼
�Z

R2n

�Z l

�l
j f ðx; y; tÞjr dt

�p=r

dx dy
�1=p

; 1a p; r < l;ð1:1Þ

(with the obvious modifications when p or r are equal to l), proving that

kPL
m f k

Ll
t L

p 0
x; y

aCmk f kL1
t L

p
x; y
;ð1:2Þ

for all 1a pa 2, 1
p
þ 1

p 0 ¼ 1, and for all Schwartz functions on Hn, and that there
are no estimates between mixed spaces when the pair of exponents associated to
the central variable is di¤erent from ð1;lÞ.

Since the operators PL
m operate on the t variable through the Fourier trans-

form, that does not admit nontrivial restriction estimates on the real line, Müller
suggested that on groups with higher dimensional centre better bounds could be
available. Indeed, S. Thangavelu proved in [Th1] that the inequality

kPL
m f kL p 0 ðGÞ aCk f kL pðGÞ

holds for 1a pa 2 nþ1
nþ3 on the direct product G of n copies of the three dimen-

sional Heisenberg group H1.
In [CCi2] we extend the theorem of Müller to the sublaplacian on a group of

Métivier type. Since these groups have in general centre of dimension bigger than
one (actually, in the Métivier class only the Heisenberg groups have a one dimen-
sional centre), we incorporate the Stein-Tomas Theorem in the estimate concern-
ing the central variables. We also improve on (1.2) by replacing on the left-hand
side p 0 with an exponent q < p 0.
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The theorem of Müller corresponds in the realm of the classical Fourier anal-
ysis to the Stein-Thomas Theorem, which provides an LpðRdÞ � L2ðSd�1Þ or
equivalently an LpðRdÞ � Lp 0 ðRdÞ estimate. Our improvement, showing that the
operators PL

m are bounded from L1
t L

p
x;y, 1a pa 2, to Ll

t Lq
x;y for some q < p 0,

is analogous to the enhancement of the Stein-Thomas Theorem, that would fol-
low from the proof of the restriction conjecture.

In this paper we consider the same problem for the full Laplacian on a group
of Métivier type. We work out its spectral resolution and find estimates for
the norm of the spectral projectors as operators between Lebesgue spaces. In
the proof we consider more general operators, that are defined as functions
of the sublaplacian and the full Laplacian, and study the mapping properties of
the operators arising in their spectral resolutions.

The main point here is the possibility to obtain bounds, analogous to (1.2),
with q less than p 0 on the left; actually, we get q ¼ 2.

To describe the idea, we consider the simpler case of the Heisenberg group.
An essential rôle in our analysis will be played by the spectral projectors L

m
k

of the twisted Laplacian, that is a second order elliptic di¤erential operator on
R2n with point spectrum. Indeed, the operators PD

m are essentially given by the
composition of two operations: the Fourier transform in the central variable t
followed by the action in ðx; yÞ of Lm

k .
Sharp Lp � L2 bounds for L

m
k have been recently attained by H. Koch and

F. Ricci [KoRi] (see also [CCi1] for a di¤erent proof ). By means of these esti-
mates, we obtain a result, that, when D ¼ L, improves on that of Müller even
on the Heisenberg group. In fact, we prove that

kPD
m f kLl

t L2
x; y

aCmk f kL1
t L

p
x; y
;

for all Schwartz functions f on Hn and for all 1a pa 2.
The schema of the paper is the following. In the next section we recall some

well known facts about the Heisenberg group. We mainly point the attention on
the spectral resolution of the sublaplacian and on the Koch-Ricci estimates.

In the third section we introduce the groups of Métivier type, discussing some
of their features. Then we briefly describe the spectral resolution of operators de-
fined as functions of the sublaplacian and of the full Laplacian on such groups
(we refer the reader to [CCi2] for a more detailed discussion).

In the fourth section we prove a restriction theorem for the full Laplacian on
the Métivier groups. We first prove the estimates for a class of functions of L and
DG, obtaining a conditional statement, based on the assumption that the spectral
projections of the twisted Laplacian are bounded between Lebesgue spaces. Then
we obtain from this result the main theorem regarding the sublaplacian and the
full Laplacian.

2. Preliminaries on the Heisenberg group

For the convenience of the reader, we collect in this section some results on the
Heisenberg group Hn. For more details we refer the reader to the book [Th2].
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The Heisenberg group Hn is the space R
n � Rn � R equipped with the follow-

ing non commutative multiplication law

ðx; y; tÞðx 0; y 0; t 0Þ ¼
�
xþ x 0; yþ y 0; tþ t 0 þ 1

2
ðx � y 0 � x 0 � yÞ

�
;

for x, x 0, y, y 0 in Rn and t, t 0 in R. This product turns Hn into a two step nilpotent
Lie group with centre given by fð0; 0; tÞ : t a Rg. The bi-invariant Haar measure
on Hn coincides with the Lebesgue measure dx dy dt on R2nþ1.

The left invariant vector fields on Hn

Xj ¼
q

qxj
� 1

2
yj

q

qt
; Yj ¼

q

qyj
þ 1

2
xj

q

qt
; T ¼ q

qt
;

j ¼ 1; . . . ; n, span its Lie algebra, hn.
In terms of these vector fields we define on Hn the sublaplacian

L ¼ �
Xn

j¼1

ðX 2
j þ Y 2

j Þ;

which is hypoelliptic, since the set fX1 . . . ;Yng generates hn as a Lie algebra, and
the full Laplacian

DH ¼ �
Xn

j¼1

ðX 2
j þ Y 2

j Þ � T 2 ¼ L� T 2:

The operators L and �iT , or equivalently the operators L and DH, extend to a
pair of strongly commuting self-adjoint operators on L2ðHnÞ.

If f is a Schwartz function on Hn, then its spectral decomposition with respect
to the sublaplacian is

f ðx; y; tÞ ¼
Z l

0

Pm f ðx; y; tÞ dm; Eðx; y; tÞ a Hn;ð2:1Þ

where

Pm f ðx; y; tÞ ¼
mn

ð2pÞnþ1

Xl
k¼0

1

ð2kþ nÞnþ1
ðe�imktL

mk
k f ðmkÞðx; yÞþ eimktL

�mk
k f ð�mkÞðx; yÞÞ:

In this formula mk is a short for m=ð2k þ nÞ and f ðmÞðx; yÞ denotes the Fourier
transform of f in the central variable t, that is

f ðmÞðx; yÞ ¼
Z l

�l
f ðx; y; tÞeimt dt:
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Finally, the operators Lm
k are the spectral projections of a di¤erential operator on

R2n called m-twisted Laplacian. This is a second order elliptic di¤erential operator
on R2n with point spectrum. We shall often write Lk in place of L1

k.
The estimates of the norms of the spectral projections Lm

k as operators acting
on Lebesgue spaces will be an important tool in the proof. The sharp bounds
for the norms kLkkL pðR2nÞ!L2ðR2nÞ have been recently obtained by H. Koch and

F. Ricci. By improving some earlier results in [RRaTh], [SteZ], they showed that

kLkkL pðR2nÞ!L2ðR2nÞ aCð2k þ nÞgð1=pÞ; 1a pa 2;ð2:2Þ

where g is the piecewise a‰ne function on
�
1
2 ; 1

�
defined by

g
� 1

p

�
:¼

n
�
1
p
� 1

2

�
� 1

2 if 1a pa p�;

1
2

�
1
2 � 1

p

�
if p� a pa 2;

(
with critical point p� ¼ p�ð2nÞ, given by p�ð2nÞ :¼ 2 2nþ1

2nþ3 . Observe that p�ðmÞ is
the critical exponent found by Stein and Thomas in the restriction theorem in
dimension m.

3. Spectral resolution of the sublaplacian on Métivier groups

Let G be a connected, simply connected, two-step nilpotent Lie group and as-
sume that its Lie algebra g is endowed with an inner product 3� ; �4. We denote
the centre of g by z, its orthogonal complement by v, and set dim z ¼ d and
dim v ¼ k.

Let j � j denote the norm induced by 3� ; �4 on z�, the dual of z. We introduce
the unit sphere S in z�, that is,

S :¼ fo a z� : joj ¼ 1g:

For any fixed o a S, there is an element Zo a z such that oðZoÞ ¼ 1 and
jZoj ¼ 1.

The centre of the Lie algebra decomposes into the sum

z ¼ RZo a kero:ð3:1Þ

Observe that for every Z a kero we have 3Zo;Z4 ¼ 0. Abusing notation, we
shall identify the quotient z=kero with RZo. Then, setting

go :¼ RZo a v;

we have goU g=kero. Since kero, being a subspace of the centre, is an ideal in
g, go is a Lie algebra. The connected simply connected subgroup of G with Lie
algebra go will be denoted by Go.

We assume that G satisfies a non-degeneracy condition, that may be expressed
in terms of the bilinear application BoðX ;Y Þ ¼ oð½X ;Y �Þ, with X , Y in v and o
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in S. Recall that Bo is non-degenerate if the space fV a v : oð½V ;U �Þ ¼ 0 for all
U in vg is trivial.

Definition 3.1 [M]. We say that G is a Métivier group if Bo is non-degenerate
for all o in S.

This nondegeneracy property implies that Go is isomorphic to the Heisenberg
group for all o a S, and that v generates g as a Lie algebra. In particular, v has
even dimension, say dim v ¼ 2n, so that Go is isomorphic to Hn with Lie algebra
hn ¼ Ra vn, vn ¼ R2n.

Since g is nilpotent, the exponential map, exp : g ! G, is surjective. Thus we
may parametrize G by va z, endowing it with the exponential coordinates. More
precisely, we fix a basis fZ1; . . . ;Zd ;V1; . . . ;V2ng of g, with fZ1; . . . ;Zdg a basis
of z and fV1; . . . ;V2ng a basis of v, and identify a point g of G with the point
ðV ;ZÞ in R2n � Rd , such that

g ¼ expðV ;ZÞ ¼ exp
�X2n

j¼1

vjVj þ
Xd
a¼1

zaZa

�
:

In these coordinates the product law is given by the Baker-Campbell-Hausdor¤
formula

ðV ;ZÞðV 0;Z 0Þ ¼
�
V þ V 0;Z þ Z 0 þ 1

2
½V ;V 0�

�
;

for all V ;V 0 a v and Z;Z 0 a z.
If we denote by dV and dZ the Lebesgue measures on v and z respectively,

then the product measure dV dZ is a left-invariant Haar measure on G. We shall
denote by LpðGÞ the corresponding Lebesgue spaces.

Finally, we call SðGÞ the Schwartz space on G, that is, the space of functions
f on G such that f � exp belongs to the usual Schwartz space on the Euclidean
space g.

The vectors fields

~VVj ¼
q

qvj
þ 1

2

Xd
a¼1

3Za; ½V ;Vj�4
q

qza
; ~TTa ¼

q

qza
;

where j ¼ 1; . . . ; 2n and a ¼ 1; . . . d, yield a basis of g. In terms of these vectors
we define the sublaplacian

L ¼ � ~VV 2
1 � � � � � ~VV 2

2n;

the Laplacian on the centre

Dz ¼ ~TT 2
1 þ � � � þ ~TT 2

d ;
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and the full Laplacian

DG ¼ L� Dz:

These operators are positive and essentially self-adjoint on L2ðGÞ. Moreover, L
and DG are hypoelliptic, since the set of vector fields f ~VV1; ~VV2; . . . ; ~VV2ng generates
g as a Lie algebra.

Following a well known procedure ([Str], [T]), by taking the Radon transform
in the central variables and using the Métivier property, we reduce the computa-
tion of the spectral decompositon of a function on G to the spectral decomposi-
tion of its Radon transform on a Heisenberg group.

Given a function f in SðGÞ, we denote the partial Fourier transform of f in
the central variables by

f̂f ðh;VÞ :¼ f̂f ðhÞðVÞ :¼
Z
z

eihðZÞf ðV ;ZÞ dZ;

for all h a z�, t a R, V a v, where z� is the dual of z. The partial Radon transform
in the central variables of f is

Ro f ðV ; tÞ :¼
Z
fZ 0 A kerog

f ðV ; tZo þ Z 0Þ dZ 0;

for all o a S, t a R, V a v, where dZ 0 denotes the Lebesgue measure on the hy-
perplane kero in z. We recall that the Radon transform factorizes the Fourier
transform

f ðroÞðVÞ ¼
Z l

�l
eirtRo f ðV ; tÞ dt ¼ ðRo f ÞðrÞðVÞ;ð3:2Þ

for all o a S, rb 0, V a v.
For each fixed o, Ro f is a function on the subgroup Go, which is isomor-

phic to Hn. The family of functions fRo f go AS determines f . In [CCi2] we
obtained the spectral decomposition of f with respect to L from the spectral
decomposition of the functions Ro f with respect to the sublaplacian Lo, that is
defined by

RoðLf Þ ¼ LoðRo f Þ:

This sublaplacian is conjugated via a linear map on v, Ao, to the canonical
sublaplacian, LH on Hn, so that the decomposition of Ro f with respect to Lo

may be deduced from that of ðRo f Þ � A�1
o with respect to LH. By (2.1), we hence

obtain

ððRo f Þ � A�1
o ÞðV ; tÞ ¼ 1

ð2pÞnþ1

Xl
k¼0

Z l

�l
e�iltPl;o

k ðRo f ÞðlÞðA�1
o VÞjljn dlð3:3Þ
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where

Pl;o
k gðVÞ ¼ Ll

kðg � A�1
o ÞðAoVÞ:ð3:4Þ

Since Roð f � A�1
o Þ ¼ ðRo f Þ � A�1

o , from (3.3) it follows that

ðRo f ÞðlÞðVÞ ¼ 1

ð2pÞnþ1

Xl
k¼0

Pl;o
k f ðlÞðVÞjljn;

whence we deduce

ðRo f ÞðlÞðVÞ ¼ 1

ð2pÞnþ1

Xl
k¼0

Pl;o
k f ðloÞðVÞjljn:

By (3.2), ðRo f ÞðrÞ, the Fourier transform in t of Ro f , coincides with the Four-
ier transform in Z of f at ro. Hence, by the Fourier inversion formula in polar
coordinates, we obtain

f ðV ;ZÞ ¼ 1

ð2pÞd
Z l

0

Z
S

e�iroðZÞf ðroÞðVÞ dord�1 drð3:5Þ

¼ 1

ð2pÞdþnþ1

Xl
k¼0

Z l

0

Z
S

e�iroðZÞPr;o
k f ðroÞðVÞ dordþn�1 dr:

Formula (3.5) may be interpreted as the decomposition of f in terms of the joint
eigendistributions of Dz and L,

Qr;k f ðV ;ZÞ ¼
Z
S

e�iroðZÞPr;o
k f ðroÞðVÞ do;

corresponding respectively to the eigenvalues r and rð2k þ nÞ.
Given a function f : Rþ � Rþ ! C, we define the operator FðL;DzÞ by

FðL;DzÞ f ðV ;ZÞ ¼
Xl
k¼0

Z l

0

fðrð2k þ nÞ; rÞð3:6Þ

�
Z
S

e�iroðZÞPr;o
k f ðroÞðVÞ dordþn�1 dr;

where we make the assumption on f that the expression on the right hand side is a
well defined distribution for all Schwartz functions f . We also suppose that
fðrð2k þ nÞ; rÞ is a di¤erentiable function of r with strictly positive derivative on
Rþ, satisfying limr!0þ fðrð2k þ nÞ; rÞ ¼ 0 and limr!þl fðrð2k þ nÞ; rÞ ¼ þl.

The equation fðrð2k þ nÞ; rÞ ¼ m may be solved for each positive m and each
k to give r ¼ rkðmÞ. Replacing in (3.6) r, which is the eigenvalue of Dz, with
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the eigenvalue m of FðL;DzÞ, we obtain the spectral decomposition of the latter
operator,

FðL;DzÞ f ðV ;ZÞ ¼
Z l

0

�Xl
k¼0

mrkðmÞ
dþn�1

r 0
kðmÞ

�
Z
S

e�irkoðZÞP
rkðmÞ;o
k f ðrkðmÞÞðVÞ do

�
dm;

here r 0
k denotes the derivative of rk. Similarly, replacing r with m in (3.5), we

obtain the spectral decomposition of a Schwartz function f ,

f ðV ;ZÞ ¼
Z l

0

�Xl
k¼0

rkðmÞ
dþn�1r 0

kðmÞð3:7Þ

�
Z
S

e�irkoðZÞP
rkðmÞ;o
k f ðrkðmÞÞðVÞ do

�
dm:

We use (3.7) to introduce the operators dmðFðL;DzÞÞ for m > 0, which are
defined by

PF
m f ¼ dmðFðL;DzÞÞ f ¼ lim

e!0þ

1

2e
wðm�e;mþeÞðFðL;DzÞÞ f ;

where f is a Schwartz function and wðm�e;mþeÞ is the characteristic function of
the interval ðm� e; mþ eÞ. Since the function between parentheses in (3.7) is con-
tinuous, we find

PF
m f ðV ;ZÞ ¼

Xl
k¼0

rkðmÞ
dþn�1r 0

kðmÞ
�Z

S

e�irkoðZÞĥhrkðmÞðoÞP
rkðmÞ;o
k gðVÞ do

�
ð3:8Þ

¼
Xl
k¼0

rkðmÞ
dþn�1r 0

kðmÞQrkðmÞ;k f ðV ;ZÞ;

where, to make the formulas more readable, we assume that f is a tensor func-
tion, that is f ðV ;ZÞ ¼ ðgn hÞðV ;ZÞ ¼ gðVÞhðZÞ, and use the notation ĥhðroÞ ¼
ĥhrðoÞ for the Fourier transform of h. With this notation (3.7) becomes

f ðV ;ZÞ ¼
Z l

0

PF
m f ðV ;ZÞ dm:

There are two main examples in the theory, the sublaplacian and the full
Laplacian. For the sublaplacian fðr; lÞ ¼ r, we have m ¼ rð2k þ nÞ, which
yields

rkðmÞ ¼
m

2k þ n
:ð3:9Þ
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By (3.8), we obtain

PL
m f ðV ;ZÞ ¼ mnþd�1

Xl
k¼0

ð2k þ nÞ�n�dQm=ð2kþnÞ;k f ðV ;ZÞ:ð3:10Þ

In the case of the full Laplacian fðr; lÞ ¼ rþ l2. Hence, if m ¼ rð2k þ nÞ þ r2,
then

rkðmÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ ð2k þ nÞ2

q
� 2k þ n

2
:ð3:11Þ

Therefore, (3.8) yields

PDG
m f ðV ;ZÞ ¼ 1

2nþd�1

Xl
k¼0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ ð2k þ nÞ2

q
� 2k � nÞnþd�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mþ ð2k þ nÞ2
qð3:12Þ

� QrkðmÞ;k f ðV ;ZÞ:

4. Restriction estimates for Métivier groups

In this section we find a bound on the norms of the operators PF
m . The first result

we prove is a conditional one, based on the assumption that the projections Lk of
the twisted Laplacian are bounded from LpðvnÞ to LqðvnÞ.

Theorem 4.1. Assume that 1a ra 2 dþ1
dþ3 . If the projections Lk are bounded

from LpðvnÞ to LqðvnÞ, with 1a pa 2a qal, then the following inequality
holds

kPF
m f kLqðvÞLr 0 ðzÞð4:1Þ
aCk f kL pðvÞLrðzÞ

�
�Xl

k¼0

rkðmÞ
dð1=r�1=r 0Þþnð1=p�1=qÞ�1r 0

kðmÞkLkkL pðvnÞ!LqðvnÞ

�
:

The proof of this theorem depends on the following lemma, which is proved in
[CCi2].

Lemma 4.2. Fix o in S. Suppose that Lk : L
pðvnÞ ! LqðvnÞ for some p, q. The

following inequality holds

kPro
k gkLqðvÞ aCrnð1=p�1=q�1ÞkLkkL pðvnÞ!LqðvnÞkgkL pðvÞ

for all g in SðvÞ and all r > 0.
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Proof of Theorem 4.1. In order to simplify the notation, we write f ðV ;ZÞ ¼
hðZÞgðVÞ, with h and g Schwartz functions. However, in the proof we will never
use this fact. We take a : v ! C and b : z ! C, a a SðvÞ, b a SðzÞ. Then

3PM
m f ; an b4vaz ¼

Z
v

Z
z

aðVÞbðZÞ
Xl
k¼0

rdþn�1
k r 0

k

�
�Z

S

eirkoðZÞchrkhrkðoÞðP
rk ;o
k gÞðVÞ dsðoÞ

�
dZ dV

¼
Xl
k¼0

rdþn�1
k r 0

k

�Z
S

Z
v

chrkhrkðoÞðP
rk ;o
k gÞðVÞ

�
Z
z

eirkoðZÞaðVÞbðZÞ dZ dV dsðoÞ
�

¼
Xl
k¼0

rdþn�1
k r 0

k

�Z
S

3chrkhrkðoÞðP
rk ;o
k gÞ; cbrkbrkðoÞaiv dsðoÞ

�
:

Applying the Hölder’s inequality to the inner integral we deduce that

j3PM
m f ; an b4vazja

Xl
k¼0

rdþn�1
k r 0

k

�
�Z

S

kchrkhrkðoÞðP
rk ;o
k gÞkLqðvÞkcbrkbrkðoÞakLq 0 ðvÞ dsðoÞ

�
:

Using Lemma 4.2, we then obtain

j3PM
m f ; an b4vazjaC

Xl
k¼0

r
dþnð1=p�1=qÞ�1
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
�Z

S

kchrkhrkðoÞgkL pðvÞkcbrkbrkðoÞakLq 0 ðvÞ dsðoÞ
�
:

Then the Cauchy-Schwarz inequality implies

j3PM
m f ; an b4vazjaC

Xl
k¼0

r
dþnð1=p�1=qÞ�1
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
�Z

S

kchrkhrkðoÞgk
2
L pðvÞ dsðoÞ

�1=2
�
�Z

S

kcbrkbrkðoÞak
2
Lq 0 ðvÞ dsðoÞ

�1=2
:

Since pa 2a q, it follows that 2
p
b 1 and 2

q 0 b 1. Therefore we can apply
to the integrals on the right hand side the Minkowski integral inequality, to attain
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j3PM
m f ; an b4vazjaC

Xl
k¼0

r
dþnð1=p�1=qÞ�1
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
�Z

S

�Z
v

jchrkhrkðoÞgðVÞj p dV
�2=p

dsðoÞ
�1=2

�
�Z

S

�Z
v

jcbrkbrkðoÞaðVÞjq
0
dV

�2=q 0

dsðoÞ
�1=2

aC
Xl
k¼0

r
dþnð1=p�1=qÞ�1
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
�Z

v

�Z
S

jchrkhrkðoÞgðVÞj2 dsðoÞ
�p=2

dV
�1=p

�
�Z

v

�Z
S

jcbrkbrkðoÞaðVÞj2 dsðoÞ
�q 0=2

dV
�1=q 0

:

The Stein-Tomas theorem, that for 1a ra r�ðdÞ ¼ 2 dþ1
dþ3 yields the bound

k bhrhrkL2ðSÞ aCkhrkLrðzÞ ¼ Cr�d=r 0khkLrðzÞ;

may now be pressed into service to give

j3PM
m f ; an b4vazjaC

�Xl
k¼0

r
dþnð1=p�1=qÞ�1�2ðd=r 0Þ
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
�
�Z

v

�Z
z

jhðZÞgðVÞjr dZ
�p=r

dV
�1=p

�
�Z

v

�Z
z

jbðZÞaðVÞjr dZ
�q 0=r

dV
�1=q 0

;

whence it follows that

kPM
m f kLqðvÞLr 0 ðzÞ aCk f kL pðvÞLrðzÞ

�
�Xl

k¼0

r
dð1=r�1=r 0Þþnð1=p�1=qÞ�1
k r 0

kkLkkL pðvnÞ!LqðvnÞ

�
;

proving the assertion. r

Now we implement Theorem 4.1 with the Koch-Ricci estimates for
kLkkL pðvnÞ!LqðvnÞ, and then we apply it to the operators arising in the the spectral
resolutions of L and DG, that are respectively given by (3.10) and (3.12). For the
sake of simplicity, we state only the estimates for q ¼ 2. The estimates for q > 2
may be obtained by interpolation.
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Theorem 4.3. Suppose that 1a ra r�ðdÞ ¼ 2 dþ1
dþ3 . Then for all p satisfying

1a pa 2 and for all Schwartz functions f , we have

kPL
r f kL2ðvÞLr 0 ðzÞ aCrdð2=r�1Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞ:ð4:2Þ

Proof. The proof reduces to the study of the convergence of the series in (4.1),
which for F ¼ L, according to (3.9), takes the form

Xl
k¼0

ð2k þ nÞ�dð1=r�1=r 0Þ�nð1=p�1=2ÞkLkkL pðvnÞ!L2ðvnÞ:

We omit the details, which are given in [CCi2]. r

Finally, we consider the full Laplacian on G.

Theorem 4.4. Suppose that 1a ra r�ðdÞ ¼ 2 dþ1
dþ3 . For 1a pa p� we have

kPDG
m f kL2ðvÞLr 0 ðzÞ aCmðd=2Þð1=r�1=r 0Þþnð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞð4:3Þ

and for p� a pa 2 we have

kPDG
m f kL2ðvÞLr 0 ðzÞ aCmðd=2Þð1=r�1=r 0Þþðð2n�1Þ=4Þð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞ:ð4:4Þ

Proof. Plugging (3.11) in (4.1), we obtain

kPDG
m f kL2ðvÞLr 0 ðzÞ aCk f kL pðvÞLrðzÞ

�
�Xl

k¼0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ ð2k þ nÞ2

q
� 2k þ nÞdð1=r�1=r 0Þþnð1=p�1=2Þ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ ð2k þ nÞ2

q kLkkL pðvnÞ!L2ðvnÞ

�
aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

�
�Xl

k¼0

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mþ ð2k þ nÞ2

q
þ 2k þ nÞ1�dð1=r�1=r 0Þ�nð1=p�1=2Þ kLkkL pðvnÞ!L2ðvnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4mþ ð2k þ nÞ2
q �

:

We split the sum into the sum over those k such that 2k þ na 2
ffiffiffi
m

p
and those

such that 2k þ n > 2
ffiffiffi
m

p
. Then we control the first term, say I , by

I aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞm
�ðd=2Þð1=r�1=r 0Þ�ðn=2Þð1=p�1=2Þ

�
� X

2kþna2
ffiffi
m

p
kLkkL pðR2nÞ!L2ðR2nÞ

�
aCmðd=2Þð1=r�1=r 0Þþðn=2Þð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

� X
2kþna2

ffiffi
m

p
kLkkL pðR2nÞ!L2ðR2nÞ

�
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and the second, say II , by

II aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

� X
2kþnb2

ffiffi
m

p

kLkkL pðR2nÞ!L2ðR2nÞ

ð2k þ nÞdð1=r�1=r 0Þþnð1=p�1=2Þ

�
:

When 1a pa p� by (2.2) we have

I aCmðd=2Þð1=r�1=r 0Þþðn=2Þð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

� X
2kþna2

ffiffi
m

p
ð2k þ nÞnð1=p�1=2Þ�1=2

�
aCmðd=2Þð1=r�1=r 0Þþðn=2Þð1=p�1=2Þ�1k f kL pðvÞLrðzÞm

ðn=2Þð1=p�1=2Þþ1=4

aCmðd=2Þð1=r�1=r 0Þþnð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞ

and

II aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

� X
2kþnb2

ffiffi
m

p

ð2k þ nÞ�1=2

ð2k þ nÞdð1=r�1=r 0Þ

�
aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞm

�ðd=2Þð1=r�1=r 0Þþ1=4

aCmðd=2Þð1=r�1=r 0Þþnð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞ:

proving (4.3).
When p� a pa 2 we have

I aCmðd=2Þð1=r�1=r 0Þþðn=2Þð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

� X
2kþna2

ffiffi
m

p
ð2k þ nÞð1=2Þð1=2�1=pÞ�1=2

�
aCmðd=2Þð1=r�1=r 0Þþðn=2Þð1=p�1=2Þ�1k f kL pðvÞLrðzÞm

ð1=4Þð1=2�1=pÞþ1=4

aCmðd=2Þð1=r�1=r 0Þþðð2n�1Þ=4Þð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞ

and

II aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞ

�
� X

2kþnb2
ffiffi
m

p
ð2k þ nÞ�dð1=r�1=r 0Þ�ðð2nþ1Þ=2Þð1=p�1=2Þ�1=2

�
aCmdð1=r�1=r 0Þþnð1=p�1=2Þ�1k f kL pðvÞLrðzÞm

�ðd=2Þð1=r�1=r 0Þ�ðð2nþ1Þ=4Þð1=p�1=2Þþ1=4

aCmðd=2Þð1=r�1=r 0Þ�ðð2n�1Þ=4Þð1=p�1=2Þ�3=4k f kL pðvÞLrðzÞ;

proving (4.4). r

Remark 4.5. In [CCi2] we prove that in the estimates for the sublaplacian the
range of r in (4.2) is sharp. An analogous argument shows that the same is true
for the estimates in the above theorem.
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