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Group Theory — A note on subgroups of cofinite volume, by Martin

Moskowitz, communicated on 9 November 2012.

Abstract. — This note explores the relationship of closed cofinite volume subgroups H to lattices

in Lie groups G, particularly when G ¼ GR, the group of real points of an algebraic Q-group. In
some, but by no means all cases, H contains a lattice.
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Let G be a Lie group and H a closed subgroup with G=H of finite volume. A
question I was asked some time ago by Michel Kervaire at a lecture I gave on this
subject was whether all such H are lattices. In many cases, for example G ¼ Rn,
or more generally when G is a simply connected nilpotent group G with center
ZðGÞ, given a lattice, or in the latter case a log lattice, G, using the fact that exp
is a global di¤eomorphism, in the first case one can certainly run lines through
some of the generators, or in the latter case 1-parameter groups through the gen-
erators of GBZðGÞ (which is a lattice in ZðGÞ, see e.g. Corollary 6 of [4]) to get a
non discrete closed subgroup HKG. Hence H also has cofinite volume. In this
way the question then becomes, must H contain a lattice?

In general, the answer is no. The most accessible examples illustrating this are
groups G which have no lattices at all. Then, (assuming G had such an H) since
any lattice in H is also a lattice in G, this can not occur.

Example 1. For example, let G be any 2-step simply connected nilpotent group
without lattices (see Proposition 3.1.71 of [1]) and Z be its center. Then G=Z is
abelian and so is Rn for some n. Take A ¼ H=Z to be any proper closed subgroup
of G=Z with compact quotient. Then H is a proper closed subgroup of G with G=H
compact and so of finite volume. But this cannot occur since G has no lattices.

The significance of Example 1 is that according to the well known criterion
of Malcev (see [10] Theorem 2.12) a simply connected nilpotent group G posseses
a lattice if and only if its Lie algebra, g, has a rational form. That is, has a basis
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under which all the structure constants are rational. The following proposition
formulates this in group theoretic terms.

Proposition 1. Let G be a simply connected nilpotent group with Lie algebra g.
Then g has a rational form if and only if in some unipotent representation G is the
real points of an algebraic group defined over Q.

Proof. Suppose G is real points of an algebraic group defined over Q. Since G
is nilpotent, by [6] Proposition 19.2, G is the direct product, Gu � A, where A is
abelian and Gu is the unipotent radical. Therefore, to see that g has a rational
form, we may assume G itself is unipotent. Then the group, XQðGÞ, of Q charac-
ters is trivial. By the Borel-Harish Chandra theorem [3] GZ is a lattice in G and
by Malcev’s theorem (Theorem 2.12 of [10]) g has a rational form.

Now suppose g has a rational form. Then the proof of Theorem (2.3) pg. 218
of [5] dealing with faithful representations of a simply connected nilpotent group
shows that when g has a Q-form the faithful representation goes to the real points
of an algebraic Q-group. r

Proposition 1 together with Example 1 suggests that for positive results (that
is, where H must contain a lattice) one should look at groups G which are the real
points of a linear algebraic group defined over Q.

Before proceeding we formalize our terminology. A closed subgroup H of a
connected Lie group G is said to be of cofinite volume if there is a (non trivial)
finite G-invariant measure on G=H. If H is discrete it is called a lattice, usually
written G. A closed subgroup H of a connected Lie group G is called uniform if
G=H is compact. A result of Mostow (Theorem 3.1 in [10]) tells us, for a solvable
group G, H has cofinite volume if and only if it is uniform.

When there is a cofinite volume subgroup there is often an accompanying den-
sity result. The oldest of these concerns semisimple Lie groups without compact
factors due to Borel (see Theorem 5.5 of [10]). More general density results have
been proved in [7] (as well as by others). In [7] a density theorem relevant to this
note holds when G is a connected subgroup of GLðn;RÞ, with radical R, G=R has
no compact factors and R acts on Rn with real eigenvalues. However, as the
reader will see, here density is by no means the whole story.

1. Unipotent groups

We first turn to the real points G of a linear algebraic Q group which is unipotent
and where H a closed subgroup of G of cofinite volume (here uniform). In gen-
eral, H need not contain a lattice.

Let h denote the Lie algebra of H. When dim h ¼ 0, H is discrete and there-
fore contains a lattice, namely itself. But if dim h > 0, then H0 is a non trivial
Euclidean closed unipotent subgroup of G. By [7] H is Zariski dense in G ¼ GR.
Hence h is an ideal in g and H0 is normal in G. Thus H=H0 is a lattice in G=H0.
Since this latter group is simply connected and nilpotent, its Lie algebra, g=h, has
a rational form by Malcev’s theorem. So h is an ideal and both g and g=h have
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rational forms. The question of whether H contains a lattice then becomes, does
h itself have a rational form?

Example 2. We will now construct a pair ðg; hÞ with the following properties:

1. g is a 2 step nilpotent real Lie algebra with a Q-structure.
2. ½g; g�J hJ g.
3. h is an ideal and has no Q-structure.

Since ½g; g�J h, the latter is certainly an ideal and g=h is commutative and so has a
Q-structure.

To construct ðg; hÞ we begin with the standard construction of a 2 step real nil-
potent Lie algebra, h, which has no rational form (see e.g. Proposition 3.1.71 of [1]).

h ¼ 0
m

i¼1

RXi a 0
3

i¼1

RYi;

where ½Xi;Xj� ¼
P3

k¼1 c
k
i; jYk, the Yk are in the center of h and cki; j ¼ �ckj; i are alge-

braically independent over Q. Then for m is su‰ciently large, h will not have a
Q-structure.

To embed h in a 2 step nilpotent Lie algebra g with a Q-stricture, let

g ¼ 0
m

i¼1

ðRX 0
i aRXiÞa 0

3

i¼1

RYi;

where the Yk are central and ½Xi;Xj� are defined as above. For each iam, let ai
and bi be distinct non zero real numbers, and for i < jam let

½X 0
i ;X

0
j � ¼

X3

k¼1

ak
i; jYk

and

½X 0
i ;Xj� ¼

X3

k¼1

bk
i; jYk;

where the ak
i; j and bk

i; j are chosen so that ½X 0
i þ aiXi;X

0
j þ ajXj� and ½X 0

i þ biXi;
X 0

j þ bjXj� a 03

k¼1
QYk. Then h is a subalgebra of g.

Moreover, these conditions give a Q-structure on the 2 step nilpotent Lie alge-
bra, g with ½g; g�J h. This is because for i < j there exist ak

i; j and bk
i; j so that

a1i; j b1i; j �b1j; i

a2i; j b2i; j �b2j; i

a3i; j b3i; j �b3j; i

2
64

3
75 �

1 1

ai bi
aj bj

2
64

3
75¼

aiajc
1
i; j þ x1

i; j bibjc
1
i; j

aiajc
2
i; j þ x2

i; j bibjc
2
i; j

aiajc
3
i; j þ x3

i; j bibjc
3
i; j

2
64

3
75;
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where xk
i; j a Q are chosen so that the columns of the right side are linearly indepen-

dent.

Applying Proposition 1 this construction supplies numerous examples of
2-step unipotent Q-groups, where h doesn’t have a rational form and hence H
(which here is connected) cannot contain a lattice. This means if we want a posi-
tive result for the real points of a unipotent algebraic Q-group G, we are forced to
take G abelian. Of course, such a G is simply connected and is isomorphic to
some Rn and here H contains a lattice. Henceforth our standing assumption will
be that the unipotent radical Gu of G is abelian.

2. Semisimple groups

We next turn to semisimple groups without compact factors where the situation
is positive. The Weyl-Chevalley root space decomposition guarantees AdðGÞ is
represented as the real points of a linear algebraic group defined over Q.

Proposition 2. Let G be a connected semisimple group without compact factors
and represented as the real points of a linear algebraic group defined over Q. Then
any closed subgroup H of cofinite volume contains a lattice.

Proof. First consider the case when G ¼ GR is simple. We may assume H is
non discrete; otherwise we would be done. Since H is closed it is a Lie subgroup
of GR. Let hA ð0Þ be its Lie algebra. Since h is invariant under AdðHÞ, the Borel
density theorem (see [10], or [7]) tells us h is invariant under AdðGÞ; that is it is an
ideal. Therefore h ¼ g and so H is open in G. Therefore HGZ is open and there-
fore closed in G. By [3], GR=GZ has finite volume. Hence so does HGZ=GZ and
therefore also H=HBGZ. Thus H contains the lattice HBGZ. We consider this
to be the inductive case, n ¼ 1.

Now let G be semisimple and without compact factors and H a closed sub-
group with G=H of finite volume. Then, just as before, h is an ideal. If the Lie
algebra g of G is the direct sum of g1 a � � �a gn, then h is the direct sum of
some subset of these and H is a product of the corresponding Gi. There are two
possibilities. Either this subset is proper, or h ¼ g1 a � � �a gn. In the first case
we get our conclusion that H contains a lattice by induction. If the Lie algebras
of G and H coincide, then H is an open subgroup of G and since G is connected
H ¼ G ¼ GR and, again by [3], H contains the lattice GZ. r

Lemma 1. Let G ¼ X � Y, where X and Y are algebraic subgroups of the real
points of an algebraic group, G, and ½X ;Y � ¼ ð1Þ. If X BY is finite, then multipli-
cation, m, gives a finite sheeted covering from the direct product X � Y ! G. If H
is closed in G and has cofinite volume, then m�1ðHÞ is a closed subgroup of X � Y
also of cofinite volume. If G is a lattice in X � Y, its image is a lattice in G.

Proof. Consider the multiplication map m : X � Y ! G. Because ½X ;Y � ¼ ð1Þ
this continuous surjective map is a homomorphism. It has finite kernel since
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X BY is finite. The statement concerning H is clear. We prove the image of G is
a lattice by first showing mðGÞ is closed. Consider a sequence from mðGÞ converg-
ing to a point in G. Because the preimage of every element is finite, one of these
must repeat infinitely often. This means there is some constant subsequence
which also converges to this point and so the limit is in the image. Now lattices
in connected Lie groups are finitely generated (see e.g. pg. 3 of [8]) and so in par-
ticular are countable and, of course, the same is true for a Lie group with a finite
number of connected components. Since X and Y each has a finite number of
connected components (see [11]), so does X � Y . Hence G is countable. The
Open Mapping theorem (Corollary 0.47 [1]) then tells us that m restricted to G
is an open map onto its image and so mðGÞ is discrete. Finally, the image has
cofinite volume in G because G has cofinite volume in X � Y and this measure
can be pushed forward. r

Now suppose G is a connected semisimple group perhaps with some compact
factors and represented as the real points of a linear algebraic group defined over
Q. Then G ¼ S � K , where S has no compact factors, K is compact, each is an
algebraic group over Q and ½K ;S� ¼ ð1Þ. Since SBK is discrete and K is com-
pact SBK is finite. By Lemma 1 we may assume G is the direct product of S
and K .

Let pS be the projection of G onto S. Then pSðHÞ� is a cofinite volume
subgroup of S. By Proposition 2 either pSðHÞ� is discrete and so is a lattice,
or contains a lattice of S. Thus in either case pSðHÞ� contains a lattice G of S.
Since K is compact, G� ð1Þ is a lattice in S � K ¼ G and is contained in H.
Hence,

Proposition 3. Let G be any semisimple group represented as the real points of
a linear algebraic group defined over Q and H be a closed subgroup of G with G=H
of finite volume. Then HKG for some lattice G.

3. Mixed groups

Finally we turn to mixed groups, that is, those with both a reductive part and
a unipotent radical. By the Mostow decomposition theorem [9], G ¼ Gu � R
(semidirect product), where R is a maximal reductive of G.

The next example, which is the first one to try, shows in general that in mixed
groups H fails to contain a lattice even though G is the real points of an algebraic
Q-group and Gu is abelian.

Example 3. Let G be the a‰ne group of Rn, that is the semidirect product
GLðn;RÞ with Rn. G has a faithful representation as a linear algebraic group de-
fined over Q and is its group of real points. Since GLðn;RÞ distorts volume on Rn,
G is non unimodular. As is well known (see Proposition 2.4.2 of [1]), if G contains
a lattice it must be unimodular. Hence here G has no lattices at all. But of course G
has subgroups H of cofinite volume. For instance, H ¼ R� � SLðn;ZÞ � Rn. H con-
tains no lattice as G has none.
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The problem here is that the reductive part distorts Haar measure on the
unipotent radical. This suggests that in looking for positive results in mixed
groups, the reductive part R should be semisimple since then this cannot
happen.

Theorem 1. Let G ¼ Gu � R (semidirect product) be connected component of the
real points of an algebraic Q-group, where R is semisimple, and Gu be abelian. If
H is a closed subgroup of G of cofinite volume, then H contains a lattice of G.
Similarly, if G is reductive and the connected component of the real points of an
algebraic Q-group, the same conclusion holds.

Proof. XQðGÞ is trivial since XQðGuÞ ¼ ð1Þ and R has no characters at all.
Hence by [3], GZ is a lattice in G. To prove the theorem it su‰ces to show HGZ

is closed in G. For then HGZ=H has finite volume (see Theorem 1.13 of [10]) and
therefore also (Lemma 1.7 of [10]) so does H=HBGZ. Thus H would contain the
lattice, HBGZ.

By Corollaire 7.13 of [2], ðGuÞZRZ has finite index in GZ so we can replace GZ,
as above, by ðGuÞZRZ. Let pR be the projection of G onto R and pu the projection
of G onto Gu. Then pRðHÞ� and puðHÞ� are closed subgroups of cofinite volume
in R and Gu respectively. By Propositions 3 and our assumption that Gu is abelian
respectively, pRðHÞ�BRZ is a lattice in R (or pRðHÞ� is discrete, that is pRðHÞ
is discrete) and puðHÞ�B ðGuÞZ is a lattice in Gu (or puðHÞ� is discrete, that is
puðHÞ is discrete).

If either of these discrete projections occur we would be done. For suppose
puðHÞ is discrete. Then the inverse image, p�1

u ðpuðHÞÞ ¼ RH, is closed in G.
Therefore RH=H ¼ R=RBH has finite volume and so by Proposition 3 RBH
contains a lattice of R. Hence puðHÞ � RBH is a lattice in G contained in H.
Similarly, if pRðHÞ is discrete, reversing the roles of Gu and R and using the fact
that Gu is abelian we conclude GuBH � pRðHÞ is also a lattice in G contained
in H.

Thus we can assume pRðHÞ�BRZ is a lattice in R and puðHÞ�B ðGuÞZ is a
lattice in Gu. Since these conditions are respectively equivalent to pRðHÞ� � RZ

¼ R� is closed in R and puðHÞ� � ðGuÞZ ¼ G�
u is closed in Gu. Hence their direct

product, G�
u � R�, is closed in G. To show H � ðGuÞZ � RZ is closed in G it is su‰-

cient to show that it is closed in G �
u � R�. Let hn, ðguÞn and rn be sequences in H,

ðGuÞZ and RZ respectively and suppose hnðguÞnrn converges to ðx�; y�Þ, where
x� a G�

u and y� a R�. Writing hn ¼ xnyn ¼ ðxn; ynÞ, then for all n, xn a puðHÞ
and yn a pRðHÞ. Because Gu is normal, xn ynðguÞnrn ¼ xnðguÞnznrn, where
zn ¼ y�1

n . Hence xnðguÞn a Gu and znrn a R. It follows that xnðguÞn converges to
x� in G�

u and znrn converges to y� in R�. Hence hnðguÞnrn converges to a point
of G�

u � R�.
When G is reductive as above G ¼ ZðGÞ0 � ½G;G�, where ½G;G� is semisimple.

Since ZðGÞ is also algebraic Q-group, by [11] ½ZðGÞ : ZðGÞ0� is finite. The argu-
ment above works here as well. r
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