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Abstract. — In this paper we explore the e¤ectiveness of the classical method of layer potentials
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1. Introduction

The discussion in this paper is largely motivated by the classical free-plate prob-
lem arising in the Kirchho¤-Love theory of thin plates. In the case of a domain W
in the two dimensional setting, this problem reads as follows:

D2u ¼ 0 in W; with Mu and Nu prescribed on qW;ð1:1Þ

where the boundary operators M, N are defined by

Mu :¼ hDuþ ð1� hÞ q
2u

qn2
;ð1:2Þ

Nu :¼ qDu

qn
þ ð1� hÞ q3u

qnqt2
;

where h is the Poisson coe‰cient of the plate, and n, t denote, respectively, the
outward unit normal and unit tangent to qW. See, e.g., [1], [3, (3.29)–(3.31),
p. 679], [2, (10)–(11), p. 1237], [10, p. 6], [11], [18, Proposition 3.1], [20, (2.2)–
(2.3), p. 24], [23, (2.12), p. 136], [4, pp. 420–423], [19] as well as the informative
discussion in [17] where it is indicated that the above problem has been first

†Corresponding author, supported in part by the NSF Grant DMS 1201736.



solved by Gustav Kirchho¤ in a variational sense. Indeed, it is now folklore that,
for boundary data in appropriate function spaces (and by imposing suitable
bounds on the Poisson coe‰cient), the problem (1.1) has a variational solution
u in W 2;2ðWÞ, which is unique modulo polynomials of degreea 1.

One of our main goals is to study further regularity properties of such a solu-
tion, measured on Besov and Triebel-Lizorkin scales. We shall do so working in
the higher dimensional setting and the starting point is to establish well-posedness
results when the size of the solution is measured using the nontangential maximal
operator. The final results are then obtained via interpolation and Fredholm
theory.

The plan of the paper is as follows. In Section 2 we review a number of
basic definitions, including Lipschitz and C1 domains, nontangential maximal
functions and poitnwise traces on the boundary, smoothness scalar spaces of
Lebesgue, Sobolev, and Besov type on Lipschitz surfaces as well as their vector
valued counterparts consisting of Whitney arrays (satisfying certain first order
di¤erential compatibility conditions). This section also contains a brief review of
smoothness spaces in Lipschitz domains (Besov, Triebel-Lizorkin, and weighted
Sobolev spaces) as well as boundary trace results formulated for these spaces. The
starting point in Section 3 is the consideration of a distinguished family of bilin-
ear forms associated with D2 which have played a basic role in G. Verchota’s
work in [26]. In particular, we explain how Green’s formula for D2 involving
such bilinear forms naturally involves the higher-dimensional versions of opera-
tors M, N from (1.2). In turn, the latter operators are used to define a family of
conormal derivatives for the bi-Laplacian (see Proposition 3.2) which plays a key
role in subsequent work.

Boundary operators of multi-layer type are introduced and studied in Section
4. Such operators fit into the general Calderón-Zygmund theory developed re-
cently in [15] and a number of basic properties follow as a result of the latter.
Our operators interface tightly with certain versions considered by G. Verchota
and Z. Shen in [26], [24], and such connections are made transparent in Proposi-
tion 4.2 and Proposition 4.6. Section 5 is primarily devoted to establishing invert-
ibility results for the (boundary-to-boundary versions of our) multi-layer opera-
tors. Such results constitute the key ingredient in the proof of well-posedness
of boundary-value problems for the bi-Laplacian in Section 6. Here we treat the
Dirichlet problem for D2 in Theorem 6.3, the regularity problem in Theorem 6.5,
the Neumann problem for the bi-Laplacian with boundary data from the dual
of Whitney-Lebesgue spaces in Theorem 6.6, the inhomogeneous Dirichlet prob-
lem for D2 with boundary data from Whitney-Besov spaces in Theorem 6.10, and
the inhomogeneous Neumann problem for the bi-Laplacian with boundary data
from duals of Whitney-Besov spaces in Theorem 6.16. Along the way, we prove
a number of significant consequences and also discuss the sharpness of some of
the aforementioned well-posedness results. Throughout this section, we work in
the geometrical context of arbitrary Lipschitz domains, Lipschitz domains whose
outward unit normal has small mean-oscillations, and domains of class C1. Nat-
urally, all theorems involved are correspondingly nuanced depending on the
strength of the geometrical hypotheses enforced in each case. This body of results
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complements, sharpens and extends the work done by G. Verchota and Z. Shen
in [26], [24].

In closing, we wish to acknowledge the lasting, influential role of the pioneer-
ing work of G. Fichera in the areas of elasticity theory and boundary integral
methods for higher-order systems (cf. [5], [6], [7] to cite just a small fraction of
his extended scientific output in this regard), to which the topic of the current
paper is closely related.

2. Function spaces on Lipschitz domains

With N denoting the collection of all (strictly) positive integers, we shall abbre-
viate N0 :¼ NA f0g. In particular, Nn

0 may be regarded as the set of all multi-
indices fa ¼ ða1; . . . ; anÞ : ai a N0; 1a ia ng. As usual, for each multi-index a ¼
ða1; . . . ; anÞ a Nn

0 we denote by jaj :¼ a1 þ � � � þ an its length, and define a! :¼
a1! . . . an! (with the usual convention that 0! :¼ 1). Also, write qa :¼ qa1

x1
. . . qan

xn
and, given a ¼ ða1; . . . ; anÞ; b ¼ ðb1; . . . ; bnÞ a Nn

0 , by ba a it is understood that
bj a aj for each j a f1; . . . ; ng. Denote by fejg1ajan the standard orthonormal
basis in Rn. Whenever useful, we shall canonically identify these vectors with
multi-indices from Nn

0 . Generally speaking, given a set A (clear from context),
for each a; b a A we let

dab :¼
1 if a ¼ b;

0 if aA b;

�
ð2:1Þ

stand for the usual Kronecker symbol. Given an open subset O of Rn and
k a N0 A flg, we shall denote by CkðOÞ the collection of all k-times continu-
ously di¤erentiable functions inO , and by Cl

c ðOÞ the collection of all indefinitely
di¤erentiable functions which are compactly supported in O . In this connection,
let us define ClðOÞ :¼ fjjO : j a ClðRnÞg. Finally, we shall write DðOÞ and
D 0ðOÞ, respectively, for the space of test functions and distributions in O .

We continue by recalling a basic definition.

Definition 2.1. Let WJRn be a nonempty, open, bounded set. Then W is called
a bounded Lipschitz domain (respectively, bounded domain of class C1)
if for any X0 a qW there exist r; h > 0 and a coordinate system ðx1; . . . ; xnÞ ¼
ðx 0; xnÞ in Rn which is isometric to the canonical one and has origin at X0, along
with a function j : Rn�1 ! R which is Lipschitz (respectively, of class C1) and for
which

WBCðr; hÞ ¼ fX ¼ ðx 0; xnÞ a Rn�1 � R : jx 0j < r and jðx 0Þ < xn < hg;ð2:2Þ

where Cðr; hÞ denotes the open cylinder

fX ¼ ðx 0; xnÞ a Rn�1 � R : jx 0j < r and �h < xn < hgJRn:ð2:3Þ

An atlas for qW is a finite collection of cylinders fCkðrk; hkÞg1akaN (with
associated Lipschitz maps fjkg1akaN ) covering qW. Having fixed such an
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atlas, the Lipschitz character of W is defined as the quartet consisting
of numbers N, maxfk‘jkkLlðRn�1Þ : 1a kaNg, minfrk : 1a kaNg, and
minfhk : 1a kaNg.

As is well-known, for a bounded Lipschitz domain W, the surface measure s is
well-defined on qW and may be described as

s ¼Hn�1bqW;ð2:4Þ

where Hn�1 stands for the ðn� 1Þ-dimensional Hausdor¤ measure in Rn. As a
consequence of the classical Rademacher theorem, the outward pointing normal
vector n ¼ ðn1; . . . ; nnÞ to a given bounded Lipschitz domain WHRn exists at
s-almost every point on qW. We shall extensively work with the tangential deriv-
ative operators qtjk by

qtjk :¼ njqk � nkqj; j; k a f1; . . . ; ng:ð2:5Þ

In this notation, the tangential gradient, ‘tan f , of a function f on qW is given by

‘tan f :¼ ðnkqtkj f Þ1ajan;ð2:6Þ

with the summation convention over repeated indices understood.
For a fixed parameter k > 0 define next the nontangential maximal oper-

ator by setting, for any given function u in W,

N uðX Þ :¼ supfjuðY Þj : Y a W s:t: jX � Y j < ð1þ kÞ distðY ; qWÞg:ð2:7Þ

Also, define the nontangential boundary trace of a function u in W as

ubqWðX Þ :¼ lim
W CY!X

jX�Y j<ð1þkÞ distðY ;qWÞ

uðY Þ; X a qW;ð2:8Þ

whenever meaningful. Also, if n ¼ ðnjÞ1ajan denotes the outward unit normal
to W then for any function u a C1ðWÞ we define its normal derivative, qnu, by
the formula

qnu :¼
Xn

i¼1

niðqiuÞbqW;ð2:9Þ

whenever the boundary traces in the right-hand side are meaningful. Hence,

qnu ¼ n � ðð‘uÞbqWÞ:ð2:10Þ

Going further, given a bounded Lipschitz domain WHRn, for each index
p a ð0;l� we shall denote by LpðqWÞ the Lebesgue space of s-measurable, p-th
power integrable functions on qW (with respect to s). That is,

LpðqWÞ :¼ f f s-measurable on qW : k f kL pðqWÞ < lg;ð2:11Þ
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where

k f kL pðqWÞ :¼
�Z

qW

j f j p ds
�1=p

:ð2:12Þ

We shall also need Sobolev spaces of order one on the boundary of a bounded
Lipschitz domain WJRn. Specifically, for each p a ð1;lÞ we set

L
p
1 ðqWÞ :¼ f f a LpðqWÞ : k f kL p

1
ðqWÞ < lg;ð2:13Þ

where

k f kL p

1
ðqWÞ :¼ k f kL pðqWÞ þ k‘tan f kL pðqWÞ:ð2:14Þ

Finally, for 1 < p < l, 0 < qal, and s a ð0; 1Þ, the Besov space Bp;q
s ðqWÞ

may be defined as

Bp;q
s ðqWÞ :¼ ðLp

1 ðqWÞ;LpðqWÞÞs;q;ð2:15Þ

where ð� ; �Þs;q denotes the real interpolation bracket. For future reference, let us
also set

L
p
�1ðqWÞ :¼ ðLp 0

1 ðqWÞÞ�; 1=pþ 1=p 0 ¼ 1:ð2:16Þ

At this stage, we insert a brief discussion of smoothness spaces consisting of
Whitney arrays on the boundary of a bounded Lipschitz domain W in Rn. Call
a family of nþ 1 functions from L1ðqWÞ,

_ff ¼ ð f0; f1; . . . ; fnÞ;ð2:17Þ

a Whitney array provided the following compatibility conditions are satisfied:

qtjk f0 ¼ nj fk � nk fj; j; k a f1; . . . ; ng:ð2:18Þ

Then the general recipe for constructing function spaces consisting of Whitney
arrays is described next. Given a quasi-Banach space of functions XJL1ðqWÞ,
set

WAðXÞ :¼ f _ff ¼ ð f0; f1; . . . ; fnÞ : fj a X; 0a ja n; satisfying ð2:18Þg;ð2:19Þ

which we equip with the quasi-norm

k _ff kWAðXÞ :¼
Xn

j¼0

k fjkX:ð2:20Þ

In this paper, we shall primarily work with three such scales of function
spaces consisting of Whitney arrays, corresponding to X being one of the spaces
LpðqWÞ, Lp

1 ðqWÞ, and Bp;q
s ðqWÞ. The resulting Whitney array function spaces
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constructed according to the recipe (2.19)–(2.20) for the choices X :¼ LpðqWÞ,
X :¼ L

p
1 ðqWÞ, and X :¼ Bp;q

s ðqWÞ are going to be denoted by

_LLp
1;0ðqWÞ; _LLp

1;1ðqWÞ; and _BBp;q
1; s ðqWÞ; respectively:ð2:21Þ

We continue by recording a result pertaining to the nature of _LLp
1;0ðqWÞ and

_LLp
1;1ðqWÞ.

Proposition 2.2. Let W be a bounded Lipschitz domain in Rn and denote by
n ¼ ðnjÞ1ajan its outward unit normal. Then for every p a ð1;lÞ, the mapping

C : _LLp
1;0ðqWÞ ! L

p
1 ðqWÞ � LpðqWÞ;ð2:22Þ

given by

Cð _ff Þ :¼
�
f0;�

Xn

j¼1

nj fj

�
; E _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp

1;0ðqWÞ;ð2:23Þ

is an isomorphism, whose inverse C�1 : Lp
1 ðqWÞ � LpðqWÞ ! _LLp

1;0ðqWÞ may be
described as

C�1ðF ; gÞ ¼ _ff :¼ ð f0; f1; . . . ; fnÞ where f0 :¼ Fð2:24Þ

and fj :¼ �njgþ
Xn

k¼1

nkqtkjF for 1a ja n;

for every ðF ; gÞ a L
p
1 ðqWÞ � LpðqWÞ:

Furthermore, if v a C1ðWÞ is a function with the property that

N ðvÞ;N ð‘vÞ a LpðqWÞ; bvbqW and bð‘vÞbqW;ð2:25Þ

then

C�1ðvbqW;�qnvÞ ¼ ðvbqW; ð‘vÞbqWÞ:ð2:26Þ

Proof. This is a version of a more general result proved in Proposition 3.3 in
[15] corresponding to the case m ¼ 2. r

We shall also need to use the adjoint of the operator C. Its main properties are
summarized below.

Proposition 2.3. Retain the same background hypotheses as in Proposition 2.2
and denote by C� the adjoint of the operator C defined in (2.22)–(2.23). Then, for
each p; p 0 a ð1;lÞ with 1=pþ 1=p 0 ¼ 1,

C� : Lp 0

�1ðqWÞ � Lp 0 ðqWÞ ! ð _LLp
1;0ðqWÞÞ� isomorphically:ð2:27Þ
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Moreover, for each ðG; f Þ a L
p 0

�1ðqWÞ � Lp 0 ðqWÞ one has

C�ðG; f Þ ¼ ðG;�ðnj f Þ1ajanÞ;ð2:28Þ

in the sense that

3C�ðG; f Þ; _gg4 ¼ 3G; g04�
Xn

j¼1

Z
qW

nj fgj ds;ð2:29Þ

for all _gg ¼ ðg0; ðgjÞ1ajanÞ a _LLp
1;0ðqWÞ:

Furthermore, the inverse of C� in (2.27) may be described as

ðC�Þ�1ðLÞ ¼
�
h0 �

Xn

j;k¼1

qtkjðnkhjÞ;�
Xn

j¼1

njhj

�
ð2:30Þ

if the functional L a ð _LLp
1;0ðqWÞÞ� is given by paring against the ðnþ 1Þ-tuple _hh

where _hh ¼ ðh0; ðhjÞ1ajanÞ a L
p 0

�1ðqWÞ � ½Lp 0 ðqWÞ�n.

Proof. This follows by unraveling definitions, in a straightforward manner. r

Next, we shall succinctly recall the smoothness scales of spaces of Besov and
Triebel-Lizorkin type on arbitrary open subsets of the Euclidean ambient. For
the definitions and properties of the standard scales of Triebel-Lizorkin spaces
F p;q
s ðRnÞ and Besov spaces Bp;q

s ðRnÞ (indexed by s a R and 0 < p; qal), we
refer the reader to, e.g., [25], [8], [9], [22]. Next, given an arbitrary open subset
W of Rn, denote by f jW the restriction of a distribution f in Rn to W. For
0 < p; qal and s a R we then set

F p;q
s ðWÞ :¼ fu distribution in W : bv a F p;q

s ðRnÞ s:t: vjW ¼ ug;ð2:31Þ
kukF p; q

s ðWÞ :¼ inffkvkF p; q
s ðRnÞ : v a F p;q

s ðRnÞ; vjW ¼ ug;
Eu a F p;q

s ðWÞ;

and

Bp;q
s ðWÞ :¼ fu distribution in W : bv a Bp;q

s ðRnÞ s:t: vjW ¼ ug;ð2:32Þ
kukB p; q

s ðWÞ :¼ inffkvkB p; q
s ðRnÞ : v a Bp;q

s ðRnÞ; vjW ¼ ug;
Eu a Bp;q

s ðWÞ:

A detailed analysis of these scales in the setting of Lipschitz domains may be
found in [15]. In particular, it has been shown here that if WHRn is a bounded
Lipschitz domain and 1 < p < l, 0 < qal, and 0 < s < 1, then the following
boundary trace operators are well-defined, linear, bounded and onto (in fact, in
each case there is a linear and bounded right-inverse):
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Tr : F p;q
sþ1=pðWÞ ! Bp;p

s ðqWÞ;ð2:33Þ
Tr : Bp;q

sþ1=pðWÞ ! Bp;q
s ðqWÞ;ð2:34Þ

F
p;q
1þsþ1=pðWÞ C u 7! ðTr u;Trð‘uÞÞ a _BBp;p

1; s ðqWÞ;ð2:35Þ

B
p;q
1þsþ1=pðWÞ C u 7! ðTr u;Trð‘uÞÞ a _BBp;q

1; s ðqWÞ:ð2:36Þ

In the last part of this section we shall define certain weighted Sobolev spaces.
Let W be a bounded Lipschitz domain in Rn and denote by r the distance func-
tion to the boundary of W. Then for each p a ½1;l�, a a ð�1=p; 1� 1=pÞ, and
k a N0, introduce

Wk;p
a ðWÞ :¼

8<
:u : W ! R : u locally integrable; andð2:37Þ

kuk
W

k; p
a ðWÞ :¼

X
jajak

�Z
W

jqauðXÞj prðX Þap dX
�1=p

< l

9=
;:

When a ¼ 0, we agree to drop it as a subscript. In particular, we set

W
�
k;pðWÞ :¼ the closure of Cl

c ðWÞ in ðWk;pðWÞ; k � kW k; pðWÞÞð2:38Þ

and, assuming that p; p 0 a ð1;lÞ are such that 1=pþ 1=p 0 ¼ 1, define

W�k;pðWÞ :¼ ðW
�
k;p 0 ðWÞÞ�:ð2:39Þ

For any bounded Lipschitz domain W in Rn and any k a Z, p a ð1;lÞ, we then
have (cf. [15])

Wk;pðWÞ ¼ F
p;2
k ðWÞ;ð2:40Þ

and

W
�
2;pðWÞ ¼ fu a W 2;pðWÞ : ðTr u; Trð‘uÞÞ ¼ _00g:ð2:41Þ

3. Bilinear forms associated to the bi-Laplacian

To set the stage, fix n a N with nb 2 and, given an arbitrary number y a R, con-
sider the coe‰cient tensor

Ay :¼ ðAabðyÞÞjaj¼jbj¼2;ð3:1Þ

with scalar entries, defined for every pair of multi-indices a; b a Nn
0 with the prop-

erty that jaj ¼ jbj ¼ 2 by the formula
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AabðyÞ :¼
1

1þ 2yþ ny2

Xn

i; j¼1

�
dbðeiþejÞ þ ydij

Xn

k¼1

dbð2ekÞ

�
�ð3:2Þ

�
�
daðeiþejÞ þ ydij

Xn

k¼1

dað2ekÞ

�
;

where the Kronecker symbols are defined as in (2.1). Next, consider a bounded
Lipschitz domain WHRn and, in relation to the coe‰cient tensor from (3.1)–
(3.2), for each y a R introduce the bilinear form (as usual, with D :¼ q21 þ � � � þ
q2n denoting the Laplacian in Rn)

Byðu; vÞ :¼
X

jaj¼jbj¼2

Z
W

AabðyÞðqbuÞðXÞðqavÞðXÞ dXð3:3Þ

¼ 1

1þ 2yþ ny2

Xn

i; j¼1

Z
W

½ðqiqj þ ydijDÞu�ðX Þ½ðqiqj þ ydijDÞv�ðX Þ dX ;

where u, v are any two reasonably behaved (real-valued) functions in W. See, e.g.,
[3, Lemma 3.4, p. 680], [10, p. 5], [20, (2.13), p. 25], [26, (10.2)]. Then one can
readily verify that for each y a R the bi-Laplacian may be written as

D2 ¼
X

jaj¼jbj¼2

qaAabðyÞqb:ð3:4Þ

In particular, for each y a R the bilinear form Byð� ; �Þ introduced in (3.3) sat-
isfies

Byðu; vÞ ¼
Z
W

ðD2uÞðXÞvðXÞ dX ; Eu; v a Cl
c ðWÞ:ð3:5Þ

Indeed, it is easy to check that

1

1þ 2yþ ny2

Xn

i; j¼1

ðqiqj þ ydijDÞðqiqj þ ydijDÞ ¼ D2:ð3:6Þ

Let us also note that D2 is strongly elliptic since, as a direct calculation based on
(3.2) shows,

X
jaj¼jbj¼2

AabðyÞxaþb ¼ jxj4; for each x a Rn:ð3:7Þ

Going further, given a bounded Lipschitz domain WHRn with outward unit
normal n ¼ ðnjÞ1ajan and a function u a C2ðWÞ, define its second-order normal
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derivative, q2nu, by the formula

q2nu :¼
Xn

i; j¼1

ninjðqiqjuÞbqW:ð3:8Þ

Then, if u a C3ðWÞ, for each y a R set (in analogy with (1.2), following [26])

NyðuÞ :¼ qnðDuÞ þ
1

2ð1þ 2yþ ny2Þ
Xn

i; j¼1

qtij

�Xn

k¼1

nkqtijqku
�
;ð3:9Þ

MyðuÞ :¼
2yþ ny2

1þ 2yþ ny2
Duþ 1

1þ 2yþ ny2

Xn

j;k¼1

njnkqjqku;

where all spacial partial derivatives of u in the right-hand sides are understood as
being restricted (either in a nontangential pointwise sense, or as tangential deriv-
atives of such traces) to qW. Simple algebraic manipulations show that the above
operators may be alternatively expressed as

NyðuÞ ¼ qnðDuÞ þ
1

1þ 2yþ ny2

Xn

i; j¼1

qtij

�Xn

k¼1

nkniqjqku
�

ð3:10Þ

¼ qnðDuÞ þ
1

1þ 2yþ ny2

Xn

i; j¼1

qtij

�Xn

k¼1

niqtkjqku
�
;

and

MyðuÞ ¼ Duþ 1

1þ 2yþ ny2

Xn

j;k¼1

njqtkjqku:ð3:11Þ

The relationship between the operators Ny, My and the bilinear form Byð� ; �Þ is
brought to prominence in the following result, describing a Green-type formula
for the bi-Laplacian (cf. [3, Lemma 3.4, p. 680] and [20, (2.20), p. 26] for a proof
in domains in R2, and [26, (10.2)] for a statement in the setting of biharmonic
functions in domains in Rn, nb 2).

Proposition 3.1. Assume that WHRn is a bounded Lipschitz domain with out-
ward unit normal n ¼ ðnjÞ1ajan and surface measure s. Let y a R and recall the
operators Ny and My introduced in (3.9), relative to this setting. Then for any
u; v a ClðWÞ there holds

Byðu; vÞ ¼
Z
qW

3ðMyðuÞ;NyðuÞÞ; ðqnv;�vÞ4 dsþ
Z
W

ðD2uÞv dX ;ð3:12Þ

where 3� ; �4 denotes the canonical pointwise scalar product between vector-valued
functions.
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In particular, if v a ClðWÞ and u is a reasonably behaved null-solution of the
bi-Laplacian D2 in W, then

Byðu; vÞ ¼
Z
qW

3ðMyðuÞ;NyðuÞÞ; ðqnv;�vÞ4 ds:ð3:13Þ

Proof. Integrating by parts and using Einstein’s convention of summation over
repeated indices, we may writeZ

W

ðqiqj þ ydijDÞu � ðqiqj þ ydijDÞv dXð3:14Þ

¼ �
Z
W

qiðqiqj þ ydijDÞu � qjv dX

þ
Z
qW

ni � ðqiqj þ ydijDÞu � qjv ds

� ydij �
Z
W

qkðqiqj þ ydijDÞu � qkv dX

� ydij �
Z
qW

ðqiqj þ ydijDÞu � qnv ds:

Integrating by parts one more time and using (3.6), identity (3.14) further
implies Z

W

ðqiqj þ ydijDÞu � ðqiqj þ ydijDÞv dX � ð1þ 2yþ ny2Þ
Z
W

ðD2uÞv dXð3:15Þ

¼ �
Z
qW

nj � qiðqiqj þ ydijDÞu � v ds

þ
Z
qW

ni � ðqiqj þ ydijDÞu � qjv ds

� ydij �
Z
qW

nk � qkðqiqj þ ydijDÞu � v ds

� ydij �
Z
qW

ðqiqj þ ydijDÞu � qnv ds:

Using that qj ¼ nrnrqj ¼ nrqtrj þ njqn in the second term in the right-hand side of
(3.15) allows us to express this asZ

qW

ni � ðqiqj þ ydijDÞu � qjv ds ¼
Z
qW

ðqiqj þ ydijDÞuninjqnv dsð3:16Þ

þ
Z
qW

qtjr ½ninrðqiqj þ ydijDÞu�v ds:

339boundary value problems and integral operators



In turn, this and (3.15) giveZ
W

ðqiqj þ ydijDÞu � ðqiqj þ ydijDÞv dXð3:17Þ

¼ ð1þ 2yþ ny2Þ
Z
W

ðD2uÞðX ÞvðXÞ dX

þ
Z
qW

IðuÞ � v dsþ
Z
qW

IIðuÞ � qnv ds;

where we have set

IðuÞ :¼ qtjr ½ninrðqiqj þ ydijDÞu� � njqiðqiqj þ ydijDÞuð3:18Þ
� ydijnkqkðqiqj þ ydijDÞu;

and

IIðuÞ :¼ ydijðqiqj þ ydijDÞuþ ninjðqiqj þ ydijDÞu:ð3:19Þ

Next, observe that

qtjr ½ninrydijDu� ¼ yqtjr ½njnrDu� ¼ 0ð3:20Þ

by symmetry considerations, and that

qtjr ½ninrqiqju� ¼
1

2
fqtjr ½ninrqiqju� þ qtrj ½ninjqiqru�gð3:21Þ

¼ � 1

2
qtjr ½niqtjrqiu�;

where the first identity in formula (3.21) follows from rewriting the expression
qtjr ½ninrqiqju� as qtrj ½ninjqiqru� and the second one uses the definition of qtjr . Based
on (3.18) and (3.20)–(3.21), straightforward algebraic manipulations yield

IðuÞ ¼ �ð1þ 2yþ ny2ÞqnDu�
1

2
qtij ½nkqtijqku�ð3:22Þ

¼ �ð1þ 2yþ ny2ÞNyðuÞ:

Also, a simple inspection of (3.19) reveals that

IIðuÞ ¼ ð2yþ ny2ÞDuþ q2nu ¼ ð1þ 2yþ ny2ÞMyðuÞ:ð3:23Þ

At this stage, (3.13) follows form (3.17) and (3.22)–(3.23). r

In our next proposition we identify the formula for the conormal derivative
associated with the writing of the bi-Laplacian as in (3.4) for the tensor coe‰cient
given in (3.1)–(3.2).
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Proposition 3.2. Let WHRn be a bounded Lipschitz domain with outward unit
normal n ¼ ðnjÞ1ajan and surface measure s. Pick y a R and recall the operators
Ny and My from (3.9), corresponding to this setting. Then for any reasonably
well-behaved biharmonic function u in W there holds:

coe‰cient tensor Ay as in ð3:1Það3:2Þ ) qAy

n u :¼ fðqAy

n uÞrg0aranð3:24Þ
where ðqAy

n uÞ0 ¼ �NyðuÞ and ðqAy
n uÞr ¼ nrMyðuÞ for 1a ra n:

Proof. Let u be as in the statement of the proposition and pick an arbi-
trary function v a ClðWÞ. Based on successive integrations by parts we may
compute Z

qW

3qAy
n u; ðTr v;Trð‘vÞÞ4 dsð3:25Þ

¼ Byðu; vÞ ¼
Z
qW

½MyðuÞqnv�NyðuÞv� ds

¼
Z
qW

3ð�NyðuÞ; n1MyðuÞ; . . . ; nnMyðuÞÞ; ðTr v;Trð‘vÞÞ4 ds:

Therefore, (3.24) follows. r

It is useful to record the explicit expressions of the components of the con-
ormal. Indeed, making use of the first formula in (3.10) and the second formula
in (3.9), it follows that the components of qAy

n u described in (3.24) are (using the
usual summation convention over repeated indices):

ðqAy

n uÞ0 ¼ �qnðDuÞ � cnðyÞ � qtijðnlniqjqluÞð3:26Þ

and

ðqAy
n uÞr ¼ ð1� cnðyÞÞ � nrDuþ cnðyÞ � nrnjnlqjqlu for each r a f1; . . . ; ng;ð3:27Þ

where

cnðyÞ :¼
1

1þ 2yþ ny2
;ð3:28Þ

again, with the understanding that all derivatives in the right-hand sides are re-
stricted to the boundary.

4. Boundary layer potentials

Let E be the canonical fundamental solution for D2 in Rn given at each
X a Rnnf0g by
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EðXÞ :¼

1

2ðn� 4Þðn� 2Þon�1
jX j4�n if n a Nnf1; 2; 4g;

� 1

4o3
logjX j if n ¼ 4;

� 1

8p
jX j2ð1� logjX jÞ if n ¼ 2;

8>>>>>>><
>>>>>>>:

ð4:1Þ

where on�1 denotes the surface area of the unit sphere Sn�1 in Rn. In particular,

ðDEÞðXÞ :¼

1

ð2� nÞon�1
jX j2�n if nb 3;

1

2p
logjX j if n ¼ 2:

8>>><
>>>:ð4:2Þ

In relation to the latter, given a bounded Lipschitz domain WHRn with outward
unit normal n and surface measure s, recall that the harmonic double and single
layer operators are, respectively, given by

DD f ðXÞ :¼
Z
qW

qnðYÞ½ðDEÞðX � YÞ� f ðYÞ dsðYÞ; X a RnnqW;ð4:3Þ

and

SD f ðXÞ :¼
Z
qW

ðDEÞðX � Y Þ f ðYÞ dsðY Þ; X a RnnqW:ð4:4Þ

Also, the boundary version ofDD is

KD f ðXÞ :¼ lim
e!0þ

Z
qWnBðX ; eÞ

qnðY Þ½ðDEÞðX � Y Þ� f ðY Þ dsðY Þ; X a qW:ð4:5Þ

Based on definitions, if f a LpðqWÞ for some p a ð1;lÞ and l a f1; . . . ; ng, then
the following identities may be readily verified for each X a RnnqW:

qlðDD f ÞðX Þ ¼ �
Xn

i¼1

qiSDðqtil f ÞðX Þ;ð4:6Þ

qlðSD f ÞðXÞ ¼ �ðSDðqtliðni f ÞÞðX Þ � ðDDðnlf ÞÞðX Þ:ð4:7Þ

We are now prepared to make the following basic definition.

Definition 4.1. Let W be a bounded Lipschitz domain in Rn with outward unit
normal n ¼ ðnjÞ1ajan and surface measure s. Also, fix y a R and recall cnðyÞ from
(3.28). In this context, define the action of the biharmonic double multi-layer _DDy on
each Whitney array _ff ¼ ð f0; f1; . . . ; fnÞ, by
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_DDy
_ff ðXÞ :¼ � 1

2

X
jaj¼jbj¼2

a!AbaðyÞ
X

i; j so that
eiþej¼a

Z
qW

njðY Þð4:8Þ

� fðqbEÞðX � Y Þ fiðY Þ þ ðqbþeiEÞðX � YÞ f0ðYÞg dsðYÞ

for X a RnnqW. In addition, denote by _KKy the boundary biharmonic double multi-
layer, whose action on an arbitrary Whitney array _ff ¼ ð f0; f1; . . . ; fnÞ such that
_ff a _LLp

1;0ðqWÞ is the Whitney array

_KKy
_ff :¼ ðð _KKy

_ff Þ0; ð _KKy
_ff Þ1; . . . ; ð _KKy

_ff ÞnÞð4:9Þ

where, for s a.e. X a qW,

ð _KKy
_ff Þ0ðX Þ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

qnðY Þ½ðDEÞðX � YÞ� f0ðY Þ dsðY Þð4:10Þ

�
Z
qW

ðDEÞðX � YÞ
Xn

k¼1

nkðY Þ fkðY Þ dsðY Þ

þ cnðyÞ �
Z
qW

Xn

j;k¼1

qtkjðY Þ½ðqkEÞðX � Y Þ� fjðY Þ dsðYÞ;

while for each l a f1; . . . ; ng,

ð _KKy
_ff ÞlðX Þ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

(
qnðY Þ½ðDEÞðX � Y Þ� flðY Þð4:11Þ

þ
Xn

i¼1

qtilðY Þ½ðDEÞðX � YÞ� fiðY Þ

þ cnðyÞ �

�
Xn

j;k¼1

qtkjðY Þ½ðqlqkEÞðX � Y Þ� fjðYÞ
)
dsðY Þ:

Finally, denote by _KK �
y the adjoint of the operator _KKy considered above.

It should be noted that the operators introduced in the above definition are con-
structed according to the general recipes from Definitions 4.2–4.3 in [15], imple-
mented for the writing of D2 as in (3.4), corresponding to the tensor coe‰cient
Ay ¼ ðAabðyÞÞjaj¼jbj¼2 from (3.2) (and with E as in (4.1)). Indeed, formula (4.164)
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from Theorem 4.6 in [15] shows that, in the context of the above definition, when-
ever 1 < p < l we have (with I denoting the identity operator)

ð _DDy
_ff bqW; ð‘ _DDy

_ff ÞbqWÞ ¼
�1
2
I þ _KKy

�
_ff ; E _ff a _LLp

1;0ðqWÞ:ð4:12Þ

This may be used to identify a concrete formula for _KKy, and the fact that formulas
(4.9)–(4.11) are natural may be seen by combining (4.12) with (4.25) and (4.39)
(proved later). For further reference let us also note here the estimates

kN ð _DDy
_ff ÞkL pðqWÞ þ kN ð‘ _DDy

_ff ÞkL pðqWÞð4:13Þ
aCk _ff k _LL p

1; 0
ðqWÞ for each _ff a _LLp

1;0ðqWÞ;

and

kN ð‘2 _DDy
_ff ÞkL pðqWÞ aCk _ff k _LL p

1; 1
ðqWÞ E _ff a _LLp

1;1ðqWÞ;ð4:14Þ

which are particular cases of Theorem 4.2 in [15]. In concert, (4.12)–(4.14) also
show that for each p a ð1;lÞ the operator

_KKy is well-defined and bounded on _LLp
1;0ðqWÞ and on _LLp

1;1ðqWÞ:ð4:15Þ

In fact, based on this and interpolation (cf. [15]), we also have that

_KKy is well-defined and bounded on _BBp;q
1; s ðqWÞð4:16Þ

whenever 1 < p; q < l, and s a ð0; 1Þ.
In addition to the operator _DDy defined above, with Ny, My as in (3.9), consider

the integral operator acting on each pair ðF ; gÞ a L
p
1 ðqWÞaLpðqWÞ, where the

index p a ð1;lÞ, according to the formula

~DDyðF ; gÞðXÞ :¼
Z
qW

fMy½EðX � �Þ�ðY ÞgðY Þð4:17Þ

þNy½EðX � �Þ�ðY ÞFðY Þg dsðY Þ;

at each X a RnnqW. The goal now is to elaborate on the relationship between the
operators _DDy and ~DDy just introduced. In this vein, it helps to recall the isomor-
phism C described in Proposition 2.2.

Proposition 4.2. Assume that W is a bounded Lipschitz domain in Rn and fix
y a R. Then

_DDy ¼ ~DDy �C in RnnqW;ð4:18Þ

when both operators are acting on arbitrary Whitney arrays from _LLp
1;0ðqWÞ with

p a ð1;lÞ.
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Proof. Thanks to Definition 4.1 and a density argument, it su‰ces to show that
the two operators from (4.18) act identically on Whitney arrays of the form

_ff ¼ ðTr v;Trð‘vÞÞ; v a ClðWÞ:ð4:19Þ

Assume that this is the case, i.e.,

_ff ¼ ð f0; f1; . . . ; fnÞ ¼ ðvjqW; ðq1vÞjqW; . . . ; ðqnvÞjqWÞ;ð4:20Þ

and introduce

F :¼ f0 a L
p
1 ðqWÞ and g :¼ �

Xn

j¼1

nj fj a LpðqWÞ;ð4:21Þ

where n ¼ ðnjÞ1ajan denotes the outward unit normal to qW. Hence,

Cð _ff Þ ¼ ðF ; gÞ ¼ ðvjqW;�qnvÞ:ð4:22Þ

Then, based on (4.17), Proposition 3.1, Green’s representation formula for the bi-
Laplacian (cf. [15, Proposition 4.2] for a general result of this nature), and (4.19),
for every point X a RnnqW we may write

vðX Þ � ~DDyðF ; gÞðXÞ ¼ vðXÞ �
Z
qW

f�My½EðX � �Þ�ðY ÞqnvðYÞð4:23Þ

þNy½EðX � �Þ�ðYÞvðYÞg dsðYÞ
¼ ByðEðX � �Þ; vÞ ¼ vðX Þ � _DDyððTr v;Trð‘vÞÞÞðX Þ
¼ vðXÞ � ð _DDy

_ff ÞðX Þ:

As such, in light of (4.22) we conclude that (4.18) holds. r

Next we take a closer look at the action of the biharmonic double multi-layer,
originally introduced in Definition 4.1, on Whitney arrays.

Proposition 4.3. Assume that W is a bounded Lipschitz domain in Rn with out-
ward unit normal n ¼ ðnjÞ1ajan and surface measure s. Also, fix a number y a R
and set

cnðyÞ :¼
1

1þ 2yþ ny2
;ð4:24Þ

Then the action of the double multi-layer _DDy introduced in Definition 4.1 on
a Whitney array _ff ¼ ð f0; f1; . . . ; fnÞ from _LLp

1;0ðqWÞ, with 1 < p < l, may be
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described as

ð _DDy
_ff ÞðX Þ ¼

Z
qW

qnðYÞ½ðDEÞðX � Y Þ� f0ðYÞ dsðYÞð4:25Þ

�
Z
qW

ðDEÞðX � YÞ
Xn

k¼1

nkðYÞ fkðY Þ dsðY Þ

þ cnðyÞ �
Z
qW

Xn

j;k¼1

qtkjðY Þ½ðqkEÞðX � YÞ� fjðY Þ dsðY Þ;

for each X a RnnqW.
In particular, using the notation introduced in (4.3)–(4.4),

ð _DDy
_ff ÞðX Þ ¼ ðDD f0ÞðX Þ � SD

�Xn

k¼1

nk fk

�
ðXÞð4:26Þ

þ cnðyÞ �
Z
qW

Xn

j;k¼1

qtkjðY Þ½ðqkEÞðX � YÞ� fjðY Þ dsðY Þ;

for each X a RnnqW.

Proof. For every _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp
1;0ðqWÞ, based on (4.18), (2.22)–(2.23),

and (4.68), at every X a RnnqW we may write (using the summation convention
over repeated indices)

ð _DDy
_ff ÞðXÞ ¼ ~DDyð f0;�ni fiÞðXÞð4:27Þ

¼
Z
qW

f�ðDEÞðX � YÞ

þ cnðyÞ � njðY ÞqtkjðYÞ½ðqkEÞðX � Y Þ�gniðYÞ fiðYÞ dsðYÞ

þ
Z
qW

fqnðYÞ½ðDEÞðX � YÞ�

� cnðyÞ � qtijðYÞðniðYÞqtkjðY Þ½ðqkEÞðX � YÞ�Þg f0ðYÞ dsðY Þ

¼
Z
qW

fqnðYÞ½ðDEÞðX � YÞ� f0ðYÞ � ðDEÞðX � Y ÞniðY Þ fiðY Þ

þ cnðyÞ � qtkjðY Þ½ðqkEÞðX � YÞ� �
� ðniqtij f0 þ njni fiÞðYÞg dsðYÞ;

thanks to (3.10)–(3.11) and an integration by parts on the boundary. Now, the
claim made in (4.25) follows from (4.27) after observing that

niqtij f0 þ njni fi ¼ niðni fj � nj fiÞ þ njni fi ¼ fj;ð4:28Þ
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by the compatibility conditions satisfied by the components of the Whitney
array _ff . r

The next order of business is to study the mapping properties for the conormal
derivative of the biharmonic double multi-layer. Our first result in this regard is
the following theorem (we shall return to this topic later, after completing a nec-
essary detour).

Theorem 4.4. Let W be a bounded Lipschitz domain in Rn and fix y a R. Also,
assume that p; p 0 a ð1;lÞ are such that 1=pþ 1=p 0 ¼ 1. Recall _DDy introduced in
Definition 4.1 and the conormal qAy

n from Proposition 3.2. Then the operator

qAy
n

_DDy : _LL
p
1;1ðqWÞ ! ð _LLp 0

1;0ðqWÞÞ�ð4:29Þ

is well-defined, linear and bounded. Moreover, this operator further extends as a
linear and bounded mapping in the context

qAy
n

_DDy : _LL
p
1;0ðqWÞ ! ð _LLp 0

1;1ðqWÞÞ�:ð4:30Þ

Proof. For each _ff a _LLp
1;1ðqWÞ we know from (4.13)–(4.14) that the double

multi-layer satisfies the nontangential maximal function estimate

kN ð _DDy
_ff ÞkL pðqWÞ þ kN ð‘ _DDy

_ff ÞkL pðqWÞ þ kN ð‘2 _DDy
_ff ÞkL pðqWÞaCk _ff k _LL p

1; 1
ðqWÞ;ð4:31Þ

for some finite constant C > 0 independent of _ff . Moreover, one can show
that

qg _DDy
_ff bqW exists s-a:e: on qW; E _ff a _LLp

1;1ðqWÞð4:32Þ
whenever g a Nn

0 satisfies jgja 2:

However, the conormal entails up to three derivatives on _DDy. Indeed, as seen from
(3.26)–(3.28), the components of qAy

n
_DDy
_ff are given by (here and elsewhere the

usual summation convention over repeated indices is used)

ðqAy

n
_DDy
_ff Þ0 ¼ �qnðD _DDy

_ff Þ � cnðyÞ � qtij ðnlniqjql _DDy
_ff Þ;ð4:33Þ

and, for 1a ra n,

ðqAy

n
_DDy
_ff Þr ¼ ð1� cnðyÞÞ � nrD _DDy

_ff þ cnðyÞ � nrnjnlqjql _DDy
_ffð4:34Þ

with the understanding that all derivatives in the right-hand sides are restricted to
the boundary and that cnðyÞ is as in (3.28). Note that, thanks to (4.31) and (4.32),
the map

_LLp
1;1ðqWÞ C _ff 7! qjql _DDy

_ff bqW a LpðqWÞð4:35Þ
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is well-defined, linear and bounded, for every l; j a f1; . . . ; ng. As such, the map-
ping

_LLp
1;1ðqWÞ C _ff 7! qtijðnlniqjql _DDy

_ff Þ a L
p
�1ðqWÞð4:36Þ

is also well-defined, linear and bounded, for every i; j; l a f1; . . . ; ng.
We propose to take a closer look at the structure of the derivatives of

the biharmonic double multi-layer operator. In a first stage, fix an arbitrary
Whitney array _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp

1;0ðqWÞ then for every l a f1; . . . ; ng and
X a RnnqW compute

qlð _DDy
_ff ÞðXÞ ¼ qlðDD f0ÞðXÞ � qlSDðni fiÞðX Þð4:37Þ

þ cnðyÞ �
Z
qW

qtkjðYÞ½ðqlqkEÞðX � YÞ� fjðY Þ dsðY Þ;

where cnðyÞ is as in (4.24). Upon observing that, for every X a RnnqW, identity
(4.6) and the compatibility conditions satisfied by the components of the Whitney
array _ff allow us to write

qlðDD f0ÞðX Þ � qlSDðni fiÞðX Þð4:38Þ
¼ �qiSDðqtil f0ÞðXÞ � qlSDðni fiÞðX Þ
¼ �qiSDðni flÞðXÞ þ qiSDðnlfiÞðX Þ � qlSDðni fiÞðXÞ

¼ ðDD flÞðX Þ þ
Z
qW

qtilðYÞ½ðDEÞðX � YÞ� fiðYÞ dsðY Þ

¼ ðDD flÞðX Þ þ SDðqtli fiÞðXÞ;

we deduce from (4.37) that, at each point X a RnnqW,

qlð _DDy
_ff ÞðXÞ ¼ ðDD flÞðXÞ þ SDðqtli fiÞðXÞð4:39Þ

þ cnðyÞ �
Z
qW

qtkjðY Þ½ðqlqkEÞðX � YÞ� fjðY Þ dsðY Þ

¼
Z
qW

fqnðYÞ½ðDEÞðX �Y Þ� flðY Þþ qtilðY Þ½ðDEÞðX �YÞ� fiðYÞ

þ cnðyÞ � qtkjðYÞ½ðqlqkEÞðX � YÞ� fjðY Þg dsðY Þ:

In the case when the array _ff ¼ ð f0; f1; . . . ; fnÞ actually belongs to the
Whitney-Sobolev space _LLp

1;1ðqWÞ, we may integrate by parts on the boundary in
(4.37) in order to write, for every l a f1; . . . ; ng,

qlð _DDy
_ff ÞðX Þ ¼ ðDD flÞðX Þð4:40Þ

þ
Z
qW

fðDEÞðX � Y Þðqtli fiÞðY Þ

þ cnðyÞ � ðqlqkEÞðX � Y Þðqtik fiÞðYÞg dsðYÞ;
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for each X a RnnqW. In this scenario, we may take one extra derivative while
still retaining control of the finiteness of the Lp-norm of the nontangential maxi-
mal function. Concretely, for each j; l a f1; . . . ; ng we obtain (with the help of
(4.6))

qjqlð _DDy
_ff ÞðXÞ ¼ �qiSDðqtij flÞðXÞð4:41Þ

þ
Z
qW

fðqjDEÞðX � YÞðqtli fiÞðY Þ

þ cnðyÞ � ðqjqlqkEÞðX � Y Þðqtik fiÞðY Þg dsðYÞ;

at each X a RnnqW, whenever _ff ¼ ð f0; f1; . . . ; fnÞ belongs to the Whitney-
Sobolev space _LLp

1;1ðqWÞ. Concisely, for every _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp
1;1ðqWÞ we

have

qjql _DDy
_ff ¼ �qiSDðqtij flÞ þ qjSDðqtli fiÞð4:42Þ

þ cnðyÞ �
Z
qW

ðqjqlqkEÞð� � YÞðqtik fiÞðYÞ dsðYÞ in RnnqW:

In particular, summing up over j ¼ l and using (4.24) yields

D _DDy
_ff ¼ 1

1þ 2yþ ny2
qkSDðqtik fiÞ in RnnqW;ð4:43Þ

E _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp
1;1ðqWÞ;

and, further,

ðqnD _DDy
_ff ÞðXÞ ¼ 1

1þ 2yþ ny2
�ð4:44Þ

� qtjkðX Þ

�
lim
e!0þ

Z
Y A qW

jX�Y j>e

ðqjDEÞðX � Y Þðqtik fiÞðY Þ dsðY Þ
�

in RnnqW, for every _ff ¼ ð f0; f1; . . . ; fnÞ a _LLp
1;1ðqWÞ. Consequently,

_LLp
1;1ðqWÞ C _ff 7! qnD _DDy

_ff a L
p
�1ðqWÞð4:45Þ

is a well-defined, linear and bounded mapping.
In summary, from (4.33)–(4.34) and (4.35), (4.36), (4.45) we deduce that the

mapping

_LLp
1;1ðqWÞ C _ff 7! ððqAy

n
_DDy
_ff Þ0; ðq

Ay
n

_DDy
_ff Þ1aranÞ a L

p
�1ðqWÞa ½LpðqWÞ�nð4:46Þ

is well-defined, linear and bounded. Furthermore, it is clear from (4.34) that

ðqAy

n
_DDy
_ff Þ1aran ¼ ð�n1 f ; . . . ;�nn f Þ for each _ff a _LLp

1;1ðqWÞ;ð4:47Þ
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where

f :¼ � 2yþ ny2

1þ 2yþ ny2
D _DDy

_ff � 1

1þ 2yþ ny2
njnlqjql _DDy

_ff a LpðqWÞ:ð4:48Þ

At this stage, the fact that the operator qAy

n
_DDy is well-defined, linear and bounded

in the context of (4.29) follows from (4.46)–(4.48) and Proposition 2.3. Lastly,
that this operator further extends as a linear and bounded mapping in the context
of (4.30), follows from what we have proved so far, the fact that qAy

n
_DDy coincides

with its own transpose (which is the case for any conormal derivative of any
double multi-layer associated with a symmetric higher-order elliptic operator; cf.
Proposition 5.17 in [15]), and duality. r

Let W be a bounded Lipschitz domain in Rn and fix p a ð1;lÞ. The bi-
Laplacian single multi-layer operator _SS acts on an arbitrary functional
L a ð _LLp

1;0ðqWÞÞ� according to the formula (with E as in (4.1))

ð _SSLÞðXÞ :¼ 3ðEðX � �ÞjqW;�ð‘EÞðX � �ÞjqWÞ;L4 for each X a RnnqW;ð4:49Þ

where the expression in round parentheses is regarded as a Whitney array in
_LLp
1;0ðqWÞ. In a similar fashion, let us also consider the boundary version of

(4.49) defined, for each L a ð _LLp
1;0ðqWÞÞ� by

ð _SSLÞðXÞ :¼ 3ðEðX � �ÞjqW;�ð‘EÞðX � �ÞjqWÞ;L4; X a qW:ð4:50Þ

Proposition 4.5. Let W be a bounded Lipschitz domain in Rn and assume
that p a ð1;lÞ. Fix y a R and recall the conormal qAy

n from Proposition 3.2.
Also, let _SS stand for the bi-Laplacian single multi-layer operator from (4.49).
Then

qAy

n
_SS : ð _LLp

1;0ðqWÞÞ� ! ð _LLp
1;0ðqWÞÞ�ð4:51Þ

is a well-defined, linear and bounded operator.
As a corollary, for each p a ð1;lÞ,

qAy
n

_SS ¼ � 1

2
I þ _KK �

y as operators on ð _LLp
1;0ðqWÞÞ�:ð4:52Þ

Proof. As usual, let p 0 denote the Hölder conjugate exponent of p. As far as
the claim pertaining to the operator in (4.51) is concerned, the crux of the matter
is establishing the estimate

kqnD _SSLk
L

p 0
�1
ðqWÞ aCkLkð _LL p

1; 0
ðqWÞÞ�ð4:53Þ

for some finite constant C > 0 independent of L a ð _LLp
1;0ðqWÞÞ�. Once this has

been done, the same type of reasoning as in Theorem 4.4 (which also uses the
nontangential maximal function estimates for generic single multi-layers proved
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in Proposition 5.1 in [15]) may then be used to complete the proof of the bound-
edness of the operator in (4.51).

Given an arbitrary L a ð _LLp
1;0ðqWÞÞ�, a reasoning based on the Hahn-Banach

theorem leads to the conclusion that there exists an ðnþ 1Þ-tuple of functions
ðg0; g1; . . . ; gnÞ a ½Lp 0 ðqWÞ�nþ1 with the property that

Xn

j¼0

kgjkL p 0 ðqWÞ a kLkð _LL p

1; 0
ðqWÞÞ� ;ð4:54Þ

and such that, for each X a RnnqW,

_SSLðX Þ ¼
Z
qW

EðX � Y Þg0ðY Þ dsðY Þð4:55Þ

�
Xn

j¼1

Z
qW

ðqjEÞðX � Y ÞgjðY Þ dsðY Þ:

As such, we may write

D _SSL ¼ SDg0 �
Xn

j¼1

qjSDgj in W;ð4:56Þ

where SD is the harmonic single layer in W (cf. (4.4)). To proceed, recall that if SD

denotes the boundary harmonic single layer, then the identity

qnDDg ¼ 1

2

Xn

i;k¼1

qtkiSDðqtki gÞ;ð4:57Þ

is valid for any g a LpðqWÞ. Consequently, based on (4.7), (4.56), and (4.57), we
may compute

qnD _SSL ¼ qnSDg0 þ
Xn

i; j¼1

qnSDðqtjiðnigjÞÞ þ
Xn

j¼1

qnDDðnjgjÞð4:58Þ

¼
�
� 1

2
I þ K �

D

�
g0 þ

Xn

i; j¼1

�
� 1

2
I þ K �

D

�
ðqtjiðnigjÞÞ

þ 1

2

Xn

i; j;k¼1

qtkiSDðqtkiðnigjÞÞ;

where K �
D is the adjoint of the boundary harmonic double layer from (4.5). Since

the operators
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K �
D : Lp 0

�1ðqWÞ ! L
p 0

�1ðqWÞ;
K �

D : Lp 0 ðqWÞ ! Lp 0 ðqWÞ;
SD : Lp 0

�1ðqWÞ ! Lp 0 ðqWÞ;

ð4:59Þ

are bounded, estimate (4.53) now follows from (4.58) and (4.54). This completes
the proof of the boundedness of the operator in (4.51). With this in hand, identity
(4.52) follows from the jump-formula for generic conormal derivatives of single
multi-layers on Besov spaces (cf. (5.152) in [15]), and a density argument. r

Moving on, assume that WHRn is a bounded Lipschitz domain, with out-
ward unit normal n ¼ ðnjÞ1ajan and surface measure s. Also, fix y a R and
1 < p < l and recall cnðyÞ from (4.24). In this setting, consider the 2� 2
matrix-valued singular integral operator

~KKy : L
p
1 ðqWÞaLpðqWÞ ! L

p
1 ðqWÞaLpðqWÞ;ð4:60Þ

~KKy :¼
R11

y R12
y

R21
y R22

y

� �
;ð4:61Þ

where the entries in the above matrix,

R11
y : Lp

1 ðqWÞ ! L
p
1 ðqWÞ;

R12
y : LpðqWÞ ! L

p
1 ðqWÞ;

R21
y : Lp

1 ðqWÞ ! LpðqWÞ;
R22

y : LpðqWÞ ! LpðqWÞ;

ð4:62Þ

(are the principal-value singular integral operators given at s-a.e. X a qW by

ðR11
y F ÞðXÞ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

fqnðYÞ½ðDEÞðX � YÞ�F ðYÞð4:63Þ

þ cnðyÞ � qtkjðYÞ½ðqkEÞðX � Y Þ� �
� niðYÞðqtij F ÞðY Þg dsðY Þ;

ðR12
y gÞðXÞ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

fðDEÞðX � Y ÞgðY Þð4:64Þ

� cnðyÞ � qtkjðYÞ½ðqkEÞðX � Y Þ��
� njðY ÞgðY Þg dsðY Þ;

ðR21
y FÞðX Þ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

nlðX Þf�ðqiDEÞðX � YÞðqtliFÞðY Þð4:65Þ

� cnðyÞ � qtkjðYÞ½ðqlqkEÞðX � YÞ� �
� niðYÞðqtij F ÞðY Þg dsðY Þ;
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and

ðR22
y gÞðX Þ :¼ lim

e!0þ

Z
Y A qW

jX�Y j>e

nlðX Þf�ðqlDEÞðX � YÞgðY Þð4:66Þ

þ cnðyÞ � qtkjðYÞ½ðqlqkEÞðX � Y Þ� �
� njðY ÞgðY Þg dsðY Þ;

for each F a L
p
1 ðqWÞ and each g a LpðqWÞ. Here the summation convention over

repeated indices has been used.

Proposition 4.6. Retain the same setting as above, and recall the definition
of the boundary biharmonic double multi-layer operator _KKy on qW from Definition
4.1. Also, recall the mapping C from Proposition 2.2. Then, for each p a ð1;lÞ,
the following diagram is commutative:

L
p
1 ðqWÞaLpðqWÞ ���!~KKy

L
p
1 ðqWÞaLpðqWÞx???C

x???C

_LLp
1;0ðqWÞ

_KKy

_LLp
1;0ðqWÞ����������!

Proof. Fix an arbitrary pair of functions, ðF ; gÞ a L
p
1 ðqWÞaLpðqWÞ, along

with an arbitrary point X a RnnqW. Based on (4.17) and (3.10)–(3.11) we may
write, in a manner analogous to (4.27) (using the summation convention over re-
peated indices),

~DDyðF ; gÞðX Þ ¼
Z
qW

fðDEÞðX � Y Þð4:67Þ

� cnðyÞ � njðYÞqtkjðY Þ½ðqkEÞðX � YÞ�ggðYÞ dsðY Þ

þ
Z
qW

fqnðYÞ½ðDEÞðX � Y Þ� � cnðyÞ �

� qtijðY ÞðniðY ÞqtkjðYÞ½ðqkEÞðX � Y Þ�ÞgF ðYÞ dsðY Þ;

where we have also integrated by parts on the boundary and cnðyÞ is as in (4.24).
Hence, for every pair of functions ðF ; gÞ a L

p
1 ðqWÞaLpðqWÞ we have

~DDyðF ; gÞðX Þ ¼ ðDDFÞðX Þ þ ðSDgÞðX Þð4:68Þ

þ cnðyÞ �
Z
qW

qtkjðYÞ½ðqkEÞðX � Y Þ� �

� ðniqtij F � njgÞðY Þ dsðY Þ;

at every X a RnnqW. Consequently, for every number l a f1; . . . ; ng, at each
point X a RnnqW we may write
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qlð ~DDyðF ; gÞÞðX Þð4:69Þ

¼
Z
qW

fðqiDEÞðX � YÞðqtliF ÞðY Þ þ ðqlDEÞðX � Y ÞgðY Þ

þ cnðyÞ � qtkjðYÞ½ðqlqkEÞðX � YÞ�ðniqtij F � njgÞðYÞg dsðYÞ;

based on (4.68) and (4.6). From (4.68)–(4.69), on the one hand, and (4.60)–
(4.66), on the other hand, we deduce by also making use of general jump-
formulas for layer potentials of Calderón-Zygmund type (cf., e.g., (2.530) in
[15]), that (cf. [26, (14.2) on p. 253])

ð ~DDyðF ; gÞbqW;�qn ~DDyðF ; gÞÞ ¼
�1
2
I þ ~KKy

�
ðF ; gÞ;ð4:70Þ

for each F a L
p
1 ðqWÞ and each g a LpðqWÞ

As such, for every _ff a _LLp
1;0ðqWÞ we may compute�1

2
I þ ~KKy

�
Cð _ff Þ ¼ ð½ ~DDy �Cð _ff Þ�bqW;�qn½ ~DDy �Cð _ff Þ�Þð4:71Þ

¼ ð _DDy
_ff bqW;�qn _DDy

_ff Þ
¼ CððTr _DDy

_ff ;Trð‘ _DDy
_ff ÞÞÞ

¼ C
��1

2
I þ _KKy

�
_ff
�
;

where the first equality is (4.70) written for ðF ; gÞ :¼ Cð _ff Þ, the second equality
has been established in Proposition 4.2, the third equality makes use of (2.26),
and the fourth equality is a consequence of the jump-formula for the double
multi-layer (cf. Theorem 4.6 in [15]). Now the claim about the commutativity of
the diagram in the statement of the proposition readily follows from (4.71). r

We conclude this section by recording a couple of useful operator identities
involving the multi-layers considered earlier. Specifically, whenever W is a
bounded Lipschitz domain in Rn, y a R, 1 < p; q < l, and s a ð0; 1Þ, we have

qAy

n
_DDy � _SS ¼

�1
2
I þ _KK �

y

�
�
�
� 1

2
I þ _KK �

y

�
on ð _BBp;q

1; s ðqWÞÞ�;ð4:72Þ

and

_SS � qAy
n

_DDy ¼
�1
2
I þ _KKy

�
�
�
� 1

2
I þ _KKy

�
on _BBp;q

1; s ðqWÞ:ð4:73Þ

Both are particular cases of similar identities valid for multi-layers associated
with generic higher-order operators (cf. (5.176)–(5.177) in [15]). In the same geo-
metric context if 1 < p; p 0 < l satisfy 1=pþ 1=p 0 ¼ 1 then for each s a ð0; 1Þ we
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also have

_SS _KK �
y ¼ _KKy

_SSð4:74Þ

as linear, bounded operators from the space ð _BBp;q
1; s ðqWÞÞ� into _BBp 0;q 0

1;1�sðqWÞ. See
Proposition 5.15 in [15].

5. Invertibility results

The first goal here is to state and prove a basic invertibility result, extending work
in [26] and [24]. In preparation, letPðRnÞ stand for the space of all polynomials
of degreea 1 in Rn, and set

PðWÞ :¼ fPjW : P aPðRnÞg;ð5:1Þ
_PPðqWÞ :¼ f _PP :¼ ðPjqW; ð‘PÞjqWÞ : P a PðWÞg:

Our first main invertibility result reads as follows.

Theorem 5.1. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. Also, recall the boundary bi-

harmonic double multi-layer operator _KKy on qW from Definition 4.1. Then there
exists e > 0 with the property that

1

2
I þ _KKy : _LL

p
1;0ðqWÞ ! _LLp

1;0ðqWÞ is an isomorphismð5:2Þ

whenever p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 4;

and whenever p a ð2� e;lÞ if n a f2; 3g;
and

1

2
I þ _KKy : _LL

p
1;1ðqWÞ ! _LLp

1;1ðqWÞ is an isomorphismð5:3Þ

whenever p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;

and whenever p a ð1; 2þ eÞ if n a f2; 3g:

In addition, the inverses of the isomorphisms in (5.2) and (5.3) act in a compatible
manner on the intersection of their domains. Furthermore,

� 1

2
I þ _KKy : _LL

p
1;0ðqWÞ= _PPðqWÞ ! _LLp

1;0ðqWÞ= _PPðqWÞð5:4Þ

is an isomorphism whenever p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 4;

and whenever p a ð2� e;lÞ if n a f2; 3g;
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and

� 1

2
I þ _KKy : _LL

p
1;1ðqWÞ= _PPðqWÞ ! _LLp

1;1ðqWÞ= _PPðqWÞð5:5Þ

is an isomorphism whenever p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;

and whenever p a ð1; 2þ eÞ if n a f2; 3g;

and once again the inverses of the isomorphisms in (5.4) and (5.5) act in a compat-
ible manner on the intersection of their domains.

Proof. Given e a ð0; 1Þ, consider the open intervals

Ie :¼
�2ðn�1Þ
nþ1þe

;
2ðn�1Þ
n�1�e

�
if nb 4;�

1;
2ðn�1Þ
n�1�e

�
if n a f2; 3g;

8<
:ð5:6Þ

and

I 0e :¼
�2ðn�1Þ
n�1þe

;
2ðn�1Þ
n�3�e

�
if nb 4;�2ðn�1Þ

n�1þe
;l

�
if n a f2; 3g:

8<
:ð5:7Þ

Hence, for any p; p 0 a ð1;lÞ with 1
p
þ 1

p 0 ¼ 1 we have

p a I 0e , p 0 a Ie:ð5:8Þ

The starting point is the result asserting that there exists e a ð0; 1Þ such that,
with ~KKy as in (4.60)–(4.66), the operators

e
1

2
I þ ~KKy : L

p
1 ðqWÞaLpðqWÞ ! L

p
1 ðqWÞaLpðqWÞð5:9Þ

are Fredholm with index zero whenever p a I 0e :

This result (which uses the fact that y > � 1
n
) has been established first when

p a ð2� e; 2þ eÞ by G. Verchota in [26], and the extension to the larger range
p a I 0e is due to Z. Shen in [24]. Moreover, it has been established in [24] that,
for some e a ð0; 1Þ,

1

2
I þ ~KKy : L

p
1 ðqWÞaLpðqWÞ ! L

p
1 ðqWÞaLpðqWÞð5:10Þ

is an isomorphism whenever p a I 0e :

Granted this, the invertibility of the operator in (5.2) then follows from (5.10),
Proposition 4.6, and Proposition 2.2. Concerning the operator in (5.4), in a first
stage the same circle of ideas give, based on (5.9), that
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the operator � 1

2
I þ _KKy : _LL

p
1;0ðqWÞ ! _LLp

1;0ðqWÞð5:11Þ

is Fredholm with index zero for each p a I 0e :

In turn, thanks to (5.11) and the fact that 2 _KKy reproduces functions in _PPðqWÞ
(cf. Proposition 4.5 in [15]), we also have that

� 1

2
I þ _KKy : _LL

p
1;0ðqWÞ= _PPðqWÞ ! _LLp

1;0ðqWÞ= _PPðqWÞð5:12Þ

is Fredholm with index zero whenever p a I 0e :

Given that the embedding _BB2;2
1;1=2ðqWÞ ,! _LLp

1;0ðqWÞ is well-defined, continuous
and with dense range, for each p a Ie provided that e > 0 is small enough, we de-
duce from the invertibility of the operator � 1

2 I þ _KKy both on _BB2;2
1;1=2ðqWÞ and on

_BB2;2
1;1=2ðqWÞ= _PPðqWÞ (itself, a consequence of variational arguments; see Corollary

6.1 in [15] and (6.174) in [15]), (5.12), plus a little functional analysis (cf. Lemma
6.6 in [15]) that

� 1

2
I þ _KKy : _LL

p
1;0ðqWÞ= _PPðqWÞ ! _LLp

1;0ðqWÞ= _PPðqWÞð5:13Þ

is an injective operator for each p a I 0e :

In passing, let us also note that the same type of reasoning as above gives

_ff a _LLp
1;0ðqWÞ :

�
� 1

2
I þ _KKy

�
_ff ¼ 0

� 	
¼ _PPðqWÞ; Ep a I 0e :ð5:14Þ

This is going to be useful later on.
Let us now consider the claims made in (5.3) and (5.5). To this end, we first

note that, thanks to (5.9), Proposition 4.6, and Proposition 2.2, we have that

e
1

2
I þ _KKy : _LL

p
1;0ðqWÞ ! _LLp

1;0ðqWÞð5:15Þ

are Fredholm with index zero for each p a I 0e :

Thus, by duality,

e
1

2
I þ _KK �

y : ð _LLp
1;0ðqWÞÞ� ! ð _LLp

1;0ðqWÞÞ�ð5:16Þ

are Fredholm with index zero for each p a I 0e :

Let us also remark that, as seen from (5.15), the composition�1
2
I þ _KKy

�
�
�
� 1

2
I þ _KKy

�
: _LLp

1;0ðqWÞ ! _LLp
1;0ðqWÞð5:17Þ

is Fredholm with index zero for each p a I 0e ;
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hence by duality,�1
2
I þ _KK �

y

�
�
�
� 1

2
I þ _KK �

y

�
: ð _LLp

1;0ðqWÞÞ� ! ð _LLp
1;0ðqWÞÞ�ð5:18Þ

is Fredholm with index zero for each p a I 0e :

To proceed, recall that _SS denotes the boundary version of the biharmonic
single multi-layer introduced in (4.50). Hence, if p; p 0 a ð1;lÞ are such that
1=pþ 1=p 0 ¼ 1, then the boundedness results for general single multi-layer type
operators from Theorem 5.1 in [15] ensure that

_SS : ð _LLp 0

1;1ðqWÞÞ� ! _LLp
1;0ðqWÞ boundedly; andð5:19Þ

_SS : ð _LLp
1;0ðqWÞÞ� ! _LLp 0

1;1ðqWÞ boundedly:ð5:20Þ

Based on these and Theorem 4.4 we may therefore conclude that, for each index
p a ð1;lÞ, the operators

qAy
n

_DDy � _SS : ð _LLp
1;0ðqWÞÞ� ! ð _LLp

1;0ðqWÞÞ�;ð5:21Þ
qAy
n

_DDy � _SS : ð _LLp
1;1ðqWÞÞ� ! ð _LLp

1;1ðqWÞÞ�;ð5:22Þ
_SS � qAy

n
_DDy : _LL

p
1;0ðqWÞ ! _LLp

1;0ðqWÞ;ð5:23Þ
_SS � qAy

n
_DDy : _LL

p
1;1ðqWÞ ! _LLp

1;1ðqWÞ;ð5:24Þ

are well-defined, linear and bounded (where, as usual, 1=pþ 1=p 0 ¼ 1). Having
established these boundedness results, we may then conclude from (5.21), (5.18),
formula (4.72), and density arguments, that

qAy

n
_DDy � _SS : ð _LLp

1;0ðqWÞÞ� ! ð _LLp
1;0ðqWÞÞ�ð5:25Þ

is Fredholm with index zero for each p a I 0e :

In turn, (5.25), (5.20), and (4.29) readily imply that

the operator qAy
n

_DDy : _LL
p 0

1;1ðqWÞ ! ð _LLp
1;0ðqWÞÞ� has closed range;ð5:26Þ

of finite codimension whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:

With this in hand and availing ourselves of the fact that the operators in
(4.29) and (4.30) are adjoint to one another, it follows from (5.26) and duality
that

the operator qAy
n

_DDy : _LL
p
1;0ðqWÞ ! ð _LLp 0

1;1ðqWÞÞ�ð5:27Þ

has finite dimensional kernel; if p a I 0e and
1

p
þ 1

p 0 ¼ 1:
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Next we claim that

Ep 0 a Ie bq a I 0e such that _LLp 0

1;1ðqWÞ ,! _LLq
1;0ðqWÞ:ð5:28Þ

To justify this claim, assume first that nb 4 and note that this forces
p 0 a ð1; n� 1Þ for any p 0 a Ie. As such, the embedding _LLp 0

1;1ðqWÞ ,! _LLq
1;0ðqWÞ

holds whenever q :¼
�
1
p 0 � 1

n�1

��1
. On the other hand, it may be verified without

di‰culty that

� 1

p 0 �
1

n� 1

��1

: p 0 a Ie

� 	
¼ I 0e :ð5:29Þ

This, of course, proves the claim in (5.28) when nb 4. When n ¼ 2, the em-
bedding in (5.28) holds for any p 0; q a ð1;lÞ, while when n ¼ 3 is obviously
true whenever indices p 0 a ½2;lÞ and q a ð1;lÞ. Finally, in the remaining case,
i.e., for n ¼ 3 and p 0 a ð1; 2Þ, we may take the index q :¼

�
1
p 0 � 1

2

��1
a ð2;lÞJ

I 0e . This finishes the proof of (5.28).
Moving on, we may then deduce from (5.27), (5.28), and (5.26), that the

operator

qAy
n

_DDy : _LL
p 0

1;1ðqWÞ ! ð _LLp
1;0ðqWÞÞ�ð5:30Þ

has both closed range, of finite codimension, and finite dimensional kernel when-
ever p a I 0e with

1
p
þ 1

p 0 ¼ 1. In other words,

qAy
n

_DDy : _LL
p 0

1;1ðqWÞ ! ð _LLp
1;0ðqWÞÞ�is Fredholmð5:31Þ

provided p a I 0e and
1

p
þ 1

p 0 ¼ 1:

In particular, the operator qAy

n
_DDy has, in the above context, a quasi-inverse. In

concrete terms, this means that whenever p a I 0e and 1
p
þ 1

p 0 ¼ 1, there exist a

Fredholm operator R : ð _LLp
1;0ðqWÞÞ� ! _LLp 0

1;1ðqWÞ, and a linear compact operator
Comp mapping _LLp 0

1;1ðqWÞ into some Banach space X , with the property that

R � qAy

n
_DDy ¼ I þ Comp on _LLp 0

1;1ðqWÞ:ð5:32Þ

Composing the Fredholm operator in (5.25) to the left with the Fredholm opera-
tor R just considered, and keeping in mind that the class of Fredholm operators is
closed under composition as well as additive compact perturbations, we arrive at
the conclusion that

_SS : ð _LLp
1;0ðqWÞÞ� ! _LLp 0

1;1ðqWÞ is a Fredholm operatorð5:33Þ

whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:
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In light of the self-adjointness of the single multi-layer (cf. (5.22) in [15]), we may
take the dual of (5.33) in order to also obtain that

_SS : ð _LLp 0

1;1ðqWÞÞ� ! _LLp
1;0ðqWÞ is a Fredholm operatorð5:34Þ

whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:

At this stage, taking the composition of the Fredholm operators in (5.31) and
(5.33) leads to the conclusion that

_SS � qAy
n

_DDy : _LL
p 0

1;1ðqWÞ ! _LLp 0

1;1ðqWÞ is a Fredholm operatorð5:35Þ

whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:

Granted this, from identity (4.73) and a density argument we deduce that�1
2
I þ _KKy

�
�
�
� 1

2
I þ _KKy

�
: _LLp 0

1;1ðqWÞ ! _LLp 0

1;1ðqWÞð5:36Þ

is a Freholm operator whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:

In turn, this readily implies that the operatorse1
2 I þ _KKy (which commute with

one another) have both closed ranges of finite codimension and finite dimensional
kernels, thus, ultimately,

e
1

2
I þ _KKy : _LL

p 0

1;1ðqWÞ ! _LLp 0

1;1ðqWÞ are Fredholm operatorsð5:37Þ

whenever p a I 0e and
1

p
þ 1

p 0 ¼ 1:

Going further, we make use of (4.74) (and the same type of boundedness
and density results as before) in order to obtain the following intertwining
identity

_SS �
�
e

1

2
I þ _KK �

y

�
¼

�
e

1

2
I þ _KKy

�
� _SS on ð _LLp

1;0ðqWÞÞ�;ð5:38Þ

in which _SS is as in (5.33), _KKy acts on _LLp 0

1;1ðqWÞ, and _KK �
y acts on ð _LLp

1;0ðqWÞÞ�. From
(5.38), (5.37), (5.33), (5.16), and the additivity law for the Fredholm index, we
eventually obtain (cf. also (5.8)) that

the operatorse
1

2
I þ _KKy : _LL

p 0

1;1ðqWÞ ! _LLp 0

1;1ðqWÞð5:39Þ

are Fredholm with index zero if p 0 a Ie:
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In particular,

e
1

2
I þ _KKy are Fredholm with index zeroð5:40Þ

on _LLp 0

1;1ðqWÞ= _PPðqWÞ whenever p 0 a Ie:

Using this, the embedding in (5.28), and the injectivity of the operator in (5.2)
it follows that the operator in (5.3) is also injective, thus ultimately invertible by
(5.39). This takes care of the claim made in (5.3). Finally, the same type of rea-
soning, based on the embedding (5.28) and the injectivity of the operator in (5.4),
shows that the operator in (5.5) is also injective, thus ultimately invertible by
(5.40).

Let us now prove that the inverses of the isomorphisms in (5.2) and (5.3) act in
a compatible manner on the intersection of their domains. With this goal in mind,
assume that

_ff0 a _LLp0
1;0ðqWÞ with p0 a I 0e and

_ff1 a _LLp1
1;1ðqWÞ with p1 a Ieð5:41Þ

are such that
�1
2
I þ _KKy

�
_ff0 ¼

�1
2
I þ _KKy

�
_ff1:

By (5.28), there exists q a I 0e with the property that _LLp1
1;1ðqWÞ ,! _LLq

1;0ðqWÞ, hence
if we now set p :¼ minfp0; qg then

p a I 0e and _LLp0
1;0ðqWÞB _LLp1

1;1ðqWÞ ,! _LLp
1;0ðqWÞ:ð5:42Þ

From (5.41)–(5.42) and the fact that 1
2 I þ _KKy is invertible on _LLp

1;0ðqWÞ, it follows
that _ff0 ¼ _ff1, as wanted. Finally, the compatibility of the inverses of the isomor-
phisms in (5.4) and (5.5) on the intersection of their domains is established anal-
ogously, completing the proof. r

We now proceed to record several significant consequences of Theorem 5.1
(and its proof ).

Corollary 5.2. Let WHRn, with nb 2, be a bounded Lipschitz domain with
connected boundary, and fix y a R with y > � 1

n
. Also, recall the boundary bihar-

monic double multi-layer operator _KKy on qW from Definition 4.1. Then there exists
e > 0 with the property that

_ff a _LLp
1;1ðqWÞ :

�
� 1

2
I þ _KKy

�
_ff ¼ 0

� 	
¼ _PPðqWÞð5:43Þ

whenever

p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;ð5:44Þ

and p a ð1; 2þ eÞ if n a f2; 3g:
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Proof. This is a consequence of the formula in (5.14) and the embedding result
recorded in (5.28). r

Further invertibility results for multi-layers, complementing those established
in Theorem 5.1, are discussed below.

Corollary 5.3. Suppose that WHRn, with nb 2, is a bounded Lipschitz do-
main with connected boundary, and fix y a R with y > � 1

n
. As before, let _KKy denote

the boundary biharmonic double multi-layer operator on qW considered in Defini-
tion 4.1. Also, let _SS denote the boundary version of the biharmonic single multi-
layer associated with L ¼ D2 as in (4.49). Then there exists e > 0 with the property
that

1

2
I þ _KK �

y : ðLp
1;0ðqWÞÞ� ! ðLp

1;0ðqWÞÞ� is an isomorphismð5:45Þ

whenever p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 4;

and whenever p a ð2� e;lÞ if n a f2; 3g;

and

1

2
I þ _KK �

y : ðLp
1;1ðqWÞÞ� ! ðLp

1;1ðqWÞÞ� is an isomorphismð5:46Þ

whenever p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;

and whenever p a ð1; 2þ eÞ if n a f2; 3g:

In addition, the inverses of the isomorphisms in (5.45) and (5.46) act in a compatible
manner on the intersection of their domains. Moreover,

� 1

2
I þ _KK �

y is an isomorphism on ðLp
1;0ðqWÞ= _PPðqWÞÞ�ð5:47Þ

whenever p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�

for nb 4;

and whenever p a ð2� e;lÞ for n a f2; 3g;

and

� 1

2
I þ _KK �

y is an isomorphism on ðLp
1;1ðqWÞ= _PPðqWÞÞ�ð5:48Þ

whenever p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
for nb 4;

and whenever p a ð1; 2þ eÞ for n a f2; 3g:
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In addition, the inverses of the isomorphisms in (5.47) and (5.48) act in a compatible
fashion on the intersection of their domains.

Finally, if nb 3 and nA 4, then also

_SS : ð _LLp
1;0ðqWÞÞ� ! _LLp 0

1;1ðqWÞ is an isomorphismð5:49Þ

provided p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 5;

and provided p a ð2� e;lÞ if n ¼ 3;

and

_SS : ð _LLp 0

1;1ðqWÞÞ� ! _LLp
1;0ðqWÞ is an isomorphismð5:50Þ

provided p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 5;

and provided p a ð2� e;lÞ if n ¼ 3;

and the inverses of the isomorphisms in (5.49) and (5.50) are compatible on the
intersection of their domains.

Proof. The invertibility (and compatibility) claims concerning the boundary
biharmonic double multi-layer operator are direct consequences of Theorem 5.1
and duality. As regards (5.49)–(5.50), these follow from (5.33)–(5.34), Theorem
6.6 in [15] when n > 4, and [26, Theorem 17.5] when n ¼ 3, by reasoning as
before. r

6. Boundary value problems

The work in this section concerns the existence, uniqueness, integral representa-
tion in terms of the multi-layers introduced in this paper, and regularity (mea-
sured on the Besov scale), of the solution of the Dirichlet and Neumann problems
for the bi-Laplacian with boundary data from Whitney-Lebesgue and Whitney-
Besov spaces, as well as their duals, in Lipschitz domains. In particular, this com-
pletes and refines work in [26] and [24]. To get started, we make the following
definition.

Definition 6.1. Assume that W is a bounded Lipschitz domain in Rn and fix
p a ð1;lÞ. In this context, we say that property Gp holds provided for each
X a W there exists a function GðX ; �Þ a ClðWnfXgÞ satisfying (with dX denoting
the Dirac distribution with mass at X )

D2
YGðX ;Y Þ ¼ dX ðY Þ;

GðX ; �ÞbqW¼ 0; ð‘YGðX ; �ÞÞbqW¼ 0;

N ð‘2
YGðX ; �ÞÞ a LpðqWÞ;

8><
>:ð6:1Þ
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where the nontangential maximal operator N is considered with respect to non-
tangential approach regions truncated at height much smaller than the distance
from X to qW.

For example, if y a R is such that

1

2
I þ _KKy : _LL

p
1;1ðqWÞ ! _LLp

1;1ðqWÞ is invertible;ð6:2Þ

a Green function with the properties stipulated in (6.1) may be constructed by
considering, for each X ;Y a W with X AY ,

GðX ;YÞ :¼ EðX � Y Þð6:3Þ

� _DDy

�1
2
I þ _KKy

��1

ðTrEðX � �Þ;Trð‘EðX � �ÞÞÞ

 �

ðYÞ;

where E is the fundamental solution of the operator D2 from (4.1). To see
that this is indeed the case, note that since for each point X a W fixed we have
ðTrEðX � �Þ;Trð‘EðX � �ÞÞ a _LLp

1;1ðqWÞ, and using (6.2) and nontangential max-
imal function estimates for the double multi-layer we obtain

N ‘2 _DDy

�1
2
I þ _KKy

��1

ððTrEðX � �Þ;Trð‘EðX � �ÞÞÞ

 �� �

a LpðqWÞð6:4Þ

hence, ultimately,

N ð‘2
YGðX ; �ÞÞ a LpðqWÞð6:5Þ

if G is as in (6.3). Furthermore, (6.3) and (4.12) ensure that the middle condition
in (6.1) holds as well. Finally, the first condition in (6.1) is clear from the design
of G.

The significance of the condition introduced in Definition 6.1 is most apparent
from the following uniqueness result (which is a particular case of Theorem 6.18
in [15]).

Theorem 6.2. Let W be a bounded Lipschitz domain in Rn. Assume that
p; p 0 a ð1;lÞ are such that 1=pþ 1=p 0 ¼ 1, and that property Gp 0 holds. If u is a
solution of the homogeneous Dirichlet boundary value problem

D2u ¼ 0 in W;

N ð‘uÞ a LpðqWÞ;
ðubqW; ð‘uÞbqWÞ ¼ _00;

8><
>:ð6:6Þ

then necessarily uC 0 in W.

As far as a genuine well-posedness result for the Dirichlet problem for the bi-
Laplacian in Lipschitz domains is concerned, we have the following.
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Theorem 6.3. Assume that W is a bounded Lipschitz domain in Rn, nb 2, with
connected boundary. Then there exists e > 0 such that property Gp holds

whenever p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;ð6:7Þ

and whenever p a ð1; 2þ eÞ if n a f2; 3g:

As a consequence, there exists e > 0 such that if

p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 4;ð6:8Þ

and p a ð2� e;lÞ if n a f2; 3g;

then Dirichlet boundary value problem for the bi-Laplacian with data from
Whitney-Lebesgue spaces,

D2u ¼ 0 in W;

N ð‘uÞ a LpðqWÞ;
ðubqW; ð‘uÞbqWÞ ¼ _ff a _LLp

1;0ðqWÞ;

8><
>:ð6:9Þ

has a unique solution which, for every y a R with y > � 1
n
, may be represented as

uðXÞ ¼ _DDy

�1
2
I þ _KKy

��1
_ff


 �
ðX Þ; EX a W:ð6:10Þ

In particular, the solution of (6.9) satisfies

kuk
B

p; p42

1þ1=p
ðWÞ aCk _ff k _LL p

1; 0
ðqWÞð6:11Þ

for some finite constant C ¼ CðW; p; y; nÞ > 0 where, generally speaking, a4b :¼
maxfa; bg.

Proof. The fact that property Gp holds for p as in (6.7) is seen from Theorem
5.1 and the discussion in (6.2)–(6.5). As such, the uniqueness part in the well-
posedness of the boundary problem (6.9) follows from what we have just proved
and Theorem 6.2. Next, u in (6.10) is well-defined in light of (5.2), and solves (6.9)
thanks to the biharmonicity of the double multi-layer, (4.13), and (4.12). Finally,
that u satisfies (6.11) follows from the integral representation formula (6.10) and
the mapping properties of the double multi-layer (cf. (4.85) in [15]). r

Our next result deals with the role of multi-layer potentials in the solvability of
the so-called regularity problem for the bi-Laplacian in Lipschitz domains. As a
preamble, we first recall the following estimate of Hardy-type.

Lemma 6.4. Assume that WHRn is a bounded Lipschitz domain and suppose
that u is a biharmonic function in W which satisfies N ð‘uÞ a LpðqWÞ for some
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p a ð0; n� 1Þ. Then

N u a Lp�ðqWÞ where p� :¼
�1
p
� 1

n� 1

��1

:ð6:12Þ

See [16, Lemma 11.9] for a proof of a more general result of this nature. Here is
the well-posedness result advertised earlier, which refines earlier work in [26], and
[24].

Theorem 6.5. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. As before, let _DDy and _KKy de-

note the biharmonic double multi-layer operators (relative to W) introduced in Def-
inition 4.1.

Then there exists e > 0 with the property that whenever p a ð1;lÞ satisfies

p a
�2ðn� 1Þ

nþ 1
� e; 2þ e

�
if nb 4;ð6:13Þ

and p a ð1; 2þ eÞ if n a f2; 3g;

the Dirichlet boundary value problem for the bi-Laplacian with data from Whitney-
Sobolev spaces,

D2u ¼ 0 in W;

N ð‘2uÞ a LpðqWÞ;
ðubqW; ð‘uÞbqWÞ ¼ _ff a _LLp

1;1ðqWÞ;

8><
>:ð6:14Þ

has a unique solution, which actually admits the integral representation formula

uðX Þ ¼ _DDy

�1
2
I þ _KKy

��1
_ff


 �
ðX Þ; EX a W:ð6:15Þ

In particular, the solution of (6.14) satisfies

kuk
B

p; p42

2þ1=p
ðWÞ aCk _ff k _LL p

1; 0
ðqWÞð6:16Þ

for some finite constant C ¼ CðW; p; y; nÞ > 0.

Proof. Let e > 0 be as in Theorem 5.1. That the function u given by (6.15) is
well-defined whenever p is as in (6.13) follows from the invertibility result re-
corded in (5.3). Also, the fact that this u actually solves (6.14) is clear from the
biharmonicity of the double multi-layer, (4.14), and (4.12). As regards unique-
ness, suppose that u solves the homogeneous version of the boundary problem
(6.14) for some p as in (6.13). Given the nature of the conclusion we seek, there
is no loss of generality in assuming that the exponent p also satisfies p < n� 1.
Granted this, if p� is defined as in (6.12) then (much as it was the case in the
proof of Theorem 5.1) p� satisfies the conditions listed in (6.8). Furthermore,
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Lemma 6.4 applied to ‘u ensures that N ð‘uÞ a Lp� ðqWÞ, since we are assuming
that N ð‘2uÞ a LpðqWÞ to begin with. As such, the uniqueness result established
in the second part of Theorem 6.3 applies and yields that uC 0 in W, as wanted.
Finally, that u satisfies (6.16) follows from the integral representation formula
(6.15) and mapping properties for the double multi-layer. r

Next, we shall formulate and solve the Neumann problem for the bi-
Laplacian with boundary data from the dual of Whitney-Lebesgue spaces. This
parallels work in [26] and [24] where a di¤erent formulation is emphasized.

Theorem 6.6. Suppose that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. As before, let _KKy denote the

biharmonic double multi-layer operator (relative to qW) introduced in Definition
4.1. Finally, recall the biharmonic single multi-layer _SS from (4.49) and the conor-
mal derivative qAy

n from Proposition 3.2. Then there exists e > 0 with the property
that whenever p a ð1;lÞ satisfies

p a
�
2� e;

2ðn� 1Þ
n� 3

þ e
�
if nb 4;ð6:17Þ

and p a ð2� e;lÞ if n a f2; 3g;

the Neumann boundary value problem for the bi-Laplacian with data from duals of
Whitney-Lebesgue spaces,

D2u ¼ 0 in W;

N ð‘2uÞ a Lp 0 ðqWÞ;
qAy
n u ¼ L a ð _LLp

1;0ðqWÞÞ�

8><
>:ð6:18Þ

where 1=pþ 1=p 0 ¼ 1 and the boundary data satisfies the necessary compatibility
condition

3L; _PP4 ¼ 0 for each _PP a _PPðqWÞ;ð6:19Þ

is well-posed (with uniqueness understood modulo polynomials of degreea 1).
Moreover, a solution may be given by the integral formula

uðXÞ ¼ _SS p�
�
� 1

2
I þ _KK �

y

��1
~LL


 �
ðX Þ; EX a W;ð6:20Þ

where

~LL a ð _LLp
1;0ðqWÞ= _PPðqWÞÞ�ð6:21Þ

is defined by setting

3~LL; ½ _ff �4 :¼ 3L; _ff 4; E _ff a _LLp
1;0ðqWÞ;ð6:22Þ
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with ½ _ff � denoting the equivalence class of the Whitney array _ff a _LLp
1;0ðqWÞ in the

quotient space _LLp
1;0ðqWÞ= _PPðqWÞ, and

p� : ð _LLp
1;0ðqWÞ= _PPðqWÞÞ� ! ð _LLp

1;0ðqWÞÞ�ð6:23Þ

is the adjoint of the canonical projection

p : _LLp
1;0ðqWÞ ! _LLp

1;0ðqWÞ= _PPðqWÞ;ð6:24Þ

taking a given arbitrary Whitney array _ff a _LLp
1;0ðqWÞ into its equivalency class

½ _ff � a _LLp
1;0ðqWÞ= _PPðqWÞ.

Proof. That the compatibility condition (6.19) is necessary is clear from inte-
grations by parts and degree considerations. As regards existence, let e > 0 be
as in Corollary 5.3. Then the function u given by (6.20) is well-defined whenever
p is as in (6.17) follows from the invertibility result recorded in (5.47). By the
biharmonicity of the single multi-layer, the nontangential maximal function
estimates for this operator, and (4.52), one may check that u solves (6.18). Thus,
as far as the well-posedness of the problem (6.18) is concerned, there remains
to establish uniqueness (in the sense specified in the statement of the theorem).
To this end, assume that u is a solution of (6.18) with L ¼ 0, and set

_ff :¼ ðubqW; ð‘uÞbqWÞ a _LLp 0

1;1ðqWÞ:ð6:25Þ

Keeping in mind that qAy
n u ¼ 0, Green’s formula gives

u ¼ _DDy
_ff � _SSðqAy

n uÞ ¼ _DDy
_ff in W:ð6:26Þ

Taking the first-order nontangential boundary trace of both sides of (6.26) and
using (4.12) then yields

_ff ¼
�1
2
I þ _KKy

�
_ff ;ð6:27Þ

which ultimately shows that
�
� 1

2 I þ _KKy

�
_ff ¼ 0. From this and Corollary 5.2 we

deduce that there exists P a PðWÞ such that _ff ¼ _PP. Returning with this back in
(6.26) and making use of the fact that the double multi-layer reproduces polyno-
mials of degreea 1, finally gives that u ¼ _DDy

_PP ¼ P in W, as desired. r

Our next goal is to explain how the invertibility results for the biharmonic
layer potentials, as well as the well-posedness results for the various boundary
problems for the bi-Laplacian, improve (in the sense that the range of exponents
involved becomes larger) under additional regularity assumptions on the Lip-
schitz domain in question. This requires some preparations and we start by recall-
ing that, given two quasi-Banach spaces X ,Y , the space of all bounded linear op-
erators mapping X intoY is denoted by LðX !YÞ. This becomes a quasi-Banach
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itself when equipped with the canonical operator norm

kTkLðX!YÞ :¼ supfkTxkY : x a X ; kxkX a 1g; for each T a LðX !YÞ:ð6:28Þ

Moreover, let us also define

CompðX !YÞ :¼ the space of all linear compact operators

from X intoY ;

�
ð6:29Þ

and note that CompðX ;YÞ is a closed subspace of LðX ;YÞ. Finally, abbreviate

LðX Þ :¼ LðX ! X Þ; CompðX Þ :¼ CompðX ! X Þ:ð6:30Þ

Finally, given a bounded Lipschitz domain WJRn, we shall denote by
BMOðqWÞ the John-Nirenberg space of functions with bounded mean oscilla-
tions on qW (naturally regarded as a space of homogeneous type, in the sense
of Coifman-Weiss). In the same setting, we shall let VMOðqWÞ stand for the
Sarason space of functions with vanishing mean oscillations on qW.

The following is a particular case of a much more general result proved in [12,
Theorem 4.36].

Theorem 6.7. Let WHRn be a bounded Lipschitz domain. Denote by s and n,
respectively, the surface measure and outward unit normal on qW. Also, fix an arbi-
trary p a ð1;lÞ. Then for every e > 0 the following holds. Given a function k sat-
isfying

k : Rnnf0g ! R is smooth; even; and homogeneous of degree �nð6:31Þ

to which one associates the principal-value singular integral operator

Tf ðX Þ :¼ lim
h!0þ

Z
Y A qW

jX�Y j>h

3X � Y ; nðYÞ4kðX � YÞ f ðY Þ dsðYÞð6:32Þ

whenever X a qW;

there exists d > 0, depending only on e, the geometric characteristics of W, n, p and
kkjSn�1kCN (where the integer N ¼ NðnÞ is su‰ciently large) with the property that

distðn;VMOðqWÞÞ < d )
T is well-defined

belongs to LðLpðqWÞÞ and
distðT ;CompðLpðqWÞÞÞ < e;

8><
>:ð6:33Þ

where the distance in the left-hand side is measured in BMOðqWÞ, and the distance
in the right-hand side is measured in LðLpðqWÞÞ.

In particular, under the same background hypotheses, for every index p a ð1;lÞ
one has

n a VMOðqWÞ ) T : LpðqWÞ ! LpðqWÞ is compact:ð6:34Þ
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Finally, the same claims remain valid when made for the operator

Taf ðX Þ :¼ lim
h!0þ

Z
Y A qW

jX�Y j>h

3X � Y ; nðX Þ4�ð6:35Þ

� kðX � YÞ f ðYÞ dsðYÞ; X a qW;

with k as in (6.31), as well as for the operator

~TTf ðX Þ :¼ lim
h!0þ

Z
Y A qW

jX�Y j>h

ðnðX Þ � nðYÞÞ~kkðX � YÞ f ðY Þ dsðYÞ; X a qW;ð6:36Þ

this time provided that

the function ~kk : Rnnf0g ! R is smooth; oddð6:37Þ
and homogeneous of degree 1� n:

The following theorem augments earlier work in this section (compare with
Theorem 5.1, Corollary 5.3, Theorem 6.3, Theorem 6.5, and Theorem 6.6).

Theorem 6.8. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. Then given any p a ð1;lÞ

there exists e > 0, depending only on p, the Lipschitz character of W, n, and y,
with the property that if the outward unit normal n to W satisfies

lim sup
r!0þ

sup
X A qW

Z
BðX ; rÞBqW

Z
BðX ; rÞBqW

jnðY Þ � nðZÞj dsðY Þ dsðZÞ
( )

< e;ð6:38Þ

the following claims are true:

(i) all invertibility results from Theorem 5.1 and Corollary 5.3 hold for the given p;
(ii) the well-posedness results from Theorem 6.3, Theorem 6.5, and Theorem 6.6

hold for the given p.

As a consequence, all results mentioned above actually hold for any integrability
index p a ð1;lÞ if

n a VMOðqWÞð6:39Þ

hence, in particular, if W is a C1 domain.

Proof. The crux of the matter is establishing that

e
1

2
I þ _KKy ¼ R0 þ R1 as operators on _LLp

1;0ðqWÞ;ð6:40Þ
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where R0;R1 a Lð _LLp
1;0ðqWÞÞ satisfy

R0 is an invertible operator on _LLp
1;0ðqWÞ;ð6:41Þ

and

distðR1;Compð _LLp
1;0ðqWÞÞÞ < kR0kLð _LL p

1; 0
ðqWÞÞ;ð6:42Þ

where the distance in the left-hand side is taken in Lð _LLp
1;0ðqWÞÞ. The significance

of the decomposition in (6.40) is that, granted (6.41)–(6.42), this readily implies
that

e
1

2
I þ _KKy is a Fredholm operator with index zero on _LLp

1;0ðqWÞ:ð6:43Þ

With this in hand, earlier arguments then lead to the same type of invertibility
results as in (5.2), (5.4) for the given p. In turn, the same type of analysis as in
the proof of Theorem 5.1 then permits us to also establish analogous invertibility
results to those stated in (5.3) and (5.5). Once these results are available, it is
straightforward to complete the proof of the claim made in part (i) of the state-
ment of the theorem. Then the claim made in part (ii) of the statement of the the-
orem becomes a consequence of the invertibility results from part (i), by reason-
ing as before.

Turning to the justification of the claims made in (6.40)–(6.42), there are two
basic aspects we wish to emphasize. First, with equivalence constants depending
only on the Lipschitz character of W,

distðn;VMOðqWÞÞð6:44Þ

Q lim sup
r!0þ

sup
X A qW

Z
BðX ; rÞBqW

Z
BðX ; rÞBqW

jnðY Þ � nðZÞj dsðY Þ dsðZÞ
( )

;

where the distance in the left-hand side is measured in BMOðqWÞ. A proof of
this claim may be found in [12], [14]. Hence, the smallness of the infinitesimal
mean oscillation of the unit normal (defined as the limit in the left-hand side of
(6.38)) forces the distance from the unit normal n a LlðqWÞ to the closed sub-
space VMOðqWÞ, measured in BMOðqWÞ, to be appropriately small. In turn,
this opens the door for the close-to-compact criteria described in Theorem 6.7 to
apply.

In the implementation of the aforementioned close-to-compact criteria, we
find it useful to revert from the operator _KKy, considered on _LLp

1;0ðqWÞ, to the oper-
ator ~KKy introduced in (4.60)–(4.66), considered on L

p
1 ðqWÞaLpðqWÞ. That this

is permissible is ensured by the intertwining result proved in Proposition 4.6,
keeping in mind the invertibility of the mapping C established in Proposition
2.2. Thus, the goal becomes identifying various expressions from the makeup of
the integral kernel of ~KKy which have the desired algebraic structure (indicated in
Theorem 6.7).
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According to the arguments in [26, § 11], there are four types of integral oper-
ators on LpðqWÞ whose kernels must be shown to have the algebraic structure
described in Theorem 6.7, namely:

qnðY Þ½ðDEÞðX � Y Þ�;ð6:45Þ
niðY ÞnjðYÞnkðYÞðqiqjqkEÞðX � YÞ;ð6:46Þ

qtijðY ÞqtklðY ÞqnðYÞ½EðX � Y Þ� :¼ I1 þ I2 þ I3 þ I4ð6:47Þ

where

I1 :¼ niðY ÞnkðYÞnrðY ÞðqjqlqrEÞðX � Y Þ
I2 :¼ �niðYÞnlðY ÞnrðYÞðqjqkqrEÞðX � Y Þ
I3 :¼ �njðY ÞnkðYÞnrðY ÞðqiqlqrEÞðX � Y Þ
I4 :¼ þnjðY ÞnlðYÞnrðY ÞðqiqkqrEÞðX � Y Þ;

ð6:48Þ

and

niðYÞnjðY ÞqtklðYÞ½ðqiqjEÞðX � YÞ� � 1

2
qtklðY Þ½ðDEÞðX � Y Þ�:ð6:49Þ

Concerning the kernel in (6.45), observe that (with cn denoting a dimensional
constant)

qnðY Þ½ðDEÞðX � YÞ� ¼ cn
3nðYÞ;Y � X4

jX � Y jnð6:50Þ

and this kernel gives rise to a principal-value singular integral operator T of the
type described in (6.32) with kðX Þ :¼ cnjX j�n. Such a function is as in (6.31), so
this integral operator satisfies (6.33).

Regarding the kernel in (6.46) we first note that, for each triplet of numbers
a; b; c a f1; . . . ; ng and each point X ¼ ðx1; . . . ; xnÞ a Rnnf0g,

ðqaqbqcEÞðX Þ ¼ cn

jX jn dbcxa þ dacxb þ dabxc � n
xaxbxc

jX j2

" #
:

Based on this, we may then compute

niðY ÞnjðY ÞnkðYÞðqiqjqkEÞðX � YÞð6:51Þ

¼ cn
3nðY Þ;X � Y4

jX � Y jn 3� n
niðY ÞnjðY Þðxi � yiÞðxj � yjÞ

jX � Y j2

" #
:

As such, this kernel gives rise to a principal-value singular integral operator T of
the form

T ¼ T0 þ
Xn

i; j¼1

Tij �Mninj ;ð6:52Þ
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where, generally speaking, Mh denotes the multiplication by the function h,
and T0, Tij, i; j a f1; . . . ; ng are principal-value singular integral operators with
kernels

3cn
3nðYÞ;X � Y4

jX � Y jnð6:53Þ

and

�ncn
3nðY Þ;X � Y4

jX � Y jn
ðxi � yiÞðxj � yjÞ

jX � Y j2
; i; j a f1; . . . ; ng;ð6:54Þ

respectively. Since Mninj is a bounded operator on LpðqWÞ, and since the func-
tions

k0ðX Þ :¼ 3cnjX j�n and kijðX Þ :¼ �ncnxixjjX j�n�2; i; j a f1; . . . ; ng;ð6:55Þ

are as in (6.31), the principal-value singular integral operator associated with the
kernel (6.46) also satisfies (6.33). Finally, a similar (tedious, but straightforward)
analysis shows that the principal-value singular integral operators associated with
the kernels from (6.47)–(6.48) and (6.49) fit in the class of operators treated in
Theorem 6.7 as well, and this finishes the proof of the theorem. r

In the theorem below, the multi-layers _KKy and _SS are associated with the bi-
Laplacian, D2, as before (cf. Definition 4.1 and (4.50)).

Theorem 6.9. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. Then there exists e > 0 with

the property that the operators

1

2
I þ _KKy : _BBp;q

1; s ðqWÞ ! _BBp;q
1; s ðqWÞ;ð6:56Þ

� 1

2
I þ _KKy : _BBp;q

1; s ðqWÞ= _PPðqWÞ ! _BBp;q
1; s ðqWÞ= _PPðqWÞ;ð6:57Þ

are isomorphisms whenever 0 < qal and the indices p a ð1;lÞ and s a ð0; 1Þ
satisfy

n� 3� e

2
<

n� 1

p
� s <

n� 1þ e

2
when nb 4;

0 <
1

p
�
�1� e

2

�
s <

1þ e

2
when n a f2; 3g:

ð6:58Þ

Moreover, if p, p 0, q, q 0, s satisfy 1a q; q 0al, p; p 0 a ð1;lÞ, s a ð0; 1Þ, as well
as 1=pþ 1=p 0 ¼ 1=qþ 1=q 0 ¼ 1 and (6.58), then the operators

373boundary value problems and integral operators



1

2
I þ _KK �

y : ð _BBp;q
1; s ðqWÞÞ� ! ð _BBp;q

1; s ðqWÞÞ�;ð6:59Þ

� 1

2
I þ _KK �

y : ð _BBp;q
1; s ðqWÞ= _PPðqWÞÞ� ! ð _BBp;q

1; s ðqWÞ= _PPðqWÞÞ�;ð6:60Þ

_SS : ð _BBp 0;q 0

1;1�sðqWÞÞ� ! _BBp;q
1; s ðqWÞ if nb 3 and nA 4;ð6:61Þ

are also isomorphisms. Finally, given any p a ð1;lÞ, q a ð0;l�, s a ð0; 1Þ there
exists e > 0, depending only on p, the Lipschitz character of W, n, and y, with
the property that if the outward unit normal n to W satisfies (6.38) then all
operators in (6.56)–(6.61) are invertible (assuming qb 1 in (6.59)–(6.60) and
1=pþ 1=p 0 ¼ 1=qþ 1=q 0 ¼ 1 in (6.61)). As a consequence, all operators in (6.56)–
(6.61) are invertible for any p a ð1;lÞ, q a ð0;l�, and s a ð0; 1Þ (with the same
conventions as above on q, p 0, q 0) if n a VMOðqWÞ hence, in particular, if W is a
C1 domain.

Proof. Fix e > 0 as in the proof of Theorem 5.1 and let Ie and I 0e be as in (5.6)
and (5.7), respectively. From (5.2)–(5.3) and the compatibility of inverses stated
just below (5.3) we obtain that

�1
2
I þ _KKy

��1

: _LLp0
1;0ðqWÞ ! _LLp0

1;0ðqWÞ boundedly Ep0 a I 0e ;�1
2
I þ _KKy

��1

: _LLp1
1;1ðqWÞ ! _LLp1

1;1ðqWÞ boundedly Ep1 a Ie:

ð6:62Þ

Based on this and interpolation (cf. [15]) we eventually deduce that

�1
2
I þ _KKy

��1

: _BBp;q
1; s ðqWÞ ! _BBp;q

1; s ðqWÞ is boundedð6:63Þ

for every q a ð0;l� and p; s as in ð6:58Þ:

Since 1
2 I þ _KKy : _BBp;q

1; s ðqWÞ ! _BBp;q
1; s ðqWÞ is also bounded, thanks to (4.16), we fi-

nally arrive at the conclusion that the operator in (6.56) is an isomorphism when-
ever q a ð0;l� and p, s are as in (6.58). In fact, all the other claims pertaining to
(6.57)–(6.61) may be handled analogously. Finally, under the additional assump-
tion that (6.38) holds, we reason similarly, starting with the invertibility results
proved in Theorem 6.8. r

The invertibility results established in Theorem 6.9 are the key ingredients in
the proofs of the well-posedness theorems discussed in the remaining portion of
this section. We begin by treating the inhomogeneous Dirichlet problem for the
bi-Laplacian with boundary data from Whitney-Besov spaces.

Theorem 6.10. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. Then there exists e > 0 such
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that the inhomogeneous Dirichlet problem

u a B
p;q

sþ1
p
þ1
ðWÞ;

D2u ¼ w a B
p;q

sþ1
p
�3
ðWÞ;

ðTr u;Trð‘uÞÞ ¼ _ff a _BBp;q
1; s ðqWÞ;

8>>><
>>>:ð6:64Þ

is well-posed whenever 0 < qal while p a ð1;lÞ and s a ð0; 1Þ satisfy

n� 3� e

2
<

n� 1

p
� s <

n� 1þ e

2
when nb 4;

0 <
1

p
�
�1� e

2

�
s <

1þ e

2
when n a f2; 3g:

ð6:65Þ

Moreover, if w ¼ 0 then the unique solution u of (6.64) admits the following
integral representation

uðXÞ ¼ _DDy

�1
2
I þ _KKy

��1
_ff


 �
ðX Þ; EX a W:ð6:66Þ

Furthermore, given any p a ð1;lÞ, q a ð0;l�, s a ð0; 1Þ there exists e > 0, de-
pending only on p, q, s, the Lipschitz character of W, n, and y, with the property
that if the outward unit normal n to W satisfies (6.38) then the problem (6.64) is
well-posed. As a consequence, the problem (6.64) is well-posed for any p a ð1;lÞ,
q a ð0;l�, and s a ð0; 1Þ if n a VMOðqWÞ hence, in particular, if W is a C1 do-
main.

Finally, similar results are valid for the inhomogeneous Dirichlet problem on
Triebel-Lizorkin spaces, i.e., for

u a F
p;q

sþ1
p
þ1
ðWÞ;

D2u ¼ w a F
p;q

sþ1
p
�3
ðWÞ;

ðTr u;Trð‘uÞÞ ¼ _ff a _BBp;p
1; s ðqWÞ:

8>>><
>>>:ð6:67Þ

Proof. All well-posedness claims may be proved by relying mapping properties
for multi-layer potential operators on Besov and Triebel-Lizorkin scales (cf. [15]),
and on the invertibility results from Theorem 6.9. r

There are three corollaries to the above theorem which we wish to single out.
To state the first, recall the weighted Sobolev spaces from (2.37). Mapping prop-
erties for generic double multi-layers acting from Besov spaces and taking values
in these weighted Sobolev spaces have been proved in [15]. Based on this and
Theorem 6.10 we may then conclude the following.

Corollary 6.11. Suppose that WHRn, with nb 2, is a bounded Lipschitz
domain with connected boundary. Then there exists e > 0 with the property that
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whenever 0 < qal and p a ð1;lÞ, s a ð0; 1Þ satisfy (6.65), one has

kukB p; q

sþ1
pþ1

ðWÞQkTr uk _BB p; q
1; s

ðqWÞ þ kTrð‘uÞk _BB p; q
1; s

ðqWÞ;ð6:68Þ

uniformly for biharmonic functions u belonging to B
p;q
sþ1=pþ1ðWÞ, and

kuk
W

2; p

1�s�1
p

ðWÞQkukF p; q

sþ1
pþ1

ðWÞQkTr uk _BB p; p
1; s

ðqWÞ þ kTrð‘uÞk _BB p; p
1; s

ðqWÞ;ð6:69Þ

uniformly for biharmonic functions u belonging to F
p;q

sþ1
p
þ1
ðWÞ.

Here is the second corollary alluded to above.

Corollary 6.12. Assume that WHRn, with nb 2, is a bounded Lipschitz
domain with connected boundary. Then there exists e > 0 with the following signif-
icance. Whenever p a ð1;lÞ satisfies

2n

nþ 1þ e
< p <

2n

n� 1� e
if nb 3;

3

2þ e
< p <

3

1� e
if n ¼ 2;

ð6:70Þ

one can find a finite constant C ¼ CðW; pÞ > 0 with the property that if p 0 a ð1;lÞ
is such that 1=pþ 1=p 0 ¼ 1 then for every function v a W

�
2;pðWÞ,

kvkW 2; pðWÞ aC sup

Z
W

DvDu dX : u a Cl
c ðWÞ with kukW 2; p 0 ðWÞ a 1

� 	
:ð6:71Þ

Moreover, if the outward unit normal n to W belongs to VMOðqWÞ (hence,
in particular, if W is a domain of class C1), it follows that (6.71) holds for any
p a ð1;lÞ.

Proof. Let e > 0 be as in Theorem 6.10 and assume that the exponent p is as in

(6.70) and that 1=pþ 1=p 0 ¼ 1. Finally, pick an arbitrary function v a W
�
2;pðWÞ.

Note that by (2.39) and (2.40),

ðW
�
2;pðWÞÞ� ¼ W�2;p 0 ðWÞ ¼ F

p 0;2
�2 ðWÞ;ð6:72Þ

Hence, with 3� ; �4 standing for a natural duality pairing, there exists a finite con-
stant C ¼ CðW; pÞ > 0 with the property that

kvkW 2; pðWÞ aC supf3v; h4 : h a F
p 0;2
�2 ðWÞ with khk

F
p 0 ; 2
�2

ðWÞ a 1g:ð6:73Þ

Fix some h a F
p 0;2
�2 ðWÞ with khk

F
p 0 ; 2
�2

ðWÞ a 1. The incisive observation is that,

together, p 0 a ð1;lÞ and s :¼ 1=p a ð0; 1Þ satisfy the conditions in (6.65) and, as
such, Theorem 6.10 (augmented with (2.40)–(2.41)) guarantees the existence of
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some function u a W
�
2;p 0 ðWÞ with the property that

D2u ¼ h and kukW 2; p 0 ðWÞ aCðW; pÞ:ð6:74Þ

Consequently,

3v; h4 ¼ 3v;D2u4 ¼ 3Dv;Du4 ¼
Z
W

DvDu dX :ð6:75Þ

At this stage, (6.71) follows from (6.73), (6.74), (6.75), and (2.38). r

It is instructive to formulate the well-posedness results from Theorem 6.10 in a
fashion which emphasizes the smoothing properties of the Green operator for the
inhomogeneous Dirichlet boundary value problem for the bi-Laplacian. Recall
that this Green operator, call it G, is formally defined as

Gw :¼ u where u solves D2u ¼ w in W; u ¼ qnu ¼ 0 on qW:ð6:76Þ

Variational considerations based on the Lax-Milgram lemma and trace results
ultimately yield that

G : W�2;2ðWÞ ! W
�
2;2ðWÞ isomorphically;ð6:77Þ

and we wish to explore the extent to which the Green operator continues to
be smoothing of order 4 when considered on more general scales of Besov and
Triebel-Lizorkin spaces. In this regard, we have the following result.

Corollary 6.13. Assume that WHRn, with nb 2, is a bounded Lipschitz do-
main with connected boundary. Then there exists some e ¼ eðWÞ > 0 such that the
Green operators

G : Bp;q

sþ1
p
�3
ðWÞ ! fu a B

p;q

sþ1
p
þ1
ðWÞ : ðTr u;Trð‘uÞÞ ¼ _00g;ð6:78Þ

and

G : F p;q

sþ1
p
�3
ðWÞ ! fu a F

p;q

sþ1
p
þ1
ðWÞ : ðTr u;Trð‘uÞÞ ¼ _00g;ð6:79Þ

are isomorphisms whenever p a ð1;lÞ and s a ð0; 1Þ satisfy

n� 3� e

2
<

n� 1

p
� s <

n� 1þ e

2
if nb 4;

0 <
1

p
�
�1� e

2

�
s <

1þ e

2
if n a f2; 3g;

ð6:80Þ

and 0 < qal for the Besov scale, and minfp; 1ga q < l for the Triebel-
Lizorkin scale.

In particular,

G : W�2;pðWÞ ! W
�
2;pðWÞ isomorphically;ð6:81Þ

377boundary value problems and integral operators



provided

2n

nþ 1
� e < p <

2n

n� 1
þ e if nb 3;

3

2
� e < p < 3þ e if n ¼ 2:

ð6:82Þ

Furthermore, given any p a ð1;lÞ, q a ð0;lÞ, and s a ð0; 1Þ there exists e > 0,
depending only on p, q, s, and the Lipschitz character of W with the property that
if the outward unit normal n to W satisfies (6.38) then the operators (6.78)–(6.79)
are isomorphisms (also assuming the inequality minfp; 1ga q < l in the case of
(6.79)). As a consequence, the operators (6.78)–(6.79) are isomorphisms for any
p a ð1;lÞ, q a ð0;lÞ, and s a ð0; 1Þ (also assuming that minfp; 1ga q < l in
the case of (6.79)) if n a VMOðqWÞ hence, in particular, if W is a C1 domain.

Proof. The fact that the operator in (6.78) is an isomorphism follows from the
well-posedness of (6.64) and the definition of the Green operator in (6.76). The
argument for (6.79) is similar, relying on the well-posedness of (6.67). Having
proved this, (6.81) follows by specializing (6.79) to the case when sþ 1=p ¼ 1
and q ¼ 2 and keeping in mind (2.40)–(2.41). The remaining claims in the state-
ment of the corollary are established similarly, making use of appropriate well-
posedness results from Theorem 6.16. r

Regarding the optimality of Theorem 6.10, we have the following result.

Proposition 6.14. In the class of Lipschitz domains in Rn, the range of indices
p, s in (6.65) for which the inhomogeneous Dirichlet problems (6.64), (6.67) are
well-posed is sharp when n a f4; 5g.

Proof. We begin by recording a consequence of [21, Theorem 2.6, p. 623]: if
n a f2; 3; 4; 5g then for each y a ð0; pÞ there exist a bounded Lipschitz domain
Wy in Rn, with connected boundary, such that 0 a qWy and

WyBBð0; 1Þ ¼ fX ¼ ðx1; . . . ; xnÞ a Bð0; 1Þ :ð6:83Þ

xn < ðcot yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
1 þ � � � þ x2

n�1

q
g;

along with a non-zero function u : Wy ! R satisfying

u a Cl in Wy away from the origin;ð6:84Þ
uðX ÞC jX jlðyÞjðX=jX jÞ for X near 0;ð6:85Þ

j a ClðSn�1Þ and lðyÞ & 5� n

2
as y & 0;ð6:86Þ

D2u a ClðWyÞ; u ¼ qnu ¼ 0 on qWy:ð6:87Þ
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Note that, in concert with Lemma 2.4 in [15], conditions (6.84)–(6.87) ensure that
the function u a W 2;2ðWÞ. Hence, if we set f :¼ D2u a ClðWyÞ, then Gf ¼ u.
On the other hand, (6.84)–(6.87) and Lemma 2.4 in [15] give that for any
p; q a ð0;lÞ and s > nð1=p� 1Þþ

u a F
p;q
1þsþ1=pðWÞ , 1þ sþ 1

p
<

n

p
þ lðyÞ , 1� lðyÞ < n� 1

p
� s;ð6:88Þ

and note that, by (6.86),

1� lðyÞ % n� 3

2
as y & 0:ð6:89Þ

This proves that, when n a f4; 5g, the lower bound for n�1
p

� s in (6.65) is sharp as
far as the well-posedness of (6.67) is concerned. In fact, the same argument also
shows that the aforementioned lower bound is optimal in relation to the operator
G being boundedly invertible in the context of (6.79) if n a f4; 5g. In the later
setting, by relying on the self-adjointness of the Green operator G, it follows by
duality that the upper bound for n�1

p
� s in (6.80) is also sharp when n a f4; 5g.

Ultimately, this result implies that the range in (6.65) is sharp as far as the well-
posedness of (6.67) is concerned. Finally, the argument on the scale of Besov
spaces is similar. r

We conclude with a well-posedness result for the inhomogeneous Neumann
problem for the bi-Laplacian with boundary data from duals of Whitney-Besov
spaces. This requires some preparations. For starters, let us agree to associate to
any functional w a ðX p;q

s ðWÞÞ� (where either X ¼ B, or X ¼ F , W is a bounded
Lipschitz domain in Rn, and s a R, 1a p; qal) the distribution wbW aD 0ðWÞ
defined by

3wbW; j4 :¼ 3w; j4; Ej a Cl
c ðWÞ;ð6:90Þ

where the brackets in the left-hand side correspond to distributional pairing, and
the brackets in the right-hand side stand for the natural (Banach space) duality
pairing. The reader is alerted to the fact that, while linear and continuous, gener-
ally speaking

the assignment ðAp;q
s ðWÞÞ� C w 7! wbW aD 0ðWÞ is not injective:ð6:91Þ

The definition below is modeled upon Green’s formula for the bi-Laplacian in the
case of su‰ciently regular functions.

Definition 6.15. Let W be a bounded Lipschitz domain in Rn and recall the
writing of the bi-Laplacian from (3.4) corresponding to the choice of the tensor co-
e‰cient Ay as in (3.1)–(3.2) for some fixed y a R. Finally, suppose that 1 < p; q <
l, 0 < s < 1 and let p 0; q 0 a ð1;lÞ be such that 1=pþ 1=p 0 ¼ 1=qþ 1=q 0 ¼ 1. In

379boundary value problems and integral operators



this context, define the conormal derivative operator qAy
n as the mapping acting on

the space

fðu;wÞ a X
p;q
2�sþ1=pðWÞa ðX p 0;q 0

1þsþ1=p 0 ðWÞÞ� : D2u ¼ wbW inD 0ðWÞgð6:92Þ

(where the convention introduced in (6.90) has been used), and taking values in the
space ð _BBp 0;q 0

1; s ðqWÞÞ� if X ¼ B, and ð _BBp 0;p 0

1; s ðqWÞÞ� if X ¼ F, by setting, for each
Whitney array _ff in these spaces

3qAy
n ðu;wÞ; _ff 4 :¼ �

X
jaj¼jbj¼2

3AabðyÞqbu; qaF4þ 3w;F4;ð6:93Þ

where F a X
p 0;q 0

1þsþ1=p 0 ðWÞ is such that ðTrF ;Trð‘FÞÞ ¼ _ff . In (6.93), the first bracket
denotes the duality pairing between elements of the space X

p;q
�sþ1=pðWÞ and elements

in its dual, X
p 0;q 0

s�1þ1=p 0 ðWÞ, while the second bracket denotes the duality pairing
between elements of the space X p 0;q 0

1þsþ1=p 0 ðWÞ and its dual, ðX p 0;q 0

1þsþ1=p 0 ðWÞÞ�.

It is important to point out that definition (6.93) is independent of the choice of
the extension F of _ff (also, such an extension always exists). Here we also wish to
note that, in general, definition (6.93) of qAy

n ðu;wÞ is not an ordinary generaliza-
tion of the conormal derivative qAy

n u considered in a pointwise sense in (3.24)
when u is regular enough, since this is not the case here. In fact, it is more appro-
priate to regard the former as a ‘‘renormalization’’ of the latter, in a fashion that
depends strongly on the choice of an extension of the distribution D2u aD 0ðWÞ to
a functional w a ðX p 0;q 0 ðWÞÞ�. This phenomenon, which may be traced back to
(6.91), also accounts for the more elaborate notation qAy

n ðu;wÞ, presently used in
order to stress the dependence of this object on w.

In anticipation to stating the aforementioned well-posedness result, we also
need to discuss some notation. In order to be specific, fix p; q a ð1;lÞ, s a ð0; 1Þ
and suppose that W is a bounded Lipschitz domain in Rn. Also, consider a func-
tional L a ð _BBp 0;q 0

1;1�sðqWÞÞ� satisfying the compatibility condition

3L; _PP4 ¼ 0 for each _PP a _PPðqWÞ:ð6:94Þ

where 1=pþ 1=p 0 ¼ 1=qþ 1=q 0 ¼ 1. Then define

~LL a ð _BBp 0;q 0

1;1�sðqWÞ= _PPðqWÞÞ�;ð6:95Þ

by setting

3~LL; ½ _ff �4 :¼ 3L; _ff 4; E _ff a _BBp 0;q 0

1;1�sðqWÞ;ð6:96Þ

where ½ _ff � denotes the equivalence class of the Whitney array _ff a _BBp 0;q 0

1;1�sðqWÞ in
the quotient space _BBp 0;q 0

1;1�sðqWÞ= _PPðqWÞ. Thanks to (6.94) this definition is un-
ambiguous. Going further, let

p : _BBp 0;q 0

1;1�sðqWÞ ! _BBp 0;q 0

1;1�sðqWÞ= _PPðqWÞð6:97Þ

380 i. mitrea and m. mitrea



denote the canonical projection, taking an arbitrary Whitney array _ff a _BBp 0;q 0

1;1�sðqWÞ
into ½ _ff � a _BBp 0;q 0

1;1�sðqWÞ= _PPðqWÞ. Its adjoint then becomes

p� : ð _BBp 0;q 0

1;1�sðqWÞ= _PPðqWÞÞ� ! ð _BBp 0;q 0

1;1�sðqWÞÞ�:ð6:98Þ

We are now ready to state and prove the following theorem.

Theorem 6.16. Assume that WHRn, with nb 2, is a bounded Lipschitz domain
with connected boundary, and fix y a R with y > � 1

n
. Then there exists e > 0 such

that the inhomogeneous Neumann problem for the biharmonic operator

u a B
p;q
1þsþ1=pðWÞ;

D2u ¼ wbW; w a ðBp 0;q 0

2�sþ1=p 0 ðWÞÞ�;

qAy
n ðu;wÞ ¼ L a ð _BBp 0;q 0

1;1�sðqWÞÞ�;

8>><
>>:ð6:99Þ

where the boundary datum satisfies the necessary compatibility condition

3L; _PP4 ¼ 3w;P4 for each P aPðWÞ;ð6:100Þ

is well-posed, with uniqueness understood modulo polynomials of degreea 1,
whenever s a ð0; 1Þ and p; p 0; q; q 0 a ð1;lÞ, satisfy 1=pþ 1=p 0 ¼ 1=qþ 1=q 0 ¼ 1,
and

�nþ 1� e

2
< � n� 1

p
þ s <

�nþ 3þ e

2
when nb 4;

� 1þ e

2
< � 1

p
þ
�1� e

2

�
s < 0 when n a f2; 3g:

ð6:101Þ

Moreover, if w ¼ 0 then a solution u of (6.99) is given by the following integral
formula

uðXÞ ¼ _SS p�
�
� 1

2
I þ _KK �

y

��1
~LL


 �
ðX Þ; EX a W;ð6:102Þ

where p� and ~LL are as in (6.97)–(6.98) and (6.95)–(6.96), respectively.
Furthermore, given any p a ð1;lÞ, q a ð1;lÞ, and s a ð0; 1Þ there exists e > 0,

depending only on p, q, s, the Lipschitz character of W, n, and y, with the property
that if the outward unit normal n to W satisfies (6.38) then the problem (6.99) is
well-posed. As a consequence the problem (6.99) is well-posed for any p a ð1;lÞ,
q a ð1;lÞ, and s a ð0; 1Þ if n a VMOðqWÞ hence, in particular, if W is a C1 do-
main.

Finally, similar results hold for the inhomogeneous Neumann problem formu-
lated in Triebel-Lizorkin spaces, i.e., for
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u a F
p;q
1þsþ1=pðWÞ;

D2u ¼ wbW; w a ðF p 0;q 0

2�sþ1=p 0 ðWÞÞ�;

qAy
n ðu;wÞ ¼ L a ð _BBp 0;p 0

1;1�sðqWÞÞ�;

8>><
>>:ð6:103Þ

where the boundary datum satisfies the necessary compatibility condition (6.100).

Proof. The well-posedness claims formulated in the statement of the theorem
may be justified making use of boundedness properties of the multi-layer opera-
tors involved as well as the invertibility results from Theorem 6.9. r
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