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ABSTRACT. — A class of non-selfadjoint, 27 -symmetric operators is identified similar to a self-
adjoint one, thus entailing the reality of the spectrum. The similarity transformation is explicitly con-
structed through the method of the quantum normal form, whose convergence (uniform with respect
to the Planck constant) is proved. Further consequences of the uniform convergence of the quantum
normal form are the establishment of an exact quantization formula for the eigenvalues and the
integrability of the classical hamiltonian corresponding to the given 27 -symmetric operator.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

A major mathematical problem in 27 -symmetric quantum mechanics (see e.g.
(1], [3] [4], [5] for recent reviews) is to determine whether or not the spectrum of
the 27 -symmetric Schrodinger operator is real (proper 27 symmetry [2]). This
is the case, of course, if the given 27 -symmetric operator can be conjugated to
a self-adoint one through a similarity transformation. The possibility of such
similarity has been extensively studied (in addition to the relevant references
in [1], [3] [4], [5], see also [6], [7], [8] for its examination in an abstract setting).
Quite recently, a complete characterization has been obtained of 27 -symmetric
quadratic Schrédinger operators similar to a self-adjoint one [9].

We address in this paper the problem of constructing such a similarity trans-
formation with the techniques of the Quantum Normal Form (QNF) (see e.g.
[10], [11]), and provide a class of 2.7 -symmetric operators for which the proce-
dure works. Namely: the QNF of the given #7 -symmetric Schrédinger operator
is real and convergent, uniformly with respect to /i € [0, 1]. The convergence of
the QNF not only provides the similarity with a self-adjoint operator, but has
the following straightforward consequences:

1) It yields an exact quantization formula for the eigenvalues;

2) Since the QNF reduces to the classical normal form (CNF) for 7 =0, the
CNF is convergent as well, and the corresponding classical system is therefore
integrable.



386 E. CALICETI AND S. GRAFFI

Not surprisingly, we are able to prove a result so much stronger than simple sim-
ilarity with a self-adjoint operator only for a very restricted class of operators,
namely a class of holomorphic, 27 -symmetric perturbations of the quantization
of the linear diophantine flow over the torus T'.

Consider indeed a classical Hamiltonian family, defined in the phase space
R’ x T/ 1=1,2...., expressed in the action-angle variables (&, x),¢€e R/, xeT

(1.1) A&, x) = L) + 677 (¢, x), eeR,

where %,(¢) := (w, &, w:= (wi,...,w;) € R', is the Hamiltonian generating
the linear quasi-periodic flow x; — x; + w;t, Vi=1,... [, with frequencies w;
over T', and ¥ is an a priori complex-valued holomorphic function of (¢, x), as-
sumed to be 27 -symmetric. Namely, if 2 : x — —x denotes the parity opera-
tion, ie. (2f)(¢,x) = f(&, —x), Vf € L2 (R’ x T') and 7 : f — f the complex
conjugation in L*(R’ x T'), then

(PT)1)(Ex) =T (& —x) =7 (&x), V(Ex)eR x T
Writing 7~ through its uniformly convergent Fourier expansion:
(12) 7Ex)= 3 7O 740 = m "2 [ (Ene @ ax
qul T

the equivalent formulation of the 227 symmetry in terms of the Fourier coeffi-
cients is immediately seen:

(13) V4(&) = 74(8), V(& q)eR xT".
Moreover we assume that
(1.4) V(€)= —V4(E); Vo(=E) = V4(&), V(& q) e RN x T,

which ensures that the potential 77(&, x) is even in the variable & and odd in the
variable x:

%‘(_érx) = V(é,X), %(67 —X) = _q/(é7x)7 V(é7Q) € Rl X —ﬂ—l'
We denote V' the operator in L?(T') generated by the Weyl quantization of the

symbol 7~ (see Appendix A.2), namely the operator acting on L2(T’) in the fol-
lowing way:

(15)  (Vf)(x) == / > Valp)e! @O POV (x4 ph)dp,  Nf € LA(T),

qu’
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where

ilo)i= )12 [ vy o2 e

is the Fourier transform of the Fourier coefficient 7;(&).
Then the quantization of J# is the 27 -symmetric (verification below), non
self-adjoint operator in L?(T') acting as

(1.6) H(w,e) =ik, Vy+¢eV = L(w,h)+¢eV, L(wh):=iio,V).

The Schrodinger operator H(w,¢) thus represents a perturbation of the self-

adjoint operator L(w, %) in L*>(T'), whose spectrum obviously consists of the ei-

genvalues 4, , = iw,n)y, n= (ny,...,n;) € 7', with corrresponding normalized
1 1 — =1/2 i{n,xy

eigenfunctions ¢,(x) = (2z) "/“e .

REMARK 1.1. By the assumptions to be specified below V" will represent a regu-
lar perturbation of L(w,%). However the spectrum of L(w,%), although pure
point, is dense in R. Therefore the standard (Rayleigh-Schrédinger) perturbation
theory of quantum mechanics cannot be applied here because no eigenvalue is
isolated, and the approach through the Normal Form is therefore necessary, in-
sofar as it represents an alternative method which serves to the purpose.

The statement of the result will profit in clarity by first sketching the construction
of the quantum normal form (QNF) (see e.g. [10], [11], and in this particular con-
text [12]). Its purpose in this connection is to construct a similarity transforma-
tion U(e) in L2(R'), generated by a continuous operator W (e), U(e) = '™/,
such that

(1.7) U(e)H(w,e)U(e) ™" = O L(w, k) + eV)e O = §(e)
where the similar operator S(¢) is self-adjoint. The procedure goes as follows:

1. Look for that particular similarity transformation U(g) = e/ ®/" such that
the transformed operator S(¢) assumes the form

(1.8) S(e) = L(w, h) + Y _ " Bi(h)
k=1
under the additional conditions

(1.9) [Bi,L] =0, B.=B, Vk=12 ...

where By := By(h), Yk, and L := L(h,w). If it can be proved that the series
(1.8) (under the additional conditions (1.9)) has a positive convergence radius
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¢*, then obviously S(e) is self-adjoint for |¢] < &*, so that its spectrum is real;
moreover, S(¢) is diagonal on the eigenvector basis of L(7, ). The series (1.8),
assuming the validity of conditions (1.9), is called the operator quantum normal
Jorm (O-QNF).

2. To determine the O-QNF we first construct the QNF for the symbols (S-
QNF). That is, we first construct for any k = 1,2,..., the symbol %, (&; x;7)
of the self-adjoint operator By. The symbol %, turns out to be a function only
of ¢ (depending parametrically on /) so that the application of the Weyl quan-
tization formula (see Appendix A.2) specifies the action of By:

Bif = Bi(iliao, V) f = Bi(Ly,)f, Yf € L*(T"), Ly,:=L=L(low).

Hence [By, L,,] = 0, Vk, and the eigenvalues of By are simply % (nf, 1), n € Z'.
Then the symbol of S(¢) is

o0

(& e h) = Lo(E) + ) BulE h)ek

k=1

provided the series has a non-zero convergence radius. In that case the eigen-
values of S(¢), and hence of H(w, ¢), are clearly given by the following exact
quantization formula:

(1.10) In(eh) = o, ndh+ Y B (nh, h)e*,
k=1

that is, by the symbol X(&, ¢ /i) evaluated at the quantized values nfi of the
classical actions ¢ € R/. Moreover, the spectrum of S(e), i.e. of H(w,e), is
real if S(e) is self-adjoint, namely if By is self-adjoint Vk = 1,...; again by
the Weyl quantization formula (Appendix A.2), this is true if %, (&; ) is real
and bounded Vk =1,2,....

3. By construction, each coefficient %, (&, 1), k= 1,..., of the S-QNF turns out
to be a smooth function of 7 near # =0, and % (&,0) := % (&) is just the
k-term of the classical normal form generated by canonical perturbation
theory applied to the classical Hamiltonian (&, x). More precisely:

(1.11) H(E,x) ~ %(é)+§}@k(é>8"
k=1

where ~ denotes canonical equivalence. Therefore if the convergence of the
S-QNF is uniform with respect to 7 € [0, 1] the CNF (1.11) is also convergent
and therefore the classical hamiltonian (&, x) is integrable because the
equivalent hamiltonian depends only on the actions.
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We can now proceed to the precise statement of the results. First we describe the
assumptions. Consider again the operator

L(w,h)y = ihdw, V) = —ih[w 0y, + - -+ w0y, D(Ly,) = Hl(—l]—l)§
H'(T') = {w =D e LT Y P’ < +oo}-
nez! nez!

The first assumption is:

(A1) The frequencies v = (wy,...,w;) are diophantine, ie. Iy >0, t > [ such
that:

(1.12) Ko, <9lql"s qeZ',q#0.

Remark that (1.12) entails that all the eigenvalues 4, ,, = <{n,w>h of L(w,h) are
simple.

Let now (¢,x) — 77(t,x) be a complex-valued smooth function defined on
Rx T! ie. 7 e C*(R x T';C). Write its Fourier expansion:

(113) 77(t,x) = Y 74(0e"s 7y(t) = (2m) ' / P (1, x)e "4 dx
gez! T!
and define the functions 7,(&,x) : R' x T — C in the following way:
(1.14)  75,(&x) =7 (0,0, %) = > Varg(E)e D7 775, 4(E) = V4({w, &),
qu’

Now consider the space Fourier transform of 7,(¢), ¢ € 7"

) ] y
V4(p) ::\/z_n/R“//q(l)e Ptdr,  peR.

Then (see formula (A.1)) the Weyl quantization of 7¢,(¢, x) is the operator in
L*(T') acting as follows:

wf) / Z ”I/ <q X>+hplo, ‘i>/2f(x + hpca) dp, f e Lz(—”—l)'
qu’

V,, is actually a continuous operator in L*(T') (see Appendix, Remark A.3(d))
by virtue of our second assumption, namely:

(A2) Let the diophantine constants y and t be such that

1
T ( +2) ‘L’+2<§
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and let there exist p > 2 such that

(1.15) 170l - Ze”"’/e/”’W/ ) dp < +o0.

qe?'
REMARK 1.2.
1 ctually, ormula 2,72 < oreover, assumption
i) Actually, by fi 1 Vollr21 Vol,. M p
(A2) makes 7, a holomorphlc function of (&, x) in ([321 = {(Zf x) e C¥:
Im¢&;| < p; |Imxl|<p,\11—1 1}
(i) As discussed in [12], 77(¢, x) must depend explicity on ¢ if /> 1 to make

the problem a nontrivial one. Once more by (A2), formula (1.15), 77(z,x)
vanishes exponentially fast as |¢| — co uniformly w.r.t. x € T’

Our third assumption concerns the 27 -symmetry, and is formulated as follows
(see (1.3) and (1.4)):

(A3) The Fourier coefficients v, 4(&) enjoy the following symmetry properties:

Vw.q(é) = Vw,q(f)% Vwﬁq(é) = _"/w,q(f%
Ww,q(_é) = "/w,q(é)v V(& q) € R x T

REMARK 1.3. Clearly (A3) entails 7,,(&, —x) = —7,,(¢, x) and

(1.16)

(PT )V ) (&, X) (Z Vong(E)e iq, x>) Vo(E,x), V(& x)eR x T,

qu’

thatis, 7, (¢, x) is a 227 -invariant function, odd with respect to x. Moreover from

(1.16) one can easily obtain 7, J(=P) =7V y(p) eR, Ype R Vgez' This
entails that V' :=V,, is a 27 -symmetric operator in LZ(T’), . V,27]=0.
We have indeed
(PT / t<q7X>—iﬁp<w7q>/2f(_x + ipw) dp
qe7!

qu’

/ Z y e (g x> +plo, q>/2)(gJ T 1) (x + lpew) dp

qu/
= V(27f)(x), VfeL*T'), vxeT.
To sum up, the operator family acting as

H(e) = ilidw, V) + eV
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and defined on D(H(g)) = H'(T') has pure-point spectrum denoted o(H (¢)),
and we will prove that it consists of a sequence of non-isolated eigenvalues de-
noted {7 (h ¢) :n e Z'}. The symbol of H(e) is the Hamiltonian family defined
on R/ x T':

He(C,x) =0, &) + &7 (&, x) = Z,(E) + eV0(E, ).
We can now state the main result of the paper.
THEOREM 1.4. Under Assumptions (A1-A3), there exists gy > 0 independent of

h € [0, 1] such that for |e| < & the spectrum of H &) is given by the exact quantiza-
tion formula:

(1.17) In(li,e) = (o, ndli+ B(nh,hze), nez!

(1.18) B(nh, Ii; €) ng (nhi, )e

where

1. B(E 1) e C*(R! x [0,1]) is real-valued, k = 1,2,...;

2. ﬁzs+1 = 0, S = 0, 1,...,'

3. The series (1.18) converges uniformly with respect to (¢,h) € R’ x [0,1];

4. By(nh,h) is obtained from the Weyl quantization formula applied to %y (&, h),

which is the symbol of the operator By, the term of order k of the QNF.

COROLLARY 1.5. Let |¢| < &. Then the operator H(w, ¢) is similar to the selfad-
Jjoint operator

o0

S(e) = L(w,h) + > _ Bi(h).

k=1

REMARK 1.6. The explicit construction of the bounded operator ¥ (¢) realizing
the similarity U = U(w, &, /) = /"@/" is described in the proof of Theorem 1.4.

A straightforward consequence of the uniformity (with respect to 7 € [0, 1])
of the convergence of the QNF is a convergence result for the corresponding
CNEF, valid for a class of 27 -symmetric, non-holomorphic perturbations of
non-resonant harmonic oscillators. Consider indeed the inverse transformation
into action-angle variables

€& x) = (n,y) = {”i}gij:;x i=1,...,0

It is defined only on RI x T and does not preserve the regularity at the origin.
On the other hand, is an analytic, canonical map between IRZ x T! and
R*\{0,0}. Then
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!
(oG ), y) =D o} +y)) +e(V 06 ) (n, )

s=1

= 20(n, y) +e21(n, y)
where for (1, y) € R¥\{0,0}

Pi(n,y) = (V" 06 ", y) =21 x(n,p) + P1.1(n, ),

/
PR, y) = 22 (Re 7506 (m,) [ (s ’y‘),
s=1

kez'
P10, y) = IZ(Im Vio % Y,y H(_iys)’“
’ 2keZZ s=1 \/’75 +ys

COROLLARY 1.7. The Birkhoff normal form of A, is real and uniformly conver-
gent on any compact of R¥\{0,0} if |¢| < &. Hence the system is integrable.

2. PROOF OF THE RESULTS

PrOOF OF THEOREM 1.4. Under the present conditions, statements (3) and (4)
are proved in [12], as well as the smoothness of % (¢, /) asserted in (1). The as-
sertions left to prove are therefore the reality statement (1), By (&, %) = By (&, ),
V(& 1) e R! x [0,1], and the even nature of the QNF (2), %1 = Bayy =0,
Vs =0,1,.... This requires a detailed examination of the structure of the
QNF, whose construction we now recall in Subsection 2.1. In Subsection 2.2 we
describe the inductive argument proving the reality assertion, and the symmetry
argument proving he vanishing of the odd terms.

2.1. The Quantum Normal Form: the formal construction

(We follow Sjostrand [10] and Bambusi-Graffi-Paul [11]).
Given H(e) = L(w, %) + ¢V in L*(T'), look for a similarity transformation
U = U(w,¢,h), in general non unitary (W (e) # W(e)"):

Ulw, e h) = ™M L2(T — LX(T)

such that
(2.1) S(e) := UH(e)U ™" = L(w,h) + eB) + & By + -+ = L(w,h) + > _ By

under the requirement:

(B, L] =0, Vk.
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Recall the formal commutator expansion

(2.2) S(e) = MO (g)e= W@/ = ZHk
k=0
H;_
H()::H(g)7 Hk::W’ kzl

and look for W(e) in the form of a power series expansion in & Wi(e) =
eWy +&>Ws 4+ ---. Then (2.1) becomes:

(2.3) S(e) =) "B
k=0

where
(2.4) By = L(w,h); By := %Jr Vi, k=1,
Vl = J and

k

1 (Wi, (Wi, - (W, L] ]]
r=2 j1+':'+./‘,-:k

(Wi, (W, (W5, V] -]
+Zl ) h) '
r=l0 it =k
Js=1

Vi depends on Wy,..., Wi_1, but not on Wj. Thus we get the recursive homo-
logical equations:

Wi, L]

(2.6) -

+ Vi = By, [L, Bk} =0.

To solve (2.6) for the two unkowns By, Wy, we look for their symbols and then
apply the Weyl quantization formula. First recall (see e.g. [13] or [14]) that the
symbol of the commutator [F,G]/ifi of two operators F and G is the Moyal
bracket {#,%},, of the symbols # = 7 (&, x,h) of F and 4 = 4(&, x,h) of G,
where {7, %}, is defined through its Fourier representation

Q7)) AF Gy (Exih) = /R S (F B, (po PO g

quI
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and

28) ({7, %}, (p.h)

h/ > Fpgp =0 W% (p, h)sm[ Kp' > —<p.d")| d

q'e?’

Notice that {#,%},, = —{¥9,7 },,. The above equations (2.2)—(2.5) become,
once written for the symbols:

(2.9) () = Z%k
k=0
Ho = Lo+, Hi ::%’ k=1,
where W () = e +&>War+ - - -,
o0
(2.10) Se)=> & By
k=0

and

(2.11) %Bo= %, =Lw,&>; B ={Wi, Loty + "% k=1, 1=7

P

1
(2.12) “Vk=2 S A A AT LY St
=" i +]1, =k
j?

+Z Z {%17{%:27'"7{%r7/y‘}M"'}M}M7 k>1
r=1""ji+- +jr1—k 1
Js=

Therefore the symbols # and %, of W) and By can be recursively found solving
the homological equation:

(2.13) Wi, oty + 7 =%, k=1,...
under the condition:

(2.14) (Lo By = 0.

Here

Wi =Wi(&,x;h), Vi="7i(Exh), B = Bi(E x;h).
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Notice that, in view of Theorem A.l in Appendix, (2.14) is immediately satisfied
if By = %1 (&; 1) does not depend on x. Moreover, by Theorem A.1(2), since
Yy = %,(8) = {w, &) is linear in &, we have

W Loty =Wk, Lo}y = VWi, 0)
and (2.13) becomes
(2.15) —V W (& x),0) + V(& x; 1) = Br(Eh).

Write now Wy (&, x;h) and 7;(&, x; ) under their Fourier series representation,
respectively:

W(E X H) = D Wi g(ERESTD, FilExT) = Y Vi) 0.
ge?' gez!
Then (2.15) in turn becomes:
(216) =i Lq, Wi g(EMe Y + 3" iy (&R = Bi(& D)
9#0 qe?'

whence, imposing the equality of the Fourier coefficients of both sides, we obtain
the solutions

Vi,q(E: 1)

(217) @/\(éah) = "//]‘(7()(6, h)v %,q(é7h> - l<q 60> )

Vg # 0.

2.2. Reality of By the inductive argument

Denote now ¥ = ¥ = 7,. Since ¥, 4(&) is real Vg € 7' by assumption, we have

B(Eh) =7w0(C) €R
and
Vw,q(&)
(2.18) W,q(Eh) = z<q,w> eiR, Vq#0.

Moreover, since no requirement is asked on %7 o, we can choose #1 ¢ = 0. Now
assume inductively:

(A1) 754(ER) eR Vi=1,....k—1,VgeZ
(Az) we can choose #j0=0,Yj=1,...,k—1.

Remark that (A;) entails

75.4(& )

(219) #j (&) =71 S

€iR, %(Eh)=7joeR, Vji=1,....,k—1.
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Then the following assertions hold:

(R1) 7iq(&h) e R, Vg € 7'
(Ry) we can choose %} o = 0.

Remark that (R;) entails

— 4/]“711(57 h)

(2.20) Wi o(E ) = g © iR, Br(&) = Vo€ R

In order to prove (R;) consider the Fourier expansion of 7 given by (2.12)

%{ Zrl Z {%H{W/]zv""{%ﬂgw}M'"}M}M

r=2 " ji+-+j=k
Js=1

fo—
+Z% Y. A0 e S

!
r=1 it =k
Js=1

= Z ﬁﬂ{(é; h)ei<q,x>.

qu’
By (2.19), the Fourier coefficients %] , of each term ¥}, s =1,...,r, are purely

imaginary, and by Theorem A.1(3) each Moyal bracket generates another factor
i. Therefore

(> i W 05 Lodr - Juchar) (1) = () o (S ),

Jit A=
]x>1
ak,l](f7h) eR
{%l’ {“f/jzv ERE) {%ﬂ %}M - '}M}M}M) (é’ h) = (i)zrbkﬂ](g: h)a
.1'1+'"+.I}-1:k*1 1
.,'»\'2

biq(&,h) e R
and, as a consequence, Vg € 7"
Vieq(& 1) = (1) [ax,g(E 1) + b o (E1)] = (=1) [k o (6. 1) + big(E,7)] € R
Hence % (&, ) = 7,0 € R. Moreover, the homological equation (2.16) does not

involve %4 o, therefore we can always take #} o = 0. This concludes the proof of
the 1nduct10n and thus of Assertion (1) of Theorem 1.4.
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2.3. Vanishing of the odd terms %o, 1

Let us now prove Assertion (2) of Theorem 1.4. This will yield
Y(e) = B(ER) = Lo(E) + B (E ) + e Ba(E 1) + - - -
To see this, first recall that 7¢,(¢, x) is odd in x: 74,(&, —x) = —74,(&, x), and let

U denote the set of functions f : T/ — C with a definite parity (either even or
odd). Moreover, Vf € ./ define

Jf = +1, %ff%seven,
—1, if fis odd.

Then Jf = 1ifand onlyif f, = f-,and Jf = —l ifand onlyif f, = —f_,, Vg € z'
By assumption 7, (&) = =74, —4(&), Vg € 7', v¢e R ie JV,(&) =1, and by
(2.18)

JWER) =1, Y(&ER) e R x[0,1].
Now we can prove by induction that
(2.21) JVi= (=D vVk=1,2,...
whence J¥51 =1, ie. ¥31(& x, /) is odd in x, which entails %y, =

V241,0=0, Vs=0,1,.... To prove (2.21) inductively first notice that J¥] =
J7,, = 1 and then let us assume that

JV;= (=1, Yi=1,....k—1.
Then by (2.17)
JW; = (=17 =1, k-1

Let us examine the parity of the first summand in the r.h.s. of (2.12), making use
of Theorem A.1(4):

TUI AW s AW oY ar - Tahar) = (C1) (DT (D)7 = (1)f

since J¥, =1 and j; +--- + j, = k. Similarly for the second summand in the
r.h.s. of (2.12) we have

TG AW AV g haghar) = (CD)T D) = (<)f

since J¥ = —1 and j; + --- + j, = k — 1. This completes the proof of Assertion
(2) and hence of Theorem 1.4.
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PrROOF OF COROLLARY 1.5. It is proved in [12] that the convergence of the
S-QNF

2(e) = L&)+ Y Bil& h)e*

takes place in the || - ||, ,-norm, where || - ||, is the norm defined in (1.15). Since
(Remark A. 2(b) and Appendix A.2) the || |,,-norm majorizes the operator

norm in L2(T') of the corresponding Weyl-quantized operators, we can conclude
that

o0
S(e) = L(w,h) + Y Bie*, By =0, Vs=0,1,...,
k7

where the convergence takes place in the operator norm sense. Since By = By,
S(e) = S(¢)” and the similarity between H, and a self-adjoint operator is there-
fore proved.

2.4. Proof of Corollary 1.7

By the uniform convergence of the S-QNF with resepct to 7 € [0, 1], it is enough
to check that % (&,0) is the k-th coefficient of the CNF for #(&, x).

Under the present regularity assumptions it is known (see e.g. [10], [11]) that,
for each k, Wi (& x;h), Bi(Eh), Vi(E, x;h) admit an asymptotic expansion in
powers of /i near /i = 0:

8

W& h) ~ S W (E x)Is
B(Eh) ~ > B EW

V&) ~ 3 e
Let us now prove that the terms of order zero in the above expansions, namely
the principal symbols of Wi (&, x;h), Bi(E;h), Vi (&, x; 1), respectively
Wy = %(0)7 br = 0)7 v = "Vk(m

coincide with the coefficients of order k of the CNF generated by the Hamilto-
nian family # (&, x) = %4,(8) + e75,(&, x). In fact, the recursive homological
equations (2.13) and (2.14)

{"/Vkag}M‘FA/k:e@k, {g,,@k}MZO, k=1,...
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evaluated at /i = 0 become

{wi, Y+ v =bg, {L,b}=0, vi=v=7"

k
1
(2.22) E I E i {wpyy o {w, £3 .}
r=2 " ji+- +{, =k
]>

+Z Z {W./'H{W.iz?'"7{W/r"v}"‘}}

r=1 /l+ +jr=k—1
JV>1

where {f,g} denotes the Poisson bracket of two observables 1, g € C* (R’ x T').
Let us check that this is exactly the recurrence defined by canonical perturba-
tion theory generated by the Lie transformation algorithm. Look indeed for an
&- dependent family of smooth canonical maps @, : R x T! = R/ x T/, (¢,x) —
(n,y) = ®.(&, x) such that

(2.23) Hy o @1 (E,x) = L(&) +ebi (&) + £7b2 (&) +

Look for @, as the time 1 flow of a smooth Hamiltonian family w,(¢, x), the gen-
erating function. Then

(224) Ao ®, (& x) = H(EX) + i{wg‘% w? o {w 2y )
s=1

where w!”) = w,, Vr = 1,2,.... If we set
W, = ewy + ezwz =+ -
and require equality between (2.23) and (2.24) we obtain

bk:{wk,f}—i—vk, k>1, nw=v="7

vk—z z {wi Awyy, oo {w, £33}

r=2 ]1+ A+ =k
Js=1

+Z ST D Do w0

r=1 ]1+ A+ jr=k—1
]Y 1

Condition {&, b} = 0 follows from the fact that both £ (¢) and by (&) do not
depend on x. This concludes the proof of the corollary.
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A. MOYAL BRACKETS AND THE WEYL QUANTIZATION
A.1. Moyal brackets
THEOREM A.l. Let 7 = F (&, x;h) and 4 = 9(&, x; 1) belong to C* (R’ x T' x

[0,1];C) and vanish exponentially fast as || — oo, uniformly with respect to
(x,h) € T x [0, 1]. Consider their Fourier representation

‘97(57xvh) = /[ Z e?';q(p7h)el(<l75>+<q,\>) dp
R

qez!
Y(&, x;h) :/ Z G, (p; h)e' PO+ gy
R! qe?'
where
F4(&h) = (27T)l/2/z°g](f, x, h)e 4 dx
T
Gy(Ch) = (27T)_l/2/ G(& x,h)e T dx
-[l'l
and

j’q(pﬁ) = (27‘()1/2/ %(€7h)efi<p,§>dé

RI

%,(p:h) = (2m)"" /

Gy(E e P dé.
Rl

Then the following assertions hold:

(1) If both F and 4 do not depend on x, i.e. 7 (&, x;h) = F (& h) and G(E, x; h) =
Y(&h), then {7 ,9},, =0.

(2) If 9(&,x; 1) = {w, &, for a given constant vector w € R', i.e. 9 does not de-
pend on x and is linear in &, then

(7.9} = {7, 9} = VT, ).
(3) Consider the Fourier expansions of & and 4 in the x variable:

F(&xh) =Y Fo(&R)e' @™

qu’

G(Exh) =) Gy (&R e

qu/

where, Yq € Z',
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F(ER) = (2n) /

 Falpie’ TS dp

Gy(&h) = (2m) 7' /, Gy(p: 1) P dp.

R
If 7,¢&h) eR, and 9,(E0) e R, Vg e 7', then the Fourier expansion of
{F,9},, has purely imaginary Fourier coefficients, i.e.

(7 DL (&) = [ {F Fh) (i) T dp e iR,

@) Let xe T' — 7 (¢, x;h) € Cand x € T' — 9(&,x; 1) € C belong to the space
M of the functions with a definite parity (either even or odd) and let J : M —
{—1,1} be defined as in Section 2.3. Then

J{F., %9}, =—(JF)(JY).
To prove the theorem we need the following
LEMMA A2, Let 7 = 7 (&,x;h) € C*(R' x T! x [0,1];C). Then

(i) 7,(&h) e R, Vg € 7', %¢ € R if and only if

Fy(p.h) = Fy(—p.h), VgeZ' V¥peR

(ii) F(&h) iR, Vg e 7', ¥¢ e R if and only if

Fy(poh) = —Fy(—p,h), VgeZ' VpeR

PRrOOF OF LEMMA A.2. We prove only (i) because the proof of (ii) is analogous.
If 7,(&h) e R, Vg e 7', V¢ e R/, then

Fy(p,h) = (2m) """ /R Ty (&, )P dé

= @0 | Feme O de = F(-p.h).

Conversely, let 7,(p, 1) = Z,(—p, 1), YVqg € Z', ¥p € R'. Then

Z&R) = @n) P | Fy(pme P dp = (2m) / Fyp ) dp

= (27) 2

T

Fy(p, h)e" P dp = F,(&; 1),
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where to obtain the third equality we have performed the change of variables
p — —p in the integral. Hence 7, (&; /) € R, Vg € 7', V¢ € R’ and this completes
the prooof of the lemma.

PROOF OF THEOREM A.1.

(1) If # and % do not depend on x, then 7, (&, /1) = %,(&,h) = 0, ¥g # 0, V¢ € R

Therefore all the terms of the expansion in (2.8) with ¢’ # 0 vanish. Then
Vg e 7!

— 2 . . . (2 /
({‘977g}M)q(p7h) :£AI%(p_p/ah)g0(plah) Sln(%<p/7Q>> dp

vanishes both for ¢ # 0 and for ¢ = 0, whence {#,%},, = 0 by (2.7).
(2) 16 G(E,x;h) = (2, &>, then by (2.8)

A 2 Z 2 : 2 / /
{7 9 n),(p. 1) = ﬁ/w Zy(p— 1\ %o (p', 1) Sln<% p ,q>) dp
2 7 : 2 l I
= ﬁ/uy Zy(p = p',1){w,id'(p)) Sm<£ {p ,q>) dp

2~ 0 [. L2
—%;wj@[/q(P—P,h)SHl(%(P,6]>>]

p'=0

= —lZa)jq,Z(p,h) = —Z(P,hKCUJCI%

where the Fourier transform {%( p' h) of 9y(&, 1) = {w, &) exists in the distri-
butional sense, and is given by id'(p’), where 6'(p’) denotes the distributional
derivative of the J-function:

. Ve S (R).
p'=0

/
3" (") (p") dp" = (Vpf ) (0 :Z ;

R!

Here %(R’) denotes the Schwartz space. Then by (2.7)
{7,9},,(& x;h) / Z {w, lf]></"q(p h)e <P+ gy
ge?'

== > L, igyFy (& 1) = —(w, VT (£,X)).

qgez!

(3) By Lemma A.2 (i) we have fq(p,h) /q(—p, ) and {éq(p,h) =9,(—p,h),
Vg e 7', VYp e R'. Then, from (2.8) we obtain
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({7, %} ), (0. 1)
;—l/ Y Fyg=p+ 0 WG (-1, h)sm[ Kr' o> - <pq>)}

q rez!

whence, performing the change of variables p’ — —p’ in the integral,

(7 9w, (p. 1)
:%/ S Fyy(=p—p WGP, h)sm[z( <P, Q>+<—PC]>)}

’EZ/

:——/Z

q'e?!

(=p—p' W%, (P, h)sm{ «p',q> — q>)]

= _({gvg}M)q(_pvh)a VCI € Zla Vp € Rl'

Then, by Lemma A.2 (ii), ({Z, g}M)(f h) e iR, Vg e, Vé e R
(4) First of all recall that J# = +1 if and only if Jq(f h) = +F_,(&,h), Vg e 7',
V(&,1) € R’ x [0,1]. Then by (2.8) we have

({F, %} a)_ (0. 1)

2/ Y Fgalp—1 0%, h)sm[( Pl - <pq>)]

q rez!

2/[& > Fpap—1 % 4 (p, h)smF( &' q>+<pq>)]

/EZI

— i [ Falo 00 Wysin 300>~ <)

q rez!
where in the second equality we have performed the change of variables

q — —q'. Assume first that J# =J%; then ¥ 9% ,=%,%, and
F % g=%%,,9q,q' €Z' Thus,

{F Gha)_(p,1)
/ > Fy(p—p' W% (p' h)sin |2 (<p 0> —<p.qD)|d

/EZI

= ({7, %},),(p. 1),
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whence

(7.9 ) (&) = ({7, 9} ) (&), VgeZ',¥(EN) e R < [0,1]

and J{7.,9},, = —1=—(JF)(J¥%). In a similar way we obtain J{F#,%},,
=1if J¥ = —J%, and this completes the proof of the theorem.

A.2. The Weyl quantization

Let us sum up the canonical (Weyl) quantization procedure for functions (classi-
cal observables) defined on the phase space R’ x T'. For more detail the reader is
referred to [12].

Let .7 (&, x,7) : R' x T! x [0, 1] — C be a family of smooth phase-space func-
tions indexed by 7 fulfilling the assumptions of Theorem A.1, written under its
Fourier representation

oA (&, x, 1) / Z &/ (p:h)e Kp.H+g,x)) dp
qe7'
where, as in Section 1:

A(Exh) =D Ay (& )e 4,

gez'

(& h) = (zn)l/z//&/(f, x;h)e 9 dx
T

Ay (pih) = (2”)_1/2// Ay (& R)e P dx
R

Then the (Weyl) quantization of .7 (&, x; 7i) is the operator acting on L(T), de-
fined by:

(A1) (A(R)f)(x / SO o (s W) OOV (x4 ph) dp, € LH(T).

qu’

REMARK A.3. (a) If o7 does not depend on &, /(& x,h) = o/ (x,h), (A.1)
reduces to the standard multiplicative action:

AR) f)(x / Z A e/ (g,0+<p, q>ﬁ/2f(x + hip) dp

qez!

= A(W)e L (x) = o (x, 1) f ()

qu’
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(b) If .o/ does not depend on x, then &ZI =0, g # 0; thus .7y = </ (p, /i) and the

standard (pseudo) differential action is recovered:

(A(h)f)(X):/R' &/(p,h)f(x—l—hp)dp:/ﬂlz 5 (p, 1) f,4¥H> g

gez!

= > fol (gh, ) = (A (=il 1) [) (),

qu’
whence the formula yielding all the eigenvalues of A4:
(A.2) In(B) = ey, Aeyy = o/ (nli, 1),

where {e, : n € N} is the set of the Hermite functions in L*(R').
Let 77(¢t,x;h) be a complex-valued, smooth function defined on
Rx T x IO, 1] vanishing exponentially fast as || — oo uniformly w.r.t.

(x,h) € T' x [0, 1], with Fourier expansion
(A.3) Y (t,x;h) = / Z Vo (p; h)e CPOTE@D) g
R I
qe’

where, as in Section 1:

V(tx0h) =Y V(e h)e e,

qu’
n/q(t, h) = (27'5)1/2/ n/([, x;h)eii<q’x> dx
-I]'/

Tifpih) = 20" [ viune e0 ay
R
and let the smooth function 7,(&, x;%) : R x T! x [0,1] — C be defined as
follows:
'Vw(f7 X3 h) = “/(lv X, h)|t:,‘[’w(é) = /V(<CL), E.>7 X3 h)
Then we have:
R qu’
and (A.1) clearly becomes:

(Ad) (Vo)) = [ 30 Fifpitel @ 0D xk pho)

qu/
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(d) Let

(A3 1ol = sup Ze/’q/e”’||%(p,h)|dp<+oo, p=0,
R

qu’

and remark that

ol = swp 3= [ il dp < 175,

helo, qu’

Then V() is a bounded operator in L?(T’), uniformly with respect to
h € [0, 1], namely:

(A.6) P VoMl < 7ol < 170l
e[0

because

Vo) S > < Z/I“// W) dp| Sl < 1ol 2

qu’

(e) If the symbol 7~ is real valued, then its Weyl quantization V(%) is a clearly
symmetric operator in L2(T'); if in addition condition (A.5) holds its bound-
edness entails its self-adjointness.
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