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ABSTRACT. — In this paper we explore the effectiveness of the classical method of layer potentials
in the treatment of boundary value problems for the bi-Laplacian formulated in arbitrary Lipschitz
domains, Lipschitz domains whose outward unit normal has small mean-oscillations, and domains
of class %'.
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1. INTRODUCTION

The discussion in this paper is largely motivated by the classical free-plate prob-
lem arising in the Kirchhoff-Love theory of thin plates. In the case of a domain Q
in the two dimensional setting, this problem reads as follows:

(1.1) A*u = 0in Q, with Mu and Nu prescribed on 0Q,

where the boundary operators M, N are defined by

o0%u
OAu u

Nu:=—7-+0=m757

where # is the Poisson coefficient of the plate, and v, v denote, respectively, the
outward unit normal and unit tangent to 0Q. See, e.g., [1], [3, (3.29)—(3.31),
p. 679], [2, (10)—(11), p. 1237], [10, p. 6], [11], [18, Proposition 3.1], [20, (2.2)-
(2.3), p. 24], [23, (2.12), p. 136], [4, pp. 420—423], [19] as well as the informative
discussion in [17] where it is indicated that the above problem has been first
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solved by Gustav Kirchhoff in a variational sense. Indeed, it is now folklore that,
for boundary data in appropriate function spaces (and by imposing suitable
bounds on the Poisson coefficient), the problem (1.1) has a variational solution
uin W22(Q), which is unique modulo polynomials of degree < 1.

One of our main goals is to study further regularity properties of such a solu-
tion, measured on Besov and Triebel-Lizorkin scales. We shall do so working in
the higher dimensional setting and the starting point is to establish well-posedness
results when the size of the solution is measured using the nontangential maximal
operator. The final results are then obtained via interpolation and Fredholm
theory.

The plan of the paper is as follows. In Section 2 we review a number of
basic definitions, including Lipschitz and %' domains, nontangential maximal
functions and poitnwise traces on the boundary, smoothness scalar spaces of
Lebesgue, Sobolev, and Besov type on Lipschitz surfaces as well as their vector
valued counterparts consisting of Whitney arrays (satisfying certain first order
differential compatibility conditions). This section also contains a brief review of
smoothness spaces in Lipschitz domains (Besov, Triebel-Lizorkin, and weighted
Sobolev spaces) as well as boundary trace results formulated for these spaces. The
starting point in Section 3 is the consideration of a distinguished family of bilin-
ear forms associated with A? which have played a basic role in G. Verchota’s
work in [26]. In particular, we explain how Green’s formula for A involving
such bilinear forms naturally involves the higher-dimensional versions of opera-
tors M, N from (1.2). In turn, the latter operators are used to define a family of
conormal derivatives for the bi-Laplacian (see Proposition 3.2) which plays a key
role in subsequent work.

Boundary operators of multi-layer type are introduced and studied in Section
4. Such operators fit into the general Calderon-Zygmund theory developed re-
cently in [15] and a number of basic properties follow as a result of the latter.
Our operators interface tightly with certain versions considered by G. Verchota
and Z. Shen in [26], [24], and such connections are made transparent in Proposi-
tion 4.2 and Proposition 4.6. Section 5 is primarily devoted to establishing invert-
ibility results for the (boundary-to-boundary versions of our) multi-layer opera-
tors. Such results constitute the key ingredient in the proof of well-posedness
of boundary-value problems for the bi-Laplacian in Section 6. Here we treat the
Dirichlet problem for A% in Theorem 6.3, the regularity problem in Theorem 6.5,
the Neumann problem for the bi-Laplacian with boundary data from the dual
of Whitney-Lebesgue spaces in Theorem 6.6, the inhomogeneous Dirichlet prob-
lem for A% with boundary data from Whitney-Besov spaces in Theorem 6.10, and
the inhomogeneous Neumann problem for the bi-Laplacian with boundary data
from duals of Whitney-Besov spaces in Theorem 6.16. Along the way, we prove
a number of significant consequences and also discuss the sharpness of some of
the aforementioned well-posedness results. Throughout this section, we work in
the geometrical context of arbitrary Lipschitz domains, Lipschitz domains whose
outward unit normal has small mean-oscillations, and domains of class %'. Nat-
urally, all theorems involved are correspondingly nuanced depending on the
strength of the geometrical hypotheses enforced in each case. This body of results
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complements, sharpens and extends the work done by G. Verchota and Z. Shen
in [26], [24].

In closing, we wish to acknowledge the lasting, influential role of the pioneer-
ing work of G. Fichera in the areas of elasticity theory and boundary integral
methods for higher-order systems (cf. [5], [6], [7] to cite just a small fraction of
his extended scientific output in this regard), to which the topic of the current
paper is closely related.

2. FUNCTION SPACES ON LIPSCHITZ DOMAINS

With N denoting the collection of all (strictly) positive integers, we shall abbre-
viate Ny := N U {0}. In particular, N may be regarded as the set of all multi-
indices {a = (oy,...,0,) : o, € No, 1 <i < n}. As usual, for each multi-index o =
(o1,...,0,) € Nj we denote by |«| := oy + --- + a, its length, and define o! :=
a!...a,! (with the usual convention that 0!:=1). Also, write 0” := 0 ...d}"
and, given o = (a1,..., %), = (B,....B,) € N§, by f < a it is understood that
B; <oy for each j e {l,...,n}. Denote by {¢;},_;_, the standard orthonormal
basis in R”. Whenever useful, we shall canonically identify these vectors with
multi-indices from N{. Generally speaking, given a set 4 (clear from context),
for each a,b € A we let

1 ifa=5>
2.1 Oup 1= ’
21) ab {0 if a # b,

stand for the usual Kronecker symbol. Given an open subset O of R" and
k e Ngu {o0}, we shall denote by 4*(O) the collection of all k-times continu-
ously differentiable functions in O, and by %.°(O) the collection of all indefinitely
differentiable functions which are compactly supported in O. In this connection,
let us define 6*(0) := {¢|,: ¢ € €*(R")}. Finally, we shall write D(0) and
D'(0), respectively, for the space of test functions and distributions in O.

We continue by recalling a basic definition.

DEFINITION 2.1. Let Q = R" be a nonempty, open, bounded set. Then Q is called
a bounded Lipschitz domain (respectively, bounded domain of class %)
if for any Xy € 0Q there exist r,h >0 and a coordinate system (xy,...,x,) =
(x',x,) in R" which is isometric to the canonical one and has origin at Xy, along
with a function ¢ : R"~' — R which is Lipschitz (respectively, of class €') and for
which

(2.2) QnC(rh)={X =(x",x,) e R x R: |x'| < rand p(x') < x, < h},
where C(r,h) denotes the open cylinder
(2.3) (X = x) e R X R: |x'| <rand —h < x, < h} = R".

An atlas for 0Q is a finite collection of cylinders {Ci(ri,hi)} <<y (With
associated Lipschitz maps {¢;}, .p<y) covering 0Q. Having fixed such an
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atlas, the Lipschitz character of Q is defined as the quartet consisting
of  numbers N, max{||Voy|lp«gm1):1 <k <N}, min{ry:1 <k <N}, and
min{/ : 1 <k <N}

As is well-known, for a bounded Lipschitz domain Q, the surface measure o is
well-defined on 0Q and may be described as

(2.4) o=H""]0Q,

where #"~! stands for the (n — 1)-dimensional Hausdorff measure in R". As a
consequence of the classical Rademacher theorem, the outward pointing normal
vector v = (vy,...,v,) to a given bounded Lipschitz domain Q < R” exists at
g-almost every point on Q. We shall extensively work with the tangential deriv-
ative operators 0, by

(2.5) Oy = V;0k —Vi0j,  J ke {l,...,n}.

Tjk

In this notation, the tangential gradient, V,,, f, of a function f on dQ is given by

(26) Vinf = (vkafk/f)lgjgw

with the summation convention over repeated indices understood.
For a fixed parameter x > 0 define next the nontangential maximal oper-
ator by setting, for any given function u in Q,

(2.7) Nu(X):=sup{|u(Y)|: Y e Qs.t. |[X — Y| < (1 +x)dist(Y,0Q)}.
Also, define the nontangential boundary trace of a function u in Q as

(2.8) uljo(X) = lim u(Y), X eoQ,

Qs3Y—-X
| X—Y|<(14x)dist(Y,0Q)

whenever meaningful. Also, if v = (v;),_;_, denotes the outward unit normal
to Q then for any function u € ¥'(Q) we define its normal derivative, d,u, by
the formula

(2.9) O = i) Loy
i1
whenever the boundary traces in the right-hand side are meaningful. Hence,

(2.10) o =v- (Vi) Laq)-

Going further, given a bounded Lipschitz domain Q < R”, for each index
p € (0, 00] we shall denote by L?(0Q) the Lebesgue space of g-measurable, p-th
power integrable functions on dQ (with respect to o). That is,

(2.11) L7(0Q) = { fo-measurable on 0Q : || /11,00y < 0},
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where

(212 vy = [ 1117 de) "

We shall also need Sobolev spaces of order one on the boundary of a bounded
Lipschitz domain Q = R". Specifically, for each p € (1, 00) we set

(2.13) L{(0Q) == {f € L7(0Q) : | /Il (o) < 0}
where
(2.14) 1AW ey = I | Looqy + IVianS [l Logacy-

Finally, for 1 < p < o0, 0 < ¢ < o0, and s € (0,1), the Besov space B!7(0Q)
may be defined as

(2.15) BP9(0Q) = (L!(0Q), L?(6Q))

$,q°

where (-, ), , denotes the real interpolation bracket. For future reference, let us
alsoset

(2.16) L?(0Q) = (L'(6Q))*, 1/p+1/p' =1.

At this stage, we insert a brief discussion of smoothness spaces consisting of
Whitney arrays on the boundary of a bounded Lipschitz domain Q in R”. Call
a family of n + 1 functions from L!(0Q),

(2.17) f=Uo Sty ),
a Whitney array provided the following compatibility conditions are satisfied:
(2.18) Oufo = vifik —wfis  Jke{l,...,n}.

Then the general recipe for constructing function spaces consisting of Whitney
arrays is described next. Given a quasi-Banach space of functions 2 < L!(0Q),
set

(2.19) WAX) = {f = (fo. fi, .- f2) : f; € X,0 < j < n, satisfying (2.18)},

which we equip with the quasi-norm

(2.20) A lwary = D 16ll-
=0

In this paper, we shall primarily work with three such scales of function
spaces consisting of Whitney arrays, corresponding to 2 being one of the spaces
L?(0Q), L{(0Q), and B?(0Q). The resulting Whitney array function spaces
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constructed according to the recipe (2.19)—(2.20) for the choices 2" := L?(0Q),
4 = L{(0Q), and Z := B?1(0Q) are going to be denoted by

(2.21) L{O(ag), L{l(ag), and Bﬁ’f(@Q), respectively.

~ We continue by recording a result pertaining to the nature of Lﬁ 0(0Q) and
L}, (09Q).

PROPOSITION 2.2. Let Q be a bounded Lipschitz domain in R" and denote by
V.= (V)1 <<y its outward unit normal. Then for every p € (1, o0), the mapping

(2.22) ¥ L] (0Q) — L{(0Q) x L?(0Q),

given by

223) W)= (o= Dowh). W= Uofive i) € g0,
Jj=1

is an isomorphism, whose inverse ¥~ : L(0Q) x L?(0Q) — L{O(ﬁﬂ) may be
described as

(2.24) YUEF, g) =1 = (fo, fi,.... [,) where fy .= F

n
and f; == —v;jg + ZVkazk,.F forl < j<n,
k=1

for every (F,g) € LT(0Q) x L?(0Q).

Furthermore, if v € €' (Q) is a function with the property that

(2.25) N (), N(Vv) e LP(0Q), Fv|yq and I(Vv)|sq,

then

(2.26) ¥ (0Lon, —0w0) = (L0 (V0) Log)-

Proor. This is a version of a more general result proved in Proposition 3.3 in
[15] corresponding to the case m = 2. O

We shall also need to use the adjoint of the operator . Its main properties are
summarized below.

PROPOSITION 2.3. Retain the same background hypotheses as in Proposition 2.2
and denote by Y™ the adjoint of the operator ¥ defined in (2.22)—(2.23). Then, for
each p,p’ € (1,00) with 1/p+1/p’ =1,

(2.27) b Lf;(&Q) x L?(6Q) — (L{O(ag))* isomorphically.
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S . p’ ’
Moreover, for each (G, f) € L”,(0Q) x L? (0Q) one has

(2.28) V(G f) = (G, =i )i<j<n)s

in the sense that
(2.29) VG0 =Gy~ [ wfyd
J=1

forall § = (go.(9)1<j<n) € L{ 1(09).

Furthermore, the inverse of VY™ in (2.27) may be described as

(2.30) () A) = (m Eja%»wn E:wm)

j=1
if the functional A € (Lf’o(aQ)) is given by paring against the (n+ 1)-tuple %
where 1i = (19, (1), < ,,) € L”1(6Q) x [L”'(6Q)]".

Proor. This follows by unraveling definitions, in a straightforward manner. O

Next, we shall succinctly recall the smoothness scales of spaces of Besov and
Triebel-Lizorkin type on arbitrary open subsets of the Euclidean ambient. For
the definitions and properties of the standard scales of Triebel-Lizorkin spaces
FP4(R") and Besov spaces B/4(R") (indexed by s € R and 0 < p,q < o0), we
refer the reader to, e.g., [25], [8] [9], [22]. Next, given an arbitrary open subset
Q of R", denote by f|, the restriction of a distribution f in R" to Q. For
0 < p,qg < oo and s € R we then set

(2.31)  FP9(Q) := {u distribution in Q : Jv € F/4(R") s.t. v|g = u},
||“HEJ’“?(Q) = inf{||v||pf~‘1([ﬁz miUE FPAR"), vl = u},
Vu e FP9(Q),

and

(2.32)  BP(Q) := {u distribution in Q : Jv € B Y(R") s.t. v| = u},
B‘YI)‘[I(Q) = inf{”U”B‘f»fl(Rn) U E BS]L[[(RH)’ U|Q = u},
Yu e B1(Q).

[

A detailed analysis of these scales in the setting of Lipschitz domains may be
found in [15]. In particular, it has been shown here that if Q < R" is a bounded
Lipschitz domain and 1 < p < 00, 0 < ¢ < 0, and 0 < s < 1, then the following
boundary trace operators are well-defined, linear, bounded and onto (in fact, in
each case there is a linear and bounded right-inverse):
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(2.33) Fvif/l)(Q) — BP?(0Q),
(2.34) r: Bl (Q) — BP(0Q),
(2.35) FlL Q) 3w (Tru, Tr(Vu)) € BT (0Q),
(2.36) Bl ,(Q) 3 u (Tru, Tr(Vu)) € B'1(Q).

In the last part of this section we shall define certain weighted Sobolev spaces.
Let Q be a bounded Lipschitz domain in R” and denote by p the distance func-
tion to the boundary of Q. Then for each p € [1, x|, a e (—1/p,1 —1/p), and
k € Ny, introduce

(2.37) wkrQ) .= {u : Q — R : ulocally integrable, and

u 1/p
lulsnay = 3 ([ 107u0)17p00)" ax) <oo}.

lo| <k

When a = 0, we agree to drop it as a subscript. In particular, we set
(2.38) W P(Q) := the closure of € (Q) in (W P(Q), || - [lyenay)
and, assuming that p, p’ € (1, c0) are such that 1/p + 1/p’ = 1, define
(2.39) wkr(Q) = (WhP'(Q))".

For any bounded Lipschitz domain Q in R"” and any k € Z, p € (1, «©), we then
have (cf. [15])

(2.40) whkr(Q) = P (Q),
and
(2.41) W2 (Q) = {ue W*'(Q) : (Tru, Tr(Vu)) = 0}.

3. BILINEAR FORMS ASSOCIATED TO THE BI-LAPLACIAN

To set the stage, fix n € N with n > 2 and, given an arbitrary number 0 € R, con-
sider the coefficient tensor

(3.1) Ay = (Aozﬁw))m:\m:za

with scalar entries, defined for every pair of multi-indices o, f € Ny with the prop-
erty that |«| = || = 2 by the formula
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1

mi; (5/)’(ef+e/) + 951’]‘ ;5/3(2ek)> X
X (50:((3,‘-‘1—(3/) + 0511 25“(261())’
k=1

where the Kronecker symbols are defined as in (2.1). Next, consider a bounded
Lipschitz domain Q < R” and, in relation to the coefficient tensor from (3 1)-
(3.2), for each 0 € R introduce the bilinear form (as usual, with A := 87 +--- 4
02 denoting the Laplacian in R")

(3.2)  Ayl0) =

(33) Bywo)i= Y / A5(0)(@"u)(X) (0"0)(X) dX

lo|=|81=2 7

=120 0t Z /[(51‘5/ + 065 A)ul(X)[(0;0; + 05;A)v](X) dX,

i,j=1

where u, v are any two reasonably behaved (real-valued) functions in Q. See, e.g.,
[3, Lemma 3.4, p. 680], [10, p. 5], [20, (2.13), p. 25], [26, (10.2)]. Then one can
readily verify that for each 6 € R the bi-Laplacian may be written as

(3.4) A= Y " Ap(0)0”.
j#/=181=2

In particular, for each 6 € R the bilinear form By(-,-) introduced in (3.3) sat-
isfies

(3.5) Bo(u,v) = /Q(Azu)(X)v(X) dX, Vu,ve € (Q).

Indeed, it is easy to check that

(3.6) ! > (00 + 0050)(0:0; + 06;A) = A

1+ 20+ n0* 5=

Let us also note that A? is strongly elliptic since, as a direct calculation based on
(3.2) shows,

(3.7) Z A,p(0)E*F = |¢|*, for each ¢ € R”.
T2

Going further, given a bounded Lipschitz domain Q = R" with outward unit
normal v = (v),,., and a function u € %*(Q), define its second-order normal
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derivative, afu, by the formula
n
(3.8) Opu =" viv(0i0u) | sq-
ij=1

Then, if u € 4°(Q), for each 0 € R set (in analogy with (1.2), following [26])

n

1 n
3.9 No(u) = 0,(Au) + ——————— 3" 0, 0r, st
(39) olu) 1= () 2(1+20+n02)i;_1 ”<;V" J0u)

2 n
Mg(u) = 20+ nb > Au + ! 5 Z vjvkajaku,
1+ 20+ n0 1+20+n0" 5=
where all spacial partial derivatives of u in the right-hand sides are understood as
being restricted (either in a nontangential pointwise sense, or as tangential deriv-
atives of such traces) to 0Q. Simple algebraic manipulations show that the above
operators may be alternatively expressed as

1 n n

3.10 No(u) = 0,(Au) + — Oz, Vievi0; Ot
(3.10) o) = B+ D (2 vevdyden)

= oA b — Z 0, (Z v,-an,aku),

1420400 5= "N
and
1 n

3.11 My(u) = Au+————— > 10, O,
(31D o) 1+2t9+n02j;1] uok

The relationship between the operators Ny, My and the bilinear form By(-, ) is
brought to prominence in the following result, describing a Green-type formula
for the bi-Laplacian (cf. [3, Lemma 3.4, p. 680] and [20, (2.20), p. 26] for a proof
in domains in R?, and [26, (10.2)] for a statement in the setting of biharmonic
functions in domains in R”, n > 2).

ProOPOSITION 3.1. Assume that Q < R" is a bounded Lipschitz domain with out-
ward unit normal v = (v;), _; ., and surface measure o. Let 0 € R and recall the
operators Ny and My introduced in (3.9), relative to this setting. Then for any

u,v € €*(Q) there holds

(3.12)  By(u,v) = ﬁg {(My(u), No(u)), (6,0, —v)ydo + /Q(Azu)va’X7

where {-,-» denotes the canonical pointwise scalar product between vector-valued
Sfunctions.
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In particular, if v e € (Q) and u is a reasonably behaved null-solution of the
bi-Laplacian A* in Q, then

(3.13) By(u,v) = / M) Nofa). (010, =) o

ProOOF. Integrating by parts and using Einstein’s convention of summation over
repeated indices, we may write

(314) / (6l~6j + HéyA)M . (6,‘5]‘ + (95UA)U ax
Q
= —/ 0i(0:0; + 003A)u - Ov dX
Q
+ / Vi (8,0, + 951;,-A)u . 8_,-1) do
oQ
— 00y - / 0k (0;0; + 05;A)u - dpv dX
Q

— 05 - / (8:0; + 08;A)u - dyv do.
Q

Integrating by parts one more time and using (3.6), identity (3.14) further
implies

(3.15) / (0:8) + 05;A)u - (3:0; + 005A)vdX — (1 + 20 + no?) / (A2u)v dX
Q Q

= —/ v; - 0:(0;0; + 00;jA)u - vdo
Q
+ / Vi (6,-6]- + HéijA)u . 6_,-1; dU
o)
— 00y - / Vi - 0k(0;0; + 00;A)u - vdo
Q

- 95(,’ . (aiﬁj + 05,,A)u . aVU do.

0
Using that 0; = v,v.0; = .0, + v;0, in the second term in the right-hand side of
(3.15) allows us to express this as

(3.16) / Vi - (0;0; + 00A)u - ;v do = / (0i0; + 00;A)uvivio,v do
o o

—|—/ 0z, [vivi(0:0; + 06;A)ujv do.
o



340 I. MITREA AND M. MITREA

In turn, this and (3.15) give

(3.17) / (010 + 05, A)u - (210, + 00,A)0 dX
Q

= (1 + 20+ n6*) /Q (A*u)(X)o(X) dX

—|—/ I(u)-vda+/ II(u) - 0,vdo,
0Q

oQ

where we have set

(318) I(Ll) = a-[ﬁ_ [v,-v,(a,-aj + 95,,A)u] — v_,-@,»(@,-&j + 95!-,-A)u
— 95!'/\1/(6[((6,'5]' + 95!-/A)u,
and

Next, observe that
(3.20) O, [viv06;;Au] = 00, [viv.Au] =0

by symmetry considerations, and that

1
(321) 6,‘” [vl-vrai@ju] = 5 {@,,_[viv,,@i&ju] + 8%. [vivjéiaru]}
1 ja}
= — z 6%_ [Vior_,-,aiuL

where the first identity in formula (3.21) follows from rewriting the expression
0, [viv,0;0;u] as 0y, [v;v;0;0,u] and the second one uses the definition of d,. Based
on (3.18) and (3.20)—(3.21), straightforward algebraic manipulations yield

(3.22) L(u) = —(1 + 26 + n6*)d,Au — %a (Vi O, Oxcd]
= —(1 420 4 n0*)Ny(u).
Also, a simple inspection of (3.19) reveals that
(3.23) (1) = (20 + n0*)Au + *u = (1 + 20 + n0*) My(u).
At this stage, (3.13) follows form (3.17) and (3.22)—(3.23). O
In our next proposition we identify the formula for the conormal derivative

associated with the writing of the bi-Laplacian as in (3.4) for the tensor coefficient
given in (3.1)—(3.2).
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PROPOSITION 3.2. Let Q = R" be a bounded Lipschitz domain with outward unit
normal v = (v;), ., and surface measure o. Pick 0 € R and recall the operators
Ny and My from (3.9), corresponding to this setting. Then for any reasonably
well-behaved biharmonic function u in Q there holds:

(3.24)  coefficient tensor Ay as in (3.1)—(3.2) = 0u == {(0;u),} o<, <n
where (02'u), = —Np(u) and (02°u), = v, My(u) for 1 <r <n.

PrROOF. Let u be as in the statement of the proposition and pick an arbi-

trary function v € ¥ (Q). Based on successive integrations by parts we may
compute

(3.25) A <0, (Trv, Tr(Vo))) do

0Q

:Bdmv%:[;M@@O&v—Nﬂmﬂda

= ﬂg {(=Ny(u),viMy(u),...,vpMy(u)), (Trv, Tr(Vv)))> da.

Therefore, (3.24) follows. O

It is useful to record the explicit expressions of the components of the con-
ormal. Indeed, making use of the first formula in (3.10) and the second formula
in (3.9), it follows that the components of d:*u described in (3.24) are (using the
usual summation convention over repeated indices):

(3.26) (029u) = —0,(Au) — cq(0) - Or, (v/vi0;0,u)
and
(3.27)  (6u), = (1 — cu(0)) - v,Au + ¢,(0) - v,vjv,0;0,u for eachr e {1,...,n},

where

1
3.08 )=
(3.28) a0 = T

again, with the understanding that all derivatives in the right-hand sides are re-
stricted to the boundary.
4. BOUNDARY LAYER POTENTIALS

Let E be the canonical fundamental solution for A? in R" given at each
X e R"\{0} by
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1 4en
X|*" if e N\{1,2,4
2= A= Dy N2
1
(4.1) E(X):={ —— log|X| if n=4,
46!)3
1 .
—§|X|2(1 — log| X|) if n=2,

where ,_; denotes the surface area of the unit sphere S"~! in R”. In particular,

%mzf" ifn >3,
4.2) (AE)(X) = { (2= mon-

1

— log| X| if n=2.

2n

In relation to the latter, given a bounded Lipschitz domain Q < R” with outward
unit normal v and surface measure o, recall that the harmonic double and single
layer operators are, respectively, given by

(4.3) Daf (X / H(AE)(X = Y)]f(Y)da(Y), X eR"\0Q,
and
(4.4) Saf(X) = [Q(AE)(X— Y)f(Y)do(Y), X e R"™\0Q.

Also, the boundary version of Dy is

(4.5) Kaf(X):= lim O(AE)(X = Y)]f(Y)da(Y), X eoQ.
e=0" Joo\B(X ¢)

Based on definitions, if f € L?(0Q) for some p € (1, 0) and 7 € {1,...,n}, then

the following identities may be readily verified for each X € R™\0Q:

(4.6) 0/(Daf)(X z 0:55(2,/)(X),
(4.7) 0/(Saf)(X) = ~(8a(8x, (v ))(X) — (Dalve))(X).

We are now prepared to make the following basic definition.

DEFINITION 4.1. Let Q be a bounded Lipschitz domain in R" with outward unit
normal v = (v;), . ;.,, and surface measure o. Also, fix 0 € R and recall c,(0) from
(3.28). In this context define the action of the biharmonic double multi-layer Dy on

each Whitey array f (fos fis---sfn), b
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48)  Df(X) ::—% S aldp(0) /

lo|=|B|=2 i,j so that
e,+e, o«

X {(PE)X = Y)/i(Y) + (" “E)(X = Y) fo(Y)} da(Y)

for X e R"\oQ. In addition, denote by K, the boundary biharmonic double multi-

layer, whose action on an arbitrary Whitney array f = (fo, f1,. .., fa) such that
fe L1 0(0Q) is the Whitney array

(49) Kﬁf = ((Kﬁf)O’ (Kﬁf)l, sy (Kﬁf)n)
where, for o a.e. X € 09,

@10)  (Kaf)o(x) = lim [, dnl(AE)X ~ V)LA(Y)do(¥)

|X—-Y|>e

_/;Q(AE>(X— Y>ivk(Y)fk<Y)do'(Y)

k=1

while for each ¢ € {1,...,n},

e—0t YedQ
[ X-Y|>e

(4.11)  (Kof),(X) := lim ; {av(Y)[(AE><X_ Y)I/(Y)

+ ¢cn(0) x

J, k=1

xZaq [(6,00E)(X — Y)]fi( )}da(Y).

Finally, denote by K,}‘ the adjoint of the operator Ky considered above.

It should be noted that the operators introduced in the above definition are con-
structed according to the general recipes from Definitions 4.2-4.3 in [15], imple-
mented for the writing of A? as in (3.4), corresponding to the tensor coefficient
Ay = (A2p(0)) = p—> from (3.2) (and with E as in (4.1)). Indeed, formula (4.164)
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from Theorem 4.6 in [15] shows that, in the context of the above definition, when-
ever | < p < oo we have (with 7 denoting the identity operator)

(4.12) (Dof Loy (VDF ) o)) = GI +Ko)f ¥ e LY 4(0).

This may be used to identify a concrete formula for Ky, and the fact that formulas
(4.9)—(4.11) are natural may be seen by combining (4.12) with (4.25) and (4.39)
(proved later). For further reference let us also note here the estimates

(4.13) HN(DHf)”Lp(aQ) + IV (VDS )| Lr(0Q)

< C”fHL{fO(@Q) for each f € Lﬁ0<aQ),
and
(4.14) IV (VDo) ooay < CIAllzg o) ¥ € LT1(09),

which are particular cases of Theorem 4.2 in [15]. In concert, (4.12)—(4.14) also
show that for each p € (1, «0) the operator

(4.15) Ky is well-defined and bounded on L{ ,(6Q) and on L]’" (09).
In fact, based on this and interpolation (cf. [15]), we also have that

(4.16) Ky is well-defined and bounded on B/!(0Q)

whenever 1 < p,q < o0, and s € (0,1).

In addition to the operator Dy defined above, with Ny, My as in (3.9), consider
the integral operator acting on each pair (F,g) € LI (0Q) @ L?(0Q), where the
index p € (1, «0), according to the formula

(4.17) Dy(F,g)(X) = qQ{Me[E(X —)I(Y)g(Y)
+ No[E(X —)|(Y)F(Y)}da(Y),
at each X € R"\0Q. The goal now is to elaborate on the relationship between the

operators Dy and Dy just introduced. In this vein, it helps to recall the isomor-
phism ¥ described in Proposition 2.2.

PROPOSITION 4.2. Assume that Q is a bounded Lipschitz domain in R" and fix
0 e R Then

(4.18) Dy=Dyo¥ inR"\Q,

when both operators are acting on arbitrary Whitney arrays from L{’, 0(0Q) with
p e (1,00).
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ProoF. Thanks to Definition 4.1 and a density argument, it suffices to show that
the two operators from (4.18) act identically on Whitney arrays of the form

(4.19) f = (Trv,Tr(Vv)), ve € (Q).

Assume that this is the case, i.e.,

(4.20) f =0 f1,- 0, fn) = (Wlog, (010)]q, - - -5 (0n0) | 50),
and introduce

n

(4.21) F:=fyeL{(0Q) and g:=-) vfje L"(0Q),

j=1

where v = (v;), ., denotes the outward unit normal to 0Q. Hence,

(4.22) V() = (F.g) = (tlsq, —0w).

Then, based on (4.17), Proposition 3.1, Green’s representation formula for the bi-
Laplacian (cf. [15, Proposition 4.2] for a general result of this nature), and (4.19),
for every point X € R"\0Q we may write

423) o) = BF9)(X) =o(X) ~ [ {=MlBX =)Vl )
+ Ng[E(X = )I(Y)u(Y)} da(Y)
= By(E(X —-),v) = v(X) — Dy((Trv, Tr(V0)))(X)
= 0(X) — (Duf)(X).

As such, in light of (4.22) we conclude that (4.18) holds. O

Next we take a closer look at the action of the biharmonic double multi-layer,
originally introduced in Definition 4.1, on Whitney arrays.

PROPOSITION 4.3. Assume that Q is a bounded Lipschitz domain in R" with out-
ward unit normal v = (v;), . ;, and surface measure a. Also, fix a number 0 € R
and set

1
4.24 L (0) = ————
(4.24) n(0) 1 +20 + no?

Then the action of the double multi-layer D(; introduced in Definition 4.1 on
a Whitney array f = (fo, fi,..., Ja) from L{(0Q), with 1 < p < o0, may be
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described as

(425)  (D)(X) = /e A l(AB)(X = Y)LA(Y) da(Y)

- [ amyx - Y)kamfkm do(¥)

+ ¢n(0 /Za% [(BkE)(X — Y)]£(Y)da(Y),

Jok=1
for each X € R™\0Q.
In particular, using the notation introduced in (4.3)—(4.4),

(426)  (Df)(X) = (Dafo)(X sA(kafk)

cal0)- [ 3" S ml@EE)X — V(Y da( ),

k=1
Jor each X € R™\0Q.

PROOF. Forevery f = (fo, fi,..., fx) € L{ ((0Q), based on (4.18), (2.22)(2.23),

and (4.68), at every X e R"\0Q we may write (using the summation convention
over repeated indices)

4.27)  (Dof)(X) = Do(fo, —vifi)(X)
- [ -apx -1
+en(0) - vi(Y) 0 () [(OkE) X — Y)}vi(Y) fi(Y) da(Y)
+ /m{@vm[(AE)(X— Y)]
= cn(0) - Oy(y) (Vi Y) 0y (1) [(OkE)(X = Y)])}fo(Y) do(Y)

— [ unlBBX = VIR~ AEX - Vn(¥)A(Y)
+eu(0) - Doy (1) [(RE)(X — ¥)]
x (videy o+ i) ()} do( ),

thanks to (3.10)—(3.11) and an integration by parts on the boundary. Now, the
claim made in (4.25) follows from (4.27) after observing that

(428) V[@T’.jf() -+ VjV,’f,’ = V,’(V[ﬁ — iji) =4 vjv,-f,- = fj7
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by the compatibility conditions satisfied by the components of the Whitney
array f. O

The next order of business is to study the mapping properties for the conormal
derivative of the biharmonic double multi-layer. Our first result in this regard is
the following theorem (we shall return to this topic later, after completing a nec-
essary detour).

THEOREM 4.4. Let Q be a bounded Lipschitz domain in R" and fix 0 € R. Also,
assume that p,p' € (1,00) are such that 1/p+ 1/p’ = 1. Recall Dy introduced in
Definition 4.1 and the conormal 6:1” from Proposition 3.2. Then the operator

(4.29) 0Dy : LY (0Q) — (LY ,(2)”

is well-defined, linear and bounded. Moreover, this operator further extends as a
linear and bounded mapping in the context

(4.30) 07Dy« L] (0) — (LY (09))".

PrOOF. For each f € L?,(0Q) we know from (4.13)~(4.14) that the double
multi-layer satisfies the nontangential maximal function estimate

(4.31) N Do) oo + IN VD) o) + IV (V2Dof ) Loeg) < CILS |

if (o)

for some finite constant C > 0 independent of f. Moreover, one can show
that

(4.32) 0" Daf | sq eXists g-a.e. on 0Q, Vf e L’ (0Q)
whenever y € N satisfies [y < 2.
However, the conormal entails up to three derivatives on Dj. Indeed, as seen from

(3.26)—(3.28), the components of d7“D,f are given by (here and elsewhere the
usual summation convention over repeated indices is used)

(4.33) (afabef)o = —5v(AD0f) —cu(0) - arf,-(V/’Viaja/Daf),

and, for 1 <r <n,

(4.34) (02Dyf), = (1 = u(0)) - v,ADYf + ¢u(0) - v,vjv,0;0,Dyf

with the understanding that all derivatives in the right-hand sides are restricted to
the boundary and that ¢,(0) is as in (3.28). Note that, thanks to (4.31) and (4.32),

the map

(4.35) LY (6Q) 3 [+ 0;0,Dyf | o € L7 (0Q)
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is well-defined, linear and bounded, for every 7, j € {1,...,n}. As such, the map-
ping
(4.36) Ll (6Q) 3 f + 0., (vvi0;0,Dyf ) € L (6Q)

is also well-defined, linear and bounded, for every i, j,/ € {1,... n}.

We propose to take a closer look at the structure of the derivatives of
the biharmonic double multi-layer operator. In a first stage, fix an arbitrary
Whitney array f = (fo, fi,..., /1) € L{’,O(éﬂ) then for every Z € {1,...,n} and
X e R"\0Q compute

(4.37) 0/(Daf ) (X) = 0/(Dafo)(X) = 0,Sa(vif})(X)
+60)- [ 0m(@AE)X = V)I(Y)da(Y),
o
where ¢,(0) is as in (4.24). Upon observing that, for every X € R"\0Q, identity

(4.6) and the compatibility conditions satisfied by the components of the Whitney
array f allow us to write

(4.38) 0r(Dpfo)(X) — 0,Sa(vifi)(X)
= —0;iSa(0z, f0)(X) — 0, Sa(vifi)(X)
= —0:SA(vifr)(X) 4+ 0iSA(vefi)(X) — 0,Sa(vifi)(X)

= (DAf)(X) + / 0 [(AE)X — Y)IA(Y) do(Y)

we deduce from (4.37) that, at each point X € R"\0Q,

(4.39) 0,(Dyf)(X) = (Dafr)(X) + Sa(0:,£)(X)

+an(0) - / oy (BN (X = Y)If(Y) da( )

- / {0 [(AE)X = VAY) + 00 [(AE)X = V)LA(Y)

+n(0) - 0oy (1 (0,0 E)(X = Y)I/5(Y)} do(Y).

In the case when the array f= (fo, f1,---, fn) actually belongs to the
Whitney-Sobolev space L | (0Q), we may integrate by parts on the boundary in
(4.37) in order to write, for every / € {1,...,n},

(440)  0,(Duf)(X) = (Dafy)(X)
+ / (AE)(X — Y)(@,,/)(Y)
0Q

+ cn(0) - (0, 0E)(X = Y)(0r, fi))(Y)} do(Y),
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for each X € R"\0Q. In this scenario, we may take one extra derivative while
still retaining control of the finiteness of the L”-norm of the nontangential maxi-
mal function. Concretely, for each j,/ € {1,...,n} we obtain (with the help of

(4.6))
(4.41)  0,0/(Daf)(X) = —0:Sa(05, f7)(X)
+ [ {@AE)X = 1)(@0,,f)(Y)
Flo)
+ en(0) - (00, 0cE)(X = Y)(0r, fi)(Y)} do(Y),
at each X e R"\0Q, whenever f= (fo, f1,-.., fn) belongs to the Whitney-

Sobolev space Lﬁl(ag). Concisely, for every f = (fo, f1,---,/n) € L{{l(ag) we
have

(4.42) 0,0, Dof = —0;Sa(0+,17) + 0;Sa (0, 1)
+ ¢u(0) / (0;0/0kE)(- = Y)(0r, f1)(Y)da(Y) in R"\0Q.
o0
In particular, summing up over j = / and using (4.24) yields

(4.43) ADyf = ! S 0kSa(0z, f;)  in R™\0Q,

1420+ no
¥ = (fo, i fo) € LT 1 (09),

and, further,

.. 1
4.44)(0,ADpf)(X) = ————— x
(4.44)(0,ADpf)(X) 520+t
<t (lim [, GAENY = V)@ f)(Y) da(Y)
[ X-Y|>e
in R"\8Q, for every f = (fo, fi,--.. fa) € L{l(ag). Consequently,
(4.45) LY (0Q) > f — 8,ADyf € L, (0Q)

is a well-defined, linear and bounded mapping.
In summary, from (4.33)-(4.34) and (4.35), (4.36), (4.45) we deduce that the
mapping

(4.46)  L{,(0Q) 5/ = ((,"Daf ), (0" Dof )1 < ) € L2, (02) @ [L7 (0)]"
is well-defined, linear and bounded. Furthermore, it is clear from (4.34) that

(447)  (02Dpf )y <pen = (—Vify...,—vuf) foreach f e LY (2Q),
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where

20 + nb?

T ADSf —
20 2

(4.48) f = viv,0;0,Dyf € LP(0Q).

1 + 20 + nb*

At this stage, the fact that the operator 6;‘” Dy is well-defined, linear and bounded
in the context of (4.29) follows from (4.46)—(4.48) and Proposition 2.3. Lastly,
that this operator further extends as a linear and bounded mapping in the context
of (4.30), follows from what we have proved so far, the fact that 0D, coincides
with its own transpose (which is the case for any conormal derivative of any
double multi-layer associated with a symmetric higher-order elliptic operator; cf.
Proposition 5.17 in [15]), and duality. O

Let Q be a bounded Lipschitz domain in R" and fix p € (1,0). The bi-
Laplacian single multi-layer operator S acts on an arbitrary functional
A € (L{(09))" according to the formula (with E as in (4.1))

(4.49) (SA)(X) :=(E(X = )|aq, —(VE)(X — )|sq),A> foreach X e R"\0Q,

where the expression in round parentheses is regarded as a Whitney array in
L7, (09Q). In a similar fashion, let us also consider the boundary version of
(4.49) defined, for each A e (L{ ((0€))" by

(4.50)  (SA)(X) = (E(X = )|s0, —(VE)(X = )|;0), A, X €0Q.

PrROPOSITION 4.5. Let Q be a bounded Lipschitz domain in R" and assume
that p e (1,00). Fix 0 € R and recall the conormal 8;4“ from Proposition 3.2.
Also, let S stand for the bi-Laplacian single multi-layer operator from (4.49).
Then

(4.51) 008+ (LY 4(09))" — (LI (0))"

is a well-defined, linear and bounded operator.
As a corollary, for each p € (1, 00),

(4.52) oMS = —51 + K, as operators on (L{ ,(0Q))".

PROOF. As usual, let p’ denote the Holder conjugate exponent of p. As far as
the claim pertaining to the operator in (4.51) is concerned, the crux of the matter
is establishing the estimate

(4.53) ||5vA5A||LfI’(@Q) = CHA”(L]”_O((?Q))*

for some finite constant C > 0 independent of A e (L!,(0Q))". Once this has
been done, the same type of reasoning as in Theorem 4.4 (which also uses the
nontangential maximal function estimates for generic single multi-layers proved
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in Proposition 5.1 in [15]) may then be used to complete the proof of the bound-
edness of the operator in (4.51).

Given an arbitrary A € (Lﬁ 0(0Q))", a reasoning based on the Hahn-Banach
theorem leads to the conclusion that there exists an (n + 1)-tuple of functions
(90,915 gn) € [L?'(3Q)]""" with the property that

(4.54) z(; 1971l o o) = ANl (ir o))
J=

and such that, for each X € R"\0Q,

(4.55) SA(X) = /a . E(X — Y)go(Y)da(Y)

- ;/ﬁg(ﬁjE)(X— Y)g,(Y)da(Y).

As such, we may write

(4.56) ASA =Sxgo — > 9Sag; inQ,
j=1

J

where S, is the harmonic single layer in Q (cf. (4.4)). To proceed, recall that if Sa
denotes the boundary harmonic single layer, then the identity

n

1
(457) 0VDAQ = 5 Z afk,‘SA(aTkig)’
k=1

is valid for any g € L?(0Q). Consequently, based on (4.7), (4.56), and (4.57), we
may compute

(4.58) OASA = 0,8ag0 + Y 0uSa(0:,(vigy)) + Y _ 0 Da(vig5)
=

ij=1

1 ~(_1
= (_51 + KZ)gO -+ Z (—EI + KA*) (aTji(vigj)>
=1
+% Z ar/ﬁiSA(a‘flci(vigj))’
i,j, k=1

where K is the adjoint of the boundary harmonic double layer from (4.5). Since
the operators
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K L7 (0Q) — L7 (0Q),
(4.59) K;: LP(0Q) — L' (0Q),
Sy L7 (0Q) — LY (0Q),

are bounded, estimate (4.53) now follows from (4.58) and (4.54). This completes
the proof of the boundedness of the operator in (4.51). With this in hand, identity
(4.52) follows from the jump-formula for generic conormal derivatives of single
multi-layers on Besov spaces (cf. (5.152) in [15]), and a density argument. O

Moving on, assume that Q = R” is a bounded Lipschitz domain, with out-
ward unit normal v= (v),_;., and surface measure 0. Also, fix 0 € R and

1 < p< oo and recall ¢,(0) from (4.24). In this setting, consider the 2 x 2
matrix-valued singular integral operator

(4.60) Ky: LY (0Q) @ L7 (0Q) — LP(0Q) @ L?(0Q),
- Rl] RlZ
(4.61) o= <R§1 Rgz)

where the entries in the above matrix,
Ry LP(0Q) — LT (0Q),

(4.62)

T aul0) - 00y [(BLE) (X — )] x
< (Y) (2, F)(Y)} do(Y),
o) (REQU) = lim [, (X - ¥)g(1)
’ | X—Y|>e
— ¢0(6) - 24y [(BE)(X — ¥)]x
<y (Y)g(Y)} do(Y),
@6s) (RPN = lim [, v (O(-@AE)X - V)0, F)(Y)
’ [X—Y|>e
— a(0) -y [(AAE) (X — )] x
X vi(Y)((?,U.F)(Y)}da(Y),
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and

22 — h
(4.66) (Ryg)(X):=lim [
[X—Y|>e

ve(X){=(0AE)(X — Y)g(Y)

+ cn(0) . 6,kf(y)[(6/6kE)(X — Y)] X
xvi(Y)g(Y)}da(Y),

for each F € L{(0Q) and each g € L?(0Q). Here the summation convention over
repeated indices has been used.

PROPOSITION 4.6. Retain the same setting as above, and recall the definition
of the boundary biharmonic double multi-layer operator Ky on 0 from Definition
4.1. Also, recall the mapping Y from Proposition 2.2. Then, for each p € (1, 0),
the following diagram is commutative:

LI(0Q) ® L7(0Q) X L7(00) @ L7 (00)

\ \

if (@) if (@)

Ky

PROOF. Fix an arbitrary pair of functions, (F,g) € LY (0Q) @ L?(0Q), along
with an arbitrary point X € R"\0Q. Based on (4.17) and (3.10)—(3.11) we may
write, in a manner analogous to (4.27) (using the summation convention over re-
peated indices),

@67 DuF.g)(X) = [ {AE)X =)
— e0(0) - 1(¥)a5, (1 [(ALE) (X — V)]}g(¥) do(Y)
+ [ o BEYX = Y)) = e0) %
% 00y (4(X)00 1) [(BE) (X — YIDIE(Y) do(¥),

where we have also integrated by parts on the boundary and ¢,(#) is as in (4.24).
Hence, for every pair of functions (F,g) € L{(0Q) @ L?(0Q) we have

(4.68) Dy(F.,9)(X) = (DaF)(X) + (Sag)(X)

tal0): | oyml@OE)X = )] x

0

X (vi0r, F —v;g)(Y)da(Y),

at every X € R"\0Q. Consequently, for every number 7 € {1,...,n}, at each
point X € R"\0Q we may write
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(4.69)  o/(By(F.))(X)
= [ {@AE)X = ¥)@., F)(Y) + @AE)X = )g(Y)
£ ea(0) - 20y [(QLE)(X = V)]0, F — vig)(V)} do(Y),

based on (4.68) and (4.6). From (4.68)—(4.69), on the one hand, and (4.60)—
(4.66), on the other hand, we deduce by also making use of general jump-
formulas for layer potentials of Calderon-Zygmund type (cf., e.g., (2.530) in
[15]), that (cf. [26, (14.2) on p. 253])

_ _ 1 _
(4.70) (Do(F,g) Lo, ~0Do(F.9)) = (51 + Ko ) (F.0),
for each F € LY (0Q) and each g € L?(0Q)

As such, for every f € Lf 0(0Q) we may compute

@1 (54 K) ¥ = ([By o ¥()] Lo~ 00Dy o ¥

2
= (DgfL@Q, _6VD0f)
= lI’((Tngf., TT(VDHf)))

= (514 k0)7).
where the first equality is (4.70) written for (F,g) := W(f), the second equality
has been established in Proposition 4.2, the third equality makes use of (2.26),
and the fourth equality is a consequence of the jump-formula for the double
multi-layer (cf. Theorem 4.6 in [15]). Now the claim about the commutativity of
the diagram in the statement of the proposition readily follows from (4.71). 0O

We conclude this section by recording a couple of useful operator identities
involving the multi-layers considered earlier. Specifically, whenever Q is a
bounded Lipschitz domain in R", # e R, 1 < p, g < o0, and s € (0, 1), we have

N R 1 : .
472)  0MDyo S = (51 + K;) o (_ I+ Kg) on (BI1(6Q))",
and

) . 1 ) 1 ) )
(4.73) So o, = (51 + K(;) o (_ ST+ K,)) on BI"Y(0Q).

Both are particular cases of similar identities valid for multi-layers associated
with generic higher-order operators (cf. (5.176)—(5.177) in [15]). In the same geo-
metric context if 1 < p, p’ < oo satisfy 1/p + 1/p’ = 1 then for each s € (0, 1) we
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also have
(4.74) SK; = K»S
as linear, bounded operators from the space (B{ 1(0Q))" into Bﬁ ’;z’s(ag). See

Proposition 5.15 in [15].

5. INVERTIBILITY RESULTS

The first goal here is to state and prove a basic invertibility result, extending work
in [26] and [24]. In preparation, let P(R") stand for the space of all polynomials
of degree < 1 in R”, and set

(5.1) P(Q) :={P|o: P e P(R")},
P(0Q) :={P:= (Ploq, (VP)|sq) : P € P(Q)}.
Our first main invertibility result reads as follows.

THEOREM 5.1. Assume that Q = R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 0 € R with 0 > — % Also, recall the boundary bi-
harmonic double multi-layer operator Ky on 0Q from Definition 4.1. Then there
exists ¢ > 0 with the property that

1 . .
(5.2) ST+ Ky : LY ((0Q) — LY ((09) is an isomorphism

2
2(n—1)
3

whenever p € (2 — ¢, + 8) if n>4,

and whenever p € (2 — ¢, 0) if n € {2,3},

1 . .
(5.3) I+ Ky: LT (0Q) — L{ (0Q) is an isomorphism

2

2(n—1)
+1
and whenever p € (1,2 +¢) if n € {2,3}.

whenever p € ( —¢&2 —|—8> if n >4,

In addition, the inverses of the isomorphisms in (5.2) and (5.3) act in a compatible
manner on the intersection of their domains. Furthermore,

(54) - %1 + Ky LY (0Q)/P(0Q) — LT ((0Q)/P(0Q)

2(n—1
is an isomorphism whenever p € (2 — 8,L3> + 8) if n>4,
n —

and whenever p € (2 —¢,0) if n € {2,3},
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and

(5.5) - Ly +Ky: L (0Q)/P(0Q) — L{ (0Q)/P(0Q)

2

2(n—1)
+1
and whenever p € (1,2 +¢) if n € {2,3},

is an isomorphism whenever p € ( —&2+ 8> if n>4,

and once again the inverses of the isomorphisms in (5.4) and (5.5) act in a compat-
ible manner on the intersection of their domains.

PRrOOF. Given ¢ € (0, 1), consider the open intervals

(2(n—1) 2(n—1)) itn>4

(56) Il = n+l+e’ n—1—¢
Tl ene 23,
and
2(n—1) 2(n—1) .
(5.7) I = G ) fn=4,
' (i(_nl:iza OO) if n e {2,3}.

Hence, for any p, p’ € (1, o0) with%%—]% =1 we have
(5.8) pell & p el.

The starting point is the result asserting that there exists ¢ € (0,1) such that,
with Kj as in (4.60)—(4.66), the operators

1 ~
(5.9) iil + Ky : LT (0Q) @ LP(0Q) — LI(0Q) @ L?(0Q)
are Fredholm with index zero whenever p € 1.

This result (which uses the fact that 6 > —1) has been established first when
pe(2—¢2+¢) by G. Verchota in [26], and the extension to the larger range
p € I is due to Z. Shen in [24]. Moreover, it has been established in [24] that,

for some ¢ € (0, 1),

(5.10) %1+1€H L LP(0Q) © LP(0Q) — LI(0Q) @ LP(0Q)

is an isomorphism whenever p € I,.

Granted this, the invertibility of the operator in (5.2) then follows from (5.10),
Proposition 4.6, and Proposition 2.2. Concerning the operator in (5.4), in a first
stage the same circle of ideas give, based on (5.9), that
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1 . .
(5.11) the operator —51 +Kp: L{ ((09Q) — L{ (0Q)
is Fredholm with index zero for each p € I..

In turn, thanks to (5.11) and the fact that 2K, reproduces functions in P(0Q)
(cf. Proposition 4.5 in [15]), we also have that

1 . . . . .
(5.12) — 51 + Ky : L] ,(0Q)/P(0Q) — Lﬁo(aﬁ)/P(aﬂ)
is Fredholm with index zero whenever p € I,.

Given that the embedding ijlz 1$(0Q) — LY (09Q) is well-defined, continuous
and with dense range, for each p e I, provided that ¢ > 0 is small enough, we de-
duce from the invertibility of the operator — 37 + Kj both on BIZ: 12 /2(69) and on
Bflz /2(69) /P(0Q) (itself, a consequence of variational arguments; see Corollary

6.1 in [15] and (6.174) in [15]), (5.12), plus a little functional analysis (cf. Lemma
6.6 in [15]) that
1 .. . ) .
(5.13) —51 + Ky : Lﬁo(éﬁ)/P(éﬁ) — LﬁO(GQ)/P(aﬂ)
is an injective operator for each p € I.
In passing, let us also note that the same type of reasoning as above gives
.. 1 N s .
This is going to be useful later on.
Let us now consider the claims made in (5.3) and (5.5). To this end, we first
note that, thanks to (5.9), Proposition 4.6, and Proposition 2.2, we have that
1 . .
(5.15) izl—i—K@:Lf”O(@Q) —>L{’70(6£2)
are Fredholm with index zero for each p € I

Thus, by duality,

| . .
(5.16) iil—i—Kg : (L{jo(ag)) — (LﬁO(GQ))
are Fredholm with index zero for each p € I,.

Let us also remark that, as seen from (5.15), the composition
1 : 1 : . .
(5.17) (§I+K0) o (—§I+K0) LY (0Q) — LT (09)

is Fredholm with index zero for each p € I,
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hence by duality,

| | N .. .

(5.18) (§I+K0> o (—§I+K9) (L 0(09)" — (LT (09))
is Fredholm with index zero for each p € I.

To proceed, recall that S denotes the boundary version of the biharmonic

single multi-layer introduced in (4.50). Hence, if p,p’ € (1,00) are such that

1/p+ 1/p’ =1, then the boundedness results for general single multi-layer type
operators from Theorem 5.1 in [15] ensure that

(5.19) S (LY (09))" — L7 ,(9Q) boundedly, and
(5.20) S (Lf(09))" — LI (99) boundedly.

Based on these and Theorem 4.4 we may therefore conclude that, for each index
p € (1, 00), the operators

(5.21) 0'Dyo S (L] ((9Q)" — (L{((09))",
(5.22) 0'Dyo S (L] (0Q))" — (LI (09Q))",
(5.23) So0'Dy: LY ,(6Q) — LI (0Q),
(5.24) Sod'Dy: LY (0Q) — LI (09),

are well-defined, linear and bounded (where, as usual, 1/p + 1/p’ = 1). Having
established these boundedness results, we may then conclude from (5.21), (5.18),
formula (4.72), and density arguments, that

(5.25) 0'Dyo S (L] (0Q))" — (L] ,(0Q))

is Fredholm with index zero for each p € I.
In turn, (5.25), (5.20), and (4.29) readily imply that
(5.26)  the operator 0Dy L{f/l(ag) — (Lﬁo(éQ))* has closed range,

. . . 1 1
of finite codimension whenever p € I and —+— = 1.
P p

With this in hand and availing ourselves of the fact that the operators in
(4.29) and (4.30) are adjoint to one another, it follows from (5.26) and duality
that

(5.27)  the operator 3Dy : L{O(EQ) — (L{j’l(ag))*

1 1
has finite dimensional kernel, if p € I/ and » + oo 1.
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Next we claim that
(5.28) Wp'el, 3gel] suchthat LI (0Q)— L{ (o).

To justify this claim, assume first that n» >4 and nete that this forces
"e(1,n—1) for any p’ € I,. As such, the embedding L{ (6Q) <—>L{10(6§2)

holds whenever ¢ := ( 1} — n%l) ' On the other hand, it may be verified without
difficulty that

1 N -
(5.29) {(;7_;1—1) p GIS}—IS.

This, of course, proves the claim in (5.28) when n > 4. When n = 2, the em-
bedding in (5.28) holds for any p’,q € (1, c0), while when n =3 is obviously
true whenever indices p’ € 2, 00) and ¢ € (1, o0). Finally, in the remaining case,
ie, forn=3and p’ € (1,2), we may take the index ¢ := (;; —3) € (2,0) <
I]. This finishes the proof of (5.28).

Moving on, we may then deduce from (5.27), (5.28), and (5.26), that the

operator
(5.30) 0Dy - L (0) — (L] 4(0))"

has both closed range, of finite codimension, and finite dimensional kernel when-
ever p € I] with % +1% = 1. In other words,

(5.31) 0Dy« LY (0Q) — (L7 1(2€2))"is Fredholm
11
provided p € I] and —+— = 1.
o

In particular, the operator 6A”D@ has, in the above context, a quasi-inverse. In
concrete terms, this means that Whenever p el and 1+ 1_ =1, there exist a

Fredholm operator R : (Lf7 0(0Q))" — LP 1(0Q), and a hnear compact operator
Comp mapping L1 1(GQ) into some Banach space X, with the property that

(5.32) Ro 0"y = I + Comp on L{j’l(ag).
Composing the Fredholm operator in (5.25) to the left with the Fredholm opera-
tor R just considered, and keeping in mind that the class of Fredholm operators is

closed under composition as well as additive compact perturbations, we arrive at
the conclusion that

(5.33) S: (Lﬁo(éﬁ))* — Lf/l(aQ) is a Fredholm operator

1 1
whenever p € I/ and —4+ — = 1.
p D
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In light of the self-adjointness of the single multi-layer (cf. (5.22) in [15]), we may
take the dual of (5.33) in order to also obtain that

(5.34) S: (L{’,/l (0Q))" — L{ ,(09Q) is a Fredholm operator
1 1
whenever p € I/ and —4+ — = 1.
’ P D

At this stage, taking the composition of the Fredholm operators in (5.31) and
(5.33) leads to the conclusion that

(5.35) So oDy L{’?’1 (0Q) — Lf/l (0Q) is a Fredholm operator

11
whenever p € I and —+— = 1.
p D
Granted this, from identity (4.73) and a density argument we deduce that
1 . 1 . . ! . l
(5.36) (51 + Kg) o (_51 + Kg) LY (0Q) — LT (00)
. , 11
is a Freholm operator whenever p € I, and —+— = 1.
p D

In turn, this readily implies that the operators i%l + Ky (which commute with
one another) have both closed ranges of finite codimension and finite dimensional
kernels, thus, ultimately,

1 . - o !
(5.37) iil +Kp: L{(0Q) — L{(0Q) are Fredholm operators
, 11
whenever p € I and —+— = 1.
p D

Going further, we make use of (4.74) (and the same type of boundedness
and density results as before) in order to obtain the following intertwining
identity

: 1 : 1 . . . i
(5.38) So (J_rzzucg) - (i§1+1<0) oS on(L!,(0Q)",

in which S is as in (5.33), Kj acts on L/ (69) and K acts on (L{’O(aﬂ)) From
(5.38), (5.37), (5.33), (5.16), and the add1t1v1ty law for the Fredholm index, we
eventually obtain (cf. also (5.8)) that

1 . !
SI+Kp: LY (09) — LT (29)

are Fredholm with index zero if p’ € I,.

(5.39) the operators +
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In particular,

1 .
(5.40) izl + Ky are Fredholm with index zero

on L{/l(éﬁ)/?(aﬂ) whenever p’ € I,.

Using this, the embedding in (5.28), and the injectivity of the operator in (5.2)
it follows that the operator in (5.3) is also injective, thus ultimately invertible by
(5.39). This takes care of the claim made in (5.3). Finally, the same type of rea-
soning, based on the embedding (5.28) and the injectivity of the operator in (5.4),
shows that the operator in (5.5) is also injective, thus ultimately invertible by
(5.40).

Let us now prove that the inverses of the isomorphisms in (5.2) and (5.3) act in
a compatible manner on the intersection of their domains. With this goal in mind,
assume that

(5.41) fo € LI, (0Q) with pg € I] and f, e L], (6Q) with p; € I,

1 N 1 SN\ -
are such that <§I + Kg)fo = (51 + Kg)fl.
By (5.28), there exists ¢ € I with the property that L{",(6Q) < L{ /(6Q), hence
if we now set p := min{py, ¢} then ' '

(5.42) pell and L{'(0Q) L] (0Q) — L{ (0Q).

From (5.41)—(5.42) and the fact that $7 + Ky is invertible on Lf 0(0Q), it follows
that f, = f], as wanted. Finally, the compatibility of the inverses of the isomor-
phisms in (5.4) and (5.5) on the intersection of their domains is established anal-
ogously, completing the proof. O

We now proceed to record several significant consequences of Theorem 5.1
(and its proof).

COROLLARY 5.2. Let Q = R", with n > 2, be a bounded Lipschitz domain with
connected boundary, and fix 0 € R with 0 > — % Also, recall the boundary bihar-
monic double multi-layer operator Ky on 0Q from Definition 4.1. Then there exists
& > 0 with the property that

(5.43) {f' e 17,(00): (~3 1 +Ky)f = 0} = P02
whenever
(s.44) pe(l eaid)inza

and p € (1,2+¢) if ne {2,3}.
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PRrROOF. This is a consequence of the formula in (5.14) and the embedding result
recorded in (5.28). O

Further invertibility results for multi-layers, complementing those established
in Theorem 5.1, are discussed below.

COROLLARY 5.3. Suppose that Q = R", with n > 2, is a bounded Lipschitz do-
main with connected boundary, and fix 0 € R with 0 > — % As before, let Ky denote
the boundary biharmonic double multi-layer operator on 0 considered in Defini-
tion 4.1. Also, let S denote the boundary version of the biharmonic single multi-
layer associated with L = A* as in (4.49). Then there exists ¢ > 0 with the property
that

(5.45) lI +K; - (L{(09Q))" — (L{ ,(09Q))" is an isomorphism

2
2(n—1)
3

whenever p € (2 — & + 8) if n>4,
and whenever p € (2 —¢,0) if n € {2,3},

and
1 .
(5.46) zl + K (L] (0Q))" — (LT (0Q))" is an isomorphism

2(n—1)
1

and whenever p € (1,2 +¢) if n € {2,3}.

wheneverpe( —e,2+e)ifn24,

In addition, the inverses of the isomorphisms in (5.45) and (5.46) act in a compatible
manner on the intersection of their domains. Moreover,

(5.47) — %I + K; is an isomorphism on (Lin(OQ)/?(é’Q))*

2(n—1
whenever p € (2 — E,L + 8) forn >4,
n—73
and whenever p € (2 — ¢, 00) forn € {2,3},
and
1 . )
(5.48) - 51 + K, is an isomorphism on (L{ | (0Q)/P(0Q))"

2(n—1)
+1

and whenever p € (1,2 +¢) forn e {2,3}.

whenever p € ( -2+ 8) forn >4,
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In addition, the inverses of the isomorphisms in (5.47) and (5.48) act in a compatible
fashion on the intersection of their domains.
Finally, if n > 3 and n # 4, then also

(5.49) S: (Lﬁo(éﬂ))* — L{f’l(ag) is an isomorphism
2(n—1)
3

provided p € (2 —g, +8) if n>35,
and provided p € (2 —¢,0) if n =3,
and

(5.50) S: (Lfill((?Q))* — Lﬁo(aQ) is an isomorphism

2(n—1) )
ﬁ'f‘é‘) if n>35,

and provided p € (2 —¢,0) if n =3,

provided p € (2 —&

and the inverses of the isomorphisms in (5.49) and (5.50) are compatible on the
intersection of their domains.

PRrOOF. The invertibility (and compatibility) claims concerning the boundary
biharmonic double multi-layer operator are direct consequences of Theorem 5.1
and duality. As regards (5.49)—(5.50), these follow from (5.33)—(5.34), Theorem
6.6 in [15] when n > 4, and [26, Theorem 17.5] when n = 3, by reasoning as
before. O

6. BOUNDARY VALUE PROBLEMS

The work in this section concerns the existence, uniqueness, integral representa-
tion in terms of the multi-layers introduced in this paper, and regularity (mea-
sured on the Besov scale), of the solution of the Dirichlet and Neumann problems
for the bi-Laplacian with boundary data from Whitney-Lebesgue and Whitney-
Besov spaces, as well as their duals, in Lipschitz domains. In particular, this com-
pletes and refines work in [26] and [24]. To get started, we make the following
definition.

DEFINITION 6.1. Assume that Q is a bounded Lipschitz domain in R" and fix
p € (1,00). In this context, we say that property G, holds provided for each
X € Q there exists a function G(X,-) € €°(Q\{X}) satisfying (with 5x denoting
the Dirac distribution with mass at X)

ALG(X,Y) =0dx(Y),

(61) G(X7 ) L@Q: 0, (VYG(X7 )) L&Q: 0,
N(V3G(X,") e L?(06Q),
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where the nontangential maximal operator N is considered with respect to non-
tangential approach regions truncated at height much smaller than the distance
from X to 0Q.

For example, if # € R is such that
1 L .
(6.2) 51 +Kp: L{(0Q) — L{ (6Q) is invertible,

a Green function with the properties stipulated in (6.1) may be constructed by
considering, for each X, Y € Q with X # Y,

(6.3) G(X,Y):=E(X - Y)

~ D [(;1 + Kg)il(TrE(X — ), Tr(VE(X — -)))] (1),

where E is the fundamental solution of the operator A from (4.1). To see
that this is indeed the case, note that since for each point X € Q fixed we have
(TrE(X — ), Tr(VE(X —-)) € L' (0Q), and using (6.2) and nontangential max-
imal function estimates for the double multi-layer we obtain

(6.4) N(vzbg [(%1 + Kg)_l((TrE(X — ), Tr(VE(X — -)))D e LP(0Q)

hence, ultimately,
(6.5) N(V3G(X,")) e LP(0Q)

if G is as in (6.3). Furthermore, (6.3) and (4.12) ensure that the middle condition
in (6.1) holds as well. Finally, the first condition in (6.1) is clear from the design
of G.

The significance of the condition introduced in Definition 6.1 is most apparent
from the following uniqueness result (which is a particular case of Theorem 6.18
in [15]).

THEOREM 6.2. Let Q be a bounded Lipschitz domain in R". Assume that
p,p' € (1,00) are such that 1/p + 1/p’ =1, and that property G, holds. If u is a
solution of the homogeneous Dirichlet boundary value problem

ANu=0 inQ,
(6.6) N(Vu) € LP(8Q),
(uloq: (Vu) lag) = 0;

then necessarily u = 0 in Q.

As far as a genuine well-posedness result for the Dirichlet problem for the bi-
Laplacian in Lipschitz domains is concerned, we have the following.
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THEOREM 6.3. Assume that Q is a bounded Lipschitz domain in R", n > 2, with
connected boundary. Then there exists ¢ > 0 such that property G, holds

2(n—1
(6.7) whenever p € ( (n+ I )_ g2+ 8) if n >4,
n

and whenever p € (1,2 +¢) if n e {2,3}.

As a consequence, there exists ¢ > 0 such that if

2(n—1)
(6.8) pe(2—e, 3

and pe (2—¢,0) if n e {2,3},

+e)ifn24,

then Dirichlet boundary value problem for the bi-Laplacian with data from
Whitney-Lebesgue spaces,

ANu=0 inQ,
(6.9) N(Vu) e L?(0Q), '
(uloq: (Vu)oq) = 1 € L{o(59)7

has a unique solution which, for every 0 € R with 6 > — %, may be represented as
/1 N1
(6.10) u(X) =Dy {(51 + Kg) f] (X), VX eQ.

In particular, the solution of (6.9) satisfies

(6.11) lull grrv2i0) < CllA 2y, o0

Jor some finite constant C = C(Q, p, 0,n) > 0 where, generally speaking, av b :=
max{a, b}.

Proor. The fact that property G, holds for p as in (6.7) is seen from Theorem
5.1 and the discussion in (6.2)—(6.5). As such, the uniqueness part in the well-
posedness of the boundary problem (6.9) follows from what we have just proved
and Theorem 6.2. Next, u in (6.10) is well-defined in light of (5.2), and solves (6.9)
thanks to the biharmonicity of the double multi-layer, (4.13), and (4.12). Finally,
that u satisfies (6.11) follows from the integral representation formula (6.10) and
the mapping properties of the double multi-layer (cf. (4.85) in [15]). O

Our next result deals with the role of multi-layer potentials in the solvability of
the so-called regularity problem for the bi-Laplacian in Lipschitz domains. As a
preamble, we first recall the following estimate of Hardy-type.

LEMMA 6.4. Assume that Q = R" is a bounded Lipschitz domain and suppose
that u is a biharmonic function in Q which satisfies N'(Vu) € L?(0Q) for some
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p e (0,n—1). Then

* 1 I !
(6.12) Nue L' (9Q) where p* == (_ . 1) .
p n-

See [16, Lemma 11.9] for a proof of a more general result of this nature. Here is
the well-posedness result advertised earlier, which refines earlier work in [26], and
[24].

THEOREM 6.5. Assume that Q = R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 0 € R with 0 > — % As before, let Dy and Ky de-
note the biharmonic double multi-layer operators (relative to Q) introduced in Def-
inition 4.1.

Then there exists ¢ > 0 with the property that whenever p € (1, c0) satisfies

2(n—1
(6.13) pe(;n+1)—£,2+e)ifn24,

and p € (1,2 +¢) if n e {2,3},

the Dirichlet boundary value problem for the bi-Laplacian with data from Whitney-
Sobolev spaces,

ANu=0 inQ,
(6.14) N (Vu) € L7 (0Q),
(uloq: (V) [o0) = [ € Llp,l(aQ)v

has a unique solution, which actually admits the integral representation formula
. [/1 Nl
(6.15) w(X) =Dy [(51 + Kg) f] (X), VX eQ.

In particular, the solution of (6.14) satisfies

(6.16) lull s>y < CllfNp o0
for some finite constant C = C(Q, p,0,n) > 0.

PROOEF. Let ¢ > 0 be as in Theorem 5.1. That the function u given by (6.15) is
well-defined whenever p is as in (6.13) follows from the invertibility result re-
corded in (5.3). Also, the fact that this u actually solves (6.14) is clear from the
biharmonicity of the double multi-layer, (4.14), and (4.12). As regards unique-
ness, suppose that u solves the homogeneous version of the boundary problem
(6.14) for some p as in (6.13). Given the nature of the conclusion we seek, there
is no loss of generality in assuming that the exponent p also satisfies p < n — 1.
Granted this, if p* is defined as in (6.12) then (much as it was the case in the
proof of Theorem 5.1) p* satisfies the conditions listed in (6.8). Furthermore,
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Lemma 6.4 applied to Vu ensures that N'(Vu) € L? (0Q), since we are assuming
that NV (V2u) € L?(0Q) to begin with. As such, the uniqueness result established
in the second part of Theorem 6.3 applies and yields that # = 0 in Q, as wanted.
Finally, that u satisfies (6.16) follows from the integral representation formula
(6.15) and mapping properties for the double multi-layer. |

Next, we shall formulate and solve the Neumann problem for the bi-
Laplacian with boundary data from the dual of Whitney-Lebesgue spaces. This
parallels work in [26] and [24] where a different formulation is emphasized.

THEOREM 6.6. Suppose that Q = R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 6 € R with 6 > —%. As before, let Ky denote the
biharmonic double multi-layer operator (relative to 0Q) introduced in Definition
4.1. Finally, recall the biharmonic single multi-layer S from (4.49) and the conor-
mal derivative 6",4“ from Proposition 3.2. Then there exists ¢ > 0 with the property
that whenever p € (1, o) satisfies

(6.17) pe(Z—a,%—i—s) if n>4,
and p € (2 —¢,0) if ne {2,3},

the Neumann boundary value problem for the bi-Laplacian with data from duals of
Whitney-Lebesgue spaces,

Au=0 inQ,
(6.18) N(Vu) e LP'(0Q),

0Mu=Ae (Lﬁo(ag))*

where 1/p +1/p’ =1 and the boundary data satisfies the necessary compatibility
condition

(6.19) (A, PY =0 foreach P € P(0Q),

is well-posed (with uniqueness understood modulo polynomials of degree < 1).
Moreover, a solution may be given by the integral formula

(6.20) u(X) = S[n’* (—%1 + K,;‘>_1[\] (X), VX eQ,
where
(6.21) A e (L] ,(0Q)/P(0Q))"

is defined by setting

(6.22) A =LA, Vf e LI (0Q),
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with [ f] denotmc] the equivalence class of the Whitney array fe L1 0(0Q) in the
quotient space L 0(0Q)/P(3Q), and

(6.23) n* (L] 4(0Q)/P(0Q))" — (L] ,(09))"
is the adjoint of the canonical projection
(6.24) m: Ll (0Q) — L ,(6Q)/P(09),

taking a given arbitrary Whitney array f € Ll 0(89) into its equivalency class
[f] € LY ,(0Q)/P(0).

PrOOF. That the compatibility condition (6.19) is necessary is clear from inte-
grations by parts and degree considerations. As regards existence, let ¢ > 0 be
as in Corollary 5.3. Then the function u given by (6.20) is well-defined whenever
p is as in (6.17) follows from the invertibility result recorded in (5.47). By the
biharmonicity of the single multi-layer, the nontangential maximal function
estimates for this operator, and (4.52), one may check that u solves (6.18). Thus,
as far as the well-posedness of the problem (6.18) is concerned, there remains
to establish uniqueness (in the sense specified in the statement of the theorem).
To this end, assume that u is a solution of (6.18) with A = 0, and set

(6.25) f 1= (|0, (Vi) o) € Lﬁ1(39)~
Keeping in mind that 6;4%: = 0, Green’s formula gives
(6.26) u="Dyf —8(5u) =Dyf inQ.

Taking the first-order nontangential boundary trace of both sides of (6.26) and
using (4.12) then yields

(6.27) j= (%I + )/,

which ultimately shows that ( I+ Kg) f= 0. From this and Corollary 5.2 we
deduce that there exists P € P(Q ) such that f = P. Returning with this back in
(6.26) and making use of the fact that the double multi-layer reproduces polyno-
mials of degree < 1, finally gives that u = DyP = P in Q, as desired. |

Our next goal is to explain how the invertibility results for the biharmonic
layer potentials, as well as the well-posedness results for the various boundary
problems for the bi-Laplacian, improve (in the sense that the range of exponents
involved becomes larger) under additional regularity assumptions on the Lip-
schitz domain in question. This requires some preparations and we start by recall-
ing that, given two quasi-Banach spaces X, ), the space of all bounded linear op-
erators mapping X into ) is denoted by £L(X — })). This becomes a quasi-Banach
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itself when equipped with the canonical operator norm
(6.28) [T gx—y) = sup{[|Tx[ly : x € X, [|x[|, < 1}, foreach T'e L(X — D).
Moreover, let us also define

the space of all linear compact operators

(6.29)  Comp(X — V) := {from X into ),

and note that Comp(X,)) is a closed subspace of £(X,)). Finally, abbreviate
(6.30) LX) :=LX — X), Comp(X):=Comp(X — X).

Finally, given a bounded Lipschitz domain Q < R”, we shall denote by
BMO(2Q) the John-Nirenberg space of functions with bounded mean oscilla-
tions on dQ (naturally regarded as a space of homogeneous type, in the sense
of Coifman-Weiss). In the same setting, we shall let VMO(9Q) stand for the
Sarason space of functions with vanishing mean oscillations on €.

The following is a particular case of a much more general result proved in [12,
Theorem 4.36].

THEOREM 6.7. Let Q = R" be a bounded Lipschitz domain. Denote by o and v,
respectively, the surface measure and outward unit normal on 0Q. Also, fix an arbi-
trary p € (1, 0). Then for every ¢ > 0 the following holds. Given a function k sat-
isfying

(6.31)  k:R"™\{0} — R is smooth, even, and homogeneous of degree —n

to which one associates the principal-value singular integral operator
(632)  Tf(X) = lim / o X = Y (YDK(X = Y)f(Y)da(Y)

whenever X € 0Q,

there exists 0 > 0, depending only on ¢, the geometric characteristics of Q, n, p and
k| gut || on (where the integer N = N (n) is sufficiently large) with the property that

T is well-defined
(6.33) dist(v, VMO(0Q)) <6 = < belongs to L(L?(0Q)) and
dist(7", Comp(L?(0Q))) < &,
where the distance in the left-hand side is measured in BMO(0Q), and the distance
in the right-hand side is measured in L(L?(0Q)).
In particular, under the same background hypotheses, for every index p € (1, o)
one has

(6.34) ve VMO(0Q) = T : L?(0Q) — L (0Q) is compact.
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Finally, the same claims remain valid when made for the operator

(6.35) T#f(X):= lir(I)l+/Ye(?Q X -Y,v(X)) x

XYy

< k(X — Y)f(Y)da(Y), X eoQ,

with k as in (6.31), as well as for the operator

(636) T7(x):= lim /lXYer ((X) = w(Y)DK(X — Y)f(Y)da(Y), X €dQ,
0

this time provided that

(6.37) the function k : R"\{0} — R is smooth, odd

and homogeneous of degree 1 — n.

The following theorem augments earlier work in this section (compare with
Theorem 5.1, Corollary 5.3, Theorem 6.3, Theorem 6.5, and Theorem 6.6).

THEOREM 6.8. Assume that Q < R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 6 € R with 6 > —%. Then given any p € (1, 0)
there exists ¢ > 0, depending only on p, the Lipschitz character of Q, n, and 0,
with the property that if the outward unit normal v to Q satisfies

(6.38) lim sup{ sup ][ ][ WY)—v(Z)|do(Y) da(Z)} <e,
r—0+ | XedQ JB(X,rnoQ JB(X,r)niQ

the following claims are true:

(i) all invertibility results from Theorem 5.1 and Corollary 5.3 hold for the given p;
(i) the well-posedness results from Theorem 6.3, Theorem 6.5, and Theorem 6.6
hold for the given p.

As a consequence, all results mentioned above actually hold for any integrability
index p € (1, 0) if

(6.39) v e VMO(0Q)
hence, in particular, if Q is a €' domain.

PrROOF. The crux of the matter is establishing that

1 . .
(6.40) +51+ Ky =Ro+ Ry as operators on L{,(09),
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where Ry, R € E(Lﬁo(ﬁQ)) satisfy

(6.41) Ry is an invertible operator on Lﬁ 0(09Q),
and
(6.42) dist(Ry, Comp(L{ ((0Q))) < [Roll z(i.r (062

where the distance in the left-hand side is taken in E(Lﬁ 0(0Q)). The significance
of the decomposition in (6.40) is that, granted (6.41)—(6.42), this readily implies
that

1 . .
(6.43) i§I + Kj is a Fredholm operator with index zero on L ;(0Q).

With this in hand, earlier arguments then lead to the same type of invertibility
results as in (5.2), (5.4) for the given p. In turn, the same type of analysis as in
the proof of Theorem 5.1 then permits us to also establish analogous invertibility
results to those stated in (5.3) and (5.5). Once these results are available, it is
straightforward to complete the proof of the claim made in part (i) of the state-
ment of the theorem. Then the claim made in part (ii) of the statement of the the-
orem becomes a consequence of the invertibility results from part (i), by reason-
ing as before.

Turning to the justification of the claims made in (6.40)—(6.42), there are two
basic aspects we wish to emphasize. First, with equivalence constants depending
only on the Lipschitz character of Q,

(6.44) dist(v, VMO(0Q))

~ limsup sup][ ][ WY)—v(Z)|dao(Y)da(Z) p,
r—0+ | XedQ JB(X,r)noQ JB(X,r)noQ

where the distance in the left-hand side is measured in BMO(0Q). A proof of
this claim may be found in [12], [14]. Hence, the smallness of the infinitesimal
mean oscillation of the unit normal (defined as the limit in the left-hand side of
(6.38)) forces the distance from the unit normal v € L*(0Q) to the closed sub-
space VMO(0Q), measured in BMO(0Q), to be appropriately small. In turn,
this opens the door for the close-to-compact criteria described in Theorem 6.7 to
apply.

In the implementation of the aforementioned close-to-compact criteria, we
find it useful to revert from the operator Kj, considered on Ly’ ((9Q), to the oper-
ator K, introduced in (4.60)—(4.66), considered on L (6Q) ® L”(dQ). That this
is permissible is ensured by the intertwining result proved in Proposition 4.6,
keeping in mind the invertibility of the mapping ¥ established in Proposition
2.2. Thus, the goal becomes identifying various expressions from the makeup of
the integral kernel of K, which have the desired algebraic structure (indicated in
Theorem 6.7).
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According to the arguments in [26, § 11], there are four types of integral oper-
ators on L”(9Q) whose kernels must be shown to have the algebraic structure
described in Theorem 6.7, namely:

(6.46) Vi Y)vi(Y)vie(Y)(0i0;0kE)(X — Y),
(6.47) aw(y)am(y)av(y) [E(X — Y)] =hLh+bL+L+1
where
I = vi(Y)vi(Y)v(Y)(0;0,0,E)(X — )
(6.48) L= —vi(Y)v/(Y)v(Y)(0;0k0E)(X — Y)
| I == =y (YY) (Y) (60,0, E)(X — Y)
L= +vi(Y)v/(Y)v(Y)(0:0k0,E)(X — Y),
and
(649) WV (V)on 0 [@ENX — V)] 300 [(AE)(X — V)]

Concerning the kernel in (6.45), observe that (with ¢, denoting a dimensional
constant)

Y), Y - X5

(6.50) Qe [AE)X — Y] = 6~ P

and this kernel gives rise to a principal-value singular integral operator 7 of the
type described in (6.32) with k(X) := ¢,|X|". Such a function is as in (6.31), so
this integral operator satisfies (6.33).

Regarding the kernel in (6.46) we first note that, for each triplet of numbers
a,b,c e {1,...,n} and each point X = (x,...,x,) € R"\{0},

A Cn XaXpXe
(OaabaCE) (X) = W lélvc'xa + 5acxb + 5abxc —n |Xb|2 1

Based on this, we may then compute
(6.51)  vi(Y)v(Y)v(Y)(0i0;0kE) (X — Y)

5, NG = 30y = )|
X =P

(), X -Y)
Ty

As such, this kernel gives rise to a principal-value singular integral operator 7" of
the form

n
(6.52) T=To+ Y TjoM,,
i,j=1
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where, generally speaking, M, denotes the multiplication by the function 7,

and Ty, Ty, i,j € {1,...,n} are principal-value singular integral operators with
kernels
<V( Y)7 X — Y>
6.53 3¢p——F—7——
and

YY), X =Y (xi — yi)(x; — y))

6.54 —ney,
(659 XV x-yP

? i7]€{177n}7

respectively. Since M,,, is a bounded operator on L?(0Q), and since the func-
tions

(6.55) ko(X):=3c | X|™" and ky(X):= —ncxixi|X| "2, i je{l,...,n},

are as in (6.31), the principal-value singular integral operator associated with the
kernel (6.46) also satisfies (6.33). Finally, a similar (tedious, but straightforward)
analysis shows that the principal-value singular integral operators associated with
the kernels from (6.47)—(6.48) and (6.49) fit in the class of operators treated in
Theorem 6.7 as well, and this finishes the proof of the theorem. O

In the theorem below, the multi-layers Ky and S are associated with the bi-
Laplacian, A®, as before (cf. Definition 4.1 and (4.50)).

THEOREM 6.9. Assume that Q < R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 0 € R with 0 > — % Then there exists ¢ > 0 with
the property that the operators

(6.56) %1 + Ky : Bl'1(0Q) — B'(0Q),
1 . . . . .
(6.57) —51+ Ko : B(0Q)/P(0Q) — B][(0Q)/P(0Q),

are isomorphisms whenever 0 < q < oo and the indices p € (1,00) and s € (0,1)
satisfy
n—3—¢ n-—1 n—1+e

5 < » -5 < > when n > 4,

(6.58)

1 l—¢ l+e
0<-— ——  wh 2,3}
<p (2 )s< 5 when n € {2,3}

Moreover, if p, p', q, q', s satisfy 1 < q,q' < o0, p,p’ € (1,0), s € (0,1), as well
as 1/p+1/p" =1/q+1/q" =1 and (6.58), then the operators
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(6.59) %1 +K; : (Bl1(0Q))" — (BI'(0Q))",
(660)  —31+Kj: (BI0Q)/P) — (B(0Q)/P0)

(6.61) S (BY7,(09)" — BPI(0Q) if n>3and n # 4,

are also isomorphisms. Finally, given any p € (1, 0), g € (0, 0], s € (0,1) there
exists ¢ > 0, depending only on p, the Lipschitz character of Q, n, and 0, with
the property that if the outward unit normal v to Q satisfies (6.38) then all
operators in (6.56)—(6.61) are invertible (assuming q > 1 in (6.59)—(6.60) and
I/p+1/p"=1/q+1/q" =1in (6.61)). As a consequence, all operators in (6.56)—
(6.61) are invertible for any p € (1,0), q € (0, 00], and s € (0,1) (with the same
conventions as above on ¢, p', q') if v.e VMO(0Q) hence, in particular, if Q is a
€' domain.

PrOOF. Fix ¢ > 0 as in the proof of Theorem 5.1 and let 7, and I/ be as in (5.6)
and (5.7), respectively. From (5.2)—(5.3) and the compatibility of inverses stated
just below (5.3) we obtain that

S T .
GI + Kg) : LT (0Q) — L{,(09) boundedly Vp, € I/,
(6.62)

S T .
GI + Kg) L7 (0Q) — L7, (09) boundedly Vp; € I..

Based on this and interpolation (cf. [15]) we eventually deduce that

1 e T .
(6.63) (37+K0) : BPY(oQ) — BY!(2Q) is bounded

for every g € (0, 0] and p, s as in (6.58).

Since 17+ Ky : B"!(0Q) — B{"!(0Q) is also bounded, thanks to (4.16), we fi-
nally arrive at the conclusion that the operator in (6.56) is an isomorphism when-
ever ¢ € (0, co] and p, s are as in (6.58). In fact, all the other claims pertaining to
(6.57)—(6.61) may be handled analogously. Finally, under the additional assump-
tion that (6.38) holds, we reason similarly, starting with the invertibility results
proved in Theorem 6.8. |

The invertibility results established in Theorem 6.9 are the key ingredients in
the proofs of the well-posedness theorems discussed in the remaining portion of
this section. We begin by treating the inhomogeneous Dirichlet problem for the
bi-Laplacian with boundary data from Whitney-Besov spaces.

THEOREM 6.10. Assume that Q <= R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 0 € R with 0 > —%. Then there exists ¢ > 0 such
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that the inhomogeneous Dirichlet problem

2%
ue BH%H(Q),
(6.64) ANu=we Bf+’;3(Q),

(Tru, Tr(Vu)) = f € Bf”’;’(ﬁQ),
is well-posed whenever 0 < q < oo while p € (1,00) and s € (0, 1) satisfy

n—-3—¢ n-—1 n—1+e¢
< -5 < when n > 4,
2 P 2

(6.65)

1 1—¢ l1+e¢
0<—-—— —— wh 2,3}
<p (2)s< 5 when n € {2,3}

Moreover, if w=0 then the unique solution u of (6.64) admits the following
integral representation

.1 R
(6.66) u(X) =Dy {(51 + K(;) f] (X), VX eQ.

Furthermore, given any p € (1, 0), g € (0, 0], s € (0,1) there exists ¢ > 0, de-
pending only on p, q, s, the Lipschitz character of Q, n, and 6, with the property
that if the outward unit normal v to Q satisfies (6.38) then the problem (6.64) is
well-posed. As a consequence, the problem (6.64) is well-posed for any p € (1, 00),
q € (0,00], and s € (0,1) if ve VMO(dQ) hence, in particular, if Q is a €' do-
main.

Finally, similar results are valid for the inhomogeneous Dirichlet problem on
Triebel-Lizorkin spaces, i.e., for

ue Fs{:;rl (Q)’
(6.67) Au=we Fsl-:[l:]—3(Q)’

(Tru, Tr(Vu)) = f € B/'(0Q).

Proor. All well-posedness claims may be proved by relying mapping properties
for multi-layer potential operators on Besov and Triebel-Lizorkin scales (cf. [15]),
and on the invertibility results from Theorem 6.9. O

There are three corollaries to the above theorem which we wish to single out.
To state the first, recall the weighted Sobolev spaces from (2.37). Mapping prop-
erties for generic double multi-layers acting from Besov spaces and taking values
in these weighted Sobolev spaces have been proved in [15]. Based on this and
Theorem 6.10 we may then conclude the following.

COROLLARY 6.11. Suppose that Q = R", with n > 2, is a bounded Lipschitz
domain with connected boundary. Then there exists ¢ > 0 with the property that
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whenever 0 < ¢ < oo and p € (1,0), s € (0,1) satisfy (6.65), one has

(6.68) ||”||31’-;1 (@) ~ ||Tfu||3{’~;/<a§z) + ||Tr(Vu)||B{’~\"(aQ),

uniformly for biharmonic functions u belonging to B’ +‘f ot (Q), and

(669 lullyr @~ lullprs )~ ITrullgpsan + ITE(V) gy e
l—s—/—, stpt 23 )8

uniformly for biharmonic functions u belonging to FS"jr"f+1 (Q).
P

Here is the second corollary alluded to above.

COROLLARY 6.12. Assume that Q < R", with n> 2, is a bounded Lipschitz
domain with connected boundary. Then there exists ¢ > 0 with the following signif-
icance. Whenever p € (1, o) satisfies

2n 2n

— < p< it n>3
n+1+e¢ P fnz3,

n—1-—e¢

(6.70)

3 3 .
P

one can find a finite constant C = C(Q, p) > 0 with the property that if p’ € (1, 0)
is such that 1/p +1/p' = 1 then for every function v e W>P(Q),

(6.71)  [[ollyp2nq) < Csup{/QAvAudX tu € 67 (Q) with ||ul| 2 q) < 1}.

Moreover, if the outward unit normal v to Q belongs to VMO(0Q) (hence,
in particular, if Q is a domain of class %), it follows that (6.71) holds for any

p e (1,00).

PROOF. Let¢ > 0 be as in Theorem 6.10 and assume that the exponent p is as in
(6.70) and that 1/p + 1/p’ = 1. Finally, pick an arbitrary function v € W27(Q).
Note that by (2.39) and (2.40),

(6.72) (W2r(Q))" = w22 (Q) = F7,(Q),

Hence, with <-,-) standing for a natural duality pairing, there exists a finite con-
stant C = C(Q, p) > 0 with the property that

(6.73)  [[vllyariy < Csup{<v,h) : h e F*;*(Q) with Il < 13-

Fix some /i € Ff'z/’z(Q) with \|h||F,,,2(Q) < 1. The incisive observation is that,
-2
together, p’ € (1, 00) and s := 1/p € (0, 1) satisfy the conditions in (6.65) and, as

such, Theorem 6.10 (augmented with (2.40)—(2.41)) guarantees the existence of
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some function u € W“’(Q) with the property that

(6.74) Nu=h and ||u]l g < C(Q,p).
Consequently,
(6.75) o, by = (v, Aud = (Av, Aud = / AvAudX.
Q
At this stage, (6.71) follows from (6.73), (6.74), (6.75), and (2.38). O

It is instructive to formulate the well-posedness results from Theorem 6.10 in a
fashion which emphasizes the smoothing properties of the Green operator for the
inhomogeneous Dirichlet boundary value problem for the bi-Laplacian. Recall
that this Green operator, call it G, is formally defined as

(6.76)  Gw := u where u solves A’u=winQ, wu=du=0ondQ.

Variational considerations based on the Lax-Milgram lemma and trace results
ultimately yield that

(6.77) G: W 2Q) - Wz‘z(Q) isomorphically,

and we wish to explore the extent to which the Green operator continues to
be smoothing of order 4 when considered on more general scales of Besov and
Triebel-Lizorkin spaces. In this regard, we have the following result.

COROLLARY 6.13. Assume that Q = R", with n > 2, is a bounded Lipschitz do-
main with connected boundary. Then there exists some ¢ = &(Q) > 0 such that the
Green operators

(6.78) G:B”! (Q)— {ueB”! (Q):(Tru,Tr(Vu)) = 0},
s+3-3 s+i+1
and
(6.79) G: Fsi}_j{3(£2) —{ue Fs’i}:’H(Q) - (Tru, Tr(Vu)) = 0},
are isomorphisms whenever p € (1, 0) and s € (0, 1) satisfy
n—3—¢ n-—1 n—1+e¢
— if n>4
5 < » s < 5 if n>4,

(6.80)

1 1—¢ 1+¢ .
O<;—( 5 )S<T if ne{2,3},

and 0 < g < oo for the Besov scale, and min{p,1} < q < oo for the Triebel-
Lizorkin scale.
In particular,

(6.81) G: W 2P(Q) — W>P(Q)  isomorphically,
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provided

2
+1—8<p<—n1+8 if n>3,
n n—

(6.82)

%—8<p<3+8 if n=2.
Furthermore, given any p € (1,00), g € (0, 0), and s € (0,1) there exists ¢ > 0,
depending only on p, q, s, and the Lipschitz character of Q with the property that
if the outward unit normal v to Q satisfies (6.38) then the operators (6.78)—(6.79)
are isomorphisms (also assuming the inequality min{p, 1} < g < oo in the case of
(6.79)). As a consequence, the operators (6.78)—(6.79) are isomorphisms for any
pe(l,0), g€ (0,00), and s € (0,1) (also assuming that min{p,1} < g < oo in
the case of (6.79)) if v.e VMO(0Q) hence, in particular, if Q is a €' domain.

PRrROOF. The fact that the operator in (6.78) is an isomorphism follows from the
well-posedness of (6.64) and the definition of the Green operator in (6.76). The
argument for (6.79) is similar, relying on the well-posedness of (6.67). Having
proved this, (6.81) follows by specializing (6.79) to the case when s+ 1/p =1
and ¢ = 2 and keeping in mind (2.40)—(2.41). The remaining claims in the state-
ment of the corollary are established similarly, making use of appropriate well-
posedness results from Theorem 6.16. O

Regarding the optimality of Theorem 6.10, we have the following result.
PROPOSITION 6.14. In the class of Lipschitz domains in R", the range of indices
p, s in (6.65) for which the inhomogeneous Dirichlet problems (6.64), (6.67) are
well-posed is sharp when n € {4,5}.

PrROOF. We begin by recording a consequence of [21, Theorem 2.6, p. 623]: if

ne {2,3,4,5} then for each 0 € (0,n) there exist a bounded Lipschitz domain
Qp in R", with connected boundary, such that 0 € 0Qy and

(6.83) QynB(0,1) = {X = (x1,...,x,) € B0, 1) :

X, < (cot@)\/xl2 + -~-+x371},

along with a non-zero function u : Qy — R satisfying

6.84 u € C* in Q, away from the origin

(6.84) y gin,

(6.85) u(X) = | X|"p(X /| X]) for X near 0,

6.86 o C2(S") and (0) N\, 2= as 0\, 0,
2

(6.87) A*ue C*(Qy), u=adu=0ondQy.
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Note that, in concert with Lemma 2.4 in [15], conditions (6.84)—(6.87) ensure that
the function u € W22(Q). Hence, if we set f := A’u e C*(Qy), then Gf = u.
On the other hand, (6.84)-(6.87) and Lemma 2.4 in [15] give that for any
p,q€(0,00)and s >n(l/p—1),

_ n—1
(6.88) wue F{lzﬂ/p

_S,

1

Q)& 1+s+-<-+i0) e 1—i0)<
P p

and note that, by (6.86),

(6.89) 1—4(0) / % as 0\, 0.

This proves that, when n € {4, 5}, the lower bound for "’%1 — sin (6.65) is sharp as
far as the well-posedness of (6.67) is concerned. In fact, the same argument also
shows that the aforementioned lower bound is optimal in relation to the operator
G being boundedly invertible in the context of (6.79) if n € {4,5}. In the later
setting, by relying on the self-adjointness of the Green operator G, it follows by
duality that the upper bound for =1 — s in (6 80) is also sharp when n € {4,5}.
Ultimately, this result implies that the range in (6.65) is sharp as far as the well-
posedness of (6.67) is concerned. Finally, the argument on the scale of Besov
spaces is similar. O

We conclude with a well-posedness result for the inhomogeneous Neumann
problem for the bi-Laplacian with boundary data from duals of Whitney-Besov
spaces. This requires some preparations. For starters, let us agree to associate to
any functional w e (X??(Q))" (where either X = B, or X = F, Q is a bounded
Lipschitz domain in R”, and s € R, 1 < p,¢ < o) the distribution w|, € D'(Q)
defined by

(6.90) W, 0> = <w, 0>, Yo e b (Q),

where the brackets in the left-hand side correspond to distributional pairing, and
the brackets in the right-hand side stand for the natural (Banach space) duality
pairing. The reader is alerted to the fact that, while linear and continuous, gener-
ally speaking

(6.91)  the assignment (479(Q))" 5w — w|y € D'(Q) is not injective.

The definition below is modeled upon Green’s formula for the bi-Laplacian in the
case of sufficiently regular functions.

DEFINITION 6.15. Let Q be a bounded Lipschitz domain in R" and recall the
writing of the bi-Laplacian from (3.4) corresponding to the choice of the tensor co-
efficient Ay as in (3.1)—(3.2) for some fixed 6 € R. Finally, suppose that 1 < p,q <
0,0<s<landlet p',q' € (1,00) be such that 1/p+1/p' =1/q+1/¢' = 1. In
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this context, define the conormal derivative operator 6;4” as the mapping acting on
the space

(6.92) {(uw,w) e XL (Q)@® (X[, ,(Q) : Au=w|, inD'(Q)}

(where the convention introduced in (6.90) has been used), and taking values in the
space (Bp 4 (0Q))" if X =B, and (Bp ?'(0Q))* if X =F, by setting, for each
Whitney array f in these spaces

(6.93) O u,w), [y == Y (Aup(0)0"u,0"F) + {w, F,

| =151=2
where F € Xf’ﬂ‘{H/p (Q) is such that (Tr F, Tr(VF)) = f. In (6.93), the first bracket
denotes the dualzty pairing between elements of the space X" v‘i 1 /p( ) and elements

in its dual, X" +’1 /p,( ), while the second bracket denotes the duallty pairing

between elements of the space X7,7 | /p(Q) and its dual, (xrr I (Q))".

It is important to point out that definition (6.93) is independent of the choice of
the extension F of f (also, such an extension always exists). Here we also wish to
note that, in general, definition (6.93) of 9% (u, ) is not an ordinary generaliza-
tion of the conormal derivative 0:u considered in a pointwise sense in (3.24)
when u is regular enough, since th1s is not the case here. In fact, it is more appro-
priate to regard the former as a “renormalization” of the latter in a fashion that
depends strongly on the choice of an extension of the distribution A*u e D'(Q) to
a functional w e (X9 (Q))*. This phenomenon, which may be traced back to
(6.91), also accounts for the more elaborate notation 027 (u, w), presently used in
order to stress the dependence of this object on w.

In anticipation to stating the aforementioned well-posedness result, we also
need to discuss some notation. In order to be specific, fix p,q € (1,0), s € (0,1)
and suppose that Q is a bounded Lipschitz domain in R". Also, consider a func-
tional A € (Bf7 lq (0Q))" satisfying the compatibility condition

(6.94) (A, P> =0 foreach P e P(0Q).

where 1/p+1/p’ =1/q+ 1/q’' = 1. Then define

(6.95) A e (B]}7.(0Q)/P(0Q))",
by setting
(6.96) MDD =LA fD, Yfe Bl 7 (092),

where [f] denotes the equlvalence class of the Whitney array f e B{’ 1‘]3(69) in
the quotient space B, é((39) /P(0Q). Thanks to (6.94) this definition is un-
ambiguous. Going further, let

(6.97) n: Bl [7,(09Q) — B]}7,(09Q)/P(0Q)
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denote the canonical projection, taking an arbitrary Whitney array fe Bf’ lq ,(0Q)
into [f] € B{’lqs(aﬁ)/P(aﬁ) Its adjoint then becomes

(6.98) n*: (B]17,(6Q)/P(6Q))" — (Bl (0Q))".
We are now ready to state and prove the following theorem.

THEOREM 6.16. Assume that Q = R", with n > 2, is a bounded Lipschitz domain
with connected boundary, and fix 0 € R with 0 > — % Then there exists ¢ > 0 such
that the inhomogeneous Neumann problem for the biharmonic operator

ue BH—H—I/p(Q)’

(6.99) Nu=wlq, we (B, (Q),
oM (u,w) =A e (B{’;z;(asz))*,

where the boundary datum satisfies the necessary compatibility condition
(6.100) (A, PY = {w,PY foreach P € P(Q),

is well-posed, with uniqueness understood modulo polynomials of degree < 1,

whenever s € (0,1) and p,p’,q,q" € (1,0), satisfy 1/p+1/p' =1/q+1/q' =1,
and

—-n+1-—¢ n—1 —-n+3+e¢
< — +s<—F——— whenn>4,
2 P 2
l1+e - 1 n (1 —¢&
2 p 2

(6.101)

)s <0 whenne{2,3}.

Moreover, if w =0 then a solution u of (6.99) is given by the following integral
Sformula

(6.102) u(X) = S[n* (—%1 + K;)lix] (X), VX eQ,

where n* and A are as in (6.97)—(6.98) and (6.95)—(6.96), respectively.

Furthermore, given any p € (1,0), g € (1, 0), and s € (0, 1) there exists ¢ > 0,
depending only on p, q, s, the Lipschitz character of Q, n, and 0, with the property
that if the outward unit normal v to Q satisfies (6.38) then the problem (6.99) is
well-posed. As a consequence the problem (6.99) is well-posed for any p € (1, o0),

€ (1,00), and s € (0,1) if ve VMO(0Q) hence, in particular, if Q is a €' do-

main.

Finally, similar results hold for the inhomogeneous Neumann problem formu-
lated in Triebel-Lizorkin spaces, i.e., for
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ue Flpiilg+1/p(g)’
(6.103) Nu=wlg, we(F 5, (Q)

071" (u,w) = A e (B} (09))",
where the boundary datum satisfies the necessary compatibility condition (6.100).

ProOOF. The well-posedness claims formulated in the statement of the theorem
may be justified making use of boundedness properties of the multi-layer opera-
tors involved as well as the invertibility results from Theorem 6.9. O
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