Rend. Lincei Mat. Appl. 24 (2013), 229-301
DOI 10.4171/RLM/654

Partial Differential Equations — The energy graph of the non-linear Schrodinger
equation, by M. PrRocEgs1*, C. PROCESI** and B. VAN NGUYEN*** communi-
cated on 8 February 2013.

ABSTRACT. — We discuss the stability of a class of normal forms of the completely resonant non-
linear Schrodinger equation on a torus described in [12]. The discussion is essentially combinatorial
and algebraic in nature.’

KEey worDps: Normal form, NLS equation, Cayley graphs, stability.

MATHEMATICS SUBJECT CLASSIFICATION: 35Q55, 37K55, 05C31.

CONTENTS
1. Introduction 230
1.1.  Structural stability 232
2. Preliminaries 236
2.1.  An elementary geometric problem 236
2.3.  Some background 237
2.4.  The operator ad(N) 239
2.7.  The Cayley graphs 240
Part 1. Sphere and hyperplanes problem 244
3. The geometric problem 244
3.2.  Equations for the root 245
3.5. Relations 246
3.10. Degenerate resonant graphs 247
4, Resonant graphs 249
4.1.  Encoding graphs 249
4.3.  Minimal relations 250
5. The resonance 252
5.1.  The resonance relation 252
6. The contribution of an index u 257
6.11. The extra edge 270

* Universita di Roma, La Sapienza, supported by ERC grant HamPDEs under FP7, ** *** Uni-
versita di Roma, La Sapienza.

TThe results of this paper are related to the Conference “Dynamics of PDEs”, which took place
at the Accademia dei Lincei on October 14, 2011.



230 M. PROCESI, C. PROCESI AND B. VAN NGUYEN

Part 2. The irreducibility theorem 274
7. The matrices 274
8. Irreducibility and separation 275
8.1.  Preliminaries 275
0. The separation lemma 277
10.  Irreducibility theorem 281
10.6. Indices appearing once 283
10.10. Two indices appear only once and in the same edge 284
10.11. Only the index 1 appears once in the tree 285
10.13. Every index appears twice in the tree 291
10.16. n >4 294
References 300

1. INTRODUCTION

In this paper we study the completely resonant cubic Nonlinear Schrodinger
equation (NLS):

(1) i, — Au = |u)*u

on the n dimensional torus T”. More precisely we analize the quadratic Normal
form Hamiltonian, introduced in [12], of the NLS equation (1), with the purpose
of proving non-degeneracy and stability results for its dynamics. Our dynamical
results are summarized in Propositions 1.2 and 1.3 which in turn follow from
our main Theorem 1. This theorem, whose lenghtly proof occupies most of the
paper, is of algebraic, combinatorial and geometric nature, and can in principle
be formulated with no previous knowledge of the NLS. In the first ten pages we
recall, for convenience of the reader, the results on the NLS normal form proved
in [12], and we show how to deduce our dynamical results from Theorem 1. Let
us briefly- and somewhat naively- recall the theory of Poincaré-Birkhoff Normal
Form. The Birkhoff normal form reduction was developed in order to study the
long-time behaviour of the solutions of a dynamical system close to an equilib-
rium and represents a non-linear analog to the canonical form for matrices. For
a classical introduction see [1], [5], [10], [8]; for the application to PDEs see for
instance [4].

At a purely formal level, consider a non-linear Hamitonian dynamical system
with an elliptic fixed point:

H(p,q) =Y 4(p; +4q}) + H*(p,q), 4 eR
7eT

here the index set [ is finite or possibly denumberable while H>?(p,q) is some
polynomial with minimal degree > 2. By definition the normal form reduction at
order N is a symplectic change of variables ¥y which reduces H to its resonant
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terms:

H(p.q)o¥y => 4(p}+q)) + Hpi(p.q) + HY(p,q)
J

where Hz2 Poisson commutes with > ﬂ,(pf + qu) while HY(p,q) is a formal
power series of minimal degree > N + 1.

There are two classes of problems in this scheme:

(i) Even though H" is of minimal order N + 1 its norm may diverge as
N — o0, due to the presence of small divisors.

(ii) If I is an infinite set it is not trivial, even when N = 1, to show that Wy is
an analytic change of variables.

Note that if the A; are rationally independent then the normal form
Hpie = > 24( pj2 + qu) + Hz2(p,q) is integrable, a feature which is used in prov-
ing for instance long time stability results.

If the 4; are resonant then H g may not be integrable but it is possible that its
dynamics is simpler than the one of the original Hamiltonian.

In particular in many examples, including the NLS, one can see that Hp;; has
invariant tori of the form

(2) Pl~2+ql~2:f,-, ieScl; p_jZQjZO, jESCZ:I\S

on which the dynamics is of the form y — ¥ + w(&)r with w(€) a diffeomor-
phism.

One wishes to obtain information on solutions of the complete Hamiltonian
close to these tori. As is well known in order to obtain results one needs to study
the Hamilton equations of H linearized at this family of invariant tori. That is
one needs to study the dynamics induced on the normal bundle to these tori.
This is described by a family of linear operators (between normal spaces) para-
metrized by the family and the points on the tori.

In terms of equations this is described by a quadratic Hamiltonian with co-
efficients depending on the parameters ¢ and on the angle variables of the tori.
The matrix obtained by linearizing Hpg;y at the solutions (2) is referred to as the
normal form matrix (or normal form). One of the main results of [12] exhibits, for
the NLS and for generic choices of S, a symplectic change of variables which re-
moves the dependence from the angles, this decouples the dynamics into the one
on the tori and one on the normal space. Moreover in our infinite dimensional
case the matrices of the normal form are block diagonal with blocks uniformly
bounded. Thus one has a reduction to an infinite list of decoupled linear equa-
tions (depending on the parameters &).

In order to perform perturbation theory algorithms, to obtain informations
on the solutions of H, one generally uses non-degeneracy conditions. One of the
strongest requirements is that the matrix of the normal form has non-zero and
distinct eigenvalues. This property is an instance of structural stability. In this
paper we prove that this condition is satisfied for the normal forms of the NLS
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previously introduced provided the parameters ¢ are taken outside a countable
union of real hypersurfaces.

1.1. Structural stability. Structural stability, for an orbit of a dynamical system
or a solution of a differential equation is a basic, and delicate, question both for
theoretical and practical reasons. It essentially means that the qualitative be-
havior of the trajectories, close to the given solutions, is unaffected by small per-
turbations both of the initial data and of the system itself.

In the simplest case of the class of linear differential equation x = Ax, where A
is a real n x n matrix, the nature of the orbits depends upon the Jordan canonical
form of A. In particular the discriminant of 4 is an hypersurface (in the space of
all matrices) which contains all special normal forms; its complement is the set of
matrices with distinct eigenvalues which decomposes into connected components.
On each such component the number of real eigenvalues is constant, thus these
regions are the regions of structural stability. Of course if the matrix A4 is subject
to some restrictions (as being symmetric, symplectic etc.) the normal forms are
further constrained [2].

1.1.1. Stability for the NLS. The normal form of the NLS is described by an
infinite dimensional Hamiltonian which determines a linear operator ad(N),
depending on a finite number of parameters &; (the actions of certain excited
frequencies), and acting on a certain infinite dimensional vector space F (1 (see
2.6.1) of functions.

Stability for this infinite dimensional operator will be interpreted in the same
way as it appears for finite dimensional linear systems, that is the property that
the linear operator is semisimple with distinct eigenvalues.

This will be shown to be true outside a zero measure set of parameters, further
on a smaller set of positive measure we shall show that the dynamic is elliptic.
This condition in a more precise quantitative form (which will be discussed else-
where) in the Theory of dynamical systems is referred to as the second Melnikov
condition. We shall apply this in [11] in order to prove, by a KAM algorithm, the
existence and stability of quasi-periodic solutions for the NLS (not just the nor-
mal form).

The fact that this non-degeneracy condition makes at all sense depends on the
fact that the normal form matrix decomposes into an infinite direct sum of finite
dimensional blocks. Furthermore, these finite dimensional blocks are described
by translating, with suitable scalars, a finite number of combinatorially defined
matrices, constructed from certain combinatorial objects called marked colored
graphs (cf. Definition 2.8 and Remark 2.10). Thus the matrices appearing as
blocks of the normal form matrix can be combinatorially classified and, in prin-
ciple, computed. Indeed given a specific graph computing the associated matrix
block is quite simple, so that the question is essentially that of classifying the pos-
sible graphs which describe blocks of the normal form.

The characteristic polynomials det(# — ad(N)) of the normal form operator
ad(N) restricted to the infinitely many blocks I' are all polynomials in the vari-
ables &; and ¢ with integer coefficients. The issue is thus to prove that a rather
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complicated infinite list of polynomials in a variable ¢, of degree increasing with
the space dimension, and with coefficients polynomials in the parameters &; have
distinct roots for generic values of the parameters.

In general, in order to prove that a single polynomial has distinct roots, one
has to prove the non-vanishing of its discriminant, for two polynomials to have
different roots the condition is the non-vanishing of the resultant. In our case
we can consider all the characteristic polynomials as having coefficients in the
field of rational functions in the parameters ¢&;, its algebraic closure is a field
of algebraic functions. Thus if the discriminant D(&) of a given polynomial and
the resultant R(&) of two distinct polynomials in Q(&y, ..., &, )[f] are non-zero
as polynomials in the & we have that outside the real hypersurfaces R(&) =0,
D(&) = 0 the two polynomials have distinct roots. Although both the discrimi-
nant and the resultant can be computed by explicit formulas a proof of their
non-vanishing for the infinite list of complicated polynomials appearing seems
to be a hopeless task.

We thus followed a different approach. Remark that, if we have a list of dif-
ferent polynomials in one variable z, with coefficients in a field F of characteristic
0, a sufficient condition that all their roots (in the algebraic closure F of F) be
distinct is that they are all irreducible (over F) and distinct. This follows immedi-
ately from the fact that an irreducible polynomial f(¢) is uniquely determined as
the minimal polynomial of each of its roots (cf. [3]) and, in characteristic 0, its
derivative f'(¢) is non-zero. By the irreducibility of f(¢) the greatest common di-
visor between f(¢), f'(¢) is 1 so all the roots of f(¢) are distinct.

Therefore by a rather complex induction (setting some variables &; equal to
Zero) we prove:

THEOREM 1 (Separation and Irreducibility Theorem). The characteristic poly-
nomials of the possible graphs giving blocks of the normal form of the NLS are
all distinct, and irreducible as polynomials with integer coefficients, that is in

Z[éla .. ~;émv t] < @(éla cee 76171)“]'

In general proving that a polynomial in several variables is irreducible is not
an easy task, few general methods are available and none of these seems to apply
to our case. For a given polynomial with integer coefficients there exist reason-
able computer algebra algorithms to test irreducibility but this is not a practical
method in our case where the polynomials are infinite and their degrees also tend
to infinity. Fortunately the combinatorics comes to our help as follows. We start
from one of the matrices describing the Hamiltonian for a block associated to a
given graph I'. If we set one of the parameters &; = 0 it is easy to verify that the
matrix specializes to a direct sum of smaller blocks of the same type for less pa-
rameters (cf. Corollary 8.3). This remark gives a powerful tool for induction. The
characteristic polynomial specializes to the product of the characteristic polyno-
mials of the blocks and, by induction, we may assume that these factors are irre-
ducible. We thus obtain a factorization for the specialized polynomial.

We repeat the argument with a different variable obtaining a different special-
ization and a different factorization. It is possible that these two factorizations
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cannot arise from the same factorization of the given polynomial. If this happens
we are sure that the polynomial we started with is irreducible. This is the method
we follow in order to prove Theorem 1 and it is the content of Part 2.

Unfortunately this still requires a rather tedious and lengthy case analysis and
a reduction to some basic cases which we treat by computer algebra algorithms.

The fact that the polynomials are distinct (cf. Lemma 9.2) is based by induc-
tion on the irreducibility theorem and it is relatively easy to prove.

There is another delicate point in this proof, in order for the induction to work
we need to have a complete control on the graphs that may appear, which is not
proved in [12] and which we do not know for ¢ > 1. We need to know that the
possible graphs satisfy a geometric non-degeneracy or non resonance restriction,
given by Proposition 2.2. Precisely one of the presentations of our graphs is by
describing the vertices as integral vectors (in Z™), then the non degeneracy con-
dition is that these vectors are affinely independent. The possible graphs are
obtained by associating to the combinatorial graphs a system of d linear and qua-
dratic equations, in n variables, which depend on the tangential sites in a qua-
dratic way, where d + 1 is the number of vertices. The graph is thus admissible
if and only if these equations have solutions in Z"\S, this arithmetic analysis is
too difficult to perform and we study wether they have solutions in R"\S. The
idea is that if these equations are independent then they can be at most n. In
fact for a geometrically non degenerate graph the condition of independence is
fulfilled when d < n, the case d > n has been treated completely by methods of
algebraic geometry in [12], in the same paper we proved only a partial result on
degenerate graphs. Here, by restricting to the case ¢ = 1, we are able to show
that, for generic choices of S, a resonant graph gives a system which has no solu-
tions in R"\S. Note that a resonance, namely a relation between the vertices of
the graph, implies a linear relation among the linear terms of the system of equa-
tions. Such a relation may correspond either to a relation on the equations or an
incompatibility condition for the system. So first we reduce to minimal cases
(only one resonance), and then we study those graphs for which the equations
are generically compatible. This produces two cases, either the system has only
solutions in S or only in C"\R", this concludes the proof.

The strategy follows these steps: first we reduce to the case of trees and de-
scribe the resonance in terms of edges (instead of vertices). Next we analyze in a
combinatorial way all the possible minimal resonances (in this analysis the hy-
pothesis ¢ = 1 is essential). Then we prove that we can essentially reduce to those
trees in which all the edges contribute to the resonance. Finally we show that such
trees have at most two trivalent vertices (that is a vertex from which 3 edges orig-
inate), the other vertices have valency 1, 2. At this point one can deduce from the
system a simple equation which has only solutions in S or only in C"\R" by
inspection.

The proof of Proposition 2.2 is the content of Part 1, the proof we found is
rather complex and takes a good 20 pages of detailed combinatorial analysis.

1.1.2. Dynamical consequences. From the fact that the characteristic polyno-
mials of the matrix blocks are described through finitely many graphs we shall
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be able to show the existence of a discriminant variety also in the infinite dimen-
sional setting and show:

COROLLARY 1.2. There exists an algebraic hypersurface <7, in the space R™ of
the parameters &, and a finite number of algebraic functions 0;() homogeneous
of degree 1 on the region R\, so that the eigenvalues of Q := —%iad(N ) on
FO1 are of the form n+ 0;(¢) + a(&), a(&) = dummel Yy n=-1,neN
In particular the eigenvalues are all distinct and non-zero outside the countable

union of hypersurfaces 0;(&) — 0;(&) — a(&) # 0 for all i # j and a(&).

PrOOF. We know that F%! decomposes into the direct sum of infinitely many
blocks corresponding to the connected components of the graph Ag defined in
2.12.

From Theorem 1 we have that the characteristic polynomials of the matrices
ad(N) in the various blocks are irreducible and distinct. In our case we have seen
that, for two distinct blocks, this produces a non zero polynomial whose non van-
ishing is equivalent to the condition that the two blocks have distinct eigenvalues.
In principle this gives countably many hypersurfaces. Since we know that our in-
finite list of matrices is obtained from a finite list by adding a scalar matrix of the
form (n + )", n;&;)I we obtain a finite number of distinct algebraic function 6;(&),
outside an algebraic hypersurface .o, which are the eigenvalues of all the combi-
natorial blocks. The condition is 0;(¢) — 0;(¢) — a(&) # 0 for all i # j and a(&) =

2 € Z, 3 ;np = 0. O

In [11] we shall refine this Theorem by exhibiting a region of positive measure
where the eigenvalues are explicitly bounded away from 0.

By construction of the matrix Q, real eigenvalues of Q correspond to imagi-
nary eigenvalues of ad(N). We have seen that outside a real hypersurface the
eigenvalues of all the combinatorial blocks are distinct. Thus outside this hyper-
surface the cone of the &; decomposes into open regions where the number of real
roots is constant. We can furthermore show (see §2.14.1) that

PROPOSITION 1.3. The open region where all the eigenvalues of Q are real is non
empty in R

As a consequence of Proposition 1.2 one easily sees that one can perform a
symplectic coordinate change so that the Hamiltonian is in diagonal canonical
Sform, that is we have an infinite sum ), t9k|zk|2 corresponding to the real eigen-
values, plus a (possibly empty, depending on the connected region of Os\.«/
where Oj is a small hypercube), finite sum of hyperbolic terms corresponding to
the complex eigenvalues. Then Proposition 1.3 ensures that on an open region of
parameters the Hamiltonian is diagonal and elliptic.

REMARK 1.4. No knowledge of the NLS is necessary in order to understand the
Theorems of this paper which may be formulated as purely geometric questions.

REMARK 1.5. We should remark that only finitely many of the infinite blocks
are not self adjoint matrices. If one restricts the analysis to the self adjoint blocks
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the proofs simplify drastically, in particular this is true for the first part which
admits a far reaching generalization (cf. Theorem 3).

REMARK 1.6. The restriction to ¢ = 1 plays a major role in both parts of the
paper. However for any ¢ and dimension n = 1 all the results of this paper have
been proved in the Ph. D. Thesis of Nguyen Bich Van.

REMARK 1.7. In general (¢ > 1, n > 1) although we do not know that the eigen-
values are distinct we can use a Fitting decomposition with blocks corresponding
to distinct eigenvalues. It turns out that these blocks are uniformly bounded for
generic S.

REMARK 1.8. In Proposition 1.3 we have pointed out the existence of an elliptic
region. It is easy to exhibit large regions where there are complex eigenvalues,
which however can be at most a finite number bounded by a function of n, m.

2. PRELIMINARIES

We start by presenting an elementary geometric problem which originates from the
NLS but can be explained and treated in a completely independent way. Then we
briefly describe the NLS normal form and show the origin and importance of the
geometric problem in this context.

2.1. An elementary geometric problem. Given a point p in a sphere in Euclidean
space R" we can consider its antipode or mirror point p’. A similar construction
holds in the case of two parallel hyperplanes H;, H,. Given a point p in one of
them, say for instance H,, we can construct a mirror point p’ € H, by drawing the
line r perpendicular to H; through p and taking as p’ the point of intersection
between r and H,. If we have several spheres Sj, ..., S, and pairs of parallel hy-
perplanes (H|, H)),...,(H}, H?) we have, for a point in the intersection of /
such hypersurfaces, # mirror points. Each of them in turn could have several
mirror points. The combinatorics resulting is encoded by a 2-colored graph, hav-
ing as vertices the points of R” and two types of edges; the edges colored black
represent mirror pairs in parallel hyperplanes while edges colored red represent
antipode points in one of the spheres. The edges are understood as purely combi-
natorial and not as segments of R”. The combinatorics of this graph can be ex-
tremely complicated and reflects partially the complex relative positions of all the
given hypersurfaces.

In our case a configuration of previous type is associated to a set S (the tan-
gential sites) as follows: given two distinct elements v;, v; € S construct the sphere
S; j having the two vectors as opposite points of a diameter and the two Hyper-
planes, H; ;, H; ;, passing through v; and v; respectively, and perpendicular to the
line though the two vectors v;, v;.

From this configuration of spheres and pairs of parallel hyperplanes we de-
duce, by the previous rules, a combinatorial colored graph, denoted by I's, with
vertices the points in R” and two types of edges, which we call black and red.
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¢ A black edge connects two points p € H; ;, ¢ € H;;, such that the line p, ¢ is
orthogonal to the two hyperplanes, or in other words ¢ = p + v; — v;.

® A red edge connects two points p, g € S; ; which are opposite points of a diam-
eter (p + q = v; + v)).

The Problem The problem consists in the study of the connected components of
this graph. Of course the nature of the graph depends upon the choice of S but
one expects a relatively simple behavior for S generic.

It is immediate by the definitions that the points in S are all pairwise con-
nected by black and red edges and it is not hard to see that, for generic values
of S, the set S is itself a connected component which we call the special compo-
nent.

What we expect to have, as explained in §3.2 and proved in Part 1, is:

PROPOSITION 2.2. For generic choices of S the connected components of this
graph, different from the special component, are formed by affinely independent
points.

In particular each component has at most n + 1 points.

In the next paragraph we explain how this problem arises in the NLS. The
NLS considered in [12] depend upon an integer parameter ¢ but here we con-
centrate in the simplest case when ¢ = 1, which is connected to the previous geo-
metric problem, and we have the cubic NLS the remaining cases are essentially
open.

2.3. Some background. The cubic NLS on a torus is a Hamiltonian system,
the symplectic variables are the Fourier coefficients of the functions u(¢p) :=
> e uce® ) the symplectic structure is i, ., dug A dig and the Hamilto-
nian is

(3) H = Z |k|2ukﬁk + Z Uje, Ujey Uje, U, -

kez" kieZ"Y ! (—1)'ki=0

We shall choose the sign + for simplicity of notations. We perform a step
of “Resonant Birkhoff normal form”. Denote by K := 3, |k|*usiix. A
monomial [, u uf in the wu, @ is an eigenvector for {K,—} of eigenvalue
> (o — i)k B and such a step is a symplectic change of variables under which
we cancel all or some of the quartic terms which do not Poisson commute with K,
to the cost of introducing higher order terms Wthh are then treated as a pertur-
bation. The condition of commuting with K is 7, (—1)'|k;|* = 0. Dropping the
perturbation one has a restricted model.

2 - _ _
(4) H = E |k| Uy + E Ujey Ujey Ujey Uy -
kez" kiez"Y ! (~1)'ki=0,
4 i
Y (= 1)k *=0
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Note that the two conditions 37 (—=1)'k; = 0, 321 (=1)'|k;|* = 0 have a geo-
metric interpretation, that is the four points &k, k», k3, k4 are the vertices of a
rectangle.

As it is well known (cf. Colliander-Tao [6] and Grébert-Thomann [7]) this
restricted model admits infinitely many invariant subspaces defined by requiring
ur =0 for all k ¢ S where S = {vy,...,v}, tangential sites, is some (arbitrarily
large) subset of Z" satisfying a completeness condition (cf. [12], 2.1.1). The dy-
namics on these subspaces depends in a subtle way on the geometric properties of
S and, for generic choices of S the behavior is integrable (cf. [12], Proposition 1).
In order to understand how to pass from solutions of the restricted model to true
solutions of the NLS one has to have some structural stability result that is, as we
explained before, control of the dynamics on the normal bundle to the family of
invariant tori in the given invariant subspace. In coordinates we set

(5) up :=zx fork eS¢,
\/5,4-)16“’—\/57,(14—2f ~)eix" fori=1,...m,

considering the & > 0 as parameters, with |y;| < &;, while y,x,w:= (z,Z) are
dynamical variables. In these variables the Hamiltonian can be decomposed as

Ho®: = (0(¢), y) + Y |k*|z]” + 2(&,x,w) + P(&, y,x,w) = N+ P.
keS¢

Where N := (0(&), y) + > jese |k|2|zk|2 + 2(&, x,w), with 2(&, x, w) quadratic, is
the normal form and P the perturbation.

We use systematically the fact that this Hamiltonian commutes with momen-
tum M and mass L:

M = Zfzvz"'_zyzvz‘f' Zk|zk| L= Zéz+zyl+ Z |Zk|

keS¢ keS¢

We have, after some renormalizing, w;(&) := |v,~|2 — 2¢;. Finally the quadratic
form is

(7) (éax W —4 Z \/ € (xi=257) Zth+2 Z z/ f] —i(xi+x;7) ZnZk

1<i#j<m I<i<j<m
hkeS* hkeS*
Kk
+2 E g/ff, i(xi+) ZnZk-
1<i<j<m
hkeS¢

Here )" denotes that (h, k, v;, v;) satisfy:

{<h7ky Ui7vj) ‘h +v; = k+ Uja |h|2 + |U,’|2 = |k|2 + |Uj|2}'
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and )77, that (h,v;,k, v;) satisfy:
{(hviskey ) | B+ & = v+ 0y, B + [k = [ol® + o]}

Notice that in the sums > each term appears twice. These constraints describe
exactly the two types of rectangles in which two vertices lie in S and the others in
S¢, thus these last two vertices are joined, by definition, by a black edge in the
first case (in which they are vertices of a side of the rectangle) and a red in the
second (in which they are opposite vertices of the rectangle). Note that the edges
correspond to interacting sites.

We have described a very complicated infinite dimensional quadratic Hamil-
tonian which we wish to decompose into infinitely many decoupled finite di-
mensional blocks, corresponding to the components of the geometric graph I's
defined in the previous paragraph. In [12] we show that this is possible and we
also proved the existence of a symplectic change of variables which makes the
angles disappear.

2.4. The operator ad(N).

DEFINITION 2.5. Denote by Z" := {>"" a;e;,a; € Z} the lattice with basis the
elements e;.

Consider the mass n and the momentum = (the name comes from dynamical
considerations):

n:2"—7, nle):=1, n:72"—7" ns=mn:e+ v;.

At this point it is useful to formalize the idea of energy transfer in a combina-

torial way. Let S*[Z"] := {3, a; jeie;}, a; ; € Z be the polynomials of degree

2 in the ¢; with integer coefficients. We extend the map = and introduce a linear
map from Z™ to S?(Z™) denoted a — a® as:

(8) n(e;) = v, 7n(eiej) :== (v;,0;), x*@ . zm SZ(Z’”), e — el-z.
We have n(AB) = (n(A),n(B)), VA,B e Z"™.

REMARK 2.6. Notice that we have a® = 4 if and only if @ equals 0 or one of
the variables ¢;.

2.6.1. The space F*!. We start from the space V'*! of functions with basis the
elements

e‘zf""xfzk, eilzf”"xfz’k, keS¢

In this space the conditions of commuting with momentum, resp. with mass
select the elements, called frequency basis
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9) Fp=e2%9z, e X%z, keS°

Zvjvj+k:n(v)+k:0, resp. Zv_,-+1:0.
J J

Denote by F%! the subspace of V'*! commuting with momentum and mass.*
An element of Fp is completely determined by the value of v and the fact that
the z variable may or may not be conjugated. By construction v € Z" where

(10) 0= {ue 2| ~n(w) € 5.

Denote by ® = Z” the kernel of 7zg : ¢; — v; then, by Formula (10), we have
7" =7"\J; —ei + 0O.

Now ad(N) acts on F%! its matrix representation, in the frequency basis, de-
composes into infinitely many finite dimensional blocks described by matrices
with coefficients quadratic polynomials in the variables 1/Z;. One easily sees that
in the characteristic polynomial of each one of these matrices the square roots
disappear (Lemma 2.14).

2.7. The Cayley graphs. We recall how we have found useful to cast some of the
description of the operator ad(N) into the language of group theory and in par-
ticular of the Cayley graph (cf. [9]). In fact to a matrix C = (¢; ;) we can always
associate a graph, with vertices the indices of the matrix, and an edge between i, j
if and only if ¢; ; # 0. For the matrix of ad(N) in the frequency basis the relevant
graph comes from a special Cayley graph.

Let G be a group and X = X! = G a subset.

DEFINITION 2.8. An X-marked graph is an oriented graph I" such that each ori-
ented edge is marked with an element x € X.

-1
X X
a—b a+—2»

We mark the same edge, with opposite orientation, with x~!. Notice that if
x? = 1 we may drop the orientation of the edge.

A typical way to construct an X-marked graph is the following. Consider an
action G x A — A of G on a set 4, we then define.

DEFINITION 2.9 (Cayley graph). The graph 4y has as vertices the elements of A4
and, given a,b € A we join them by an oriented edge ¢ — b, marked x, if b = xa,
x e X.

In our setting the relevant group is the group of transformations of Z"” gen-
erated by translations a: x — x+a and sign change 7:x+— —x. Thus G :=
7" >« 7/(2) is the semidirect product, and 7 := (0,—1), G = 27" U Z"7 and the

*this convention is different from [12] where we only impose commutation with momentum
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product rule is at = —ta, Va € 7" (notice that this implies (a‘c)2 = (0,1)). We
think of an element a = €'Yz, as being associated to the group element which,
by abuse of notation, we still denote by a =} ve; € Z™. Then a = e LYz, is
associated to the group element at = (Z v,c,)r AL

Thus the frequency basis is indexed by elements of G'\|J,{—e + O,
(—e; + ©)7} where

G':={a,at,a e 7" |y(a) = —1}.
We now consider the Cayley graph Gy of G with respect to the elements
XO = {e,-—ej,i;éj € [1,..-,m]}a X72 = {(—e,-—ej)r,i#je [1,,]’}’1}}

If p € Z it is easily seen that the set G, := {a,5(a) = 0,at|n(a) = p} form a sub-
group. In particular

REMARK 2.10. G_, is generated by the elements X := X° U X 2, its right cosets
are the connected components of the Cayley graph.

In the action of G_, on Z™ the orbit of 0 is identified to G_, and it is formed
by the elements a € Z" |n(a) € {0,—2}. We can thus identify the Cayley graph
on G_, with the corresponding graph on this set of elements.

We distinguish the edges by color, as X° to be black and X ~? red, hence the
Cayley graph is accordingly colored; by conventlon we represent red edges with
an unoriented double line: g = (—¢; — €))7, aga (recall that g = g7 1).

The set G! is also a right coset of G_, and thus it is also a connected compo-
nent of the Cayley graph Gy.

2.10.1. The matrix structure of ad(N) :=2iQ. This is encoded in part by the
Cayley graph Gy of G with respect to the elements X := {e; — ¢, (—e; — ¢j)7}.
Given a =) ;aje;, 0 = t1 set for u = (a,0)

(11) C((a, o) = 2(a +a® <(Za,e,) +Zae)
Za,-v,- —I—Za,-|vi|2

Sometimes we call K(u) the quadratic energy of u, notice that C(u) has integer

K(a,0) = n(C(w) =3

coefficients. In particular if a € Z" we have K(ar) = —K(a) and we set for
a,be?

(12) Qua=K(a Zalfl, Our,ar = K(ar —i—Za]é/

(13) Qar,br = - éiéjv Qa,b =2 éiéja

if a, b are connected by an edge e; — ¢;
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(14) Qa,br =-2 éiép Qar,b = 2\/ fiéja

if a, bt are connected by an edge (—e; — ¢;)T

We have shown in [12] that the blocks Q on F%! come into pairs of con-
jugate Lagrangian blocks I', I't. With respect to the frequency basis the blocks
are described as the connected components of a graph Ag which we now de-
scribe.

DEFINITION 2.11. Given an edge u = v, u = (a,0), v= (b,p) = xu, x € X,, we
say that the edge is compatible with S or 7 if K(u) = K(v).

Remark now that, if g € G we have C(g) = 0 if and only if g = —e;, —¢;7. We
call the elements {—e;, —e;7} the special component.

DEFINITION 2.12. The graph Ag is the subgraph of Gy inside G'\ |J;{—e; + ©,
(—e; + ©)7} in which we only keep the compatible edges.

Observe that the graph Ag is invariant under translations by ®. We then
have

THEOREM 2. The indecomposable blocks of the matrix Q in the frequency basis

correspond to the connected components of the graph As.
In a block the entries of Q are given by (12), (13), (14).

The fact that in the graph Ag we keep only compatible edges implies in par-
ticular that the scalar part K((a,)) (which is an integer) is constant on each
block. On the other hand, in general, there are infinitely many blocks with the
same scalar part. It will be convenient to ignore the scalar term diag(K((a,0))),
given a compatible connected component A we hence define the matrix Cy =
Q4 — diag(K((a, 0))).

One of the main ingredients of our work is to understand the possible con-
nected components I' of the graphs Ag for S generic (but not necessarily fixed),
we do this by choosing a vertex u € I which we call the root and analyzing such a
component as a translation I' = Au where 4 is now a complete subgraph of the
Cayley graph contained in G_, and containing the element (0,+) = 0. If u € Z"
the matrix Cy, is obtained from C4 by adding the scalar matrix —u(&) = —(u, &)
while CA-: = —CA.

ExamPLE 2.13. Consider the following complete subgraph containing (0, +).

(—e1—e)r e1—e

A= (—e1 — €2, —) (0, +) (61 — €, +).

A translation by an element (u, +) is hence

(—e1—e)t

Alu,+) = (—ey — ez —u,—) (u,+) _are (e1 —ex+u,+)
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so we get that the matrices associated to these graphs are:

&1 =& 2VEiS 0
Cs=| -2V&& 0 VSIS E
0 2V6i& & -4

—&i —fz—“(f) 218 0
Cyu = —2v¢16 —u(&) PAVISLS)
0 WWEE LH-& —u(d)

In particular we have shown (cf. [12], §9) that A4 can be chosen among a finite
number of graphs which we call combinatorial. Note that we do not impose the
compatibility constraint on 4 but only on its translations. It is convenient, in
drawing the graphs to drop the labels on the edges since they can be deduced
from the vertices. In a combinatorial graph the color of a vertex is black if its
mass is 0 and red if it is —2. Then in the vertices we drop the sign =+, since this
information can be deduced from the mass or from the parity (number of red
edges) of the path connecting the vertex with the root. So the graph of the previ-
ous example will be denoted by:

A:—€1—€2=0—>€1—€2.

Note that in all the combinatorial graphs the root is by convention set to 0.
Let us show that:

LEMMA 2.14. The characteristic polynomial of a matrix Cy4 is in Z[&y, ..., &, 1
(the square roots disappear).

ProoOF. By definition the determinant of an n x n matrix with entries a; ; is
the sum with sign, over all permutations ¢ of the n indices, of the products
i, g(1) - - - @n,g(n)- It 18 convenient to rearrange this product using the cycle struc-
ture of g, each cycle (i,...,i) determines a factor a;, j, ...a; ;. Let us show
that in each of these factors the square roots disappear. In fact, if the cycle is
reduced to a single element it corresponds to a diagonal entry, which has no
roots. Otherwise it corresponds to a sequence of edges forming a closed path.
Then, by the definitions and compatibility, one sees that each index appearing
in the edges appears an even number of times in such a closed path, hence the
claim follows from the formula +2,/;¢; of the entry corresponding to each
edge. O

2.14.1. Proof of Proposition 1.3. We are ready to prove Proposition 1.3:

PrROOF. We proceed by induction on the number m of the parameters, for m = 1
the statement is trivial, so assume the statement is true for m — 1 parameters.
Let I' be one of the combinatorial graphs, 4(I') the corresponding matrix and
(ay,...,ay) the vertices of .
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Let 4 be the matrix obtained from A4(T") by setting &,, = 0. We claim that this
matrix is the one associated to the not necessarily connected colored graph I in
m — 1 coordinates obtained by dropping the last coordinate in all the vertices «;,
this is just a consequence of the definitions (see §2.4).

The first thing to be verified is that the vertices of T are all distinct (as colored
vertices). In fact given a vertex a € Z™ let @ € Z™ ' be the vertex obtained by
dropping the last coordinate a,,. We can reconstruct ¢ from @ and its color using
the mass since n(a) = n(a) + a.

Now we claim that the graphs appearing give characteristic polynomials
which are distinct, for this we apply Proposition 9.2. If we had two connected
components of T giving the same characteristic polynomial we should have two
elements @ black and b red so that b = 1@ = —ar red. We have a = a — 5(@)e,,
while 7a = —ar comes from b = (—a+ (y(a) — 2)e,)t = (—a — 2ey)t. Thus in
the graph I we cannot have these two vertices, since the presence of two vertices
b + a = —2e¢,, implies that the graph is not allowable by Definition 3.13.

Now we apply the fact that we know that all the blocks appearing in A4(T)
are distinct and depend on m — 1 variables, furthermore two different blocks
have different characteristic polynomials by the previous remark and Lemma
9.2. From the hypotheses made there is an open region %,,_; in the complement
of the discriminant variety for m — 1 variables where for each of the finitely many
combinatorial blocks all the eigenvalues are distinct and real.

Now this condition is stable so that for A4(I") there is a non empty open region
complement of the discriminant variety for 4(I') where all the eigenvalues are
distinct and real containing %,,_;, since we have finitely many combinatorial
graphs I we find an open component of the complement of the discriminant
variety for all graphs I', containing %,,_1, where all the eigenvalues are real. We
further remove the resultants and have that they are also all distinct. |

Part 1. Sphere and hyperplanes problem

In order to understand the possible components of the graph Ag we relate it to
the geometric graph Is.

3. THE GEOMETRIC PROBLEM

The condition for two points p, g to be the vertices of an edge is given by alge-
braic equations. Visibly p € H; ; means that (p — v;, v; — v;) = 0, the correspond-
ing ¢ = p +v; —v;, while p € S; ; is given by (p —v;, p — v;) = 0 and the corre-
sponding opposite point ¢ is given by p + g = v; + v;.

We thus have two types of constraints describing when two points are joined
by an edge, a linear ¢ — p = v; — v; or p + ¢ = v; + v; and a quadratic constraint
(p —vi,vi—v;) =0 or (p—v;, p—v;) = 0. The fact that a point x belongs to a
component described by the combinatorial graph is thus expressed by a list of
linear and quadratic equations for x deduced by eliminating all the other vertices
using the linear constraints.
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We describe the linear constraints again through a Cayley graph. The group G
also acts on R” by setting

(15) ak .= —n(a)+k, keR" aeZ™, 1k=—k
We then have that

REMARK 3.1. X defines also a Cayley graph on R” and in fact the graph I's is a
subgraph of this graph.

3.2. Equations for the root. From the very construction of the graph it is conve-
nient to mark the edges by v; — v; in the first case and v; 4 v; in the second (notice
the sign change due to Formula (9)). In fact we use a more combinatorial way
of marking which is illustrated in the next example. It is then clear that each con-
nected component of this graph has a combinatorial description which encodes
the information on the various types of edges which connect the vertices of the
component.

The connection with the graph Ag comes from the fact that these equations
are exactly the ones which define compatible edges.

ExaMPLE 3.3. The equations that x has to satisfy are:

(%UQ - U3) = |U2|2 - (UQ,U3)

Tr — U1 + U3
2’4 2| — (2,01 + v2) = —(v1,02)
2,3
T — vy + U3 (x,v1 —v3) = |U1|2_(U21U3)
3,2 1,3
T —x + v + U2

1.2

In fact it should be clear that a graph in I'y is obtained starting from a point x
and then applying the elements of a complete sub graph 4 < Gy of the Cayley
graph containing 0. One the results of [12] (Theorem 3) is that in this fashion we
have always isomorphisms between components of Ag and components of Is.

The question is thus to understand when, given x € R”, the elements /x, i € A
describe the vertices of a corresponding geometric graph with root x in I.

One can easily verify that

PROPOSITION 3.4. The elements hx, h € A describe the vertices in a component C
of the geometric graph TUs if and only if, for each h = (a,a) € A we have:

{umm»=Km>av=1

{16) 5P + (v, 7(a) = K(h) if o= ~1

Therefore the question that we have to address is: for which graphs 4 < I'y
we can say that these equations have a solution in R"\S for generic values of
the points v;? Such a graph is called compatible.
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A main result in [12] is that if the edges of the combinatorial graph span a lat-
tice of dimension > n then the only geometric realizations of this graph can be in
the special component S.

It remains to analyze graphs with linearly dependent edges. In order to ad-
dress this question we need to develop a more combinatorial approach.

3.5. Relations. Take a connected complete subgraph A, in the subgroup G_, of
G generated by X, of the Cayley graph Gy. By taking the first coordinates we
identify its vertices with a subset, still denoted by A, of the set of elements in Z"”
with 7(a) = 0, —2 (the orbit of 0 under G_»).

DEFINITION 3.6.

e A graph 4 with k + 1 vertices is said to be of dimension k.

e We call the dimension of the affine space spanned by 4 in R™ the rank, rk 4,
of the graph A4.

e [If the rank of A is strictly less than the dimension of 4 we say that A is degen-
erate.

Once we choose a root r for A we can translate 4 so that » = 0 then instead of
the affine space spanned by 4 we may consider the lattice spanned by the non-
zero elements in A, it is natural to color all remaining vertices with the rule that
a vertex a is black if n(a) = 0 or, equivalently, it is joined to the root by an even
path and red otherwise. if #(a) = —2. Then we can extend the notion of black
or red rank, and corresponding degeneracy. When we change the root we have a
simple way of changing colors that we leave to the reader and the two ranks may
just be exchanged.

If A is degenerate then there are non trivial relations, »_ n,a =0, n, € Z
among the elements a € A4.

REMARK 3.7. Itis also useful to choose a maximal tree 7" in I'. There is a trian-
gular change of coordinates from the vertices « to the markings of 7. Hence the
relation can be also expressed as a relation between these markings.

We must have by linearity, for every relation ) n,a =0, n, € Z that 0 =
S n.a?, 0 =" n,n(a) and moreover we have:

(17) 0= Z ng.
a | @)=—2

Applying Formula (16) we deduce that we must have, with a = g,x for all
vertices

(18) > naK(g) = 2(x Y malga)) + | Dm0

aln(a)==2

= 2<x, Znan(ga)> =0.
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The expression ) n,K(g,) is a linear combination with integer coefficients of
the scalar products (v;,v;). We can prevent the occurrence of the component I
by imposing it as avoidable resonance. We need to formalize the setting.

Let us use for the elements of G in the subgroup G, just their coordinate
ae?Z", n(a) € {0,-2}. Then we have Y, n,K(a) =n(},n,C(a)) hence we
easily deduce:

PRrOPOSITION 3.8. The equation (18) is a non trivial constraint if and only if
> u1aC(ga) # 0. In this case we say that the graph has an avoidable resonance.

COROLLARY 3.9. If we have an avoidable resonance of previous type associ-
ated to T then, for a generic choice of the S :={v;}, T as no geometric real-
izations.

The main Theorem on this topic proved in [12] is:
THEOREM 3. Given a compatible connected X -marked graph, with a chosen root
and of rank k for a given color, then either it has exactly k vertices of that color or

it produces an avoidable resonance.

PrOOF. Let us recall the proof for convenience of our treatment. Assume by

contradiction that we can choose k + 1 distinct vertices (ao, ay, . . ., ax), different
from O of the given color so that we have a non trivial relation ), n,a; = 0 and
the elements a;, i = 1,...,k are linearly independent. Set n, = n;, if a = a; and

n, = 0 otherwise. If all these vertices have sign +, we have >, nga’® = 0. Simi-
larly, 1f they are have sign — we have — > n,a=)_ n,0(a)a=0 and also
>, nq,a® =0 so0 again 3, n.a’ = 0.

We can consider thus the elements x; := a;,i = 1,...,k as new variables and
then we write the relations >, na =", n.,a*> = 0 as

k k X
0= Ay + Zpixi, = (Z piXi>2 N Zpix? o
=1 i=1

i=1

Now Zl | pix? does not contain any mixed terms XpXk, h # k therefore this
equation can be verified if and only if the sum Z _; pixi 1s reduced to a single
term p;x;, and then we have p; = —1 and aqyp = «;, a contradiction. O

Unfortunately there are examples of unavoidable resonances as we shall dis-
cuss in the next paragraph.

3.10. Degenerate resonant graphs.

DEerFINITION 3.11. We say that a graph 4 is degenerate-resonant, if it is degen-
erate and, for all the possible linear relations ) . n;a; = 0 among its vertices we
have also >, n;C(a;) = 0.
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What we claim is that a degenerate-resonant graph 4 has no geometric real-
izations outside the special component.

REMARK 3.12. One may easily verify that the previous condition, although ex-
pressed using a chosen root, does not depend on the choice of the root.

One of the obstacles we have is that the proof of Theorem 3 breaks down in
general since in fact there are non trivial degenerate-resonant graphs, the simplest
of them is the minigraph

(—62+61) ES (—261) (—€2+€1) +a

(19)

00— (—e3—¢1) a————(—e3—¢€1)—a

(—2e1) —a

Relation is (—e; + 1) — (—ex — e1) + (—2¢1) = 0, we have
C(—ex+e1)=ef —erer, C(—es—e)) = —ejes, C(—2e1) = —¢7
el2 —ejep — (—ejez) — el2 =0.
A more complex example is
€o — €3

€2—e€e3

—€1—€4 €1—eéq €1—e2 —€zx—e€3

261—62—64 61—6270:—62—63

—3e1 + ez

What is common of these two examples is that in each there is a pair of vertices
a, b, of distinct colors, with a + b = —2¢; for some index 1.

DEerINITION 3.13. We shall say that a connected graph G is allowable if there is
no pair of vertices @, ¢ € G with ac™! = ¢~'a = (—2¢;,7), or (—3e; + ¢;,7), other-
wise it is not allowable.

We may assume a € Z" black and ¢ = bt, b € Z"™ red. We then easily see that

ProvrosITION 3.14. If a graph is not allowable then it has no geometric realiza-
tion outside the special component (i.e. it is not compatible).

PrOOF. We write the quadratic equation (16), for a vertex x, corresponding to
the root a, given by the vertex b = —2e;. Since C(—2¢,) = —e2, K(—2¢;) = —|v;|*
we get

0= |x|2 + (x,m(=2¢;)) — K(—2¢;) = |x|2 —2(x,v;) + |v,~|2 =|x— v,-|2.

Hence the only real solution of |x — v,~|2 = 0is x = v;. Then we apply Remark 15
of [12] where we have shown that the special component is an isolated component
of the graph.
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In the other case x is in a sphere whose square radius is 7(A4)

. (—3€i+€j>2 3 . 1 3 2 (3 > >
A—f—l-C(— e,~+ej)——4—1[(— eite)” +2(=3e; +e)]
L2 2 2 2 3 2
= —1[96[ — bejej +ej — be; + 2¢;] = _Z[ei — ¢l
clearly n(A4) = —3|v; — v_,~|2 <0, Yv; # v;. O

What we conjectured and shall prove in this paper is (cf. §5):

THEOREM 4. A degenerate-resonant graph A is not allowable hence it has no
geometric realizations outside the special component.

From this Theorem Proposition 2.2 follows.

4. RESONANT GRAPHS

4.1. Encoding graphs. In order to understand relations, consider the complete
graph T, on the vertices 1,...,m. If we are given a marked graph I" we associate
to it the subgraph A of T,,, called its encoding graph in which we join the vertices
i, j with a black edge if I' contains an edge marked ¢; — ¢; and by a red edge edge
if I' contains an edge marked —e; — ¢;. We mark = the red edges.

For each connected component of the encoding graph consider the subspace
spanned by its edges. It is easily seen that these subspaces form a direct sum.
Hence the encoding graph of a minimal relation is connected. Moreover a circuit
in the encoding graph corresponds to a relation between the corresponding edges
if and only if it contains an even number of red edges and we call it an even
circuit.

This follows from the basic relations with which we can substitute two consec-

utive edges with a single one:
—k
J
0, 4 / k
J

—26,' = —(ei — €j> + (—e,- — ej).

(ei—ej) + (ej —ex) + (ex —ei) =0, i

(i =€) = (—¢j —ex) + (—ex —e;) =

Thus for each index i of an odd circuit a sum, with coefficients +1, of its edges
equals to —2¢;. The edges of an even circuit have a linear relation (unique up to
sign) given by a sum with coefficients +1 equal 0. If we have a list of edges of T’
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which are linearly dependent and minimal (with respect to this property) then we
claim that the corresponding elements in the encoding graph from a circuit, with
some provisos due to the presence of red edges. More precisely we may have a
simple circuit in which an even number of red edges appear or two odd circuits
joined by a segment (possibly reduced to a point).

ExAMPLE 4.2. An even and a doubly odd encoding graph:

1—=10 9 8 7
2——=3=—=—=4—-—-5—-6
12— 13——=14—15—=16
11 19 —— 18 —— 17
l=——==10—"-9 8 7
2 3 4 ) 6

This can be easily justified. Recall that the valency of a vertex is the number
of edges which admit it as vertex. If the given edges give a minimal relation their
encoding graph must be connected, furthermore it cannot have any vertex of
valency 1 since the corresponding edge is clearly linearly independent from the
others. Finally it cannot have more than 2 simple circuits otherwise we easily
see that we have at least 2 relations.

For a connected graph the number ¢ of independent circuits is the dimension
of its first homology group and thus given, using the Euler characteristic, by
¢=e¢—v+1 where e,v are the number of edges and vertices respectively. In
our setting all vertices have valency > 2 and we denote the valency of the vertex
i by Vi =uv;+2 (with v; > 0). We have 2e =), V; = >, v; + 2v so that we have
> ;i =2c—2.1If ¢ = 1 the encoding graph is a simple circuit. If ¢ = 2 we deduce
that ), v; = 2 hence we have either only one vertex of valency 4 and the others of
valency 2 or two vertices of valency 3 and the others of valency 2. The first case
gives two loops joined in one vertex the second gives either two loops joined by a
segment or two vertices joined by 3 segments. This last case is not possible since
two of these segments will have the same parity and generate an even loop con-
tradicting minimality.

4.3. Minimal relations. We want to study a minimal degenerate resonant graph
I'. Observe that for such a graph any proper subgraph is non-degenerate. In par-
ticular we have one and only one relation among the edges of a given maximal
tree T in the graph and a corresponding relation for the vertices.
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A minimal degenerate graph has a special type of relation which comes from
the fact that in a maximal tree we have a minimum number of dependent edges.
Such a situation arises when these edges, call their set &, form in the encoding
graph, a even circuit (Where we allow the possibility that we have two odd circuits
matching) as in the previous paragraph. Call |&| the subgraph of 7 formed by the
edges &, of course it need not be a priori connected but only a forest inside T'.

In an even circuit the relation is a sum of edges } ;6;/; = 0, with signs J; = +1
in two odd matching circuits we may have some J; = +2 corresponding to the
edges appearing in the segment connecting the two odd loops. In any case we
list the edges appearing as /;. Each ¢/; black is ¢; = a; — b; with a;, b;, its vertices
of the same color while a red is £; = a; + b; with a; red and b; black its vertices.

The relation is thus

(20) > Oilai—bi) + Y dj(a; +by) =0.

i black jred

Notice that, by minimality, all the end points of 7" must be in |&|. We may
think of (20) as a formal relation on the vertices (instead of on the edges), note
that a vertex in & need not appear in (20) however all end-points in § must
appear and, if a vertex v has coefficient k in the relation, it must be the vertex of
at least k of the given edges (in the case J; = +1).

4.3.1. Basic formulas. We work with G_, identified with elements in Z™ either
with 7(a) = 0, black or n(a) = —2 red. We have set C(a) =1 (a®>+a®) for a
black and C(a) = —1(a® + a?) for a red.

In our computations we use always the rules:

e for u, v black, we have u + v black and

Clu+v)==((u+v) + w+0)?) = Clu) + C(v) + uv

N =

e for u black v red, we have u + v red and
1
Clutv)=—3((u+ )2+ (u+0)?) = —=Cu) + C(v) — u
e for u, v red, we have u — v black and

(1 + v* = 2uv + (u—v)?)

N =

Clu—v)==((u—v)*+@u—-0)?) =

(W +0* = 2u0+ (u—v)?) = —=C(u) + C(v) + v* — ww

N = ] =

e for u black, we have —u black and

C(—u) = C(u) —u®.
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5. THE RESONANCE

5.1. The resonance relation. This chapter is devoted to the proof of Theorem 4.
In order to prove it we take a minimal degenerate resonant graph I' and inside
it a maximal tree 7" and then we start studying it. In fact it would be possible
to classify these trees, we arrive a little short of this since we need only to
show 4.

5.1.1. Relations. Associated to 7" we have its encoding graph and the encoding
graph of the edges & involved in the relation. We index the edges in the relation
and set /; = J;e; — e;1 where §; = +1 (depending on the color of the edge). As we
explain in course of the proofs we will need to identify some vertices e;.

We distinguish two cases, if the encoding graph of the relation is 1) an even or
2) a doubly odd loop. The simplest case to treat is case 1) which then suggests
how to deal with the other cases.

Case 1. Up to changing notations we may assume that the loop is formed
by the edges /; = %e; —eir1, i=1,...,k — 1, /r = Her — e, (here we identify
e = ek+1). Set

o =[] 8 = %1,
J<i

we assume we have an even number of §; = —1, by assumption o, = 1.
We call §; the parity of i.

LEMMA 5.2. We have the relation:

ProOF. Consider an index i > 1, the coefficient of ¢; in 4 is —d; | + 0;%. Since
0; = 0;_19; for this e; the coefficient is 0. For e; the coefficient comes from
0141 + Oxlx, we have 0; = 91, o = 1 so we also get coeflicient 0. O

Set {: 7" — 7, {(e;) =0;1 (by convention dy = 1) so that, by linearity,
{(4i) = 8i0i-1 —6: = 0.

LEMMA 5.3. The ¢; span the codimension 1 subspace of the space eq,..., e
formed by the vectors a such that

(21) azZoc,eJC(a) :Z&,uxizo.

PRrOOF. {(/;)) =0, so the /; are in this subspace, but they span a subspace of co-
dimension 1 hence the claim. a
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Case 2. For a double loop with k& edges, we have either one or two vertices
in the encoding graph of valency > 2 separating the two odd loops, we call these
vertices critical. We start from a odd loop and a critical vertex which we may as-
sume to be 1. We call 4 = {1,..., A} the indices in the first loop. We then list the
edges 71,...,/, in a circular way and

LeEMMA 5.4. We may choose the signs 6; = +1 so that for any index j < h we
have:

J h h
Zél/i = —5]'8]'_»,_1 —eq, Zé,% = —281, Z (5,’/[ = —€] +(5j€j+1.
i=1 i=1

i=j+1

ProOF. From the first Formula the others follow. We define 6; = 9;0,_1 if i > 1
and set 6y = —9;. Then if j =1, 6141 = (31(19161 — 62) = —e; — 01y and this fol-
lows from the definitions. By induction

j+1
> it = =1 — €1 + 01l
P

—0jejy1 — €1 +0j1911€741 — 0j1€j12 = —e€1 — 0j11€j42. O

For notational convenience we identify e, = e;. If we have two critical
vertices, call b > h + 2 the other, we have then a segment joining them formed
by a string of elements 7,1 = M 1epe1 —enin, . lp1 = Ip_1€p_1 — €b We call
B this set of indices and assign to these edges signs 0 = +2 so that Z h 110ili =
> icp0ili = 2[e1 + 9ep] where 9 = 1 if and only if this segment is odd.

We finish with the other odd loop, call C the corresponding set of indices and
assign, as before, signs +1 so that S5, 0/, = 3. -0t = —29e;,. With these
choices the relation is

k
(23) R := 25,/1 = —2e; + 2[61 + 96b+1] — 28¢5, =0.
i=1

We have chosen the indices so that we order the edges as they occur in one way of
walking the cycle, starting from the critical vertex 1. We say that an index is crit-
ical if the corresponding vertex is critical. Here 1,/ + 1,5 are critical.

REMARK 5.5. The non critical indices are divided in 2 or 3 sets (depending if we
have only one critical vertex or two). If u is not critical we have J, = 9,0,1.

LEMMA 5.6. The ¢; span the sublattice of the lattice spanned by ey, ..., e formed
by those vectors

(24) aonce,M Zoc, ~0, modulo?2.
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PROOEF. 7(/;) = 0 modulo 2, so the /; are in this sub-lattice, the fact that they
span is easily seen by induction. |

5.6.1. Signs. We choose a root r in T and then each vertex x acquires a color
oy = *+1. The color of x is red and g, = —1 if the path from the root to x has
an odd number of red edges, the color is black and o, = 1 if the path is even.

An edge /; is connected to the root r by a unique path p; ending with /; we
denote its final vertex x; and we set g; := ag,,. If /; is black we set 4; =1 if the
edge is equioriented with the path, that is it points outwards, A; = —1 if it points
inwards. Finally we set 4; = 1 if the edge is red.

(1) I — A Ji=1, P— & 2= —1.

DEFINITION 5.7. Once we choose a root in 7, each red edge /; (thatis 3, = —1)
appears as edge with one end denoted by @; red and the other denoted by b; black,
we have /; = a; + b;. For a black edge 3; =1 we define a;, b; so that instead
a; = b; + ¢;, and a;, b; have the same color. We thus write /; = a; — 3;b;.

In particular for the resonant trees:
ProPOSITION 5.8.

(26) R = Z 51'(—6152) — /jdi + eieiH) + E 5i0'i(—€i2+1 + €i€j 1 + /,-ai) =0.
i|%=-1 i|9=1

Z 5 2 + (ib; — e,~e,~+1) + Z 5,’0’1‘(6’-2 —eieiy1 + /,'bl') =0
i 9= i19=1

ProOF. We start from the relation ), 0;/; = 0 and substitute the previous for-
mulas, we deduce

(27) Ri= Y diai+b)+ Y dila
i|§=— i|9=1
We next have by the resonance hypothesis
> 6i(Clar) + Cby)) + Y 6i(Clay) — C(by)) = 0.
i|%=-1 i|9=1

We next apply the formulas 4.3.1.
For a;,/; = —e; — e;1 red, we have b; + a; = /; and b; is black:
Cla) + C(b) = —1/2(a® + a”) + 1/2(b> + b®)
— —1/2(a? + a™) +1/2((ti — a))* + £ — a?)
= —1/2(a? + a?) + 1)2(¢? = 20, + a* + £ — a?))
)

(2)
=—a;" — lia; + eei1 = —a; — lia; + €ieiy].
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For a; = b; + /; and /; = e¢; — e;;1 black we have:

Clay) — Cb) = [l /2(a} +a”) = 1/2(b] + b))
= ,[1/2(a? +a®) = 1/2((a; — )% = P +a?)
= i~ 1/2(02 = 2ta; — 1)) = ai[—e2,, + eiei + L.
The second identity follows from the first by substituting. O

5.8.1. Some reductions. Denote by b; =3 ," b; e, and expand the second
Formula (26). Observe that the coefficients of the mixed terms e;e;, i # j come
all from the sum

B := Z 5,’(/,‘1),’ — €i€i+1) + Z 5,‘0’,’(-8,‘8,‘+1 + /l‘bi).
i|%=-1 i %=1

Ifh¢[l,..., k], the coefficient of ¢; in B (which must be equal to 0) is

Z 5i/ibi,h + Z 5,’0’[/,’[?,’7]1 =0.

i| §=— i 9=1

By the uniqueness of the relation it follows that this relation is a multiple of (23)
hence the numbers b; j,, 9; = —1 and 0;b; 5, $; = 1 are all equal. Since now we can
choose as root one of the elements b; we deduce that all these coefficients b; j
equal to 0. Thus, with this choice of root, b;, a; have support in the vertices of
the encoding graph.

As a consequence we claim that:

LEMMA 5.9. In case 2) the edges of the tree coincide with the edges ; of the
relation.

In case 1) either the edges of the tree coincide with the edges ¢; of the relation
or we can reduce to the case in which the tree T consists only of the edges involved
in the relation, plus a single special extra edge E with {(E) = 2 (see Lemma 5.3 for
the definition of ().

E is either a red edge of the form —e; — e; with i, j of the same value of { or a
black edge of the form —e; + e; with i, j of the opposite value of {.

PROOF. Let T’ be the forest support of the edges #;, if this is a tree it must coin-
cide with 7' by minimality and we are done, if 7" is not a tree there is at least one
segment S in 7 joining two end points in 7. All the edges in S by definition are
not in the relation. Their sum with suitable signs is supported in [1, ..., k] and in
fact it is either the sum or the difference of two of the elements a;, b;, in particular
it has the form E = 3 | we;.

If we are in case 2) then, by Lemma 5.6, 2E is a linear combination of the /;
with integer coefficients. This is a new relation containing edges not supported in
[1,..., k| contradicting the hypotheses.
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If we are in case 1) we must have {(E) # 0 otherwise E is in the span of the
edges /; and we have another relation among the edges of 7' contradicting mini-
mality. By the same reason we cannot have two such segments, since the /; span a
subspace of codimension 1 and we still would have a new relation.

Finally we claim that E is an edge.

We look at the encoding graph U of the edges in S, we want to show that they
form a path joining two points in [1,2,... k] so that the loop they generate in
this way is odd.

First remark that every end vertex of U appears with non zero coefficient +1
in the vector E hence all end points of U liein [1,2,...,k].

Next if U contains two different paths joining points in [1,2,..., k] each such
path gives rise by summing with suitable signs to a non-zero linear combination
of elements in [1,2, ..., k|. Since the span of the edges /; has codimension 1 in the
span of the elements ¢;, if we have two more paths we deduce a new relation.
We deduce that U is either a single path joining two vertices u,v € [1,2,..., k]
and not meeting any other point of [1,2,...,k] or it may also be a single loop
originating from a vertex u in [1,2,...,k]. In this case the loop must be odd
otherwise we have another relation, then we see that if we choose as root one of
the two vertices of 7" joined by S the other vertex is —2e¢, and we are finished,
since we have proved that the graph is not allowable i.e. we found the desired
pair of Proposition 3.14.

Otherwise E is an element of mass either 0 or —2 has support in two elements

of [1,..., k] with coefficients +1 hence it is an edge, since we are assuming that it
does not appear in the relation the only possibility is that it must be of the form
ey — ey, —e, — e, u,v € [1,2,... k] and linearly independent from the edges 4,

this means, by Formula (24), that u, v must have opposite parity in the first case
and the same parity in the second. If S is not equal to the edge E we claim that
the complete graph I' we started from was not minimal. Indeed we construct
a tree T’ by replacing the path S by the single edge E. This is a proper sub-
graph of T by completeness. The complete graph associated to 7" is resonant-
degenerate (it contains all the vertices appearing in the relation). This is a contra-
diction.

(28) ) l=——10=—=9— 8§=—=7

23—y 5——0

1) 1 10/9 8——7
2—-3" 45— O

REMARK 5.10. In the case 1) with an extra edge joining the indices i, j we shall
say that i, j are critical and divide accordingly the remaining indices in two sets
and all edges in two sets 4, B accordingly. Note that in this case for all indices
one hasd, = $,0,1.
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REMARK 5.11. 1In case 2) we divide the edges in three sets 4, B, C where A4 are
the edges of the first loop, B (possibly empty) the edges of the segment and C the
ones of the second loop. In case 1) with an extra edge we divide the edges in two
sets 4, B separated by the extra edge E.

As for a non critical index u we shall say that u € 4 resp. u € B, C if the two
edges 7, 1, /, are in A4 (resp. B, C).

5.11.1. Some geometry of trees. Let us collect some generalities which will be
used in the course of the proof. In all this section 7" will be a tree, for the moment
with no further structure and later related to the Cayley graph.

Given a set A of edges in 7T let us denote by (4 ) the minimal tree contained in
T and containing A4, we call it the tree generated by A. The simplest trees are the
segments in which no vertex has valency > 2. In fact in a segment we have exactly
two end points of valency 1 and the interior points of valency 2.

LemMA 5.12. 1) If A consists of 2 edges then {A) is a segment, more generally if
A consists of 2 segments Sy, S» with the interior vertices of valency 2 then again
{A) is a segment, if moreover S1 NS, contains an edge, then Sy U Sy = (S}, 82>
and all its interior vertices have valency 2.

If we only assume that Sy has interior vertices of valency 2 but we also assume
that Sy N S, contains at least one edge then

2) (81,8 = S1 U S, and it is a segment.

PRrOOF. 1) Consider S; NS>, if this is empty, there is a unique segment joining
two points in S;, S> and disjoint from them, then this must join two end points
by the hypothesis on the valency and the statement is clear.

2) Let A be a segment connected component of S| N S,. Unless S, < S one of
the end points a of A is an internal vertex of Sj, since this has valency 2 this is
possible only if a is an end point of Sy, if also the other end point of A4 is an in-
ternal vertex of S) the same argument shows that S; = S,. The final case is that
the other end of A4 is also an end point of S, and then the statement is clear. O

6. THE CONTRIBUTION OF AN INDEX U

6.0.1. The strategy. We want to exploit Formula (26) in order to understand the
graph. We proceed as follows.

DEFINITION 6.1. Given a quadratic expression Q in the elements ¢; and any
index u we set e,C,(Q) to be the sum of all terms in Q which contain e, but not e2.

Notice that C,, is a linear map from quadratic expressions to linear expressions
in the ¢;, i # u. By Formula (26) we have C,(#) = 0. We observe that only the
terms /;a; or —e;e; ) may contribute to C,(#2) hence:

CM(@) = Z 5,‘(*Cu(f,‘a,') + Cu(ejepr])) + Z 5,’0’,‘(Cu(€[€i+l) + Cu(/[ai)) =0.
l“:giifl [‘:9,':1
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We choose an index u which appears only in 7, | = %,_1e,.1 — e, and in £, =
Sue, — e,y 1. This is any index in case 1) with no extra edge while it excludes the
critical indices in the other cases (see Remarks 5.5 and 5.10).

We separately compute the contributions of

-R' = Z oieiei1 + Z digieeir1, R = — Z oitia; + Z oioit;a;,

i) %=1 i 9=1 i) 9=—1 i) 9=1

since C,(#) = Cy(R") — C (R").

We need the following formula for the elements a;, easily proved by induction,
where the black edges 7 are oriented outwards from the root and ¢, denotes the
color of the endpoint of the segment ending with /:

—2=p0cl, oj=—1, fired
—D<p00l, op=1,  /red
0= 0l Aj=1,  / black
gj Z/</, o/, A =—1, ¢ black

(29) a4 =

If i # u— 1,u set u,(i) to be the coefficient of e, in @; then

LEMMA 6.2. Ifi # u— 1,u we have C,(/;a;) = w,(i)/;.
The contribution C,(R') depends on the two colors of £,1, £, according to the
following table (see Remarks 5.5, 5.10):

(30) colors contribution of R’
rr Ou—1 = —0y —Oy—1€y—1 —5ueu+1 = 5u[eufl - eu+1]
rb Ou—1 = 0y —Oy—1€y—1 — Gu0yeyr1 = —Ouley—1 + oueys1]
br  0y1 = -0y —Ou-10u—1€u—1 — Ouyus1 = O[Oy 1641 — €yy1]
bb 51,,1 = 51, —514,10'“,16”,1 — 0u5u6u+1 = —5,4[0'“,16“,1 + Gu€u+1]

ProOF. The first statement is clear since the edge /; does not contain the term
e,. For the second we see that the contribution to C,(#’) comes from the two

terms e, je,, eye,r1. The term e, 1e, if 0,1 =—1, 1.e. £,_1 1s red, appears
from C,(—0,_1€,-1€4) = —0y_1e,1. If 0,1 =1, i.e. £, is black, appears from
Cu(_aufléufleufleu) = _O-ufléufleufb
The term eye,y 1, if 6, = —1, ie. ¢, is red, gives rise to C,(—d,e,e,41) =
—dyeys1 if 0, = 1, 1.e. £, is black, gives rise to C,(—a,4e4e,41) = —0,0u€111-
We then use the fact that J,, = J,_ if J, is black, while 6, = -, if 9, is red.
Od

We thus write

0= *Cu(%) = Z 51,”;4(1)/1 — Z 5i0-i,uu(i)/i + Lu

i|9=—1,i#u—1,u i|%=1i#u—1,u
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where L, is the contribution from C,(#’) and from the terms associated to
auflfufla au/u-

We now choose the root so that the segment S, generated by the two edges
ty_1, y, appears as follows:

(31) Sy = et Xy

The value of L, depends upon 3 facts, 1) the two colors of 7,1, 7,. 2) The
orientation A of the edges 7,_1, £, which are black. 3) The color g,_; of x,_;.
We thus obtain 18 different cases described in §6.2.3.

6.2.1. The contribution of a,t,. If ¢, = —e, — e,+1 1s red we have a, = /, and
C,(0utuay) = 20,ey41. If £, = e, — e,11 1s black we have g, =1, if 1, =1 we
have a,=¢, and C,(—-d,0,/,a,) = 20,ey41. If 2, =—1 we have a, =0 and
Cy(—dy0,tya,) = 0. Summarizing:

(32) Cu(0utyay) = 20,ey411, £, 1s red
C,(—=0,0.lua,) = 20,41, {4y isblack 4, =1
Cu(=dy0,tua,) =0, 4, is black 4, = —1

6.2.2. The contribution of a,_1/,,—1. In a, | consider the part @, ; of the sum
formed by the edges 7;, £, < /i < ;1.
We have a,_1 = a,_1 + a,_, where

—0uhily + Ly1, ifo,1=-1, ¢, red
- u/lu/ua if u—1 = 1; lu d
(33) Gt = 7 Lo e
Ou 103l + 1, I Ayq =1, 4,1 black
O'uflo'uﬂufu, if lu,1 = —1, /,471 black

We then have
Cu(/uflaufl) = —ay—1 + Cu(/ufldufl)
Finally

Cu</u—1/u) = l914—1‘914814—1 + ey, Cu</uzfl) = _‘gu—lzeu—l'

~0,0uCultu1ty) + Cu(£2 ), 0y =—1, £, red

~ _Uulucu</u71/u)v Oy—1 = 17 /ufl red
Cu(/uflaufl) = 2 _
a1 0w Cuallurl) + Coll2 )y dur =1, /£y black
Juflaulucu(/uflfu)a Ju—1 = —1, £, black
_O-u;{u(_lgueu—l + eu+1) + 2€u—17 Oy—1 = _17 /u—l red
_O-uj-u(_gueufl + eu+1)a Ou-1 =1, ly—1 red

Culluray1) =
u( 1 1) O'u—lO'u/lu(lgueu—l + eu+1) - 2814—17 a1 = 17 Zu-1 black

Cu-10ulu(Suu—1 + eui1), Ju—1 = —1, 4,1 black
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If Z,_ is red we then compute the contribution of 9,1/, 14, getting (recall that
g, is —1 if 7, is red, one otherwise)

€yl + 3€u_1, Ou—1 = _17 u red
_ eut1 +ey—1, ou-1=1, £, red
34) —0,_1dy—1 + 0,
( ) 11 ¥ : _iu[eu—}—l - eu—l] + 2eu—17 Oy—1 = _17 /u black
_/lu[etH—l - eu—1]> Oy—1 = 1, u black

If 7,1 is black we then compute the contribution of —a,_10,_1/,_1a,_1 getting

(35)
_O-u_l[eu_i,_l — eu_l] — 2€u_1, }vu_l = 1, /u red
5 _ _ P) —Gu,1[€u+1 — eufl], JVM,1 = —1, /u red
Tu1Ou Gl T OO o dulewos + €ust] — 2041, w1 =1, 4, black
/

O'uflﬂvu[eufl + eu+l]> 1 = —1, £, black

We thus write if 7,_; 1s red

(36) 0= _Cu(%> = Z 5iﬂu(i)/i

i %=—1,i#u—1u

- Z 5[0-i'uu(i)/i - 51&1&1471 + L

i|9=l,i#u—1u
If 7,1 1s black
(37 0=—CB)= > ol
i|%=—1,i#u—1u
- Y. S, ()i + 0y 10y 181 + L.
i %=l,i#u—1u

In both cases by L we denote the contribution from the Formulas (30), (32), and
(34) or (35).

6.2.3. The 18 cases. So now we expand L
1) /1,4, bothred g, | =1.
Ouleu—1 — eu1] +204eu 1 — Oulenr1 + e, 1) = 0.
2) 4,1, ¢, bothred g, = —1.
Ouleu—1 — eus1] + 20u€u11 — Sulews1 + 3ey-1] = —264€u-1.
3) ¢, red, 4, black o, 1 =1,2,=1.

_514[314—1 + eu—H] +204e411 — 5u[eu+l - eu—l] =0
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4) /,yred, 4, black g, 1 =—1, 4, = 1.
—Ouleu—1 + eusr1] + 204441 — Ouleust — eu—1] — 0u2e_1 = =20,y
5) /4y red, £, black g, =1, 4, = —1.
—Ouleu—1 + eus1] + dulewt1 — eu1] = =204,

6) 7, red, /, black g, = —1, 4, = —1.

—Ouley—1 + eyr1] + dulewtt — eu1] +6,2e1 =0
7) 4,1 black, £/, red o, 1 =1, 2,1 = 1.

Ouleu—1 — eus1] + 20uus1 — Ouleur1 — eu—1] — 20,€,-1 =0
8) £, black, ¢, red g, = —1, -1 = 1.
Ou[—eu—1 = euy1] + 20u€us1 + Oulews1 — ey-1] + 20ueu—1 = 26,411
9) /,1black, f,redo, 1 =1, 1,1 =—1.
Ouleu—1 — eut1] + 20ueu i1 +Oulewst — ey1] = 204e,11

10) 7, black, £, red o, = —1, 2,1 = —1.

Oul—eu—1 — eyy1] + 20,eu41 — dyleus1 — eu—1] = 0.
11) 4,1, /, both black, g, 1 =1, 4,1 =1, 4, = 1.

—Ouleu—1 + eus1] + 20,eu51 — Ouleu—1 + eys1] + 20,641 =0
12) 4,1, 4y, both black ¢,y = -1, 4,-1 =1, 2, = 1.
—Ou—eu-1 + eus1] +20ueuy1 — duleu—1 + eu1] — 20,0, 1 = —20,e,1
13) 4,1, £y both black -y =1, 4,-y = —1, 2, = 1.
—Ouleu—1 + euy1] + 20u€us1 — Ouleu—1 + eu1] = =204,

14) 4,1, /, both black ¢, 1 =—1, 4,1 =—-1, 4, = 1.

—Ou[—eu—1 + eup1] + 204yt — Sulew—1 + eur1] =0
15) 4,-1, £, both black, 6,1 =1, 4,1 =1, 4, = —1.

—Ouleu—1 + eusr1] +Ouleu—1 + eug1] + 20,041 = 20,41

16) /,_1, £, both black gy = —1, Ju_y = 1, Jyy = —1.

_5u[_eu71 + eu+1] + 5u[eu71 + eu+1] —20,6y-1 =0
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17) /4,1, 4, both black g,y =1, 4,1 =—1, 1, = —1.
—Ouleu—1 + eut1] +0ulen—1 +eur1] =0
18) Z,-1, £, both black 7,1 = —1, 4,1 = -1, 4, = —1.
—Oul—eu—1 + eyr1] + duleu—1 + eui1] = 204e4-1

By inspection we see that we have proved the following remarkable:
COROLLARY 6.3. The contribution of L equals to 0 if and only if 6, 1 = Jy_1u.
In this case the coefficient of e, in the end point x,_\ of the segment S, is 0.

If 6,1 = —Ay_1/y the contribution of L equals to +2e,+. In this case the co-

efficient of e, in the end point x,_| of the segment S, is +2.

PrROOF. The first is by inspection, as for the second we check a few cases.
This coefficient comes from the two contributions of 7, |, /,. They appear by

Ou-1|0uruty + Oyu_12u—1lu—1]. Now a,2,0,, = —{, = e, + e,y 1f £, is red and simi-
larly 0,1 Ay—144—1 = ey + e,—1 if £, isred and ¢, = —1. This is case 2). If 7,
is black then the coefficient of ¢, in g, 4, 1Z,_1 1s 1 if and only if 5, 14, | = —1
and in this case this is equivalent to g,_; = —1,_14,. These are cases 8, 9.
Similar argument when 7, is black. |

COROLLARY 6.4. If 4,1 </ we have p,(j) =0 if the contribution of L is 0,
otherwise p,(j) = +2.

6.4.1. Contribution of L equals to 0. We say that u is of type I. We deduce that
the other edges /; satisfy a relation, i.e. either (36) or (37). This is impossible
unless this is the trivial relation with all coefficients 0. Let us draw the implica-
tions of this. Recall that S, is the minimal segment containing the edges 4, 7,1
(cf. Formula (31)).

Notice that any edge /; comparable with 7, and not with /,_; appears in the
relation, only from the term g, ()/; (indeed in this case @, does not depend on
/;). Since then ,(j) = +1 this is a contradiction. Thus no edge is comparable
with 7, and not with /,_;. This means that all internal vertices of S, have valency
2, moreover all edges /; with ¢, < /; < /,_1 appear with coefficient +J,_1 + 9,
coming from @, 10,1 and from =+0;/;u,(j) (see formulas (36)-(37)) we thus
must have that this sum equals zero.

Now, in case 2) if we start from u € 4 U C (see Remark 5.11) this implies that
it is not possible that j € B since the sum of these two coefficients is odd and so it
is not zero, so the segment S, is all formed by elements in 4 U C. If we start from
u € B it is not possible that j € 4 U C since again +0,_1 * J; is odd, so the seg-
ment S, is all formed by elements in B.

Finally in case 1) with an extra edge E it is not possible that E is in between
ly_1, £, otherwise E would appear and only in @,_;. Hence the value of { of the
relation would be +2.
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6.4.2. Contribution of L equals to +2,e,+1. We say that u is of type II. We thus
have, from (36) or (37), a relation expressing +2d,¢,+; as linear combination
of the edges /; # /,—1, /,. Now these edges are linearly independent so such an
expression if it exists it is unique. Let us assume for instance that the relation ex-
presses 2¢, 1, the other case is identical.

In order to understand which elements appear in C,, first remark that the
only edges that may contribute to the expression of C, are those for which
4y < ¢;. If £; is not comparable with 7, they contribute by +d;. If 7, </; <
Zu—1 they contribute by +J; + J,_1. Finally if 7,1 < ¢; they contribute by 0,
+20; by Corollary 6.4.

Case 1A (single loop) no extra edge: such a relation does not exist. For in-
stance if 2¢,_; 1s a linear combination Z cjt; of the edges /; # ¢,_1, £, since e,_;
only appears in 7,_, with sign —1 we must have that ¢,_» = —2 and then 2¢,_» is
a linear combination ZJ c;t; of the edges ¢; # /,—2, Zu—1, {4, continuing by induc-
tion we reach a contradiction.

Case 1B (single loop) an extra edge: we may assume that the extra edge £ =
e; — ¢y, this edge divides the loop into two parts 4, B. The edges in 4 :=
{t1,...,n_1} and E form an odd loop as well as the edges in B and E. We
may assume for instance that 4 < u is an index in B. We know that, for an
odd loop, we can write 2e; uniquely as the sum of the edges of the odd loop
A, E and then we write 2¢, | = +Zk 1 25k/k + 2e¢y, let us call %’ this relation.
The edges appearing in the relation are all the edges of 4, E with coefficient +1
and all the edges /;, h < k < u — 2 with coefficients +2. This relation must be
proportional to either (36) or (37). Notice that E appears in this relation with co-
efficient +1.

This is possible if and only if £ < /,_;. Moreover we know that all the edges
in A appear with coefficient +1 hence by Corollary 6.4 it follows that they must
be comparable with /, but not with Z,_;. Finally for the edges in B we have that
the /; with i < k < u — 2 are comparable with /, and, since they appear with co-
efficient +2 in #’, we must have either 7, < 7,1 or /,_1 < /. All the others are
not comparable with 7,,.

Denote by 74 and T the two minimal trees generated by A4, B respectively.
We have:

COROLLARY 6.5. 1) If the indices of A and B are all of type I then either T4
and Ty form two disjoint segments separated by E, or the edges in A LU B form
a segment, the extra edge is outside this segment so the graph is not minimal
degenerate.

2) If there is an index in B (resp. in A) of type II, the two minimal trees T 4 and
T generated by A, B respectively are segments and can intersect only in a vertex or
in the edge E. If they intersect in a vertex then all v € A (resp. all v € B) have type I
and the vertex is an end point of E.

PRrROOF. 1) In this case we know that all the segments S, for u non critical are
segments which do not contain £ and with the interior vertices of valency 2. By

a simple induction we have that (J,_ , S, and |, 5 S. are segments which do not
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contain E and with the interior vertices of valency 2 (cf. Lemma 5.12). If these
two segments have an edge in common then, by the same Lemma, their union is
a segment not containing £ and thus this segment gives a minimal degenerate
graph and the one we started from is not minimal. The same happens if they
meet in an end point of both. The only remaining case is that 74 and T form
two disjoint segments separated by E.

2) We have just seen that all the edges in A4 lie in branches originating from
vertices of the segment S, different from the last vertex of /,_;. On the other
hand the edges in B are in S, and possibly in the other branches originating
from the end points of S,. This implies that the two trees T4 and T can only
have an intersection inside S,,.

Take any non critical index v € 4, if v is of type I the segment S, is either dis-
joint from S, or it may intersect S, in a vertex, since S, has the interior vertices of
valency 2 and it cannot overlap with S, otherwise one or both of its ending edges,
both in 4 would also be in S, which on the contrary is all formed by edges in B. If
v is of type II we can apply the same analysis to v and deduce that the segment S,
intersects S, in the edge E.

If all indices in A are of type I by the previous analysis the tree they generate
can meet S, (and also Tg) only in one vertex so they lie in a single branch. Apply-
ing Lemma 5.12 it follows that the tree 74 is a segment and it intersects S, in a
vertex.

Now suppose that this vertex v is not an end point of E. Call S the segment
from v to E. If /; € S we must have that if j is not a critical index 1, 4 it must be
of type I (otherw1se we could not have that the edges in 4 follow Z;) and thus
/i1 €S. Also /}+1 € S otherwise it should be of type II but then we have again
that the vertex v is outside the segment Sj1, by induction we arrive at a contra-
diction 7, € S.

As for T we have now proved that it is formed only by the edges in B and by
E. By induction we see that T = | J,.p S, and in fact it is a segment. In fact let
T’ : Uh<]<l<k S;, assume T’ is a segment and consider T’+1 T’ U Siy1- By
1nduct10n and construction these two segments intersect at least in the edge /;. If
at least one of the two is only formed from indices of type I we see again by in-
duction that its interior vertices have valency 2 and by Lemma 5.12 we have that
their union is a segment. If i 4 1 is of type II as well as one of the indices j with
h < j <i we have that Tj contains E. By the previous analysis it follows that
inside the segment T and S;; all interior vertices have valency 2 hence again
Lemma 5.12 applies. |

Case 2. A doubly odd loop is divided in 3 (or 2) parts: the two odd loops 4,
C and the segment B (possibly empty) joining them. We divide this into two
subcases:

Assume first u € A (the case u € C is similar). We have +2d,¢,4 a linear
combination of the edges in B, C with coefficient J; (or all —J;) equal to 2e;
plus, (cf. Formula (22)), 2.0 125 l; = —20,_2e,_1 — 2e; from which we have the
required expression for —2¢,_;, similarly for —2¢,;. This is the unique expres-
sion %’ as linear combination of the linearly independent edges ¢ # 4,1, .
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As before this relation must be proportional to either (36) or (37). Inspecting
these relations we first observe that, if j € B, C the edge /; must have coefficient
+d;. By Corollary 6.4 if /,_; < /; we have that y,(j) = +2 hence by inspection we
deduce that 7,1 X /.

If 4, < ¢; < £, the coefficient of /; in the two possible relations comes from
two terms, a term +dJ; coming from the first two summands (since in this case
w,(j) = =£1), and a term +9,; from @, ;, hence no index in B or C can appear
in @, by parity. Since these edges appear in the relation 2’ we deduce that all /,
j € Bu C are in branches which originate from internal vertices of S,. Inside the
segment S, there are only edges of A. If we are in the case L = +2d,¢,_; all edges
/; with £,y < ¢; appear with coefficient +26; hence they are in the set i € A4,
i < u— 2. The remaining edges /; in A with i > u do not appear hence they either
satisfy ¢, < /; < £,_1 or are not comparable with /,. Similar discussion for L =
+20,e,1. A similar consideration holds if u € C.

Assume u € B. If u € B the contribution of L is +4e,+;. The two cases are
similar.

i) If the contribution is +4e,_, this comes from a sum 2 ) _._ , d;/; = t+4e; plus
2Z;e3,j <u20il; = talew1 £ el

ii) The contribution +4e,;, comes from the sum 2)._.d;/; = +4e, plus a
sum of 23 . p o1 0i0; = t4lews £ ).

This formula for L must coincide with that given by (36) or (37).

We claim that there is no edge /; with 7, < ¢; and /; is not comparable with
/y—1. Indeed this edge would have y,(j) = +1 and would not appear in a@,_;.
This is incompatible with the fact that the coefficient must be +26;. Thus we
deduce that all internal vertices of the segment S, have valency 2.

Finally if 7, < /; < Z,—1 we have that the coefficient of /; in the relation asso-
ciated to Formulas (36) or (37) is +6; 4+ 6,—1. Note that u € B is not critical and
hence /,,/,_1 € Bsod,_1 =+2. If j € A U C we have that this number is odd so
it cannot be one of the coefficients appearing in the relation i) or ii). In case 1)
finally we deduce that if j € 4 we have /,_; < /; while all the j € C lie in the
branches of the tree from the root different from the one containing /.

COROLLARY 6.6. 1) The edges in B always form a segment, its internal vertices
have valency 2.

2) If there is an index of type II in B all edges in A and all edges in C are sepa-
rated and lie in the two segments originating from the two end points of S,.

3) If there is an index of type Il in A (or C) all edges in A and all edges in C are
separated and lie in two segments which can be disjoint or meet in one vertex.

4) If all indices are of type I then either all edges in A and all edges in C are
separated and lie in the two segments originating from the two end points of S,. or
the edges of A L C form a segment.

PROOF. 1) The proof is similar to that of Corollary 6.5. We already know that, if
J € Bis of type I inside the segment S, there are only edges /; with j € B and its
internal vertices have valency 2, we have proved this now also for type II. The
claim follows from Lemma 5.12.
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2) Assume there is an index u € B of type II with contribution +4e, ;. Analyz-
ing the corresponding relation we have then that all edges /; with i < u — 2 and
all edges in C precede 7, all edges in 4 follow 7,_;.

Finally if 4,1 < ¢; then /; appears in the relation so since in the relation ap-
pear either all the edges in C and none of the edges in A or conversely we must
have that these two blocks lie in the two branches originating from the two end
points of S,,.

3) Assume there is an index of type II in A, we then have seen that T¢ is
formed by branches originating from interior points of S,. Now if u € C is of
type I the segment S, cannot contain edges in 4 otherwise it would contain inte-
rior vertices of valency > 2. If u € C is of type II the segment S, does not contain
edges in 4 by the previous argument.

4) If all indices are of type I we have seen that all segments S, forue Au C
are formed by edges in 4 U C and their interior vertices have valency 2. Finally
the statement that we have segments follows from Lemma 5.12 as in Corollary
6.5. O

6.6.1. All indices are of type I, L =0. We have already seen (Case 1) that the
case of the single loop and all indices are of type I is not possible. Let us thus
treat the special case when we are in the doubly odd loop and still all indices of
A v C are of type I or when just the indices of 4 are of type I but we know that
they form a segment.

If neither S, S, S¢ contains a critical vertex we have seen that the graph
spanned by 4 U C is a segment as well as Sp and we have.

(38) a') 0 Sae y So oy,

In this segment we take as root one on its end points and denote by &;, 4; the
corresponding values of color and orientation (with respect to this root). Recall
that the notation gy, 4; is relative to the segment S, as in the previous discussion
(see Formula (31)). In the next Lemma we analyze the 9 cases in which L = 0.

LEMMA 6.7. We claim that every edge ¢;, j € A (resp. j € C) has the property
that 6; = 66; if red and 6; = 04;G; if black for 6 = 6,6, (resp. 6 = 6,6, where h is
the minimal element in C).

PROOF. By induction 6,_; = 6, if red and 6,_; = d,_15,_1 if black.
Look at S,. If 4,1, £, are both red ¢, = 1, (Case 1))

514 = _511—1 = _5511—1 = 66140'14—1 = 5614
If /,—; is red and ¢/, is black we are in Cases 3), 6) and we have g, = 4,
0y = 0y_1 = 06,_1. We also have ¢,_1 = —G,_16, if £,,_1 < ¢, and 7,1 = G,_1Gy
if 7, < 4,_1.

S5 = {_55Mj~u :5614114 lur < 4y
! 5614)~u = 5614214 /u < {u—l '
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If /,—1 is black and 7, is red we are in Cases 7), 10) and we have o, = 4,. If
ly1 < {,wehave J, 1A, = —1, 6,1 = G041
Ou = —0u1 = —06y_ 1l = —0Gu0y_1 -1 = —0Guly—1 1 = 06y
If 4, < /-1 we have Ay 121 = 1, Gyt = —Gu0u1
Ou = —0u_1 = —0G, 11 = 0G40y 1)y = OGyluy 151 = OG.

If 4,1, £, are both black we are in Cases 11), 14), 16), 17) and we have
Ou—1 = Aulu— by Corollary 6.3. If /,_; </, (in the order of the total segment)
we have A, 14,1 =—1, 6,1 = G,0,_1

Oy = 0y1 = 50_'147111471 = 55u0u712u71 = 55u}~uflzufl = 00,.
514 = _514—1 = _56-14—1/_111—1 = 56—140-14—1/_114—1 = 5614)41—1114}_%—1

Now clearly 4, Vst = T O

Now we take the left vertex of S, ¢ asin (38) as root, that is we consider it as
the 0 vertex and want to compute first the value of the other end vertex v of Sy ¢
and then the end vertex w of the total segment appearing in (38). Recall that we
have an even number of red edges so that the end vertex is black, let us say that
this vertex belongs to the last edge /;. We can compute it by using the various
options of formula (29). If /; is red or if it is black and 4; = —1 we have that the
last vertex is v = b; and not a;, in the remaining case v = a;. In all cases a simple
analysis shows that v=+5 ", 4;6;/;.. By Lemma 6.7 we have /ljo"/ = d0; hence
> jea %i0jl; = +2e1 and 51m11arly > . ¢ 40jtj = +2ep. We thus have that
v=+12(e; —ep) or v =+2(e; + ¢p) but this is impossible for a black vertex which
has mass 0.

Now a similar argument on the segment Sp gives as value of Sp either
+(ey —ep) or —ey — e

In the first case we take as root the point v. Now the left and right hand ver-
tices are a = +(e; —ep), b = +2(e; — ¢p). The relation is b = +2a so the reso-
nance must be C(b) = +2C(a) which we see immediately is not valid.

It remains the possibility « = —e; — e5, b = +2(e; — ¢3), in this case fixing one
end vertex to be 0 the other is a + b = —e; — e, + 2(e; — ;) Which also gives a
non allowable graph from Definition 3.13 and Proposition 3.14.

If the edges in A form a segment and are of type I the same argument
shows that fixing the root at one end the other end vertex is —2¢; for some i. We
deduce

COROLLARY 6.8. The case of all indices of type I does not occur or it produces a
not-allowable graph 3.13.

6.8.1. Indices of type Il 1f there is at least one index of type II the case
analysis that we have performed shows that between two edges in A there
are only edges in 4 and the edges in 4 form a segment, the same happens for
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B, C. Denoting S, Sp, Sc these segments their union is a tree, the internal ver-
tices of Sp have valency 2, so their relative position a priori can be only one of the
following.

a) b)

Sp

Sc
Sa

SB SB

Sa

Sc Sc

where if only one of S, S¢ contains a critical vertex we have the special cases
b’) c’)
Sc Sp Sa Sp

Sa Sc

In all these cases it is possible that the two critical vertices coincide as in
b”)
SB

Sg
Sa

In all these cases we may also have that B is empty so Sg does not appear.

2) If 4 contains no index of type II) we apply to it Lemma 6.7 and deduce that
the segment equals 6 ) _,_ ,6;/; = —2de;. Since the mass of a segment can only be
0, —2 we deduce that if one extreme is set to be 0 the other is —2e¢;.

3) is similar to 2).



THE ENERGY GRAPH OF THE NON-LINEAR SCHRODINGER EQUATION 269

Notice that at this point we have proved for the doubly odd loop Theorem 4
in all cases except b), ¢), d), b’). Of course b) and c) are equivalent and in fact b’)
is a special case of b).

4) Let us treat the case in which u € 4 gives a contribution to L equal +2¢,_;
(the other is similar), from our analysis in our setting all edges /;, j < u — 2 must
be comparable with 7,.

In all cases we have that S4 and S¢ have a unique critical vertex which divides
the segment.

So S is divided into two segments, one X ending with a red vertex x the other
Y with a black vertex y since in S, there is an odd number of red edges which are
distributed into the two segments. ~

We choose as root the critical vertex. With this choice we denote by &, 4 the
corresponding values on the edges (in order to distinguish from the ones g, 1 we
have used where the root is at the beginning of S,,).

LEMMA 6.9. i) The edges in Y, X have the property that, 5,6;; = ¢ is constant.

ii)
Y=Y G4G=0) &l x=—) Gkit;=-0) 5

jey jevy jeX jeX
o=-1, x—y=-2¢

Proor. i) We want to prove that on X and Y the value J;;4; is constant. For
this by induction it is enough to see that the value does not change for 7, 7, ;.
When they are not separated we can use Lemma 6.7. When separated we first
compare the values that we call 5; when we place the root at the critical vertex
with the values o; when we place the root at the beginning of 7, and we easily

see that ,6,-1 = 6,_1. In order to prove that §;5;4; is constant we need to show
that when 7, 7, are separated

1 =04 16y 1210480t = Ou1Gu—1 10
We have 4, = J,_ while 1, = —%,/4,. In other words we need
—O0u—1 30— Ay—1044 = 1.
Since by definition J,_1%, = J,, we have to verify that
~0u-1%40u1u-10uby = —0y_12q—17y = 1.

This is in our case the content of the second part of Corollary 6.3.
ii) By definition

V=) Gl =0 il x=—) Ghti=-0) 9

jeyY jeyY jeX jeX

hence x — y = =03, ,0;/; = 02e1. But yy(x) = =2, n(y) = 0 implies 6 = —1. O
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If we take as root the vertex x the other vertex of Sy is x + y.
PrOPOSITION 6.10. If the graph is resonant x 4+ y = —2e; for some j.

PrROOF. We choose as root the critical vertex of S4. We have x — y = —2¢; =
> _j¢49;Z;- This is a linear combination of the edges outside the segment S there-
fore the resonance relation has the form:

C(x) = C(y) = Y %C(w)

where the vertices v; are linear combination of the edges not in 4. Therefore these
vertices have support which intersects the support of the vertices in S4 only in ey,
hence we must have C(x) — C(y) = ae? for some «. Applying the mass 7 we see
that #(C(y)) =0, n(C(x)) = —1 hence o = —1.

We now apply the rules of the operator C to x red, y black

—e} = C(—2e)) = —C(—y) + C(x) + xy = —=C(y) + y? + C(x) + xp
and get that C(x) — C(y) = —ef — @ — xy. Thus if the graph is resonant
we must have y?) 4 xy = 0. One easily verifies that y® is an irreducible poly-
nomial unless y is of the form y = f(e; — ¢;). In this case from the factorization
y? = —xp and the fact that 7(x) = —2 we deduce that x = —¢; — e;. Since
x — y = —2¢; we must have that f =+1 and if f =1 we have ¢; = ¢;, x+ y =
—2e¢;. If f=—1 we have e; = e, x + y = —2e;. |

We have thus verified that the graph is not-allowable by Definition 3.13
for the two extremes of the segment S,, a similar analysis would apply to
Sc.

6.11. The extra edge. We treat now case 1) with an extra edge E = 3¢; — ¢p,
3 = +1. We have the function { such that {(e;) =1, {(4;) = 0, Vi and {(E) = 2.
In this case the even loop is divided into two odd paths. We divide the indices
different from the two critical indices 1, 4 in two blocks 4 = (2,...,h—1), B=
(h+1,...,k—1) and argue as in the previous section.

From Corollary 6.5 it follows that, either the extra edge is outside the segment
spanned by the /;, this may happen if we are in a situation as (up to symmetry
between A, B)

a) b)

E S Sa SB Sa

In these cases the edge E can be removed and the graph is not minimal. Other-
wise it could separate the two segments spanned by the two blocks 4, B or
it could appear in one or both of these segments according to the following
pictures:
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c)

SB E Sp

Sa

SA SB

Sp E Sp Sa E Sa

Cases d), e) are special cases of ¢), and in fact follow from previous results, so
we treat case c).

6.11.1. E =e| — ey is black. We look at the picture c).

c) a

We can fix the signs J; so that

h-1 k
E Oili = —e1 — ey, 5 Oili = e + ep.
i=1 i=h

Of the two vertices y, x one is black the other is red. The same for a, b.
Case 1: «, y black b, x red gives for the various paths:

Sp=z+x, Sp=yp, S\=a Si=z+b

y:ZGj;{j/jzéz(sj/j’ X:—E—Zﬂjij/j:—E—éz(sj/j

jesy jesy jeS} jes)
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a=Y ot;=08"Y 0l b=-E=Y ohli=-E-0) 5

jes§ jesy jes! jes!

X—y= —5251/1 — E = —5(61 +€h) — €] +€h,
ieB

h—a= _5’25/,- —E=06"(e1 +e) —e +e

ieB

for two signs J, &'. Applying the mass # we see that § = 1,6’ = —1 hence x — y =
b — a = —2e is the relation among the vertices of the graph. By resonance

x—y=b-—a, = C(x)—C(y)=C(b) — Cla).
We now apply the rules of the operator C to x red, y black
—e? = C(=2¢)) = —C(—y) + C(x) +xp = —=C(y) + yP + C(x) + xy

and get that C(x) — C(y) = —e} + y® + xy = —e? + @ + (y — 2¢;) y. On the
other hand this element is a quadratic polynomial in the elements e; appearing
in the edges of B which must be equal by the resonance relation to a quadratic
polynomial in the elements ¢; appearing in the edges of 4. Now the edges of 4
have in common with the edges of B only the elements e, e;, so —e? + y) +
(¥ — 2e;)y must contain only these indices, it easily follows that if an element ¢;,
i # 1,h appears in y with coefficient « we must have « = —1, moreover if e¢;
appears in y no e;, j # 1 can appear in y otherwise we have a mixed term in y?
of type 2e;e; which does not cancel. Next we can only have y = e; — ¢; in order to
cancel the mixed term from —2e; y.

In this case the segment from y to x has value x — (—y)=x—y+2y=
—2¢; + 2(e; — ¢;) = —2¢; and the result is proved.

The other possibility is that y = a(e; — ¢;) for some o, since y is in any case a
sum of edges in B this is actually not possible by computing the value of (.

a, y red b, x black is symmetric to the previous case.

Case 2: a, x black b, y red gives, as in the previous case, the value b —a =
—2e;. Then:

St4+z=x, Sy=y, Si=a Sl-z=0b
y==Y ahli==30) je Syt
jesy
X=E+Y oli=E+3Y_je S
jesy

X—y:5z5iff+E=5(€1 +ep) + el —ep,
ieB

by mass o =1 and y — x = —2¢;, we argue as before.
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6.11.2. E = —e| — ¢, is red. In this case the even loop is divided into two even
paths. We can fix the signs J; so that

h—1 k
Zéi/,-:el — €p, Zé,‘/l': —e1 +ep.
i=1 i=h

We still have a situation as in the previous analysis with some changes.
Case 1: «, y black b, x red gives for the various paths:

y = Zajlj/jzézéj/jv x:E—ZGjAj/j:E—é‘Z&]/j

jesy jesy jeS} jeS}
a= g gjlil; =0 E ojlj, b=E E ojlil; = E =0 E ojt;
jesy jesy jes} Jjes}

X — y = —525,/1+E = _5(_61 +eh) — €] _eI’H

ieB

b—a= —5/25/1‘4-E:5/(€1 —ep) —e—ey

ieB

for two signs 8, 6. Thus x — y, b — a can take the values —2e;, —2¢,. If they take
the same value we have x — y = b — a and we argue as in the previous section.
Otherwise up to symmetry we may assume that x — y = —2¢;, b —a = —2¢,
and x — y = b — a + 2z is the relation among the vertices of the graph. By reso-
nance

x—y=b—a+2z, = C(x)—C(y)=C(b) — C(a) + 2C(E)
= C(b) — C(a) — 2eye).

We now apply the rules of the operator C to x red, y black
—ef = C(=2e1) = =C(=p) + C(x) +xp = =C(y) + ¥ + C(x) + xy

and get that C(x) — C(y) = —e? + y® + xy = —e} + @ + (y — 2¢;)y. On the
other hand this element is a quadratic polynomial in the elements e; appearing
in the edges of B which must be equal by the resonance relation to a quadratic
polynomial in the elements ¢; appearing in the edges of 4. Now the edges of 4
have in common with the edges of B only the elements e, e;, so —e? + y?) +
(y — 2e;)y must contain only these indices, it easily follows that if an element e;,
i # 1,h appears in y with coefficient « we must have « = —1, moreover two dis-
tinct elements of this type cannot appear otherwise we have a mixed term in y> of
type 2e;e; which does not cancel. Next we can only have y = e; — ¢; in order to
cancel the mixed term from —2e; y.

In this case the segment from y to x has value x — (—y)=x—y+2y=
—2e¢; + 2(e; — e;) = —2e¢; and the result is proved.
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The other possibility is that y = a(e; — e;,) for some o, this is possible only if
a=xland y =3 s 04 all edges are involved, and x = z. Then the segment
from y to x =z = E has values E — y = —e; —¢; + (e; — e) = —2ey, —2ey,.

a, yred b, x black is symmetric to the previous case.

Case 2: a, x black b, y red gives as in the previous case the value b —a =
—2e1, —2ey,. Then:

y== oit;==0) je Syl

jesy
x=-E+) ogkit;=-E+d) je Sl
jesy
y=x=-0Y 0ili+E=—-3(—e1+ey) —er — ey € {—2e1,—2es}.

ieB

We argue again as before.
Part 2. The irreducibility theorem

7. THE MATRICES

The operator ad(N) = 2iQ under study acts on the space spanned by the fre-
quency basis and here it decomposes into blocks corresponding to the connected
components of the Cayley graph Gy restricted by Defnition 2.12 (Theorem 2).

For each such component 4 we have seen that Q acts as a scalar K(a) plus a
matrix C4 homogeneous of degree 1 in the variables &;. According to Formulas
(12), (13), (14) the entries of C4 = (cq 5) are the following. If a € A, a =), aje; €
7" the diagonal entry ¢, = —a(&) = =Y, aié. fae A, a= (3, ae;)t € 7™t
the diagonal entry ¢, , = a(&) = ), aié;.

If a,b € A are not connected by an edge ¢, , = 0. If a,b € Z" are connected
by a black edge e; — ¢; then ¢, » = 2,/¢;¢;, if a,b € 7"t are connected by a black
edge e¢; —¢; then ¢, = —2,/¢;¢;, finally if a, b are connected by a red edge
—e; — ¢; then one of them is in Z" the other in Z"'z and we have ¢, , = —2,/&;¢;
ifae 7", be 7"t and ¢, = 2,/¢;; in the other case. If red edges are not pres-
ent the matrix is symmetric.

Notice then some rules, if b e Z™ we have Cy, = Cy4— b(&)Id, finally
Cye=—-Cy.

By Lemma 2.14, when we expand the characteristic polynomial of such a
matrix the square roots disappear and we get a polynomial, denoted y ,(¢) (or
sometimes just y,) monic in ¢ and with coefficients polynomials in the variables
&; with integer coefficients. Our goal is to prove that

THEOREM 5 (irreducibility theorem). If 4 is a non-degenerate allowable graph in
Gy the polynomial y ,(t) is irreducible as polynomial in Z[t,¢].
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We prove furthermore that the graph A is determined by y ,(¢), this we call the
separation Lemma 9.2.

In fact in this form the statement is not true, we need to use the fact that
mass is conserved. This is enough for the dynamical consequences. In algebraic
terms the conservation of mass consists in restricting to the coset of G, (one
of the connected components of the Cayley graph) of elements a, ar € G,
aeZ”, n(a) =—1. We also need to use systematically Theorem 4 which tells
us that we can restrict to those graphs in which the vertices are affinely inde-
pendent.

REMARK 7.1. The hypothesis that the graph is non-degenerate is necessary. In
the simple example of

1,2 1,2
0—>62—€1 —>2€2—2€1

one easily verifies that the characteristic polynomial is not irreducible.

On the other hand it is likely that the condition to be allowable is not neces-
sary in order to prove irreducibility and separation. To avoid it complicates the
proofs and, since we do not need the stronger result, we have not tried to discuss
it.

8. IRREDUCIBILITY AND SEPARATION

8.1. Preliminaries. Observe first that, given g € G, A = G we have that y () is
irreducible if and only if y ,,(¢) is irreducible.

Consider a projection 7; : Z™ > Z/(2) — Z™ ' % 7/(2) where we remove
the i” coordinate 7;[(ay,...,an),d] — [(ai,...,a,...a,),0]. Take now a set
Ac 7" > 7Z/(2) of vertices and consider the graph obtained from I'y by re-
moving all the edges which contain i in its marking, call this new graph r.
Even if A4 is connected this new graph I'j may well not be connected. We now
claim

PROPOSITION 8.2. If A is connected the map m;, restricted to T, is injective and a
graph isomorphism with Iy, 4, a graph in 72" % 7/(2).
If A is non degenerate each connected component of Iy, 4 is non degenerate.

PrOOF. We know that the mass / = 5(a) depends only on the color of a so that
we have ¢; = 57(a) — n(m;(a)) and thus if @, b are black vertices (or red vertices),
ni(a) = mi(b) : n(a) = n(b) hence a; = b; = a = b. Otherwise, if a is black, b is
red then it is clearly 7;(a) # m;(b) because 7;(a) is black, 7;(b) is red. If we decom-
pose X = X,, into the elements containing the index i and the complement X, we
see that 7; establishes a 1-1 correspondence between X, ;1 and X,,_; from which
the second claim since 7; is a group homomorphism. The third claim follows
easily from the definitions. O



276 M. PROCESI, C. PROCESI AND B. VAN NGUYEN

A simple corollary of this proposition is that.

COROLLARY 8.3. If we set &; =0 in the matrix C4 we have the matrix Cp,(y),
hence

X420 = Xmy(a)(0)

Let By, ..., By be the connected components of n;(A). We have

k
T125,(8) = Zuiy () = 24 (D)1 -
j=1

As a consequence, we have the following inductive step.

COROLLARY 8.4. Assume that A is non degenerate and that we have already
proved the irreducibility theorem for m — 1 or for n < |A|. We deduce that the fac-
tors 1, (t) of Jn,a)(1) are the irreducible monic factors of y 4 ()¢, —-

We want to prove Theorem 1 by induction as follows. We assume irreducibil-
ity and separation in dimension n — 1 and prove first the separation in dimension
n and finally irreducibility in dimension 7.

Take a connected 4 and let / be the mass of a black vertex of 4, then the mass
of a red vertex is —2 — /.

LeEmMA 8.5 (Parity test). 1) If we compute t at a number g % ¢ mod (2), we have
x4(9) # 0.

i) If a linear form t+),aié;, a;€Z divides y,(t) we must have
> a; =/ mod (2).

PrROOF. i) The matrix C4; modulo 2 is diagonal and y,(7) =
[1(z+ai(¢)) mod (2). If we compute modulo 2 and set all & =1, we get
24(1) = (t+¢)" mod (2), hence y,(9) = (g + )" =~ g+ ¢ mod (2).

ii) A linear form ¢+ ) a:&;, a; € Z divides y,(¢) if and only if we have
T4 (— Zia,@) = 0, then set &, = 1 and use the first part. O

We shall use the parity test as follows.

LEMMA 8.6. Suppose we have a connected set A in 7", in which we find a vertex a
and an index, say 1, so that the graph U4 has the following properties:
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we have.

® | appears in all and only the edges having a as vertex.

e When we remove a (and the edges meeting a) we have a connected graph </ with
at least 2 vertices.

o When we remove the edges associated to any index, the factors described in
Corollary 8.3 are irreducible.

Then the polynomial y 4(t) is irreducible.

PrOOF. We take a as root, and translate the set A4 so that « = 0. Setting & =0
we have by Corollary 8.3 and the hypotheses, that y ,(¢) = tP(z) with P = y_,(1)
irreducible of degree > 1. Thus, if the polynomial y,(¢) factors, then it must
factor into a linear ¢ — L(¢) times an irreducible polynomial of degree > 1.

Moreover modulo &, = 0 we have that 0 and / coincide, thus L(&) is a mul-
tiple of &;.

Take another index i # 1,/ if @ is an end and the only edge from a is marked
(1,h) otherwise just different from 1 and set &, = 0. Now the polynomial y ,(7)
specializes to the product []; 7, () where the 4; are the connected components
of the graph obtained from A by removing all edges in which i appears as mark-
ing. By hypothesis {a} is not one of the 4;.

If no factor is linear we are done. Otherwise there is an isolated vertex d # a
so that {d} is one of the connected components A;. The linear factor associated
is 1 +d(¢)|; o Clearly we have that the coeflicient of &; in d(¢) is £1 (since the
marking 1 appears only once). This implies that L(£) = +&; and this is not possi-
ble by the parity test. O

9. THE SEPARATION LEMMA
Given a connected graph G = Gy consider 7G = {(—a, —9) | (a,0) € G}.

REMARK 9.1. 7G is a connected graph, if and only if G contains only black
edges.

ProOOF. The connected components of the Cayley graph are the cosets Gu,
u € G. If there exists a red edge (—e; — ¢;, 7) connecting two elements a, b € G
then ba~! = (—¢; — ¢, 7) = th(ta) ™ = (e; + e;,7) ¢ Gy. th, ta are not in the
same connected component of the Cayley graph. Instead ba ! =e¢; —¢; =
I'b(raf1 = e; — ¢;, ta, th are connected by a black edge marked j, i in 7G. O

LEMMA 9.2 (Separation lemma). Given two connected non-degenerate allowable
graphs G, Gy = Gy if 16, = X6,> then Gy = Gy or Gy = 1G).

If we take G = G, then G is of mass —1 we have that G is of mass 1, we de-
duce that a connected color marked graph G of mass —1 can be recovered from
its characteristic polynomial.
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Proor. We will prove this lemma by induction. Whenn = 0: y;(1) =t + a, it is
easy to see that G = {(a,+)} or G = {(—a,—)}.

Induction process: n > 1. Suppose that we have the separation and the irredu-
cibility for graphs of dimensions kK <n — 1. Take a connected colored marked
graph G = {(v1,01),..., (Uns+1,0m)}, (0;,0;) € Z™ > Z/(2), the associated matrix
Cg and its characteristic polynomial y;.

Associate to G the list L of vectors w; := d;v;, we see that these vectors are
affinely independent. If the w; have all the same mass then the graph G has
only black edges and then it is either the graph with vertices w; or with vertices
w; as seen before, if they have different masses then the masses are of type k
for black vertices and k 42 for red and the graph G is thus reconstructed
from L.

Therefore we need to show that, from the characteristic polynomial, we can
recover the list L := {wy,...,w,}. Before starting the proof let us make a useful
remark, the characteristic polynomial gives as information the trace of the matrix
C¢ and thus in particular the sum ;| w;(¢) and the mass s := >/ n(w;). If
we have « elements in the list of mass k and (n — a) of mass k + 2 we have that
s =nk +2b =n(k +2) —2(n— b). Thus if we know that a certain number / is
the mass of a vertex we can deduce

LEMMA 9.3. If s = nh then all vertices in G have the same color. If nh < s then h
is the mass of the black vertices and there are b red vertices where s = nh + 2b.

Similarly if nh > s then h is the mass of the red vertices and there are b red vertices
where s = nh — 2(n — b).

We set one of the variables &; = 0 for instance &; = 0. We know that the ma-
trix Cg specializes to the direct sum of the matrices Cg, where the G; correspond
to the various connected components of the graph G which are obtained by re-
moving all edges in which 1 appears as marking and dropping in each component
the first coordinate of the various vertices. We have that specializing &; = 0 we
specialize the polynomial yg; to []; xg,. Since we are assuming irreducibility in
dimensions less than n — 1 the factors g are all irreducible and thus can be de-
termined by the unique factorization of polynomials. Therefore all the vectors of
71 (L), that is the w; with the first coordinate removed can be recovered uniquely
(up to the sign) by induction and we obtain a list of n vectors L' : {(*,b;,¢3 4. ..,
C‘m,,')}.

Now we set another variable, say &, = 0. By similar arguments as above all
the w; with the second coordinate removed can be recovered by induction giving
alist L2 : {(a, %, ¢34,y Cmi)}-

Now our problem is this: if we know the vectors obtained from L after remov-
ing the first or the second coordinate can we recover the given vectors? We shall
need to perform a case analysis.

1) Recovering the list L:

We thus consider the vectors L2 obtained from L by dropping the first two
coordinates (x,*,c¢3,...,¢,) and collect the ones where c¢3, ..., ¢, are fixed. The
first remark is that, if in this list a given vector (x, x, ¢s, . .., ¢;;) appears only once
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then we know exactly from which vector it comes from the two lists L', L? and so
we can reconstruct the vector v in L from which it arises. Then by Lemma 9.3 we
can determine if in the graph all vertices have the same color or, if this is not the
case, which is the mass of the black end red vertices and how many there are.

Next since the vectors in the graph, by assumption, are affinely independent,
we have at most 3 vectors in L, giving the same vector (%, *,¢3,...,¢,) in L2
since 4 of such vectors lie in a 2-dimensional plane so they are not affinely inde-
pendent.

a) Assume we have 3 vectors vy, vp,v3 € L giving the same vector ¢ = (x, *,
¢3,...,Cn) in LY2 and let ¢ = 5(c). We claim that v, vy, v; cannot have the
same color, in fact this would imply that they have the same mass and then they
lie in a line and cannot be affinely independent. Let then a;, a», as resp. by, by, b3
be the first, resp. second coordinates of these vectors (deduced from the two lists
L', L?) we need to be able to reconstruct the 3 vectors v1, vy, v3 € L by matching
the a; with the b;. First observe that we know the total mass m of vy, v2, v3. This is
m = 3k + 2 or m = 3k + 4 depending if we have two or 1 black vertices among
vy, U2, v3. Since 3k + 2 is congruent to 2 modulo 3 while 3k + 4 is congruent to
1 modulo 3, we can deduce both k and the number of black vertices from m.

Call [ := k — ¢, now consider one of the vectors in L', start from (ay,*,¢),
if there is no b; with a; + b; = [ then there must necessarily be one, say b; with
a; + by =1+ 2 and then (ay, *, ¢) comes from the red vector (ay, by, ¢). Similarly
if there is no b; with a; + b; = [ + 2 then there must necessarily be one, say b;
with a; + by =1 and then (a;,*,¢) comes from the black vector (aj,bi,c). In
this case we can easily see how to match the other two vectors, in case the other
two vectors have the same color we must match them so that a, +b; =1,
az + b; = I’ where I’ = [ if the color is black and / + 2 if red. We claim that only
one match is possible, in fact if we had a; + b3 = a3 + b, = ar + by = a3 + by we
would have that the two vectors vy, v3 coincide.

Suppose now we know that the two colors are distinct, then as before, if there
is no b;, j = 2,3 such that a, + b; = / we know that there is one, say b, for which
ay + by =1+ 2 and we have reconstructed the two vectors (a2, b7, ¢), (a3, b3, c).
Finally it is possible that b3 = b, + 2 and a, + b, = [ then we have a3 + b3 =
! + 2 which implies a3 = a, = a and again we reconstruct the two vectors (actu-
ally by Definition 3.13 this is not allowed).

It remains to analyze the case in which none of the g; satisfies the condition
that it cannot be paired uniquely.

So let us assume that, up to reordering b; is maximum. There is one a; which
must be paired with »; and we are assuming that it can also be paired with
another b; giving a different color. We must necessarily have that the value of
this a;, which we may assume reordering to be a; is a; = [+ 2 — by, we have re-
covered a red vector (ay, by, ¢). The rest of the analysis follows as before.

b) There are in L'? only 2 vectors of the form (x, *,c3,...,¢,) with cs, ..., cp,
fixed. For simplicity we denote ¢ := (c¢3,...,¢,) and their sum by ¢. We know
then two vectors in L2 of the form (ay, *,¢), (a2, *,¢) and two vectors in L? of
the form (*, by, ¢), (%, bs, ¢) which specialize in L'+? to the given vectors.
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A priori in L we can either have (a1, b1,¢), (a2,b2,¢) or (a1,b2,¢), (az,b1,¢).
The first pair gives two vertices of the same color if and only if a; + by = a; + by,
similarly for the second. If we have a; + by = ay + by, a; + by = a» + by we de-
duce that a; = ap, by = b, and this is impossible since it implies that in L we
have two equal vectors, therefore in at least one of the two pairs we have different
colors. We may thus assume (changing the indices if necessary) that a; + b, =
ar + by + 2, this implies a; —a, = by — by +2. Write a; + by =a, + bo + x, x €
(=2,0,2) and thus 2(b; — by) =x—2. If x= -2 we have by — by = =2, a) = a,
and we argue as before, this case is impossible.

If x =2 we have by = by = b, a; = a, + 2 = a + 2 we have in the possible list
of vectors (a +2,b,¢), (a,b,c). We know that this list is not allowed by Defini-
tion 3.13. Assume that x =0thus b =b, b =b+ 1, a = a», ay = a+ 1 we have
the two possibilities 1) (¢ + 1,b,¢), (a,b+ 1,¢) or 2) (a+1,b+ 1,¢), (a,b,c). In
this case both cases are a priori possible, in fact if the graph were just a single
edge marked e; — e; or —e; — e, the two cases cannot be recovered by the two
specializations but only from the full characteristic polynomial.

€]

G =(e1,4) —5 (e2,4)  G2=(0,4)
B Ca=|, i OB o], o VA2
bovEas =& ) TO2VESL &4 -4

The characteristic polynomials are distinct:

—e—e

(—e1 — ez, —),

£+ (& + &)t — 38,8, £+ (&1 + &)t 44418

but the two specializations coincide.

So we need a deeper analysis. First let us assume that we know if all the
vectors have the same mass or we know the mass of black and red vertices.

If we know that all vertices have the same mass then case 2) is excluded. Sup-
pose then that we know the mass k of a black vertex.

If case 1) holds we must have that a + b + ¢ is either k — 1 or k + 1, if case 2)
holds we must have that a + b + ¢ = k. Thus we can determine in which case we
are.

The other possibility is that we do not have the previous information but by
the previous analysis this means that in the list L!? each vector appears twice. If
the list consists of just two vectors we can conclude by the explicit formulas of the
characteristic polynomial.

Assume we have at least two pairs one u, u, giving (x,*,¢) the other v;, v,
giving (*,*,d). In each case we know that the two vertices are connected either
by the edge ¢; — e, or by —e; — ;. We deduce that the only possibility at this
point is that there are only two such lists so L has 4 elements and we must have
both edges e} — e; and —e; — e>.

The two edges involve two disjoint pairs of vertices so that the graph must be
of the form

+(e1—e2)

/ )
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if / does not contain any of the indices 1, 2 or possibly of the form

a a
i(eleQ)l \ / —ej—eo i(€1€2)i><
b 4 C—Gl—ez 4 b 4

d a——b—d
+(e1—e2)

if / contains one of the indices 1, 2. The edge / can have either color (which deter-

mines the color of the further edge).

In particular the graph has either 3 black and one red vertex or 3 red and one
black vertex so either s =4k +6 =4(k+ 1) +2 or s = 4k + 2.

This gives two possible values for the mass of black vertices, k or k + 1. Fi-
nally specializing to &; = 0 where i # 1,2 appears in Z and to & = 0 (or & = 0)
if 1 resp. 2 does not appear in / we see that of the 4 vectors in L2 at least one
appears only once and we are back in the previous case which we have treated.

O

C Cc

—€]1—€2

d

10. IRREDUCIBILITY THEOREM

We prove Theorem 5 by induction. Assume the separation and irreducibility in
all dimensions less than n, we will prove the irreducibility in dimension n. Since
this property is invariant under translation we often choose a vertex as the root
and assume that it corresponds to 0. We thus always deal with combinatorial
graphs and we may identify the black vertices as elements @ in Z™ with 5(a) =0
and the red vertices as elements a in 7" with 5(a) = —2 (Remark 2.10).

Therefore from now on we assume that G is a combinatorial graph with n + 1
vertices and 7" a maximal tree in G with n linearly independent edges.

LemmA 10.1. We have one of the following possibilities:

1) We have n indices all with multiplicity 2.
il) We have at least two indices with multiplicity 1 in distinct edges.
iil) We have two indices with multiplicity 1 in the same edge the remaining with
multiplicity 2.
iv) We have one index with multiplicity 1 one with multiplicity 3 and the remaining
with multiplicity 2.

Proor. We must have at least » distinct indices appearing in the edges, other-
wise these edges span a subspace of dimension less than n. In total on the n edges
of T appear 2n indices counted with multiplicity. If every index appears with mul-
tiplicity > 2 we must have #n indices all with multiplicity 2.

If we have at least 3 indices of multiplicity 1 we are in case ii), if we have only
two indices of multiplicity 1 in the same edge, the remaining indices satisfy prop-
erty i) for the remaining n — 1 edges. Assume finally that only one index appears
with multiplicity 1. Of the remaining k > n — 1 indices appearing assume a have
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multiplicity > 3 and » multiplicity 2 hence
a+b>n—1, 3a+2b<2n—1=>b>n-2
we deduce that ¢ = 1 and the multiplicity is 3, we are in the last case. |
We thus have to treat 4 cases.
REMARK 10.2.

e Dash lines mean that they may be black or red.
e Black edges are denoted by single lines, red edges-by double lines.
e A4 denotes the completed graph obtained from the graph A.

Sometimes given a combinatorial graph G by a block A of G we mean a con-
nected complete subgraph 4 of G. If A4 is a block in a maximal tree 7" of G the
completion 4 is a block in G. By abuse of notation we denote by y ,(¢) := y ;(¢) to
be the characteristic polynomial of the matrix associated to 4. We now fix a max-
imal tree in G.

LemMA 10.3. Ifin T there are two blocks A, B and two indices i, j such that:
1) 7, j do not appear in the edges of the blocks A, B.
ii)

(40) 1i=xg modulo & =& =0,

then |B|=|A|=1, A={(a,01)}, B={(b,02)}, a,b € Z" and b= "{ + o;0;a.
Where ¢ = nje; + nje;, n; +n; = —1 + g201.

Assume that i, j appear at most twice in the tree then if o, = 1 we may have
= t(e; —¢j), £2(e; — €)). If o201 = —1 we may have { = —e; — e;, —2e;, —2e;.

PRrOOEF. Since the degree of the characteristic polynomial is the number of ver-
tices by assumption |B| = |4|. Choose the root in A. This gives to each vertex v
asign g,. Let A = {(ay,01),...,(ay,0,)}; B={(b1,01),...,(b;,d,)}, then to these
graphs we associate as in §9 the list L of vectors v, = a,a;, and wy, = d;by,. Since i,
J do not appear in A4 (resp. B), the vectors v, have the same i-th and j-th coordi-
nates and we can write v, = 0y, + a, similarly for B the vectors w, = wy, + b where
a, b are linear combinations of e;, e¢; and 7, ), are linear combinations of the e;,
S F#I, ]

The list of vectors 7y, is the one associated to the graph 4 once we set equal
to 0 the elements ¢;, ¢; hence it is the list of vectors associated to the polynomial
2l £=E—0 similarly wj, is the one associated to y | £=E=0- Hence by the separation
lemma up to reordering we may assume that ¢, = w;, hence v, =w;, +c¢, ¢ =
a—b = nie; + nje;.

Clearly if r > 1 we have that w, = w; — v; + v, so that the vectors (vy, wy) are
not affinely independent contrary to the hypotheses.

We have thus proved that |B| = |A| =1 hence 4 = {(a,01)}, B={(b,02)}
and finally b = n;e; + nje; + g201a. Of course n;e; + nje; is the value up to sign
of the path joining a, b. If g201 =1 we have 5(a) = n(b) hence / = n(e; — ¢;)
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if both indices 7, j cannot appear more than twice in the path we have |n| < 2.

If 6,01 = —1 we have #(a+b) = —2 hence / = ne; — (n+ 2)e;. A similar case
analysis gives the possibilities / = —e; — e;, —2¢;, —2e; if both indices 7, j cannot
appear more than twice in the path. O

COROLLARY 10.4. Under the assumptions of Lemma 10.3 the number of edges in
the path from a to b in which appears any marking h # i, j must be even. The parity
of the number of edges in which appears i equals the parity of the number of edges
in which appears j.

In a maximal tree 7 in a graph I' consider an edge / containing the indices
i, j. Denote by 4, B the two connected components obtained by removing /
from T.

LeEMMA 10.5. Assume that the two connected components A, B do not have the
index i in any edge. Then any other edge in ' connecting A, B must contain the
index 1.

ProOOF. In a path which is a circuit you cannot have that an index appears only
once (or even an odd number of times). O

We now consider two edges /1, /> containing the indices i, & and i, k respec-
tively. When we remove these edges in 7" we have 3 connected components in 7'

A LM B Rk C

in the complete graph T once we remove all the edges containing i the graph B is
a connected component. Then we may either have other 2 components A, C or a
connected component 4 U C. We shall use this fact systematically as follows. By
induction in the first case we have y(1)[: o = x ;()x5(t)x(¢) modulo &; = 0 is a
factorization into irreducible factors, in the second case a factorization into irre-
ducible factors is y;(t) = x ;5(2)x5(¢) modulo &; = 0.

Hence if G is not irreducible in the second case it can only factor into two
irreducible factors y;(f) = UV with U = yz(1), V = y;5¢(t) modulo &; =0,
in the first case we may have either a factorization into 3 irreducible factors
16(t) = UVW with U = y ;(1), V = x3(t), W = x&(t) modulo &; = 0 or 3 possi-
ble factorizations into 2 irreducible factors.

10.6. Indices appearing once.

LeEMMA 10.7. If there exists a pair of indices, say (1,i), such that 1 appears only
once in the maximal tree T and T has the form:

1,h

A---B
Figure 1

where i # h, and i appears only in the block B. Then y is irreducible.
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PROOE. Let the root be in A. Since 1 appears only once in 7T, every edge in G
that connects 4 and B must have 1 in the indexing. We have:

(41) X6 = x ;x5 modulo & =0.

By the previous discussion if y is not irreducible, it must factor into two irreduc-
ible polynomials: y; = UV such that U = y ; modulo &; = 0.

Let By, ..., Bs be the connected components obtained from B by deleting all
the edges which have i in the indexing, B; be the component that is connected
with 4. We have:

(42) X6 = X iop X5 --- X5, modulo & =0.

Remark that deg(U) = [A4| < deg(x755) = |Al +[Bi]. U=y  is irreducible
modulo &; = &; = 0, then U must be irreducible modulo &; = 0. Hence

(43) U=~ 15 modulo &; = 0 for some j € {2,...,s}

From U = y; modulo &; = 0 and (43) we deduce y ; = X5 modulo & = ¢&; = 0.
So, by Lemma 10.3, |4]| = |B | = 1. Let 4 = {a}. Then by Lemma 8.6, for the
vertex a and the index 1, x is irreducible. O

COROLLARY 10.8. Ifthere are two indices which appear only once and not in the
same edge in the maximal tree then y is irreducible.

We have thus treated one of the 4 cases of Lemma 10.1.

LemMaA 10.9. If there exists a pair of indices, say (1,i), such that 1 appears only
once in the maximal tree T while i appears twice and T has the form:

q_M g Lh o bk o
Figure 2

then either y is irreducible or |A| = |C| =1 or |B| = |D| = 1.

PrOOF. We have y; = y 15155 modulo & = 0 so if x4 is not irreducible it has
a factor U = y ;53 modulo &, = 0. This implies U = y ;53 modulo & = ¢&; = 0.
Now x¢ = 1 15pX55¢ OF X6 = X iXpX5oc modulo ¢3 = 0 and inspecting the two
factorizations the claim follows from Lemma 10.3. a

10.10. Two indices appear only once and in the same edge. Let these two indices
be 1, 2. If there exists another index, say 3, which appears only once, then we
can replace 2 by 3 and we are back in the case of Corollary 10.8. Otherwise by
Lemma 10.1 we have exactly n — 1 distinct indices different from 1, 2 and they
appear twice. Take one of these indices, say 3. If we cannot apply Lemma 10.7
we must be in the case, in which the maximal tree 7" has the form
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Qg L2~ 3h o

Figure 3

where the indices 1 and 3 do not appear elsewhere in the tree. By inspection
of figure (3) all edges in G which connect 4 and C contain 1, 3 in the indexing,
all edges in G which connect B and D contain 1, 3 in the indexing. Then we
have:

(44) X6 = XICBXToD modulo f] = 0.
(45) 1 = XiXBocXD or yg= XIoDXBoC modulo 63 =0.

The second case holds when A, D are joined by some edge which does not contain
3. From (44) we see that if . is not irreducible, then it has an irreducible factor
U = y ;55 mod. & = 0 which implies U = y ;x5 modulo ¢; = &3 = 0. Compar-
ing (44) and (45) taking into account the degree and using the irreducibility of
i X5 X5 modulo &; = &3 = 0 we get the following possibilities

(46) U= yixps Xiop X5oc modulo &3 = 0.
In the first two cases of (46) we have

U=y =x;xp modulo&; =& =0
which implies
(47) X5 =xp modulol =¢&3=0

Hence by Lemma 10.3 we must have: B = {b}, D = {d}. But the index 2 appears
only once in the path from b to d contradicting Corollary 10.4.
In the last case of (46) we have

U=yip=xgxc modulo ¢ =&3=0
which implies
(48) 1i=xz moduloé =&3=0
We arrive at the same conclusions.

10.11. Only the index 1 appears once in the tree. From Lemma 10.1 there is only
one index, say 3, which appears three times. All other indices, different from 1, 3,
appear twice. We need to distinguish two subcases:

10.11.1. When 1, 3 appear together in one edge. If T has the form as in figure (4)
then, by Lemma 10.7, y, is irreducible.
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1,3 2.k, 2,k
A-op oo 2o

Figure 4

Therefore, assume that 7 has the form as in figure (5)

g2 g 18 2k o

Figure 5

We start the discussion as in the previous paragraph
(49) X6 = X1oBXToD modulo &; = 0.
(50) X = XiXgocXp O Xg = X ioDXBoC modulo fz =0.

The second case holds when A, D are joined by some edge which does not con-
tain 2. From (49) we see that if y is not irreducible, then it must factor into two
irreducible polynomials: y; = UV, U = y ;- modulo ¢; = 0 implies U = y ;x5
modulo & = ¢, = 0. Comparing (49) and (50) taking into account the degree
and using the irreducibility of  ;, x5, x5 modulo &; = &, = 0 we get the following
possibilities

(51) U=y ixp Xiop Xgoe modulo &, = 0.
In the first two cases of (51) we have
U=yg=x;xp moduloé =& =0
which implies
(52) 25 =xp moduloé =& =0
In the last case of (51) we have
U=yig=xgxez modulo¢ =& =0
which implies
(53) 2i=xs modulo& =& =0
By symmetry we need to consider only case (53). By Lemma 10.3 we get
4| = |C| =1, 4 ={0}, C={c}, ¢ = Tne;+me(0). By inspection of Figure (5)
ny,ny € {£1}.

(54) n(c) €{0,-2} = c=+(e1 —e2),—e1 — e
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We have thus proved:

LemMa 10.12. Either |A| = |C| = 1 and there is an edge marked (1,2) that con-
nects A =0 and ¢ = C. Or the same statement for B, D. Moreover, all indices, dif-

ferent from 1, 2 must appear an even number of times in every path from 0 to ¢
(resp. b, d).

Assume A = 0, C = ¢, consider the index k.
1) If k1 # 3, then k) must appear once more in the block B like:

O ~
bSO o
2,kq | >
‘ ~
k)l,S ~ 2,](?2
By -2 By—->¢c-2"D

Now we can apply 10.7 to the pair (1,k;) and get the irreducibility of y;.
ii) So we can assume that k; = 3, consider the index k.

I
AN 2,k2
B-— ¢ p
1,3

A) If k, # 3, then either k, appears in the block D as in figure (7), and then by
Lemma 10.7 for the pair (1, k), x is irreducible; or it appears in the block B as
in figure (6).

0
| N\
2,31 O
|
N 2,ko
Bi—-——-c—->--D
R
\kz,é
\
By
Figure 6
0
PN o
2,31 N7
|
N 2,ko
By—-—-—-c—-—-=-Dy—-—--D
2 1,3 1 ka,s 2

Figure 7
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In the case of figure (6) we can apply Lemma 10.12 for 1, k. Since
|0 U B;| > 1 the only possibility is that B, = b, and there exists an edge with the
marking (1, k>) that connects ¢ and b;.

Now we claim that we must have s = 3 in fact s must appear an even num-
ber of times in both paths from 0, ¢ and from b,, ¢, this is possible only for
s =3.

0
P 2,1
231 N7
| N
N 2,ko
1——-——-c———D
| 1.3 ,
v
k2,31 /1
l st
bo

We now remove the two edges marked 1, 3 and k», 3. In the resulting maximal
tree 3 appears once and we can apply Lemma 10.7 to the pair (3, k»), g is irre-
ducible.

B) If k, = 3 and |B| > 1. Let i be an index that appears in B. If i appears twice
in B, then, by Lemma 10.7 we get the irreducibility of y,. Otherwise, i appears in
this form:

Q,-i ~~~~~ By iniim e R g ) D,
ihi
B,
Figure 8

This case is excluded by Lemma 10.12 for the pair 1, i. The case |D| > 1
is treated similarly. So now we have to consider only the case, when |B| =
|D| = 1.

C) k, =3, |B| = |D| = 1. Up to symmetry, we have 4 subcases, displayed in
figures (9)—(12).

Figure 9
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b
1,3
2,3
2,1 \¢ 23 d
0
Figure 10
O—o=23 b
31
1.2 21 |12
d : >C
2.3
Figure 11
0. 2,3 b
1,3
1.2 1,2 1.3
2.3 ¥
d c
Figure 12

By using the program Mathematica we have verified that the characteristic
polynomials of these graphs are irreducible.

10.12.1. When 1, 3 do not appear together in any edge. We have three possible
cases (given in figures (13), (14), (15)).
1) When T up to symmetry has the form as in figure (13):

A-_ B
Figure 13

where 3 appears only in the block B then, by Lemma 10.7, for the pair (1, 3), x4
is irreducible.
2) When T up to symmetry has the form as in figure (14):

AR p 12 e b

Figure 14
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We have
(55) modulo él = 07 XG ~ mem
XAXBSCXDXE
(56) modulo & =0, y;= {/M—DXWXE
XACDXBOCOE
XiXDXBSCOE

Arguing as in previous cases, if y, factors then we can factor it as UV with
Ue,—0 = x ;55 Analyzing the possible values of Us,_o we have, comparing (55)
and (56) and setting &; = &; = 0, the following possibilities:

ABoC = yj=xgmod. & =& =0
U Xiop O Xixp = xg =yxpmod. ¢; =& =0

PRV {X,{ =upap=xpmod. & =& =0
DAE

i xg=xpmod. & =& =0

It is enough to exclude the first 3 cases of (57).

Case 1. If y; = xz modulo ¢ = {3 =0, by Lemma 10.3 and by inspection
we deduce that 4 = {0}, C = {¢} and ¢ = +(e; — e3), —e; — e3. Hence there is
an edge marked 1, 3 that connects 0 and ¢. We can then replace the maximal
tree 7 with the one in which we keep this edge and remove the one marked 1, 2
and we find ourselves in the case treated in the previous paragraph.

Case 2. If yz = x5 modulo & =¢&; =0, then, by Lemma 10.3 B = {b},
D = {d} and 2 should appear an even number of times between them, again a
contradiction (we are in the case k, = 2).

Case 3. If x5 =~ yz modulo &; = &3 = 0, then, by Lemma 10.3 and choosing
the root at B we have B = {0}, E = {e} we have the same contradiction as in the
previous case.

3) When T has the form:

PR O T
I
‘3,]{,‘2
I
D
Figure 15
(58) 16 = X iCBXTODOE modulo f] =0

From (58) we see that if y is not irreducible, then y; = UV, where U, V are ir-
reducible, U = y ;=zmodulo &; =0, = U = y ;yz modulo &, = &3 = 0.
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XAXBSCXDAE
XADABOCXE
(59) modulo &3 =0, yq; =< XioEXBocAb
XiXBSCXDCE
XA0DUEXBOC

As for U it may be congruent modulo &; = 0 to

XBoc:  Xiops  XACE

XiXlp> XiXE> XpXE» XAGDUE

giving the following subcases: 1) y= = x;, 2) x5 = xp> 3) X5 =X 4) X5 = XpoE
modulo &; = &; = 0. The fourth case can be excluded by cardinality. We treat the
other 3 cases.

1) xgle,—e,—0 = 14> by Lemma 10.3, 4 = {0}, C = {c}, and ¢ = +(e; —e3),
—e; — e3. Hence there is an edge marked 1, 3 that connects 0 and ¢. We can then
replace the maximal tree 7" with the one in which we keep this edge and re-
move the one marked 1, 2 and we find ourselves in the case treated in the previ-
ous paragraph.

2) x5 = xp modulo & =& =0 by Lemma 10.3 = |B| =|D| =1, B= {b},
D = {d} and o,d + opb = +(e; — e3), —e; — e3. Hence there is an edge marked
1, 3 that connects b and d. We can then replace the maximal tree 7" with the
one in which we keep this edge and remove the one marked 1, 2 and we find our-
selves in the case treated in the previous paragraph.

3) x3 = xp modulo &, = &3 = 0 is similar to case 2), changing the role of k,
and k3.

10.13. Every index appears twice in the tree.
LemMma 10.14. If y is not irreducible the graph is a tree.

PrROOF. Assume there is a an edge marked i, j in the graph and not in the tree,
then a segment in the tree together with this edge form a dependent circuit, thus
we can remove an edge marked a, b in this segment and add the edge 7, j in order
to obtain another maximal tree. Clearly in a circuit there is at least an edge such
that the indices i, j are distinct fro the indices @, b. This means that in the new
maximal tree one of the indices i, j appears with multiplicity 1 and we are back
to a previous case. O

From now on we thus assume that the graph is a tree 7. We start with some
special cases:

10.14.1. n =2.

T: —61—62:0—>61—€2

is not allowable (but its characteristic polynomial is irreducible).
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10.14.2. n=3. Up to symmetry of the indices T has the form as in figure (16) or
as in figure (17):

1,2 2,3 1,3
0-—-—-b—=—-¢c——--d

Figure 16

1,2 2,3
0---b--=--c
\

11,3
|
d

Figure 17

REMARK 10.15. If all edges in T are black, or there are exactly two red edges
then the edges are linearly dependent.

1) When the graph T has the form as in figure (16) a) If all edges are red, then
G = T is not a tree:

Figure 18

We need to consider the cases, when in 7 there is one red and two black edges.
Up to symmetry we may assume the red edge is the first or the second.

b) When the red edge connects 0 and b:

bl) When T has the form:

We have
b=—e1—e, c—b=e—e¢3 = c=—e; —e.

Hence G = T is not a tree.
b2) If T has the form:

12 23 1,3

We have b—c=e¢; —es,d—c=e;—e3=d—-b=e  — e, e in G there is a
black edge marked (1,2) that connects b and d. Hence G = T is not a tree.
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b3) If T has the form:

0=pH < c—d
t VIS 0 0
et =2V&1& t+&+ & 21/62¢3 0
AT 0 WEE & +26 & 2VEE
0 0 VIS 128 + 28 — 285

By using the program Mathematica we computed y, and verified that it is irre-
ducible.

¢) When the red edge connects b and c:

cl) If T has the form:

1,2 2,3 1,3
0—=b=c+—d

wehave b+c=—ey —e3,c—d=e  —e3=b+d=—e — ey ie. thereisared
edge marked (1,2) that connects b and d. Hence G = T is not a tree.
c2) If T has the form

1,2 2,3 1.3
0—-b=c—d

we have b =e; — ey, b+c= —ey —e3 = ¢ =e] —e3, i.e. there is a black edge
marked (1, 3) that connects 0 and ¢. Hence G = T is not a tree.
c3) If T has the form:

02 p 22 2y
we have
t —2\¢&1& 0 0
— =266 =&+ & VSIS 0
T 0 GG & +2+ & 2VEi&G
0 0 2v/¢18s t =28 428 + 285

We used the program Mathematica to compute y, and to verify that it is irre-
ducible.

2) When T has the form as in figure (17):

a) When in T there are 3 red edges, then G = T has the form:

Figure 19



294 M. PROCESI, C. PROCESI AND B. VAN NGUYEN

This figure can be obtained from figure (11) by exchanging the role of indices
(i.e. the role of variables &;, &, &;). Hence y is irreducible.

b) When in T there is only one red edge, by the symmetry property of 7' we
may suppose that this red edge connects 0 and b.

bl) If T has the form:

1,2 2,3
—b—>c

0
1,3

d

in G there is a red edge marked (1, 3) that connects 0 and ¢. Hence G = T is not a
tree.
b2) If 7" has the form:

we have b = —e; — ey, d —b =e; —e3 = d = —ey — e3, hence in G there is a red
edge marked (2, 3) that connects 0 and d. Hence G = T is not a tree.
b3) If T has the form:

12 2.3
——h+—"—c

i

d

0

we have b—c=e —e3, b—d = e —e3:d—c:ez—el_, hence there is a
black edge marked (2, 1) that connects ¢ and d. Hence G = T is not a tree.

10.16. n > 4. At this point we are assuming that we have n > 4 edges in a max-
imal tree 7 and n indices, each appearing twice. Thus given an index, say 1, it
appears in two edges paired with at most two other indices, thus we can find an-
other index, say 2 which is not in these two edges. Up to symmetry we may have
six cases displayed in figures (20)—(25):

D
!

1,
\ .
1,h 2,k 2,5
Aot oo M g

Figure 20

A71,7h7372,7k70727,i7D71Lj7E
Figure 21
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D

\

2,i |
Aflithflika"fQLjfE

Figure 22

C
2,1‘:
4L é R
:2,]‘
D

Figure 23

h k K N
At op P o Mo p Y g
Figure 24

A lh g Yo 25 20 o

Figure 25

When we put & = 0 or & = 0 we have 3 connected components in the graph,
so by induction we deduce that, if the characteristic polynomial is not irreducible
it can factor in at most 3 factors. We will perform a case analysis in order to pro-
duce two pairs of disjoint blocks which give under specialization &, = &, = 0 the
same characteristic polynomials and we apply Lemma 10.3. In this way we will
prove the irreducibility of y; in each case, displayed in figures (20)—(25).

10.16.1. Figure (20).

D

\

1,0l
A,L;h,B,QLk,C",ZLj,E

We have

(60)  xr = xaxsocopxp mod. & =0,  yr = x4 ptcopXe mod. & =0,

Suppose that y is not irreducible, then there is an irreducible factor U congruent
to either y, or yp or finally y4xp modulo & = 0.
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Then U is congruent to y; or x4,z Or ¢ p modulo & = 0.

We now specialize &; = & = 0 and apply Lemma 10.3 and we have several
possibilities of two blocks giving the same characteristic polynomial. Of these
possibilities some are excluded by the parity condition of the indices 1, 2 in the
path joining them.

We then see that we are left with the ones listed which all produce an extra
edge contradicting the assumption that G = T is a tree.

D d

! 1,2 .
1,0 ’// 1,

| , \

P R A
N ‘ 2,k 2,
1.}?\ :1’2

N
0
d
N
1,1‘1 N
| )
PR Y .
10.16.2. Figure (21).
A-Y_p_2_c_2_p_Y_§f

(61)  xr = xaxpocopxe mod. & =0,  x7 = x40XcXpor Mmod. & =0

Suppose that y; is not irreducible, then there is an irreducible factor U such that
U is congruent, modulo &, = 0 to y, or y or finally y 7 z.

Then U is congruent, modulo &, = 0 to either y or y 5 Or xp g We reason
as in previous cases, specializing &; = &, = 0 we deduce that there are four pos-
sible applications of Lemma 10.3 for the blocks 4, E and the blocks C, B, D. We
exclude those for which an index 1, 2 in the path connecting them occurs only
once and the other 0 or 2. We then are left with the cases:

(62) A= des e =g, modé =& =0

By symmetry we need to consider only the first.

Assume thus that y, = y- modulo & =&, =0, by Lemma 10.3 we have
|C| = |A| =1, C= {C}> 4= {0}5 c= Ti€1i€2(0)> ¢= i(el - 82), —€1 — ée.
Hence there is an edge marked (1,2) connecting 0 and c.

0

7

Lh , 1o
,

/

Vi . .
2,k | 2,1 1,7
B-C_¢-2_p-7_E

and G = T is not a tree. 0
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10.16.3. Figure (23).

c
\

2,i |
b Lk
Ao Mg
|

12,5
I
D

We have:

(63)  xr = xaxcopopxe mod. & =0, xp =y 0 poXcxp mod. & = 0.

If y4 is not irreducible by considering a suitable irreducible factor U and by a
simple analysis we get the following subcases:

4= Xes XA=Xp» Xe=Xpy Xg=Xc mod. ¢ =& =0.

By the symmetry of the tree in figure (23), we need consider only the first case.
We get easily by Lemma 10.3 [4| = [C| =1, 4 = {0}, C = {c}, c = £(e1 — e2),
—e; — 3. So 0, ¢ are connected by an edge and G = T is not a tree.

E
!

1,k |
| .
1,h 2,7
0-2"-B-2-D
N I

AR
1,2 N\

;
I

c O

10.16.4. Figure (22).

D

\

2,i |
AilihiBilLkié72ijiE

We have:

(64) XT|¢1=0 = xaxpXcopor Mod. & =0, x7 = xyupucxpre mod. & =0,

Suppose that y is not irreducible. The usual reasoning gives an irreducible factor
U sothat U = x4, xp, x4y modulo & = 0.

We may have U = yp, xg, xpXg: Xpor modulo & = 0.

Arguing as in the previous case we only have the possibility

18 = xp, xp=xg modulo¢; =¢ =0.
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By symmetry we need to consider only the first case. We get by Lemma 10.3
B ={b}, D={d}, and d, b are joined by an edge +(e; — e3), —e] — e5.

d

s
12,i

Ayl e
1,k

)

12,

and G = T is not a tree. O
10.16.5. Figure (24), (25). We treat these two cases together.

I) 4 _Lh_p 2k o _L_p_Zi_ |

m 4-“Y—-p-Y c_2_p_%_g
PrOOF. 1) We have:

(65)  xr = xaxpocxpor mod. & =0, 7 = xaopXcopxe mod. & = 0.

Inspecting (65), by a simple analysis we get the following possibilities:

If y; is not irreducible it has a factor U congruent, modulo &, = 0 to i) y, or
i) yg,c or xpog- If U =y, modulo &; = 0 we must have U = y modulo &, =0
and

(66) X4 = xpmod. & =& =0.

Otherwise we have that U is congruent to y 4 Or ¥ p modulo & = 0.

(67) xa=xc» Xc=Xp> XB=Xp» Xp=X4 XpgZ=yxp mod. ¢ =& =0.

The last two can be excluded by parity of occurrences of 1, 2 in their path. The
first two are symmetric. Therefore we are left to consider three cases y, = g,
X4 =Xc> XB = Xp-

If we are in case y, = yc, xp = xp by Lemma 10.3 we get |4| =|C| =1,
A ={0}, C={c} (resp. |B| = |C| =1, A = {b}, C = {c¢}) are joined by an edge
+(e; —e3), —e; — ey and G = T is not a tree.

If we have y, = y; always by Lemma 10.3 we get [4| = |E| =1, 4 = {0},
E ={e}, e € {£2(e) — €2),—2¢1,—2e2}.

(68) ) oM p i c_L_p 2,
1)
(69)  xr = xaxsxcopop mod. & =0,  xr =y pocxpie mod. & =0,

If y is not irreducible, one easily sees that there is a factor U congruent modulo
¢ =0to yy or yp or finally y 5. Then U modulo &, = 0 is congruent either to
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Xp O xg or ypxg- Applying Lemma 10.3 a priori there are 4 possibilities that a
block A4, B specializes to a block D, E, but in that Lemma we also have the parity
of 1, 2 in a path joining the two blocks must be the same hence we only have two
cases.

i) 3 = xp modulo & =&, =0, and |[B| = |[D| =1, B={b}, D ={d}, and d,
b are joined by an edge +(e; — e;), —e; — e2. In this case we contradict the fact
that G = T is a tree.

il) x4 = xg modulo &, =& =0 and |4]| = |E| =1, 4 = {0}, E = {e}. By in-
spection since e # 0 we must have e = +(2¢; — 2e;), —2e;, —2e,. All indices in the
path from 0 to e appear twice.

(70) nm o-Y_p-_c_¥_p__o

We now have to exclude in both cases the second possibility (68), (70).
I) Start from the first case. If k = h we have

0 L p_M_c_Li_p_2_,

If i # j we must have that i appears in one of the blocks B, C, D. For instance if i
isin D we have

1L,h 2,h 1i 2,j
B Cc-—Y—-D —¥_D, -2 ¢

0—
we apply the previous analysis to the pair /2, i and deduce that |D, U e| = 1 a con-
tradiction.
DI
!
lu,i
i j
Oflithfth,C,l,’ 7D72£ e
is like Picture (20) for indices 2, i.
The other cases are similar to this or to the previous case of (24). If i = j we

have

0_Lh_p_x_c_L_p_ 2,
We apply the previous analysis to the pair %, i deducing e = +2(e; — e;), —2e;,
—2e¢y, clearly a contradiction since we already have e = +(2¢; — 2¢,), —2e¢1, —2e5.

If k& # h consider the positions of k. If k e Bu C

I : 1 2,i 2,j
0o _p —sk_pg Lk _c_%_p_2_,
1,h 1,k k 2,i 2,j
0_Lh_p Lk sk, 2 p 2,

by the previous discussion applied to k, 2 we have that [0 U B;| =1or |[0u B| =1
a contradiction. If k € D

1,/ 1,k 2,i 5, k 2,j
o-Y_p-Y_c_2_p _sk_p, __o,
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we are in the previous case of (24) for the indices &, 2 deducing [0 U B| = | again
a contradiction.
IT). We now finish the second case. If kX = / we have

o-Y_p_t_c_2_p_2_,

we are in the same situation but for the pair 4, 2. We deduce that e = —2¢;. Now
if i = j we are in the same situation for the pair 4, j (or 1, j) and deduce that
e =12(e; — ¢;), —2e;, —2e; a contradiction. If i # j we must have that i appears
in one of the blocks B, C, D. For instance if i is in D we have

1,/ 1,7 2,i N 2,7
0—'—1—B—7—1—C——’I—D1—E—Dz—;/—e

we apply the previous analysis to the pair 1, i and deduce that |D, ue| = 1 a con-
tradiction. The other cases are similar to this or to the previous case of (24).
If k # h consider the positions of k. If k e Bu C

I : 1, 2, 2,j
o_t_p _sk_pg Lk _c_2_p_2_,
1,/ 1,k k 2 2,j
0Lt p Lk sk, 2 p 2,

we apply the previous discussion to &, 2 and have that [0 u B;|=1or|0u B| =1
a contradiction. If k € D

0-“_p-Y_c__p _sk_p,_2_,

we are in the previous case of (24) for the indices k, 2 and again have |0 U B| =1
a contradiction. O
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