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ABSTRACT. — Taking the point of view of Legendrian curves in complex projective 3-space and
using the classical Lie—Klein duality of algebraic geometry, we revisit various meromorphic repre-
sentation formulae for Legendrian and null curves in PSL(2,C). These include Small’s formula
for null curves, the formulae for Legendrian curves given by Kokubu, Umehara and Yamada, by
Galvez, Martinez and Milan, and more recently by Ejiri and Takahashi. We discuss their relation-
ships and provide a dictionary for their meromorphic data. Some examples related to the W-curves
of complex projective 3-space are discussed.

KEey worps: Constant mean curvature one surfaces, flat fronts, null curves, Legendrian curves,
Lie—Klein correspondence.

MATHEMATICS SUBJECT CLASSIFICATIONS: 53C42, 53A10.

1. INTRODUCTION

It is well known that the holomorphicity of a suitable curve in PSL(2,C) =
SL(2,C)/{xI} characterizes both surfaces of constant mean curvature one
(CMC 1) and flat fronts in hyperbolic 3-space H>. Actually, Bryant [3] proved
that any holomorphic null immersion into PSL(2, C) projects to a CMC 1 surface
in A3, and that every such surface locally lifts to a holomorphic null immersion
into PSL(2,C). Analogously, Galvez, Martinez and Milan [8] proved that any
holomorphic Legendrian map into PSL(2,C) projects to a flat surface in H?>,
and that any flat surface locally arises in this way. This result has later been ex-
tended by Kokubu, Umehara and Yamada [10], [11] to the case of flat fronts,
namely flat surfaces admitting a special type of singularities.

n [14], Small obtained a representation formula that generates null mero-
morphic curves in PSL(2, C) from pairs of meromorphic functions on a Riemann
surface, called the hyperbolic and the secondary Gauss maps. Small’s formula
only involves the derivation of the two Gauss maps. A simpler proof of the Small
formula was given by Kokubu, Umehara and Yamada in [10]. Alternative proofs
were also given by de Lima and Roitman [6], using a method that goes back to
Bianchi, and by Sa Earp and Toubiana [13].

In [10], Kokubu, Umehara and Yamada, besides proving Small’s formula,
provided a Small-type representation formula for Legendrian meromorphic
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curves into PSL(2, C) in terms of two meromorphic functions on a Riemann sur-
face, which are called the hyperbolic Gauss maps. A special instance of this for-
mula provides a representation formula which appeared implicitly in the work
of Galvez, Martinez and Milan [8]. A third representation formula for mero-
morphic Legendrian maps into PSL(2,C) has recently been obtained by Ejiri
and Takahashi [7] as an application of the Bryant formula for Legendrian curves
in CP3 (cf. [2]). Unlike the other known representation formulae, this formula,
which we refer to as the Ejiri—-Takahashi formula, only involves the derivation
of the meromorphic data.

One purpose of this paper is to clarify the relationships between the meromor-
phic data of the Kokubu-Umehara—Yamada formulae and those of the Ejiri—
Takahashi formula for Legendrian curves into PSL(2,C) and provide a dictio-
nary to translate the ones into the others. This is done in Section 2. In Section 3,
using an explicit construction relating to the classical Lie—Klein duality of alge-
braic geometry, we associate with a Legendrian curve in PSL(2,C) a null curve
in PSL(2,C) and express its Small meromorphic data in terms of the mero-
morphic data of Kokubu, Umehara ad Yamada and of Ejiri-Takahashi of the
original Legendrian curve (cf. Theorem 6). Finally, some examples related to
the W-curves of CP? are discussed.

2. REPRESENTATION FORMULAE FOR LEGENDRIAN CURVES IN PSL(2,C)
2.1. Legendrian curves in PSL(2,C)

Let PSL(2,C) = SL(2,C)/{+L} be the projective special linear group. The ele-
ments of PSL(2,C) are written as equivalent classes [4] of 2 x 2 unimod-
ular complex matrices A and the Lie algebra of PSL(2,C) is identified with
sl(2,C).

Let M be a Riemann surface. A meromorphic map ® : M — PSL(2,C) is a
map which is represented as

(D_[(q)l‘ cpzl)]_ 1 (d)ll ci>21>
- 2 2 - N N - 2 ’
or Jold2 — d2p) \PT D3

where (I)ll(Dg —(1)12(1)11 =1 and the d); are meromorphic functions on M (cf.
[10]).

Let Q= (Q/’) be the Maurer—Cartan form of PSL(2,C). From the struc-
ture equations dQ 4+ Q A Q = 0, it follows that the 1-form Q| defines a holomor-
phic contact form on PSL(2,C). Accordingly, a meromorphic map ® : M —
PSL(2,C) is called a Legendrian curve (or a contact curve) if the pull-back of Q!
by ® vanishes identically, i.e.

D3 dD| — ®) dDF = 0.
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For a Legendrian curve ®, two meromorphic functions

_ @
o3’

(Dl
Gy :=—2

(1) Go : CI)22

are defined, which in [8] are called the hyperbolic Gauss maps. A meromorphic
I-form on M is also defined by

o {dcp}/q); (if d®] # 0 or @, # 0),
| d®?/®F  (if dD} # 0 or ®F #0)

Y

which is called the canonical form, see [10]. Here a’(I>11 # 0 (respectively, @) # 0)
means that the 1-form af(l)l1 (respectively, the function (1)21) is not identically zero
on M.

REMARK 1. Hyperbolic 3-space may be viewed as
(2) H? =PSL(2,C)/PSU(2) = {4A4* : A e PSL(2,C)} (4* =AT).

It has been shown in [8] (cf. also [11]) that if ® : M — PSL(2,C) is a holomor-
phic Legendrian immersion of a Riemann surface M, then ¢ = ®®* : M — H3
is a flat front, that is a flat surface with special type of singularities (cf. [11] for
details). Conversely, any flat front is locally the hyperbolic projection of a holo-
morphic Legendrian immersion into PSL(2, C).

The following representation formula for meromorphic Legendrian curves
was obtained by Kokubu, Umehara and Yamada.

THEOREM 1 [10]. Let Gy and Gy be two nonconstant meromorphic functions on a
Riemann surface M such that Gy # G|. Assume that

1. all poles of the 1-form dGy/(Gy — G,) are of order 1;
2. /dGo/(GO — Gy) € wiZ for each loop o in M.

Then
[ Go/¢ E(Gi/(Gy— Gr)
) o=[(TF Floan )]
where
(4) = cexp[z Godf0G1 , ceC\{0}

and zy € M is a base point, is a nonconstant Legendrian curve in PSL(2, C) whose
hyperbolic Gauss maps are Gy and Gy. Moreover, the canonical form is given by

w = —dGy /&%
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Conversely, any meromorphic Legendrian curve ® : M — PSL(2,C) from a
Riemann surface M into PSL(2, C) with nonconstant hyperbolic Gauss maps G
and Gy arises in this way.

DEFINITION 1. The pair of meromorphic functions (Gy, G) of Theorem 1 will
be referred to as the Kokubu—Umehara—Yamada data of the Legendrian curve @
(KUY-data for short).

As a corollary of Theorem 1, Kokubu-Umehara-Yamada [10] obtain a sec-
ond representation formula for Legendrian curves, due essentially to Galvez,
Martinez and Milan [8].

THEOREM 2 ([8], [10]). For an arbitrary pair (Gy,w) of a nonconstant meromor-
phic function Gy and a non-zero meromorphic 1-form w on Riemann surface M, the
meromorphic map given by

(5) cD:K‘é Z‘é;ii)] C—i d%o’ A= GyC,

defines a Legendrian curve in PSL(2, C), whose hyperbolic Gauss map and canon-
ical form are Gy and o, respectively. Conversely, any meromorphic Legendrian
curve in PSL(2,C) defined on a Riemann surface M with nonconstant hyperbolic
Gauss map G and non-zero canonical for o is written as in (5).

DEFINITION 2. The pair (Gy, ) of Theorem 2 will be referred to as the Galvez—
Martinez—Milan data of the Legendrian curve ® (GMM-data for short).

We now recall a third representation formula for Legendrian curves into the
projective group PSL(2, C) which is due to Ejiri and Takahashi [7]. Tt does not
involve any integration and relies on the representation formula for Legendrian
curves in CP? given by Bryant [2].

THEOREM 3 [7]. If f, g are meromorphic functions on a connected Riemann sur-
face M with g nonconstant and fg' — f'g # 0, then

; 1
(6) O(f,9) = |\ |7 s

g
1 1/
fCI —fg 5 f_ig_q_’

defines a Legendrian curve ®(f,g) : M — PSL(2,C).!
Conversely, up to multiplication by an element of PSL(2,C), any nonconstant
Legendriam curve ® from M into PSL(2,C) is either of the form ®(f,g) for

! Throughout, ’ denotes the derivative with respect to a local complex coordinate on M.
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some unique meromorphic functions f and g on M, or takes the form

0 e[

for some constants a, ¢, and a meromorphic function h.

PrOOF oF THEOREM 3. If we choose homogeneous coordinate (xi,x2, X3, X4)
on CP3, the complex 1-form

(8) 0 = x1 dxq — x4dx| 4+ X2 dx3z — x3dx;

induces a complex contact structure on CP? through the standard projection
[]: C*\{0} — CP3. More precisely, on the coordinate domain U; = {x; # 0} <
CP3, 6 induces the local contact form

(9) 01 = dxq4 + x> dx3 — x3dx;.

A map y=[v]: M — CP? is a Legendrian (or contact) curve if the pull-back
of the 1-form @ by v vanishes identically. We identify C* with the vector space
gl(2,C) of 2 x 2 complex matrices by?

C4 E <x1)x2ax3ax4)T A <XI x2> € gI<2a C)
X3 X4

and think of CP? as the projectivization of gl(2, C). Then, the projective group
PSL(2,C) = SL(2,C)/{+I} may be identified with CP*\Q,, the complement
in CP? of the nonsingular quadric surface O, = {[x] € CP? : detx = 0}, by the

mapping
1:PSL(2,C) 3 [x] — [x] € CP}\ 0y,

whose inverse is given by

1 CPIN\Qy 3 [A] — { } e PSL(2,C).

X
vdet x

The maps 1 and ' are compatible with the contact structures determined by
0 on CP*\Q, and by Q] on PSL(2,C). In fact, on the one hand, writing 0 =
d(x1x4 — x2x3) — 2(x4 dx1 — X5 dx3), it follows immediately that

1

(10) "0 = —2Q1.

2We will often abuse notation and denote by the same symbol either elements. The context will
make it clear whether a 4-vector or a 2 x 2 matrix is intended.
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On the other hand, a simple computation shows that

1
11 Syl — X4 d X1 X d X3 _ 0.
b ) Vdet x (\/detx> Vdet x (\/detx) 2detx

Now, according to Theorem F in [2], if f and g are meromorphic functions
with g nonconstant, the curve defined by

1 g
(12) y=1(1/ Ly
29 2gg’

is Legendrian in CP?. The fact that (6) defines a meromorphic Legendrian curve
in PSL(2, C) follows from the above discussion.

Conversely, let & =[x] = \/(fe— : M — PSL(2,C) be a meromorphic

)

Legendrian curve into PSL(2, C). Then, by (11), the map

[ ) e

U3 U4

is Legendrian. By possibly replacing x by Ax, for 4 € SL(2,C), we may assume
that x; # 0, hence v; # 0, and then reduce the discussion to the case v; = 1.
Again, we argue as in the proof of Theorem F in [2]. If v, is not constant, set
g =1vy and f = vs + vov3. Now, the contact condition for y can be written as
d(vq + v2v3) — 2v3 dvy = 0. This yields v3 = %f’/g’, and then vy = f — %g(f’/g’),
from which (6) follows. Next, if v, = ¢ is a constant, the contact condition for y
reduces to d(v4 + vv3) = 0 and thus v4 = a — cv3, for some constant a. By setting

h=uv;, ®= [ L } takes the form (7), as required. O

Vdetv

DEFINITION 3. The pair of meromorphic functions (f,¢g) of Theorem 3 will be
referred to as the Ejiri—Takahashi data of the Legendrian curve ® (ET-data for
short).

2.2. Comparison of meromorphic data for Legendrian curves

In this section we express the KUY-data in terms of the ET-data, and conversely.

PROPOSITION 4. Let M be a Riemann surface and let ® : M — PSL(2,C) be a
meromorphic Legendrian curve. If (G, G1) are the KUY-data of @, then the mer-
omorphic functions

Gi& GG &

(13) = Go(Go— G) f_Goz(GofGl)

give the ET-data of ®, where ¢ is as in (4).
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On the other hand, if (f,g) are the ET-data of @, then

(14) Go g G, = Gog (€= VGo(Gof —29))

B 217’ ’ - Gof —y¢
are the KUY-data of ®. Moreover,
! dGy
(15) Gozz%, 0=~ GiG 3
are the GMM-data of @, where
CO— A() = GiC.

VGo(Gof —2g)

Proor. If Gy and G; are the KUY-data of ® and f and g are as in (13), then a

direct computation yields
1 &6
Go(Go—Gr)
1 & ’
Gy Go(Go—Gr)

v = (T e an )]
which is (3).

On the other hand, if f and ¢ are the ET-data of ® and Gy, G; are as in (14),

then
ﬁ(GO/f 551/(G0—G1)>: L g
Go\ 1/ &/(Go—G) 14 r-4e% )

and hence

which implies
1 g
GO/é éGl/(GO—G1) :|_ g/ , ,
[( /e &/(Go— G ) ‘{ ff—f‘y(% _ggjgi)]

and Gy, G, are the KUY-data of @ as required. Finally, if Gy and w are as in
(15), it easily seen that

1 g
A dA/cu)]: g , ,
(& aem fg’—f’g<%§, f—%g]gi,)]’

which implies that Gy, @ are the GMM-data of ®. O
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3. REPRESENTATION FORMULAE FOR NULL CURVES IN PSL(2,C)

Let M be a Riemann surface. A meromorphic map ¥ : M — PSL(2,C) is said a
null curve if the pull-back by W of the Killing form of sl(2, C) vanishes, that is,
det(W ! d¥) = 0, or equivalently, if det¥' = 0, at every point of M.

For a nonconstant null curve ¥ = (¥}) : M — PSL(2,C) two meromorphic
functions

!’
g (i (@0],d0}) £ (0,0)),

(16) Yy = \Pll'
qj, (if (d®3,d®3) # (0,0)),

2

!
_‘Ij/ (if (d®y,ddy) #(0,0)),

(17) % = \P;/

1

are defined, which are called the hyperbolic Gauss map and the secondary Gauss
map, respectlvely (cf. [10 17]).

Note that since @ is null, if (d®],d®?) # (0,0) and (d®j),dD3) # (0,0), then
lI’ll/‘P2 —‘le /‘I’ , and 51m11ar1y, if (d®],d®l) #(0,0) and (dd)f,dtl)z) #
(0,0), then —¥) /‘Pl/ = ‘I‘% /‘1’2 Moreover, according to Lemma 2.2 of [10],
if either d®| = d®] or d®) = d®; are identically zero, then the hyperbohc
Gauss map % is constant. Slmllarly, 1f either a’<I)1 a’(I>1 or a’(I>2 dd) are iden-
tically zero, then the secondary Gauss map ¥ is constant

REMARK 2. Tt is well known that if ¥ : M — PSL(2,C) is a holomorphic null
immersion of a Riemann surface M, then f = YW¥*: M — H? isa CMC 1 sur-
face, and that, conversely, any CMC 1 surface arises locally as the hyperbolic
projection of a holomorphic null immersion into PSL(2, C) (cf. [3] and also [15],
[16]). For a related study of null curves in SL(2, R), see [12].

In [14] (cf. also [10]) Small obtained a representation formula for null curves in
terms of the Gauss maps.

THEOREM 5 (Small [14, 10]). If % and %, are arbltrary nonconslanl mero-

morphic function on a Riemann surface M such that 4, # bz@ b2 for any (b ) e
PSL(2,C), then the meromorphic map ¥ given by

d db
(gOd{_Zo_a g()d(%_b>‘|7 a = dg() b - glav

(18) V= da db a4,

d% D

is a nonconstant null curve in PSL(2,C) whose hyperbolic and secondary Gauss
maps are, respectively, 4, and 9.
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Conversely, any meromorphic null curve in PSL(2, C) whose hyperbolic and sec-
ondary Gauss maps are non constant arises in this way.

DEFINITION 4. The pair of meromorphic functions (%, %) of Theorem 5 will
be referred to as the Small data of the null curve P.

The aim of this section is to prove the following.

THEOREM 6. Let (f,g) be the ET-data of a Legendrian curve ®(f,g) : M —
PSL(2,C). Then, the pair (49, %) of meromorphic functions given by

f/ 2g/

= 7 A7

~< 9
299’ gf’ —2fg’

are the Small data of a null curve ¥ into PSL(2, C) which® takes the form

(19) Y = —

p b g 22U g g
( Yoig—a Yogg; — b ) 299"/ "~ 1"1(9") +99"]) 99'f"—1"1(9")*+49"]
da db (9" fy'~af") 2(g")°
% 4%
0 0 g+ 9g'f"—f'l(g") +ag"]  gg'f"—f"(¢")>+99"]

Moreover, the KUY-data (Gy, Gy) of the Legendrian curve ® are related to the
Small data (%o, %)) of the null curve ¥ by the relation

4,
2 =
(20) GoGr =

For the proof of Theorem 6 we need to recall some preliminary material. Let
W be the complex 5-dimensional vector space of all 4 x 4 skew-symmetric com-
plex matrices 4 = (a;;) given by

W ={A4 = (a;) € s0(4,C) : a14 + ar3 = 0}.
Endow W with the quadratic form ¢ given by the Pfaffian,
q(A) = Pf(A) = d12d34 — A13d24 — 0%4,
and let Q3 be the 3-quadric in P(W) = CP* given by
0’ = {[4] e P(W) : q(4) = 0}.

Since the Pfaffian of A is the square root of the determinant of A, det(4) =
Pf(A4)?, then ¢(A) = 0 if and only if A is singular. Now skew-symmetric matrices

Saway from the zeroes of a suitable function (cf. (24) below)
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have even rank, so if g(4) = 0, but 4 # 0, then 4 must have rank 2. It is easily
seen that any skew-symmetric 4 x 4 matrix of rank 2 is decomposable, that is, has
the form

xx y=yx —xpT,

for some linearly independent (column) vectors x,y € C* Note that if 4 =
x X y # 0, then the column space Im A of A4 is spanned by x and y. The condition
a4 + a3 = 0 applied to a decomposable skew-symmetric matrix 4 = x X y is
equivalent to

xTJy =0,

where J is the non-singular skew-symmetric matrix given by

(21) J]:(_OJ ‘é) J:<(1) (1))

Thus, the 3-quadric Q° identifies with the Grassmannian of Lagrangian 2-
planes in C* with respect to the symplectic structure induced by J. We will write

0 —ay —dp asz
3 . ay 0 —da3z —dy . P
Q° =1 la1,a2,a3,a4,as) := o a 0 4o || as —aras —ay = 0
2 3 —das
—az  ay as 0

A 2-dimensional subspace L = W on which ¢ vanishes identically is called a
q-null 2-plane. Each g-null 2-plane is a plane of decomposable skew-symmetric
matrices in W.

LeMMA 7. A 2-plane L < W spanned by A and B is g-null if and only if
dim(Im4 nImB) = 1.

PrOOF OF LEMMA 7. If L is g-null, then ¢(A4) = ¢(B) = q(A + B) = 0. In par-
ticular, 4 and B are decomposable and we can write 4 = x X y and B =X X ).
A direct calculation shows that

(22) det(x, y,X, y) = 29(A,B) = q(4 + B),

where ¢ is the bilinear form on W obtained from ¢ by polarization. Therefore
det(x, y, X, y) = 0, that is, the four vectors x, y, X, y are linearly dependent. Since
Im 4 = span{x, y} and Im B = span{X, y}, we have to exclude that dim(Im 4 n
Im B) = 0. That dim(Im 4 nIm B) = 2 must also be excluded, because 4 and B
form a basis. Therefore, the only possibility is that dim(Im 4 nIm B) = 1.
Conversely, if Im A4 nIm B = span{v}, for some non-zero vector v € C* we
can choose y and psothat A =vx y, B=vxyandthen A+ B=vx (y+ ).
Thus, ¢(4 + B) = 0, which implies that L = span{4, B} is g-null. O
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Lemma 7 establishes a correspondence between the points of CP? and the set
of g-null 2-planes in W or, equivalently, the set of lines in Q3.

REMARK 3. Let L = W be a g-null 2-plane spanned by

0 —d] —d) as 0 —bl —b2 b3
ay 0 —da3 —d4 b] 0 —b3 —b4
A = B =
75 as 0 —ds ’ b2 b3 0 —b5
—d3 dy as 0 —b3 b4 b5 0

We know that 4 and B have rank 2. Assume that Im 4 and Im B are spanned by
the first two columns of A4 and B, respectively. Using that dim(Im 4 nIm B) =1,
we find that the vector

(23) U= (bl (a1b3 — a3b1>, b] (a2b1 — a1b2>, aj (a1b3 — a3b1), aj (Clzbl — albz)) T

is a generator of the intersection.

DEFINITION 5. Let yy : M — Q3 be a holomorphic map of a Riemann surface
M into Q3. In terms of a local complex coordinate z, we write ¥(z) = [4(2)],
with 4 a holomorphic function taking values in W\{0}. A holomorphic map
Y =[A4]: M — Q3 from M to Q° is said a g-null curve if span{A(z), A'(z)} is a
g-null 2-plane in W for all z.

We are now in a position to prove Theorem 6.

PROOF OF THEOREM 6. Let @ = [ : M — PSL(2,C) be a Legendrian

1
v
Vdeto }
curve, where

and consider the Legendrian curve y into CP? given by y = [v]. The Legendrian
condition of y amounts to the condition

oI =0,

where J is as in (21). This means that, at every point, the 2-plane spanned by v(z)
and v'(z) is a Lagrangian 2-plane in C* with respect to the symplectic struc-
ture induced by J. Let 4 = v x v'. Since span{v(z),v’(z)} is Lagrangian, 4 =
vxv': M — W and then the map ¢, := [4] : M — 0. Since A’ = v x v" and
the vectors v, v’, v are linearly independent (y is nonlinear), we have that
dim(ImA4 nIm A’) = 1. Thus, by Lemma 7, the plane spanned by A(z) and
A'(z) is a g-null 2-plane in W, which implies that the curve y, is g-null.
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Explicitly, the matrix 4 = v x v’ representing V, is expressed in terms of the
ET-data by

0 g _9'f"=g"f! 99'f" = 1"l(¢')*+99"]
2(¢)? 2(47’)z

g’ 0 749’/”7./’[(,9’2)2%9”] J'f —af + (9'1"=9"1")
2(¢9") 2(g")’

gf"—g"f' 99'f"~1"l(g)*+99") 0 gl 22 g
2(g")? 2<g'>2 49’
_ 99'1"=1"1(¢")*+99"] / / ’f” g"1") g[S =22 g 0
2(g")° 9" =97 - 2(g") 49"’

Next, consider the projection of the affine part Q° N {a3 # 0} of the quadric
03 onto PSL(2, C) given by

0 —d —d) as
0o - _ _
70 a as —as || as/az ar/az € PSL(2,C).
ar a3 0 —as —asfas  ay/a3
—das dy das 0

Now, the meromorphic PSL(2, C)-valued map

2 v ey, [( 5 )

—a4/a3 al/a3

that corresponds, away from the zeroes of a3, to the null curve , : M — Q3 isa
null curve of PSL(2, C) in the sense specified above.
In terms of the ET-data of @, the null curve W is given by

gl =2"2ug" 9'f"—g"f’
(25) Y(f,g9) = (f/f/'f”( /J;Z[((zf)/:rgy/”]) gg’f”;f’l[(ff)%rggq
g+ — L 2 —g) (9
99'f"=1"(g") " +99"  99'f"=f"1(9") +g9"]

According to (16) and (17), the hyperbolic and secondary Gauss maps of ¥ are
computed to be, respectively,

f‘l 2g/
2 =2 -
26) W= g T gy
which expresses the Small data of W in terms of the ET-data of ®. In view of (26),
we have that

g 4% _1 Jlf" —2y) )

1
— b=-%
dy, 2 qq’ 14,
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from which follows that

p o gl 202 g g g
(’(% a5 — 4 % d%, — )1 _ 299’1 "= 1"1(9") +99"]) 99'f"—1"1(9")*+99"]
da b N ()>f'~af") 2(g")’ ’
4% 1% i
0 o g+ 99'f"—f'1(g") +99")  g9'f "~ f"[(9")*+99"]

as required.
Combining the equations (14) with the equations (26) above, we have

1
Y9Gy =——, G =—9%,
9
and then the relation (20) between the KUY-data of @ and the Small data of P,

as claimed. O

REMARK 4 (Symplectic equivariance). Let J be the skew-symmetric matrix
given by (21). The corresponding symplectic group

Sp(4,C) = {X: <‘é g) e GLH4,0) | xTux = J]},

acts on CP? by
X -] =[Xv], [v] e CP?,
and on Q° by
X [4] = [X4XT], [4]e Q.

These two actions induce actions on the sets of nonlinear Legendrian curves
in CP? and of null curves in Q3. In fact, if y = [v] : M — CP? is a contact curve,
also X -y is contact. Similarly, if y = [4] : M — Q3 is a g-null curve, also X -y
is g-null. In particular, the correspondence established in the proof of Theorem 6
is equivariant with respect to the action of Sp(4,C). In fact, if y = [v], then
X y=[Xv]and Yy, = [Xv x Xv'| = [X(v x ") XT] =X - y,.

ExaMPLE 1 (W-curves and the curve of Veronese). Let M = C\{0} and take
9(5) = V=3, f(z) = 22,
Then (12) gives the Legendrian curve

@) o =bel=|( . V)|

This is essentially the Veronese curve (the rational normal cubic) in CP? in the
inhomogeneous coordinate z. The corresponding Legendrian curve in PSL(2, C)
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oo=[( S V2]

More generally, taking

is given by

for integers 1 <m < p, then (12) produces a Legendrian curve M —

(]:|]:D3 ym,p

1 VD m
i = ner
(28) ym,p(z) = [Um,[’(z)] = /m-‘rpzp Zmtp
vm=p

Such a curve generalizes the Veronese curve y, , and is known in the literature as
a W-curve in CP? (cf. Chern [5]). The corresponding Legendrian curve in
PSL(2,C) is

vm+p Z(m—p)/Z

—(m+p)/2
B B \/m z
(Dm,p(z) = [Ump/v det U%P] - \/5 m+p (p m)/2 Z(m+p)/2
\/_p

The g-null curve corresponding to 7, , constructed in the proof of Theorem 6
is the curve

lrbm,p - [A] M — Q37

where A is given by

_ m+p _m—1 _ m+p_p—1 _ m+p—1
0 my [z Py (m+p)z

m mifi Zm—1 0 (m_'_p)zmqtpfl —p m+p Z2m+p—1
m+p P _ m+p—1 _ m+p _m+2p—1
P\ (m+ p)z 0 my [z
m+p—1 m+p _2m+p—1 /m+p _m+2p—1
(m + p)Z 4 P HZ 4 m HZ P 0

Note that the Veronese curve y, , yields the holomorphic null curve , , : M —
03 = CP*,

Y 2(2) = [V=3,2V =3z, 322 2v/=323, V=324,

which is the Veronese map into CP*.
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Finally, according to Theorem 6, the null curve ¥, , of PSL(2,C) corre-
sponding to ®,, , is computed to be

—m P —m
(=)
m,p — P Zm —m__—p '
\/mz,[,z \/mzfpz
REMARK 5. In the classical literature, a W-curve of CP? is a curve parametrized
by z +— [1,z™, zP, z"P], for integers 1 < m < p. It easily seen that such a curve
is a Legendrian curve with respect to the symplectic structure of C* given by the
2-form dx; A dxy + ('"H’ ) dxy A dxs.

m—p

ExamPLE 2 (Flat fronts of revolution (cf. [8], [10])). Let M = C\{0} and set

h—1 1
k= At Gy = kz, Glz%Z (h e R\{1})

with
&= —1'4\/z ex / dGo
Vi1 P Gyo— G’

The corresponding Legendrian curve into PSL(2, C), see (3), is represented by the
multi-valued map

Dls) — —i (Vh— 12002 1z 0-D/2
O =B\ vrrtee ya—izee )|

The corresponding flat front ¢ = ®®* : M — H? (cf. Remark 1) is well-defined
on M and is a surface of revolution (cf. [10] and Example 3 below). Using the
expressions (13) of the ET-data f and g in terms of the KUY-data (Gy, G;), we
find

(29) f(z)=%f("“)v 9(2) = Ztizh’
from which
1 AL, —h
7/.9) = (9)] = K% e )]
h—1

and hence [v/v/detv] = @. For 0 < / < 1, the flat front ¢ : M — H? is called an
hourglass, while, for 4 > 1, it is called a snowman.

ExAMPLE 3 (W-curves and flat fronts of revolution). With reference to Example
1, we observe that the flat front ¢, , = @, ,®,, , induced by the Legendrian
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curve @, , is a surface of revolution. In fact, a direct computation shows that

(zz)~mH0)2 mp ooy (mep)/2 - i ((zf) e <zf>“’*'">/2>

0 (Z) _p—m m—p /m=p zP zP
m.p o 2 N 2z) )2 zz)(p=m/2 _\ (m 2 . m —\ (p—m)/2
P mti (( )z"’ +( )z‘” ) (ZZ)( +p)/ +m_tZ(ZZ)(P )/

Now, in terms of polar coordinates z = re™

O p(2) = R(O)P(r)R(0)",

, r > 0, we have that

where

e~ i(p/2)0 0
R(0) = ( 0 ei<p/2>e>

is a 1-parameter family of rotations, and P : R™ — H?3,

= (m+p) + mAp m—p vm+p (rm + r—m)

P(V) _ p—m m—p Vm=p
2p VZ:J_FZ (rm + 7’7’"> UL %rpfm

is a planar profile curve. This means that ¢ is a surface of revolution, as
claimed.

REMARK 6. Actually, all flat fronts of revolution are of the form g, ,, for real
m,p >0, m # p. In fact, if we perform the change of coordinate z(w) = w=!/7
and set 7 = m/p, then a straightforward computation shows that

2h
_ m+p —(h+1)
f(z(w)) m—pz 1" )
1
o(en) = YIEL on VI o
m-—p h—1

which are the ET-data (29) inducing the flat fronts of revolution.

EXAMPLE 4 (W-curves, flat fronts of revolution and catenoid cousins). With ref-
erence to Examples 1 and 3, let y,, ,,.; : M = C\{0} — CP? be the Legendrian
curve given by

@ = N = (g ¥ )|

The corresponding g-null curve ,, = [4] : M — Q3 constructed in Theorem 6 is
given by

(30)  [a1, a2, a3,a4,as] = [m, (m+ 1)z, V=2m — 12"+ (m 4 1)+ mz?"+2],



ON SMALL-TYPE FORMULAE FOR CURVES IN PSL(2, C) 327

The projection of v, onto PSL(2, C) yields the holomorphic null curve
sy we[(e )
—a4/a3 ay /a3

B [ 1 < mzmD —(m l)z"’)]

/“om — 1 _(m + I)Zm mz—(nz+1) ’
that, as a map on the universal cover of M, defines a holomorphic null immer-
sion. The hyperbolic projection f,, = YW* : M — H? is a well-defined immer-
sion and gives rise to a rotational CMC 1 immersion which is a Bryant’s catenoid
cousin (cf. [2] and [16]). Thus, under the correspondence established in the proof
of Theorem 6, the flat fronts induced by y,, ,,.; correspond to CMC 1 catenoid
cousins. In Example 3, we have already observed that the Legendrian curves
Vm.m+1 Produce flat fronts of revolution.

Note that a catenoid cousin has two ends at z = 0, co. Moreover, among the
1-parameter family of catenoid cousins (cf. [2]), the countable family correspond-
ing to integral parameters m € N\{0} share the property of having smooth ends.
This means, in the Poincaré model for hyperbolic space, that the CMC 1 surface
fm(M) = H3 compactifies to the image of a smooth immersion of the whole
2-sphere S? by adding two points on the ideal boundary of hyperbolic space.
Actually, the ends of f,, are smooth if and only if m € N\{0} (cf. Bohle—Peters

[1])-
REMARK 7. The Legendrian curve
Ym,m+1 S2 - C[P)3

from the Riemann sphere S> =~ CP! into CP? is a nonlinear curve of degree
2m + 1 and ramification degree 2m — 2 for all integer m > 1. In particular, it is
not an immersion for m > 1. The map ,, : S> — Q3 is instead a holomorphic
null immersion of degree 2m — 1. This is a consequence of the Pliicker relations
(cf. [4], [9]).
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