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Abstract. — We study birational transformations j : Pn
ajðPnÞJPN defined by linear sys-

tems of quadrics whose base locus is smooth and irreducible of dimensiona 3 and whose image
jðPnÞ is su‰ciently regular.
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Introduction

In this note we continue the study of special quadratic birational transformations
j : Pn

aS :¼ jðPnÞJPN started in [41], by reinterpreting techniques and well-
known results on special Cremona transformations (see [12], [13], [14] and [24]).
While in [41] we required that S was a hypersurface, here we allow more freedom
in the choice of S, but we only treat the case in which the dimension of the base
locus B is r ¼ dimðBÞa 3. In the last section, we shall also obtain partial results
in the case r ¼ 4.

Note that for every closed subscheme X HPn�1 cut out by the quadrics con-
taining it, we can consider Pn�1 as a hyperplane in Pn and hence X as a sub-
scheme of Pn. So the linear system jIX ;Pnð2Þj of all quadrics in Pn containing
X defines a quadratic rational map c : Pn

aPN (N ¼ h0ðIX ;Pnð2ÞÞ � 1 ¼
nþ h0ðIX ;Pn�1ð2ÞÞ), which is birational onto the image and whose inverse is



defined by linear forms, i.e. c is of type ð2; 1Þ. Conversely, every birational trans-
formation c : Pn

acðPnÞJPN of type ð2; 1Þ whose image is nondegenerate,
normal and linearly normal arise in this way. From this it follows that there
are many (special) quadratic transformations. However, when the image S of
the transformation j is su‰ciently regular, by straightforward generalization of
[14, Proposition 2.3], we obtain strong numerical and geometric restrictions on
the base locus B. For example, as soon as S is not too much singular, the secant
variety SecðBÞHPn has to be a hypersurface and B has to be a QEL-variety of
type d ¼ dðBÞ ¼ 2 dimðBÞ þ 2� n; in particular na 2 dimðBÞ þ 2 and SecðBÞ is
a hyperplane if and only if j is of type ð2; 1Þ. So the classification of transforma-
tions j of type ð2; 1Þ whose base locus has dimensiona 3 essentially follows from
classification results on QEL-manifold: [38, Propositions 1.3 and 3.4], [30, Theo-
rem 2.2] and [11, Theorems 4.10 and 7.1].

When j is of type ð2; dÞ with db 2, then SecðBÞ is a nonlinear hypersurface
and it is not so easy to exhibit examples. The most di‰cult cases of this kind are
those for which n ¼ 2rþ 2 i.e. d ¼ 0. In order to classify these transformations,
we first determine the Hilbert polynomial of B in Lemmas 4.2 and 5.2, by using
the usual Castelnuovo’s argument, Castelnuovo’s bound and some refinement
of Castelnuovo’s bound, see [10] and [34]. Consequently we deduce Propositions
4.4 and 5.7 by applying the classification of smooth varieties of low degree: [25],
[27], [29], [16], [17], [6], [26]. We also apply the double point formula in Lemmas:
4.3, 5.3, 5.4, 5.5 and 5.6, in order to obtain additional informations on d and
D ¼ degðSÞ.

We summarize our classification results in Table 1. In particular, we provide
an answer to a question left open in the recent preprint [4].

1. Notation and general results

Throughout the paper we work over C and keep the following setting.

Assumption 1.1. Let j : Pn
aS :¼ jðPnÞJPnþa be a quadratic birational

transformation with smooth connected base locus B and with S nondegenerate,
linearly normal and factorial.

Recall that we can resolve the indeterminacies of j with the diagram

fPnPn

p p 0

Pn ������!j
S

ð1:1Þ
 ��

���

 ���
��

where p : fPnPn ¼ BlBðPnÞ ! Pn is the blow-up of Pn along B and p 0 ¼
j � p : fPnPn ! S. Denote by B 0 the base locus of j�1, E the exceptional divisor
of p, E 0 ¼ p 0�1ðB 0Þ, H ¼ p�ðHPnÞ, H 0 ¼ p 0�ðHSÞ, and note that, since
p 0jePnnE 0 :

fPnPnnE 0 ! SnB 0 is an isomorphism, we have ðsingðSÞÞred J ðB
0Þred. We

also put r ¼ dimðBÞ, r 0 ¼ dimðB 0Þ, l ¼ degðBÞ, g ¼ gðBÞ the sectional genus of
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B, cj ¼ cjðTBÞ �Hr�j
B (resp. sj ¼ sjðNB;PnÞ �Hr�j

B ) the degree of the j-th Chern
class (resp. Segre class) of B, D ¼ degðSÞ, c ¼ cðSÞ the coindex of S (the last of
which is defined by �KregðSÞP ðnþ 1� cÞHregðSÞ, whenever PicðSÞ ¼ Z3HS4).

Assumption 1.2. We suppose that there exists a rational map ĵj : Pnþa
aPn

defined by a sublinear system of jOPnþaðdÞj and having base locus B̂B such that
j�1 ¼ ĵjjS and B 0 ¼ B̂BBS. We then will say that j�1 is liftable and that j is of
type ð2; dÞ.

Remark 1.3. If ab 2 and c : Pn
aZ :¼ cðPnÞHPnþa is a birational trans-

formation with Z factorial, from [33] it follows that there exists a Cremona

transformation ~cc : Pnþa
aPnþa such that ~ccðZÞUPn HPnþa and c�1 ¼ ~ccjZ;

in particular, if $ denotes the linear projection of Pnþa onto ~ccðZÞ, we have

c�1 ¼ ð$ � ~ccÞjZ. But this in general does not ensure the liftability of c�1, be-
cause we only have that Bsðc�1ÞJBsð$ � ~ccÞBZ.

Assumption 1.2 yields the relations:

H 0P 2H � E; HP dH 0 � E 0;

E 0P ð2d � 1ÞH � dE; EP ð2d � 1ÞH 0 � 2E 0;
ð1:2Þ

and hence also PicðfPnPnÞUZ3H4aZ3E4UZ3H 04aZ3E 04. Note that, by the
proofs of [14, Proposition 1.3 and 2.1(a)] and by factoriality of S, we obtain that
E 0 is a reduced and irreducible divisor. Moreover we have PicðSÞUPicðSnB 0ÞU
PicðfPnPnnE 0ÞUZ3H 04UZ3HS4. Finally, we require the following:1

Assumption 1.4. ðsingðSÞÞredA ðB
0Þred.

Now we point out that, since E 0 is irreducible, by Assumption 1.4 and [14,
Theorem 1.1], we deduce that p 0jV : V ! U coincides with the blow-up of U
along Z, where U ¼ regðSÞnsingððB 0ÞredÞ, V ¼ p 0�1ðUÞ and Z ¼ U B ðB 0Þred. It
follows that KePn P ð�n� 1ÞH þ ðn� r� 1ÞEP ðc� n� 1ÞH 0 þ ðn� r 0 � 1ÞE 0,
from which, together with (1.2), we obtain 2rþ 3� n ¼ n� r 0 � 1 and c ¼
ð1� 2dÞrþ dn� 3d þ 2. One can also easily see that, for the general point
x a SecðBÞnB, j�1ðjðxÞÞ is a linear space of dimension n� r 0 � 1 and
j�1ðjðxÞÞBB is a quadric hypersurface, which coincides with the entry locus
SxðBÞ of B with respect to x. For more details we refer the reader to [14, Propo-
sition 2.3] and [41, Proposition 3.1]. So we can establish one of the main results
useful for our purposes:

Proposition 1.5. SecðBÞHPn is a hypersurface of degree 2d � 1 and B is a
QEL-variety of type d ¼ 2rþ 2� n.

1See Example 6.4 and [41, Example 4.6] for explicit examples of special quadratic birational
transformations for which Assumption 1.4 is not satisfied.
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In many cases, B has a much stronger property of being QEL-variety. Recall
that a subscheme X HPn is said to have the K2 property if X is cut out by qua-
dratic forms F0; . . . ;FN such that the Koszul relations among the Fi are generated
by linear syzygies. We have the following fact (see [42] and [1]):

Fact 1.6. Let X HPn be a smooth variety cut out by quadratic forms F0; . . . ;FN

satisfying K2 property and let F ¼ ½F0; . . . ;FN � : Pn
aPN be the induced rational

map. Then for every x a PnnX, F�1ðF ðxÞÞ is a linear space of dimension nþ 1�
rankððqFi=qxjðxÞÞi; jÞ; moreover, dimðF�1ðF ðxÞÞÞ > 0 if and only if x a SecðX ÞnX
and in this case F�1ðFðxÞÞBX is a quadric hypersurface, which coincides with the
entry locus SxðXÞ of X with respect to x.

We have a simple su‰cient condition for the K2 property (see [3, Proposition
2]):

Fact 1.7. Let X HPn be a smooth linearly normal variety and suppose
h1ðOX Þ ¼ 0 if dimðX Þb 2. Putting l ¼ degðXÞ and s ¼ codimPnðX Þ we have:

• if la 2sþ 1, then X is arithmetically Cohen-Macaulay;

• if la 2s, then the homogeneous ideal of X is generated by quadratic forms;

• if la 2s� 1, then the syzygies of the generators of the homogeneous ideal of X
are generated by the linear ones.

Remark 1.8. Let c : Pn
aZ :¼ cðPnÞJPnþa be a birational transformation

(nb 3).
We point out that, from Grothendieck’s Theorem on parafactoriality

(Samuel’s Conjecture) [21, XI Corollaire 3.14] it follows that Z is factorial when-
ever it is a local complete intersection with dimðsingðZÞÞ < dimðZÞ � 3. Of
course, every complete intersection in a smooth variety is a local complete inter-
section.

Moreover, c�1 is liftable whenever PicðZÞ ¼ Z3HZ4 and Z is factorial and
projectively normal. So, from [32] and [22, IV Corollary 3.2], c�1 is liftable
whenever Z is either smooth and projectively normal with nb aþ 2 or a factorial
complete intersection.

2. Numerical restrictions

Proposition 1.5 already provides a restriction on the invariants of the transforma-
tion j; here we give further restrictions of this kind.

Proposition 2.1. Let e ¼ 0 if 3B4 ¼ Pn and let e ¼ 1 otherwise.

• If r ¼ 1 we have:

l ¼ ðn2 � nþ 2e� 2a� 2Þ=2;
g ¼ ðn2 � 3nþ 4e� 2a� 2Þ=2:
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• If r ¼ 2 we have:

wðOBÞ ¼ ð2a� n2 þ 5nþ 2g� 6eþ 4Þ=4;
l ¼ ðn2 � nþ 2gþ 2e� 2a� 4Þ=4:

• If r ¼ 3 we have:

wðOBÞ ¼ ð4l� n2 þ 3n� 2g� 4eþ 2aþ 6Þ=2:

Proof. By Proposition 1.5 we have h0ðPn;IBð1ÞÞ ¼ e. Since S is normal and
linearly normal, we have h0ðPn;IBð2ÞÞ ¼ nþ 1þ a (see [41, Lemma 2.2]). More-
over, since na 2rþ 2 (being db 0), proceeding as in [41, Lemma 3.3] (or apply-
ing [34, Proposition 1.8]), we obtain h jðPn;IBðkÞÞ ¼ 0 for every j; kb 1. So we
obtain wðOBð1ÞÞ ¼ nþ 1� e and wðOBð2ÞÞ ¼ ðnþ 1Þðnþ 2Þ=2� ðnþ 1þ aÞ. r

Proposition 2.2

• If r ¼ 1 we have:

c1 ¼ 2� 2g;

s1 ¼ ð�n� 1Þl� 2gþ 2;

d ¼ ð2l� 2nÞ=ðð2n� 2Þl� 2nþ1 � 4gþ 4Þ;
D ¼ ð1� nÞlþ 2n þ 2g� 2:

• If r ¼ 2 we have:

c1 ¼ l� 2gþ 2;

c2 ¼ �ððn2 � 3nÞl� 2nþ1 þ ð4� 4gÞnþ 4gþ 2D� 4Þ=2;
s1 ¼ �nl� 2gþ 2;

s2 ¼ 2nlþ 2n þ ð4g� 4Þn� D;

dD ¼ ð2� nÞlþ 2n�1 þ 2g� 2:

• If r ¼ 3 we have:

c1 ¼ 2l� 2gþ 2;

c2 ¼ �ððn2 � 5nþ 2Þl� 2n þ ð4� 4gÞnþ 12gþ 2dD� 12Þ=2;
c3 ¼ ðð2n3 � 12n2 þ 22n� 12Þlþ 92n þ nð�32n þ 18gþ 6dD� 18Þ

þ ð6� 6gÞn2 � 24gþ ð�6d � 6ÞDþ 24Þ=6;
s1 ¼ ð1� nÞl� 2gþ 2;

s2 ¼ ðð4n� 4Þlþ 2n þ ð8g� 8Þn� 8g� 2dDþ 8Þ=2;
s3 ¼ ðð2n3 � 12n2 þ 10nÞlþ 32n þ nð�32n þ 12gþ 6dD� 12Þ

þ ð12� 12gÞn2 � 3DÞ=3:
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Proof. See also [12] and [13]. By [12, page 291] we see that

H j � En�j ¼
1; if j ¼ n;

0; if rþ 1a ja n� 1;

ð�1Þn�j�1sr�j; if ja r:

8><
>:

Since H 0 ¼ 2H � E and H ¼ dH 0 � E 0 we have

D ¼ H 0n ¼ ð2H � EÞn;ð2:1Þ
dD ¼ dH 0n ¼ H 0n�1 � ðdH 0 � E 0Þ ¼ ð2H � EÞn�1 �H:ð2:2Þ

From the exact sequence 0!TB !TPn jB !NB;Pn ! 0 we get:

s1 ¼ �lðnþ 1Þ þ c1;ð2:3Þ

s2 ¼ l
� nþ 2

2

�
� c1ðnþ 1Þ þ c2;ð2:4Þ

s3 ¼ �l
� nþ 3

3

�
þ c1

� nþ 2

2

�
� c2ðnþ 1Þ þ c3;ð2:5Þ

..

.

Moreover c1 ¼ �KB �Hr�1
B and it can be expressed as a function of l and g.

Thus we found rþ 3 independent equations on the 2rþ 5 variables: c1; . . . ; cr,
s1; . . . ; sr, d, D, l, g, n. r

Remark 2.3. Proposition 2.2 holds under less restrictive assumptions, as shown
in the above proof. Here we treat the special case: let c : P8

aZ :¼ cðP8ÞJ
P8þa be a quadratic rational map whose base locus is a smooth irreducible
3-dimensional variety X . Without any other restriction on c, denoting with
p : BlX ðP8Þ ! P8 the blow-up of P8 along X and with siðXÞ ¼ siðNX ;P8Þ, we
have

degðcÞ degðZÞ ¼ ð2p�ðHP8Þ � EX Þ8ð2:6Þ
¼ �s3ðX Þ � 16s2ðXÞ � 112s1ðX Þ � 448 degðX Þ þ 256:

Moreover, if c is birational with liftable inverse and dimðsingðZÞÞa 6, we also
have

d degðZÞ ¼ ð2p�ðHP8Þ � EX Þ7 � p�ðHP8Þð2:7Þ
¼ �s2ðX Þ � 14s1ðX Þ � 84 degðX Þ þ 128;

where d denotes the degree of the linear system defining c�1.

Proposition 2.4 is a translation of the well-known double point formula (see for
example [36] and [31]), taking into account Proposition 1.5.
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Proposition 2.4. If d ¼ 0 then

2ð2d � 1Þ ¼ l2 �
Xr

j¼0

�
2rþ 1

j

�
sr�jðTBÞ �H j

B:

3. Case of dimension 1

Lemma 3.1 directly follows from Propositions 2.1 and 2.2.

Lemma 3.1. If r ¼ 1, then one of the following cases holds:

(A) n ¼ 3, a ¼ 1, l ¼ 2, g ¼ 0, d ¼ 1, D ¼ 2;
(B) n ¼ 4, a ¼ 0, l ¼ 5, g ¼ 1, d ¼ 3, D ¼ 1;
(C) n ¼ 4, a ¼ 1, l ¼ 4, g ¼ 0, d ¼ 2, D ¼ 2;
(D) n ¼ 4, a ¼ 2, l ¼ 4, g ¼ 1, d ¼ 1, D ¼ 4;
(E) n ¼ 4, a ¼ 3, l ¼ 3, g ¼ 0, d ¼ 1, D ¼ 5.

Proposition 3.2. If r ¼ 1, then one of the following cases holds:

(I) n ¼ 3, a ¼ 1, B is a conic;
(II) n ¼ 4, a ¼ 0, B is an elliptic curve of degree 5;
(III) n ¼ 4, a ¼ 1, B is the rational normal quartic curve;
(IV) n ¼ 4, a ¼ 3, B is the twisted cubic curve.

Proof. From Lemma 3.1 it remains only to exclude case (D). In this case B is a
complete intersection of two quadrics in P3 and also it is an OADP-curve. This is
absurd because the only OADP-curve is the twisted cubic curve. r

4. Case of dimension 2

Proposition 4.1 follows from [38, Propositions 1.3 and 3.4] and [11, Theorem
4.10].

Proposition 4.1. If r ¼ 2, then either n ¼ 6, db 2, 3B4 ¼ P6, or one of the
following cases holds:

(V) n ¼ 4, d ¼ 1, d ¼ 2, B ¼ P1 � P1 HP3 HP4;
(VI) n ¼ 5, d ¼ 1, d ¼ 1, B is a hyperplane section of P1 � P2 HP5;
(VII) n ¼ 5, d ¼ 2, d ¼ 1, B ¼ n2ðP2ÞHP5 is the Veronese surface;
(VIII) n ¼ 6, d ¼ 1, d ¼ 0, BHP5 is an OADP-surface, i.e. B is as in one of the

following cases:
(VIII1) PP1ðOð1ÞaOð3ÞÞ or PP1ðOð2ÞaOð2ÞÞ;
(VIII2) del Pezzo surface of degree 5 (hence the blow-up of P2 at 4 points

p1; . . . ; p4 and jHBj ¼ j3HP2 � p1 � � � � � p4j).
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Lemma 4.2. If r ¼ 2, n ¼ 6 and 3B4 ¼ P6, then one of the following cases holds:

(A) a ¼ 0, l ¼ 7, g ¼ 1, wðOBÞ ¼ 0;
(B) 0a aa 3, l ¼ 8� a, g ¼ 3� a, wðOBÞ ¼ 1.

Proof. By Proposition 2.1 it follows that g ¼ 2lþ a� 13 and wðOBÞ ¼
lþ a� 7. By [41, Lemma 6.1] and using that gb 0 (proceeding as in [41, Prop-
osition 6.2]), we obtain ð13� aÞ=2a la 8� a. r

Lemma 4.3. If r ¼ 2, n ¼ 6 and 3B4 ¼ P6, then one of the following cases holds:

• a ¼ 0, d ¼ 4, D ¼ 1;

• a ¼ 1, d ¼ 3, D ¼ 2;

• a ¼ 2, d ¼ 2, D ¼ 4;

• a ¼ 3, d ¼ 2, D ¼ 5.

Proof. We have s1ðTBÞ �HB ¼ �c1 and s2ðTBÞ ¼ c21 � c2 ¼ 12wðOBÞ � 2c2.
So, by Proposition 2.4, we obtain

2ð2d � 1Þ ¼ l2 � 10l� 12wðOBÞ þ 2c2 þ 5c1:ð4:1Þ

Now, by Propositions 2.1 and 2.2, we obtain

dD ¼ 2aþ 4; D ¼ ðg2 þ ð�2a� 4Þg� 16d þ a2 � 4aþ 75Þ=8;ð4:2Þ

and then we conclude by Lemma 4.2. r

Proposition 4.4. If r ¼ 2, n ¼ 6 and 3B4 ¼ P6 then one of the following cases
holds:

(IX) a ¼ 0, l ¼ 7, g ¼ 1, B is an elliptic scroll PCðEÞ with eðEÞ ¼ �1;
(X) a ¼ 0, l ¼ 8, g ¼ 3, B is the blow-up of P2 at 8 points p1 . . . ; p8, jHBj ¼
j4HP2 � p1 � � � � � p8j;

(XI) a ¼ 1, l ¼ 7, g ¼ 2, B is the blow-up of P2 at 6 points p0 . . . ; p5, jHBj ¼
j4HP2 � 2p0 � p1 � � � � � p5j;

(XII) a ¼ 2, l ¼ 6, g ¼ 1, B is the blow-up of P2 at 3 points p1, p2, p3, jHBj ¼
j3HP2 � p1 � p2 � p3j;

(XIII) a ¼ 3, l ¼ 5, g ¼ 0, B is a rational normal scroll.

Proof. For a ¼ 0, a ¼ 1 and a a f2; 3g the statement follows, respectively,
from [12], [41, Proposition 6.2] and [25]. r

5. Case of dimension 3

Proposition 5.1 follows from: [38, Proposition 1.3 and 3.4], [18], [30], [19, page
62] and [11].

Proposition 5.1. If r ¼ 3, then either n ¼ 8, db 2, 3B4 ¼ P8, or one of the
following cases holds:
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(XIV) n ¼ 5, d ¼ 1, d ¼ 3, B ¼ Q3 HP4 HP5 is a quadric;
(XV) n ¼ 6, d ¼ 1, d ¼ 2, B ¼ P1 � P2 HP5 HP6;
(XVI) n ¼ 7, d ¼ 1, d ¼ 1, BHP6 is as in one of the following cases:

(XVI1) PP1ðOð1ÞaOð1ÞaOð2ÞÞ;
(XVI2) linear section of Gð1; 4ÞHP9;

(XVII) n ¼ 7, d ¼ 2, d ¼ 1, B is a hyperplane section of P2 � P2 HP8;
(XVIII) n ¼ 8, d ¼ 1, d ¼ 0, BHP7 is an OADP-variety, i.e. B is as in one of the

following cases:
(XVIII1) PP1ðOð1ÞaOð1ÞaOð3ÞÞ or PP1ðOð1ÞaOð2ÞaOð2ÞÞ;
(XVIII2) Edge variety of degree 6 (i.e. P1 � P1 � P1) or Edge variety of

degree 7;
(XVIII3) PP2ðEÞ, where E is a vector bundle with c1ðEÞ ¼ 4 and

c2ðEÞ ¼ 8, given as an extension by the following exact se-
quence 0! OP2 ! E! Ifp1;...;p8g;P2ð4Þ ! 0.

In the following we denote by LWCWSWB a sequence of general linear
sections of B.

Lemma 5.2. If r ¼ 3, n ¼ 8 and 3B4 ¼ P8, then one of the following cases
holds:

(A) a ¼ 0, l ¼ 13, g ¼ 8, KS �HS ¼ 1, K 2
S ¼ �1;

(B) a ¼ 1, l ¼ 12, g ¼ 7, KS �HS ¼ 0, K 2
S ¼ 0;

(C) 0a aa 6, l ¼ 12� a, g ¼ 6� a, KS �HS ¼ �2� a.

Proof. Firstly we note that, from the exact sequence 0!TS !TBjS ! OSð1Þ
! 0, we deduce c2 ¼ c2ðSÞ þ c1ðSÞ ¼ 12wðOSÞ � K 2

S � KS �HS and hence

K 2
S ¼ 14lþ 12wðOSÞ � 12gþ dD� 116 ¼ �22lþ 12gþ dD� 12aþ 184:ð5:1Þ

Secondly we note that (see [41, Lemma 6.1]), putting hLð2Þ :¼ h0ðP5;Oð2ÞÞ �
h0ðP5;ILð2ÞÞ, we have

minfl; 11ga hLð2Þa 21� h0ðP8;IBð2ÞÞ ¼ 12� a:ð5:2Þ

Now we establish the following:

Claim 5.2.1. If KS �HS a 0 and KS S 0, then l ¼ 12� a and g ¼ 6� a.

Proof of the Claim. Similarly to [41, Case 6.1], we obtain that PBð�1Þ ¼ 0
and PBð0Þ ¼ 1� q, where q :¼ h1ðS;OSÞ ¼ h1ðB;OBÞ; in particular g ¼ �5q�
aþ 6 and l ¼ �3q� aþ 12. Since gb 0 we have 5qa 6� a and the possibilities
are: if aa 1 then qa 1; if ab 2 then q ¼ 0. If ða; qÞ ¼ ð0; 1Þ then ðg; lÞ ¼ ð1; 9Þ
and the case is excluded by [19, Theorem 12.3]2; if ða; qÞ ¼ ð1; 1Þ then ðg; lÞ ¼

2Note that B cannot be a scroll over a curve (this follows from (5.8) and (5.9) below and also it
follows from [34, Proposition 3.2(i)]).
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ð0; 8Þ and the case is excluded by [19, Theorem 12.1]. Thus we have q ¼ 0 and
hence g ¼ 6� a and l ¼ 12� a; in particular we have aa 6. r

Now we discuss the cases according to the value of a.

Case 5.2.1 (a ¼ 0). It is clear that j must be of type ð2; 5Þ and hence K 2
S ¼

�22lþ 12gþ 189. By Claim 5.2.1, if KS �HS ¼ 2g� 2� l < 0, we fall into
case (C). So we suppose that KS �HS b 0, namely that gb l=2þ 1. From
Castelnuovo’s bound it follows that lb 12 and if l ¼ 12 then KS �HS ¼ 0,
g ¼ 7 and hence K 2

S ¼ 9. Since this is impossible by Claim 5.2.1, we conclude
that lb 13. Now by (5.2) it follows that 11a hLð2Þa 12, but if hLð2Þ ¼ 11
from Castelnuovo Lemma [10, Lemma 1.10] we obtain a contradiction. Thus we

have hLð2Þ ¼ 12 and h0ðP5;ILð2ÞÞ ¼ h0ðP8;IBð2ÞÞ ¼ 9. So from [10, Theorem
3.1] we deduce that la 14 and furthermore, by the refinement of Castelnuovo’s
bound contained in [10, Theorem 2.5], we obtain ga 2l� 18. In summary we
have the following possibilities:

(i) l ¼ 13, g ¼ 8, KS �HS ¼ 1, wðOSÞ ¼ 2, K 2
S ¼ �1;

(ii) l ¼ 14, g ¼ 8, KS �HS ¼ 0, wðOSÞ ¼ �1, K 2
S ¼ �23;

(iii) l ¼ 14, g ¼ 9, KS �HS ¼ 2, wðOSÞ ¼ 1, K 2
S ¼ �11;

(iv) l ¼ 14, g ¼ 10, KS �HS ¼ 4, wðOSÞ ¼ 3, K 2
S ¼ 1.

Case (i) coincides with case (A). Case (ii) is excluded by Claim 5.2.1. In the cir-
cumstances of case (iii), we have h1ðS;OSÞ ¼ h2ðS;OSÞ ¼ h0ðS;KSÞ. If h1ðS;OSÞ
> 0, since ðKB þ 4HBÞ � KS ¼ K 2

S þ 3KS �HS ¼ �5 < 0, we see that KB þ 4HB is
not nef and then we obtain a contradiction by [28]. If h1ðS;OSÞ ¼ 0, then we also
have h1ðB;OBÞ ¼ h2ðB;OBÞ ¼ 0 and hence wðOBÞ ¼ 1� h3ðB;OBÞa 1, against
the fact that wðOBÞ ¼ 2l� g� 17 ¼ 2. Thus case (iii) does not occur. Finally,
in the circumstances of case (iv), note that h0ðS;KSÞ ¼ 2þ h1ðS;OSÞb 2 and
we write jKSj ¼ jMj þ F , where jMj is the mobile part of the linear system jKSj
and F is the fixed part. If M1 ¼M is a general member of jMj, there exists
M2 a jMj having no common irreducible components with M1 and so M 2 ¼
M1 �M2 ¼

P
pðM1 �M2Þp b 0; furthermore, by using Bertini Theorem, we see

that singðM1Þ consists of points p such that the intersection multiplicity
ðM1 �M2Þp of M1 and M2 in p is at least 2. By definition, we also have
M � F b 0 and so we deduce 2paðMÞ � 2 ¼M � ðM þ KSÞ ¼ 2M 2 þM � F b 0,
from which paðMÞb 1 and paðMÞ ¼ 2 if F ¼ 0. On the other hand, we have
M �HS aKS �HS ¼ 4 and, since S is cut out by quadrics, M does not contain
planar curves of degreeb 3. If M �HS ¼ 4, then F ¼ 0, M 2 ¼ 1 and M is a (pos-
sibly disconnected) smooth curve; since paðMÞ ¼ 2, M is actually disconnected
and so it is a disjoint union of twisted cubics, conics and lines. But then we obtain
the contradiction that paðMÞ ¼ 1�afconnected components of Mg < 0. If
M �HS a 3, then M must be either a twisted cubic or a union of conics and
lines. In all these cases we again obtain the contradiction that paðMÞ ¼ 1�
afconnected components of Mga 0. Thus case (iv) does not occur.

Case 5.2.2 (a ¼ 1). By [41, Proposition 6.4] we fall into case (B) or (C).
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Case 5.2.3 (ab 2). By (5.2) it follows that la 10 and by Castelnuovo’s bound
it follows that KS �HS a�4 < 0. Thus, by Claim 5.2.1 we fall into case (C). r

Now we apply the double point formula (Proposition 2.4) in order to obtain
additional numerical restrictions under the hypothesis of Lemma 5.2.

Lemma 5.3. If r ¼ 3, n ¼ 8 and 3B4 ¼ P8, then

K 3
B ¼ l2 þ 23l� 24g� ð7d þ 1ÞD� 4d þ 36a� 226:

Proof. We have (see [23, App. A, Exercise 6.7]):

s1ðTBÞ �H 2
B ¼ �c1ðBÞ �H 2

B ¼ KB �H 2
B;

s2ðTBÞ �HB ¼ c1ðBÞ2 �HB � c2ðBÞ �HB ¼ K 2
B �HB � c2ðBÞ �HB

¼ 3KB �H 2
B � 2H 3

B � 2c2ðBÞ �HB þ 12ðwðOBðHBÞÞ � wðOBÞÞ;
s3ðTBÞ ¼ �c1ðBÞ3 þ 2c1ðBÞ � c2ðBÞ � c3ðBÞ ¼ K 3

B þ 48wðOBÞ � c3ðBÞ:

Hence, applying the double point formula and using the relations wðOBÞ ¼ 2l�
gþ a� 17, wðOBðHBÞÞ ¼ 9, we obtain:

4d � 2 ¼ 2 degðSecðBÞÞ
¼ degðBÞ2 � s3ðTBÞ � 7s2ðTBÞ �HB � 21s1ðTBÞ �H 2

B � 35H 3
B

¼ degðBÞ2 � 21 degðBÞ � 42KB �H 2
B þ 14c2ðBÞ �HB � K 3

B

þ c3ðBÞ � 84wðOBðHBÞÞ þ 36wðOBÞ
¼ �K 3

B þ l2 þ 23l� 24g� ð7d þ 1ÞDþ 36a� 228: r

Lemma 5.4. If r ¼ 3, n ¼ 8, 3B4 ¼ P8 and B is a quadric fibration over a curve,
then one of the following cases holds:

• a ¼ 3, l ¼ 9, g ¼ 3, d ¼ 3, D ¼ 5;

• a ¼ 4, l ¼ 8, g ¼ 2, d ¼ 2, D ¼ 10.

Proof. Denote by b : ðB;HBÞ ! ðY ;HY Þ the projection over the curve Y such
that b�ðHY Þ ¼ KB þ 2HB. We have

0 ¼ b�ðHY Þ2 �HB ¼ K 2
B �HB þ 4KB �H 2

B þ 4H 3
B;

0 ¼ b�ðHY Þ3 ¼ K 3
B þ 6K 2

B �HB þ 12KB �H 2
B þ 8H 3

B;

wðOBðHBÞÞ ¼
1

12
K 2

B �HB �
1

4
KB �H 2

B þ
1

6
H 3

B þ
1

12
c2ðBÞ �HB þ wðOBÞ;

from which it follows that

K 3
B ¼ �8lþ 24g� 24;ð5:3Þ

c2ðBÞ �HB ¼ �36lþ 26g� 12aþ 298:ð5:4Þ
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Hence, by Lemma 5.3 and Proposition 2.2, we obtain

dD ¼ 23l� 16gþ 12a� 180;ð5:5Þ
Dþ 4d ¼ l2 � 130lþ 64g� 48aþ 1058:ð5:6Þ

Now the conclusion follows from Lemma 5.2, by observing that the case a ¼ 6
cannot occur. In fact, if a ¼ 6, by [25] it follows that B is a rational normal scroll
and by a direct calculation (or by Lemma 5.6) we see that d ¼ 2 and D ¼ 14. r

Lemma 5.5. If r ¼ 3, n ¼ 8, 3B4 ¼ P8 and B is a scroll over a smooth surface Y,
then we have:

c2ðY Þ ¼ ðð7d � 1Þl2 þ ð177� 679dÞlþ ð292d � 92Þg� 28d 2

þ ð5554� 252aÞd þ 36a� 1474Þ=ð2d þ 2Þ;
D ¼ ðl2 � 107lþ 48g� 4d � 36aþ 878Þ=ðd þ 1Þ:

Proof. Similarly to Lemma 5.4, denote by b : ðB;HBÞ ! ðY ;HY Þ the projec-
tion over the surface Y such that b�ðHY Þ ¼ KB þ 2HB. Since b �ðHY Þ3 ¼ 0 we
obtain

K 3
B ¼ �8H 3

B � 12KB �H 2
B � 6K 2

B �HB

¼ �30KB �H 2
B þ 4H 3

B þ 6c2ðBÞ �HB � 72wðOBðHBÞÞ þ 72wðOBÞ
¼ 130l� 72g� 6dDþ 72a� 1104:

Now we conclude comparing the last formula with Lemma 5.3 and using the
relation

70l� 44gþ ð7d � 1ÞD� 596 ¼ c3ðBÞ ¼ c1ðP1Þc2ðY Þ ¼ 2c2ðYÞ:ð5:7Þ r

Lemma 5.6. If r ¼ 3, n ¼ 8, 3B4 ¼ P8 and B is a scroll over a smooth curve,
then we have: a ¼ 6, l ¼ 6, g ¼ 0, d ¼ 2, D ¼ 14.

Proof. We have a projection b : ðB;HBÞ ! ðY ;HY Þ over a curve Y such
that b�ðHY Þ ¼ KB þ 3HB. By expanding the expressions b�ðHY Þ2 �HB ¼ 0 and

b�ðHY Þ3 ¼ 0 we obtain K 2
B �HB ¼ 3l� 12gþ 12 and K 3

B ¼ 54ðg� 1Þ, and
hence by Lemma 5.3 we get

l2 þ 23l� 78g� ð7d þ 1ÞD� 4d þ 36a� 172 ¼ 0:ð5:8Þ

Also, by expanding the expression wðOBðHBÞÞ ¼ 9 we obtain c2 ¼ �35lþ 30g�
12aþ 294 and hence by Proposition 2.2 we get

22l� 20g� dDþ 12a� 176 ¼ 0:ð5:9Þ

Now the conclusion follows from Lemma 5.2. r
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Finally we conclude our discussion about classification with the following:

Proposition 5.7. If r ¼ 3, n ¼ 8 and 3B4 ¼ P8, then one of the following cases
holds:

(XIX) a ¼ 0, l ¼ 12, g ¼ 6, B is a scroll PY ðEÞ over a birationally ruled sur-
face Y with K 2

Y ¼ 5, c2ðEÞ ¼ 8 and c21ðEÞ ¼ 20;
(XX) a ¼ 0, l ¼ 13, g ¼ 8, B is obtained as the blow-up of a Fano variety X at

a point p a X, jHBj ¼ jHX � pj;
(XXI) a ¼ 1, l ¼ 11, g ¼ 5, B is the blow-up of Q3 at 5 points p1; . . . ; p5,

jHBj ¼ j2HQ3 � p1 � � � � � p5j;
(XXII) a ¼ 1, l ¼ 11, g ¼ 5, B is a scroll over PP1ðOaOð�1ÞÞ;
(XXIII) a ¼ 1, l ¼ 12, g ¼ 7, B is a linear section of S10HP15;
(XXIV) a ¼ 2, l ¼ 10, g ¼ 4, B is a scroll over Q2;
(XXV) a ¼ 3, l ¼ 9, g ¼ 3, B is a scroll over P2 or a quadric fibration over

P1;
(XXVI) a ¼ 4, l ¼ 8, g ¼ 2, B is a hyperplane section of P1 �Q3;
(XXVII) a ¼ 6, l ¼ 6, g ¼ 0, B is a rational normal scroll.

Proof. For a ¼ 6 the statement follows from [25]. The case with a ¼ 5 is ex-
cluded by [25] and Example 6.19. For a ¼ 4 the statement follows from [29].
For a a f2; 3g, by [16], [17] and [27] it follows that the abstract structure of B is
as asserted, or a ¼ 2 and B is a quadric fibration over P1; the last case is excluded
by Lemma 5.4. For a ¼ 1 the statement is just [41, Proposition 6.6]. Now we treat
the cases with a ¼ 0.

Case 5.7.1 (a ¼ 0; l ¼ 12). Since degðBÞa 2 codimP8ðBÞ þ 2, it follows that
ðB;HBÞ must be as in one of the cases (a), . . . , (h) of [26, Theorem 1]. Cases (a),
(d), (e), (g), (h) are of course impossible and case (c) is excluded by Lemma 5.4. If
B is as in case (b), by Lemma 5.6 we obtain that B is a scroll over a birationally
ruled surface. Now suppose that ðB;HBÞ is as in case (f ). Thus there is a reduc-
tion ðX ;HX Þ as in one of the cases:

(f1) X ¼ P3, HX a jOð3Þj;
(f2) X ¼ Q3, HX a jOð2Þj;
(f3) X is a P2-bundle over a smooth curve such that OX ðHX Þ induces Oð2Þ on

each fiber.

By definition of reduction we have X HPN , where N ¼ 8þ s, degðX Þ ¼ lþ s ¼
12þ s and s is the number of points blown up on X to get B. Case (f1) and (f2)
are impossible because they force l to be respectively 16 and 11. In case (f3), we
have a projection b : ðX ;HX Þ ! ðY ;HY Þ over a curve Y such that b�ðHY Þ ¼
2KX þ 3HX . Hence we get

KXH
2
X ¼ ð2KX þ 3HX Þ2 �HX=12� K 2

X �HX=3� 3H 3
X=4

¼ �K 2
X �HX=3� 3H 3

X=4;
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from which we deduce that

0 ¼ ð2KX þ 3HX Þ3 ¼ 8K 3
X þ 36K 2

X �HX þ 54KX �H 2
X þ 27H 3

X

¼ 8K 3
X þ 18K 2

X �HX � 27H 3
X=2

¼ 8ðK 3
B � 8sÞ þ 18K 2

X �HX � 27ðdegðBÞ þ sÞ=2
¼ 18K 2

X �HX � 155s=2� 210:

Since sa 12 (see [7, Lemma 8.1]), we conclude that case (f ) does not occur. Thus,
B ¼ PY ðEÞ is a scroll over a surface Y ; moreover, by Lemma 5.5 and [5, Theo-
rem 11.1.2], we obtain K 2

Y ¼ 5, c2ðEÞ ¼ K 2
Y � K 2

S ¼ 8 and c21ðEÞ ¼ lþ c2ðEÞ ¼
20.

Case 5.7.2 (a ¼ 0; l ¼ 13). The proof is located in [34, page 16], but we sketch
it for the reader’s convenience. By Lemma 5.2 we know that wðOSÞ ¼ 2 and KS is
an exceptional curve of the first kind. Thus, if we blow-down the divisor KS, we
obtain a K3-surface. By using adjunction theory (see for instance [5] or Ionescu’s
papers cited in the references) and by Lemmas 5.4, 5.5 and 5.6 it follows that the
adjunction map fjKBþ2HBj is a generically finite morphism; moreover, since
ðKB þ 2HBÞ � KS ¼ 0, we see that fjKBþ2HBj is not a finite morphism. So, we de-
duce that there is a ðP2;OP2ð�1ÞÞ inside B and, after the blow-down of this divi-
sor, we get a smooth Fano 3-fold X HP9 of sectional genus 8 and degree 14. r

6. Examples

The calculations in the following examples can be verified with the aid of the
computer algebra system [20].

Example 6.1 (r ¼ 1; 2; 3; n ¼ 3; 4; 5; a ¼ 1; d ¼ 1). See also [41, §2]. If QH
Pn�1 HPn is a smooth quadric, then the linear system jIQ;Pnð2Þj defines a bira-
tional transformation c : Pn

aSHPnþ1 of type ð2; 1Þ whose image is a smooth
quadric.

Example 6.2 (r ¼ 1; n ¼ 4; a ¼ 0; d ¼ 3). See also [12]. If X HP4 is a non-
degenerate curve of genus 1 and degree 5, then X is the scheme-theoretic intersec-
tion of the quadrics (of rank 3) containing X and jIX ;P4ð2Þj defines a Cremona
transformation P4

aP4 of type ð2; 3Þ.

Example 6.3 (r ¼ 1; 2; 3; n ¼ 4; 5; 7; a ¼ 1; 0; 1; d ¼ 2). See also [14] and [41,
Example 4.1]. If X HPn is a Severi variety, then jIX ;Pnð2Þj defines a birational
transformation c : Pn

aPn of type ð2; 2Þ whose base locus is X . The restriction
of c to a general hyperplane is a birational transformation Pn�1

aSHPn of
type ð2; 2Þ and S is a smooth quadric.

Example 6.4 (r ¼ 1; n ¼ 4; a ¼ 2; d ¼ 1—not satisfying 1.4). We have a special
birational transformation c : P4

aSHP6 of type ð2; 1Þ with base locus X ,
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image S and base locus of the inverse Y , as follows:

X ¼ Vðx0x1 � x2
2 � x2

3 ;�x2
0 � x2

1 þ x2x3; x4Þ;
S ¼ Vðy2y3 � y24 � y25 � y0y6; y

2
2 þ y23 � y4y5 þ y1y6Þ;

PSðtÞ ¼ ð4t4 þ 24t3 þ 56t2 þ 60tþ 24Þ=4!;
singðSÞ ¼ Vðy6; y25 ; y4y5; y3y5; y2y5; y24 ; y3y4; y2y4; 2y1y4 þ y0y5;

y0y4 þ 2y1y5; y
2
3 ; y2y3; y

2
2 ; y1y2 þ 2y0y3; 2y0y2 þ y1y3Þ;

PsingðSÞðtÞ ¼ tþ 5;

ðsingðSÞÞred ¼ Vðy6; y5; y4; y3; y2Þ;
Y ¼ ðYÞred ¼ ðsingðSÞÞred ¼ Vðy6; y5; y4; y3; y2Þ:

See also [41, Example 4.6] for another example in which 1.4 is not satisfied.

Example 6.5 (r ¼ 1; 2; 3; n ¼ 4; 5; 6; a ¼ 3; d ¼ 1). See also [39] and [40]. If
X ¼ P1 � P2 HP5 HP6, then jIX ;P6ð2Þj defines a birational transformation
c : P6

aSHP9 of type ð2; 1Þ whose base locus is X and whose image is
S ¼ Gð1; 4Þ. Restricting c to a general P5 HP6 (resp. P4 HP6) we obtain a
birational transformation P5

aSHP8 (resp. P4
aSHP7) whose image is a

smooth linear section of Gð1; 4ÞHP9.

Example 6.6 (r ¼ 2; n ¼ 6; a ¼ 0; d ¼ 4). See also [12] and [24]. Let Z ¼
fp1; . . . ; p8gHP2 be such that no 4 of the pi are collinear and no 7 of the pi lie
on a conic and consider the blow-up X ¼ BlZðP2Þ embedded in P6 by j4HP2 �
p1 � � � � � p8j. Then the homogeneous ideal of X is generated by quadrics and
jIX ;P6ð2Þj defines a Cremona transformation P6

aP6 of type ð2; 4Þ. The same
happens when X HP6 is a septic elliptic scroll with e ¼ �1.

Example 6.7 (r ¼ 2; n ¼ 6; a ¼ 1; d ¼ 3). See also [41, Examples 4.2 and 4.3]. If
X HP6 is a general hyperplane section of an Edge variety of dimension 3 and
degree 7 in P7, then jIX ;P6ð2Þj defines a birational transformation c : P6

a

SHP7 of type ð2; 3Þ whose base locus is X and whose image is a rank 6
quadric.

Example 6.8 (r ¼ 2; n ¼ 6; a ¼ 2; d ¼ 2). If X HP6 is the blow-up of P2 at
3 general points p1, p2, p3 with jHX j ¼ j3HP2 � p1 � p2 � p3j, then SecðX Þ is
a cubic hypersurface. By Fact 1.6 and 1.7 we deduce that jIX ;P6ð2Þj defines a
birational transformation c : P6

aSHP8 and its type is ð2; 2Þ. The image S is
a complete intersection of two quadrics, dimðsingðSÞÞ ¼ 1 and the base locus of
the inverse is P2 � P2 HP8. Alternatively, we can obtain the transformation
c : P6

aSHP8 by restriction to a general P6 HP8 of the special Cremona
transformation P8

aP8 of type ð2; 2Þ.

Example 6.9 (r ¼ 2; n ¼ 6; a ¼ 3; d ¼ 2). See also [39] and [40]. If X ¼
PP1ðOð1ÞaOð4ÞÞ or X ¼ PP1ðOð2ÞaOð3ÞÞ, then jIX ;P6ð2Þj defines a birational
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transformations c : P6
aSHP9 of type ð2; 2Þ whose base locus is X and whose

image is S ¼ Gð1; 4Þ.

Example 6.10 (r ¼ 2; 3; n ¼ 6; 7; a ¼ 5; d ¼ 1). See also [43, III Theorem 3.8].
If X ¼ Gð1; 4ÞHP9 HP10, then jIX ;P10ð2Þj defines a birational transformation
c : P10

aSHP15 of type ð2; 1Þ whose base locus is X and whose image is
the spinorial variety S ¼ S10 HP15. Restricting c to a general P7 HP10 (resp.
P6 HP10) we obtain a special birational transformation P7

aSHP12 (resp.
P6

aSHP11) whose dimension of the base locus is r ¼ 3 (resp. r ¼ 2) and

whose image is a linear section of S10 HP15. In the first case S ¼ cðP7Þ is
smooth while in the second case the singular locus of S ¼ cðP6Þ consists of 5
lines, image of the 5 Segre 3-folds containing del Pezzo surface of degree 5 and
spanned by its pencils of conics.

Example 6.11 (r ¼ 2; 3; n ¼ 6; 7; a ¼ 6; d ¼ 1). See also [39], [40] and [43, III
Theorem 3.8]. We have a birational transformation c : P8

aGð1; 5ÞHP14 of
type ð2; 1Þ whose base locus is P1 � P3 HP7 HP8 and whose image is Gð1; 5Þ.
Restricting c to a general P7 HP8 we obtain a birational transformation
P7

aSHP13 whose base locus X is a rational normal scroll and whose image
S is a smooth linear section of Gð1; 5ÞHP14. Restricting c to a general P6 HP8

we obtain a birational transformation c ¼ cjP6 : P6
aSHP12 whose base

locus X is a rational normal scroll (hence either X ¼ PP1ðOð1ÞaOð3ÞÞ or X ¼
PP1ðOð2ÞaOð2ÞÞ) and whose image S is a singular linear section of Gð1; 5ÞH
P14. In this case, we denote by Y HS the base locus of the inverse of c and by
F ¼ ðF0; . . . ;F5Þ : P5

aP5 the restriction of c to P5 ¼ SecðXÞ. We have

Y ¼ cðP5Þ ¼ F ðP5Þ ¼ Gð1; 3ÞHP5 HP12;

J4 :¼ fx ¼ ½x0; . . . ; x5� a P5nX : rankððqFi=qxjðxÞÞi; jÞa 4gred
¼ fx ¼ ½x0; . . . ; x5� a P5nX : dimðF�1ðFðxÞÞÞb 2gred and dimðJ4Þ ¼ 3;

cðJ4Þ ¼ ðsingðSÞÞred ¼ PP1ðOð2ÞÞHY :

Example 6.12 (r ¼ 3; n ¼ 8; a ¼ 0; d ¼ 5). See also [24]. If XHP9 is a general
3-dimensional linear section of Gð1; 5ÞHP14, p a X is a general point and
X HP8 is the image of X under the projection from p, then the homogeneous
ideal of X is generated by quadrics and jIX ;P8ð2Þj defines a Cremona transforma-
tion P8

aP8 of type ð2; 5Þ.

Example 6.13 (r ¼ 3; n ¼ 8; a ¼ 1; d ¼ 3). See also [41, Example 4.5]. If
X HP8 is the blow-up of the smooth quadric Q3 HP4 at 5 general points
p1; . . . ; p5 with jHX j ¼ j2HQ3 � p1 � � � � � p5j, then jIX ;P8ð2Þj defines a bira-
tional transformation c : P8

aSHP9 of type ð2; 3Þ whose base locus is X and
whose image is a cubic hypersurface with singular locus of dimension 3.

Example 6.14 (r ¼ 3; n ¼ 8; a ¼ 1; d ¼ 4—incomplete). By [2] (see also [9])
there exists a smooth irreducible nondegenerate linearly normal 3-dimensional
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variety X HP8 with h1ðX ;OX Þ ¼ 0, degree l ¼ 11, sectional genus g ¼ 5, having
the structure of a scroll PF1ðEÞ with c1ðEÞ ¼ 3C0 þ 5f and c2ðEÞ ¼ 10 and hence
having degrees of the Segre classes s1ðX Þ ¼ �85, s2ðX Þ ¼ 386, s3ðX Þ ¼ �1330.
Now, by Fact 1.7, X HP8 is arithmetically Cohen-Macaulay and by Riemann-
Roch, denoting with C a general curve section of X , we obtain

h0ðP8;IX ð2ÞÞ ¼ h0ðP6;ICð2ÞÞ ¼ h0ðP6;OP6ð2ÞÞ � h0ðC;OCð2ÞÞð6:1Þ
¼ 28� ð2lþ 1� gÞ;

hence h0ðP8;IX ð2ÞÞ ¼ 10. If the homogeneous ideal of X is generated by qua-
dratic forms or at least if X ¼ VðH 0ðIX ð2ÞÞÞ, the linear system jIX ð2Þj defines
a rational map c : P8

aS ¼ cðP8ÞHP9 whose base locus is X and whose im-
age S is nondegenerate. Now, by (2.6) we deduce degðcÞ degðSÞ ¼ 2, from which
degðcÞ ¼ 1 and degðSÞ ¼ 2.

Example 6.15 (r ¼ 3; n ¼ 8; a ¼ 1; d ¼ 4). See also [14, §4] and [41, Example
4.4]. If X HP8 is a general linear 3-dimensional section of the spinorial va-
riety S10 HP15, then jIX ;P8ð2Þj defines a birational transformation c : P8

a

SHP9 of type ð2; 4Þ whose base locus is X and whose image is a smooth
quadric.

Example 6.16 (r ¼ 3; n ¼ 8; a ¼ 2; d ¼ 3). By [17] (see also [8]) there exists a
smooth irreducible nondegenerate linearly normal 3-dimensional variety X HP8

with h1ðX ;OX Þ ¼ 0, degree l ¼ 10, sectional genus g ¼ 4, having the structure
of a scroll PQ2ðEÞ with c1ðEÞ ¼ OQð3; 3Þ and c2ðEÞ ¼ 8 and hence having degrees
of the Segre classes s1ðXÞ ¼ �76, s2ðXÞ ¼ 340, s3ðXÞ ¼ �1156. By Fact 1.7,
X HP8 is arithmetically Cohen-Macaulay and its homogeneous ideal is gener-
ated by quadratic forms. So by (6.1) we have h0ðP8;IX ð2ÞÞ ¼ 11 and the linear

system jIX ð2Þj defines a rational map c : P8
aSHP10 whose base locus is X

and whose image S is nondegenerate. By (2.6) it follows that degðcÞ degðSÞ ¼ 4
and hence degðcÞ ¼ 1 and degðSÞ ¼ 4.

Example 6.17 (r ¼ 3; n ¼ 8; a ¼ 3; d ¼ 2; 3). By [16] (see also [8]) there exists a
smooth irreducible nondegenerate linearly normal 3-dimensional variety X HP8

with h1ðX ;OX Þ ¼ 0, degree l ¼ 9, sectional genus g ¼ 3, having the structure of
a scroll PP2ðEÞ with c1ðEÞ ¼ 4 and c2ðEÞ ¼ 7 (resp. of a quadric fibration over
P1) and hence having degrees of the Segre classes s1ðX Þ ¼ �67, s2ðX Þ ¼ 294,
s3ðX Þ ¼ �984 (resp. s1ðX Þ ¼ �67, s2ðX Þ ¼ 295, s3ðXÞ ¼ �997). By Fact 1.7,
X HP8 is arithmetically Cohen-Macaulay and its homogeneous ideal is gener-
ated by quadratic forms. So by (6.1) we have h0ðP8;IX ð2ÞÞ ¼ 12 and the linear

system jIX ð2Þj defines a rational map c : P8
aSHP11 whose base locus is X

and whose image S is nondegenerate. By (2.6) it follows that degðcÞ degðSÞ ¼ 8
(resp. degðcÞ degðSÞ ¼ 5) and in particular degðcÞA 0 i.e. c : P8

aS is generi-
cally quasi-finite. Again by Fact 1.7 and Fact 1.6 it follows that c is birational
and hence degðSÞ ¼ 8 (resp. degðSÞ ¼ 5).

425on special quadratic birational transformations



Example 6.18 (r ¼ 3; n ¼ 8; a ¼ 4; d ¼ 2). Consider the composition

f : P1 � P3 ! P1 �Q3 HP1 � P4 ! P9;

where the first map is the identity of P1 multiplied by ½z0; z1; z2; z3� 7! ½z20 ; z0z1;
z0z2; z0z3; z

2
1 þ z22 þ z23 �, and the last map is ð½t0; t1�; ½y0; . . . ; y4�Þ 7! ½t0y0; . . . ;

t0y4; t1y0; . . . ; t1y4� ¼ ½x0; . . . ; x9�. In the equations defining f ðP1 � P3ÞHP9, by
replacing x9 with x0, we obtain the quadrics:

�x0x3 þ x4x8; �x0x2 þ x4x7; x3x7 � x2x8; �x0x5 þ x2
6 þ x2

7 þ x2
8 ;ð6:2Þ

�x0x1 þ x4x6; x3x6 � x1x8; x2x6 � x1x7; �x2
0 þ x1x6 þ x2x7 þ x3x8;

�x2
0 þ x4x5; x3x5 � x0x8; x2x5 � x0x7; x1x5 � x0x6; x

2
1 þ x2

2 þ x2
3 � x0x4:

Denoting with I the ideal generated by quadrics (6.2) and X ¼ VðIÞ, we have
that I is saturated (in particular I2 ¼ H 0ðIX ;P8ð2ÞÞ) and X is smooth. The linear

system jIX ;P8ð2Þj defines a birational transformation c : P8
aSHP12 whose

base locus is X and whose image is the variety S with homogeneous ideal gener-
ated by:

y6y9 � y5y10 þ y2y11; y6y8 � y4y10 þ y1y11; y5y8 � y4y9 þ y0y11;ð6:3Þ
y2y8 � y1y9 þ y0y10; y2y4 � y1y5 þ y0y6;

y22 þ y25 þ y26 þ y27 � y7y8 þ y0y9 þ y1y10 þ y4y11 � y3y12:

We have degðSÞ ¼ 10 and dimðsingðSÞÞ ¼ 3. The inverse of c : P8
aS is de-

fined by:

�y7y8 þ y0y9 þ y1y10 þ y4y11; y0y5 þ y1y6 � y4y7 � y11y12;ð6:4Þ
y0y2 � y4y6 � y1y7 � y10y12; �y1y2 � y4y5 � y0y7 � y9y12;

�y20 � y21 � y24 � y8y12; �y3y8 � y29 � y210 � y211;

�y3y4 � y5y9 � y6y10 � y7y11; �y1y3 � y2y9 � y7y10 þ y6y11;

�y0y3 � y7y9 þ y2y10 þ y5y11:

Note that SHP12 is the intersection of a quadric hypersurface in P12 with the
cone over Gð1; 4ÞHP9 HP12.

Example 6.19 (r ¼ 3; n ¼ 8; a ¼ 5—with non liftable inverse). If X HP8 is the
blow-up of P3 at a point p with jHX j ¼ j2HP3 � pj, then (modulo a change of
coordinates) the homogeneous ideal of X is generated by the quadrics:

x6x7 � x5x8; x3x7 � x2x8; x5x6 � x4x8; x2x6 � x1x8; x
2
5 � x4x7;ð6:5Þ

x3x5 � x1x8; x2x5 � x1x7; x3x4 � x1x6; x2x4 � x1x5; x2x3 � x0x8;

x1x3 � x0x6; x
2
2 � x0x7; x1x2 � x0x5; x

2
1 � x0x4:

The linear system jIX ;P8ð2Þj defines a birational transformation c : P8
aP13

whose base locus is X and whose image is the variety S with homogeneous ideal
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generated by:

y8y10 � y7y12 � y3y13 þ y5y13; y8y9 þ y6y10 � y7y11 � y3y12 þ y1y13;ð6:6Þ
y6y9 � y5y11 þ y1y12; y6y7 � y5y8 � y4y10 þ y2y12 � y0y13;

y3y6 � y5y6 þ y1y8 þ y4y9 � y2y11 þ y0y12; y3y4 � y2y6 þ y0y8;

y23y5 � y3y
2
5 þ y1y3y7 � y2y3y9 þ y2y5y9 � y0y7y9 � y1y2y10 þ y0y5y10:

We have degðSÞ ¼ 19, dimðsingðSÞÞ ¼ 4 and the degrees of Segre classes of X
are: s1 ¼ �49, s2 ¼ 201, s3 ¼ �627. So, by (2.7), we deduce that the inverse of
c : P8

aS is not liftable; however, a representative of the equivalence class of
c�1 is defined by:

y212 � y11y13; y8y12 � y6y13; y8y11 � y6y12;ð6:7Þ
�y6y10 þ y7y11 þ y3y12 � y5y12; y

2
8 � y4y13; y6y8 � y4y12;

y3y8 � y2y12 þ y0y13; y
2
6 � y4y11; y5y6 � y1y8 � y4y9:

We also point out that SecðX Þ has dimension 6 and degree 6 (against Proposition
1.5).

Example 6.20 (r ¼ 3; n ¼ 8; a ¼ 6; d ¼ 2). See also [39] and [40]. If X ¼
PP1ðOð1ÞaOð1ÞaOð4ÞÞ or X ¼ PP1ðOð1ÞaOð2ÞaOð3ÞÞ or X ¼ PP1ðOð2Þa
Oð2ÞaOð2ÞÞ, then jIX ;P8ð2Þj defines a birational transformation P8

aSH
P14 of type ð2; 2Þ whose base locus is X and whose image is S ¼ Gð1; 5Þ.

Example 6.21 (r ¼ 3; n ¼ 8; a ¼ 7; d ¼ 1). See also [11, Example 2.7] and [29].
Let Z ¼ fp1; . . . ; p8gHP2 be such that no 4 of the pi are collinear and no 7 of
the pi lie on a conic and consider the scroll PP2ðEÞHP7 associated to the very
ample vector bundle E of rank 2, given as an extension by the following exact
sequence 0! OP2 ! E! IZ;P2ð4Þ ! 0: The homogeneous ideal of X HP7 is
generated by 7 quadrics and so the linear system jIX ;P8ð2Þj defines a birational
transformation c : P8

aSHP15 of type ð2; 1Þ. Since we have c1ðX Þ ¼ 12,
c2ðXÞ ¼ 15, c3ðX Þ ¼ 6, we deduce s1ðNX ;P8Þ ¼ �60, s2ðNX ;P8Þ ¼ 267,
s3ðNX ;P8Þ ¼ �909, and hence degðSÞ ¼ 29, by (2.6). The base locus of the in-

verse of c is cðP7ÞUP6 HSHP15. We also observe that the restriction of
cjP7 : P7

aP6 to a general hyperplane HUP6 HP7 gives rise to a transforma-
tion as in Example 6.6.

Example 6.22 (r ¼ 3; n ¼ 8; a ¼ 8; 9; d ¼ 1). If X HP7 HP8 is a 3-
dimensional Edge variety of degree 7 (resp. degree 6), then jIX ;P8ð2Þj defines
a birational transformation P8

aSHP16 (resp. P8
aSHP17) of type ð2; 1Þ

whose base locus is X and whose degree of the image is degðSÞ ¼ 33 (resp.
degðSÞ ¼ 38). For memory overflow problems, we were not able to calculate the
scheme singðSÞ; however, it is easy to obtain that 1a dimðsingðSÞÞ < dimðY Þ ¼
6 and dimðsingðY ÞÞ ¼ 1, where Y denotes the base locus of the inverse.
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Example 6.23 (r ¼ 3; n ¼ 8; a ¼ 10; d ¼ 1). See also [39], [40] and [43, III
Theorem 3.8]. We have a birational transformation P10

aGð1; 6ÞHP20 of
type ð2; 1Þ whose base locus is P1 � P4 HP9 HP10 and whose image is Gð1; 6Þ.
Restricting it to a general P8 HP10 we obtain a birational transformation
c : P8

aSHP18 whose base locus X is a rational normal scroll (hence either
X ¼ PP1ðOð1ÞaOð1ÞaOð3ÞÞ or X ¼ PP1ðOð1ÞaOð2ÞaOð2ÞÞ) and whose

image S is a linear section of Gð1; 6ÞHP20. We denote by Y HS the base
locus of the inverse of c and by F ¼ ðF0; . . . ;F9Þ : P7

aP9 the restriction of
c to P7 ¼ SecðX Þ. We have

Y ¼ cðP7Þ ¼ F ðP7Þ ¼ Gð1; 4ÞHP9 HP18;

J6 :¼ fx ¼ ½x0; . . . ; x7� a P7nX : rankððqFi=qxjðxÞÞi; jÞa 6gred
¼ fx ¼ ½x0; . . . ; x7� a P7nX : dimðF�1ðFðxÞÞÞb 2gred and dimðJ6Þ ¼ 5;

cðJ6Þ ¼ ðsingðSÞÞred HY and dimðcðJ6ÞÞ ¼ 3:

7. Summary results

Theorem 7.1. Table 1 classifies all special quadratic transformations j as in §1
and with ra 3.

As a consequence, we generalize [41, Corollary 6.8].

Corollary 7.2. Let j : Pn
aSJPnþa be as in §1. If j is of type ð2; 3Þ and S

has coindex c ¼ 2, then n ¼ 8, r ¼ 3 and one of the following cases holds:

• D ¼ 3, a ¼ 1, l ¼ 11, g ¼ 5, B is the blow-up of Q3 at 5 points;

• D ¼ 4, a ¼ 2, l ¼ 10, g ¼ 4, B is a scroll over Q2;

• D ¼ 5, a ¼ 3, l ¼ 9, g ¼ 3, B is a quadric fibration over P1.

Proof. We have that BHPn is a QEL-variety of type d ¼ ðr� d � cþ 2Þ=d ¼
ðr� 3Þ=3 and n ¼ ðð2d � 1Þrþ 3d þ c� 2Þ=d ¼ ð5rþ 9Þ=3. From Divisibility
Theorem [38, Theorem 2.8], we deduce ðr; n; dÞ a fð3; 8; 0Þ; ð6; 13; 1Þ; ð9; 18; 2Þg
and from the classification of CC-manifolds [30, Theorem 2.2], we obtain
ðr; n; dÞ ¼ ð3; 8; 0Þ. Now we apply the results in §5. r

We can also regard Corollary 7.2 in the same spirit of [41, Theorem 5.1],
where we have classified the transformations j of type ð2; 2Þ, when S has coindex
1. Moreover, in the same fashion, one can prove the following:

Proposition 7.3. Let j be as in §1 and of type ð2; 1Þ. If c ¼ 2, then rb 1 and B
is P1 � P2 HP5 or one of its linear sections. If c ¼ 3, then rb 2 and B is either
P1 � P3 HP7 or Gð1; 4ÞHP9 or one of their linear sections. If c ¼ 4, then rb 3
and B is either an OADP 3-fold in P7 or P1 � P4 HP9 or one of its hyperplane
sections.
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In Table 1 we use the following shortcuts:

b�: flags cases for which is known a transformation j with base locus B as re-
quired, but we do not know if the image S satisfies all the assumptions in §1;

b��: flags cases for which is known that there is a smooth irreducible variety
X HPn such that, if X ¼ VðH 0ðIX ð2ÞÞÞ, then the linear system jIX ð2Þj de-
fines a birational transformation j : Pn

aS ¼ jðPnÞHPnþa as stated;
?: flags cases for which we do not know if there exists at least an abstract vari-

ety B having the structure and the invariants required;
b: flags cases for which everything works fine.

r n a l g Abstract structure of B d D c Existence

3 1 2 0 n2ðP1ÞHP2 1 2 1 b Ex. 6.1

4 0 5 1 Elliptic curve 3 1 0 b Ex. 6.2
1

4 1 4 0 n4ðP1ÞHP4 2 2 1 b Ex. 6.3

4 3 3 0 n3ðP1ÞHP3 1 5 2 b Ex. 6.5

4 1 2 0 P1 � P1 HP3 1 2 1 b Ex. 6.1

5 0 4 0 n2ðP2ÞHP5 2 1 0 b Ex. 6.3

5 3 3 0 Hyperplane section of P1 � P2 HP5 1 5 2 b Ex. 6.5

6 0 7 1 Elliptic scroll PCðEÞ with eðEÞ ¼ �1 4 1 0 b Ex. 6.6

6 0 8 3
Blow-up of P2 at 8 points p1; . . . ; p8;
jHBj ¼ j4HP2 � p1 � � � � � p8j

4 1 0 b Ex. 6.6

2 6 1 7 2
Blow-up of P2 at 6 points p0; . . . ; p5;
jHBj ¼ j4HP2 � 2p0 � p1 � � � � � p5j

3 2 1 b Ex. 6.7

6 2 6 1
Blow-up of P2 at 3 points p1, p2, p3;
jHBj ¼ j3HP2 � p1 � p2 � p3j

2 4 2 b Ex. 6.8

6 3 5 0 PP1ðOð1ÞaOð4ÞÞ or PP1ðOð2ÞaOð3ÞÞ 2 5 2 b Ex. 6.9

6 5 5 1
Blow-up of P2 at 4 points p1 . . . ; p4;
jHBj ¼ j3HP2 � p1 � � � � � p4j

1 12 3 b Ex. 6.10

6 6 4 0 PP1ðOð1ÞaOð3ÞÞ or PP1ðOð2ÞaOð2ÞÞ 1 14 3 b Ex. 6.11

5 1 2 0 Q3 HP4 1 2 1 b Ex. 6.1

6 3 3 0 P1 � P2 HP5 1 5 2 b Ex. 6.5

3 7 1 6 1 Hyperplane section of P2 � P2 HP8 2 2 1 b Ex. 6.3

7 5 5 1 Linear section of Gð1; 4ÞHP9 1 12 3 b Ex. 6.10

7 6 4 0 PP1ðOð1ÞaOð1ÞaOð2ÞÞ 1 14 3 b Ex. 6.11

Table 1. All transformations j as in §1 and with ra 3
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8 0 12 6
Scroll PY ðEÞ, Y birat. ruled surface,

K 2
Y ¼ 5, c2ðEÞ ¼ 8, c21ðEÞ ¼ 20

5 1 0 ?

8 0 13 8
Variety obtained as the projection of a
Fano variety X from a point p a X

5 1 0 b Ex. 6.12

8 1 11 5
Blow-up of Q3 at 5 points p1; . . . ; p5;
jHBj ¼ j2HQ3 � p1 � � � � � p5j

3 3 2 b Ex. 6.13

8 1 11 5 Scroll over PP1ðOaOð�1ÞÞ 4 2 1 b�� Ex. 6.14

8 1 12 7 Linear section of S10 HP15 4 2 1 b Ex. 6.15

8 2 10 4 Scroll over Q2 3 4 2 b� Ex. 6.16

3 8 3 9 3 Scroll over P2 2 8 3 b� Ex. 6.17

8 3 9 3 Quadric fibration over P1 3 5 2 b� Ex. 6.17

8 4 8 2 Hyperplane section of P1 �Q3 2 10 3 b� Ex. 6.18

8 6 6 0 Rational normal scroll 2 14 3 b Ex. 6.20

8 7 8 3
PP2ðEÞ, where 0! OP2 !
! E! If p1;...;p8g;P2ð4Þ ! 0

1 29 4 b� Ex. 6.21

8 8 7 2 Edge variety 1 33 4 b� Ex. 6.22

8 9 6 1 P1 � P1 � P1 HP7 1 38 4 b� Ex. 6.22

8 10 5 0 Rational normal scroll 1 42 4 b Ex. 6.23

Table 1 (Continued)

8. Towards the case of dimension 4

In this section we treat the case in which r ¼ 4. However, when d ¼ 0, we are well
away from having an exhaustive classification.

Proposition 8.1 follows from [38, Propositions 1.3, 3.4, Corollary 3.2] and [30,
Theorem 2.2].

Proposition 8.1. If r ¼ 4, then either n ¼ 10, db 2, 3B4 ¼ P10, or one of the
following cases holds:

• n ¼ 6, d ¼ 1, d ¼ 4, B ¼ Q4 HP5 is a quadric;

• n ¼ 8, d ¼ 1, d ¼ 2, BHP7 is either P1 � P3 HP7 or a linear section of
Gð1; 4ÞHP9;

• n ¼ 8, d ¼ 2, d ¼ 2, B is P2 � P2 HP8;

• n ¼ 9, d ¼ 1, d ¼ 1, B is a hyperplane section of P1 � P4 HP9;

• n ¼ 10, d ¼ 1, d ¼ 0, BHP9 is an OADP-variety.

In Proposition 8.2, we more generally assume that the image S is nondegener-
ate, normal and linearly normal (not necessarily factorial) and furthermore we do
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not assume Assumptions 1.2 and 1.4. As noted earlier, we have PBð1Þ ¼ 11 and
PBð2Þ ¼ 55� a and hence

PBðtÞ ¼ l
� tþ 3

4

�
þ ð1� gÞ

� tþ 2

3

�
þ ð2g� 3lþ wðOBÞ � aþ 31Þ

� tþ 1

2

�

þ ð�gþ 2l� 2wðOBÞ þ a� 21Þtþ wðOBÞ:

Proposition 8.2. If r ¼ 4, n ¼ 10 and 3B4 ¼ P10, then one of the following
cases holds:

• a ¼ 10, l ¼ 7, g ¼ 0, wðOBÞ ¼ 1, B is a rational normal scroll;

• a ¼ 7, l ¼ 10, g ¼ 3, wðOBÞ ¼ 1, B is either
– a hyperplane section of P1 �Q4 HP11 or
– PðTP2 aOP2ð1ÞÞHP10;

• a ¼ 6, l ¼ 11, g ¼ 4, wðOBÞ ¼ 1, B is a quadric fibration over P1;

• a ¼ 5, l ¼ 12, g ¼ 5, wðOBÞ ¼ 1, B is one of the following:
– P4 blown up at 4 points p1 . . . ; p4 embedded by j2HP4 � p1 � � � � � p4j,
– a scroll over a ruled surface,
– a quadric fibration over P1;

• a ¼ 4, l ¼ 14, g ¼ 8, wðOBÞ ¼ 1, B is either
– a linear section of Gð1; 5ÞHP14 or
– the product of P1 with a Fano variety of even index;

• a ¼ 4, l ¼ 13, g ¼ 6, wðOBÞ ¼ 1, B is either
– a scroll over a birationally ruled surface or
– a quadric fibration over P1;

• a ¼ 3, 14a la 16, ga 11, wðOBÞ ¼ ð�gþ 2l� 18Þ=3;
• a ¼ 2, 15a la 18, ga 14, wðOBÞ ¼ ð�gþ 2l� 19Þ=3;
• a ¼ 1, 15a la 20, ga 17, wðOBÞ ¼ ð�gþ 2l� 20Þ=3;
• a ¼ 0, 15a l.

Proof. Denote by LWCWSWX WB a sequence of general linear sections
of B and put hLð2Þ :¼ h0ðP6;Oð2ÞÞ � h0ðP6;ILð2ÞÞ. Since C is a nondegenerate
curve in P7, we have lb 7. By Castelnuovo’s argument [41, Lemma 6.1], it fol-
lows that

7aminfl; 13ga hLð2Þa 28� h0ðP10;IBð2ÞÞ ¼ 17� að8:1Þ

and in particular we have aa 10. Moreover

• if lb 13, then hLð2Þb 13 and aa 4, by (8.1);

• if lb 15, then hLð2Þb 14 and aa 3, by Castelnuovo Lemma [10, Lemma
1.10];

• if lb 17, then hLð2Þb 15 and aa 2, by [10, Theorem 3.1];

• if lb 19, then hLð2Þb 16 and aa 1, by [10, Theorem 3.8];

• if lb 21, then hLð2Þb 17 and a ¼ 0, by [37, Theorem 2.17(b)].
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According to the above statements, we consider the refinement y ¼ yðlÞ of
Castelnuovo’s bound r ¼ rðlÞ, contained in [10, Theorem 2.5]. So, we have

KB �H 3
B ¼ 2g� 2� 3la 2yðlÞ � 2� 3la 2rðlÞ � 2� 3l:ð8:2Þ

Now, if tb 1, by Kodaira Vanishing Theorem and Serre Duality, it follows
that PBð�tÞ ¼ h4ðB;OBð�tÞÞ ¼ h0ðB;KB þ tHBÞ; hence, if PBð�tÞA 0, then
KB þ tHB is an e¤ective divisor and we have either KB �H 3

B > �tH 4
B ¼ �tl

or KB P�tHB. Thus, by (8.2) and straightforward calculation, we deduce (see
Figure 1):

(8.2.a) if la 8, then either PBð�3Þ ¼ PBð�2Þ ¼ PBð�1Þ ¼ 0 or l ¼ 8 and
KBP�3HB;

(8.2.b) if la 14, then either PBð�2Þ ¼ PBð�1Þ ¼ 0 or l ¼ 14 and KBP�2HB;
(8.2.c) if la 24, then either PBð�1Þ ¼ 0 or l ¼ 24 and KB P�HB.

In the same way, one also sees that h4ðB;OBÞ ¼ 0 whenever la 31. Now we dis-
cuss the cases according to the value of a.

Case 8.2.1 (9a aa 10). We have la 8. From the classification of del Pezzo
varieties in [19, I §8], we see that the case l ¼ 8 with KB P�3HB is impossible
and so we obtain l ¼ 11� 2a=5, g ¼ 1� a=10, by (8.2.a). Hence a ¼ 10, l ¼ 7,
g ¼ 0 and B is a rational normal scroll.

Case 8.2.2 (5a aa 8). We have la 12. By (8.2.b) we obtain g ¼
ð3lþ a� 31Þ=2 and wðOBÞ ¼ ðlþ a� 11Þ=6 and, since wðOBÞ a Z, we obtain

Figure 1. Upper bounds of KB �H 3
B
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l ¼ 17� a, g ¼ 10� a, wðOBÞ ¼ 1. So, we can determine the abstract structure of
B by [17], [6], [27, Theorem 2], [7, Lemmas 4.1 and 6.1] and we also deduce that
the case a ¼ 8 does not occur, by [16].

Case 8.2.3 (a ¼ 4). We have la 14. Again by (8.2.b), we deduce that either
g ¼ ð3l� 27Þ=2 and wðOBÞ ¼ ðl� 7Þ=6 or B is a Mukai variety with l ¼ 14
(g ¼ 8 and wðOBÞ ¼ 1). In the first case, since wðOBÞ a Z and gb 0, we obtain
l ¼ 13, g ¼ 6, wðOBÞ ¼ 1 and then we can determine the abstract structure of
B by [26, Theorem 1] and [7, Lemmas 4.1 and 6.1]. In the second case, if b2 ¼
b2ðBÞ ¼ 1 then B is a linear section of Gð1; 5ÞHP14, otherwise B is a Fano
variety of product type, see [35, Theorems 2 and 7].

Case 8.2.4 (a ¼ 3). We have la 16 and wðOBÞ ¼ ð�gþ 2l� 18Þ=3, by (8.2.c).
Moreover, if la 14, by (8.2.b) it follows that l ¼ 14, g ¼ 7 and wðOBÞ ¼ 1.

Case 8.2.5 (a ¼ 2). We have la 18 and wðOBÞ ¼ ð�gþ 2l� 19Þ=3, by (8.2.c).
Moreover, by (8.2.b) it follows that lb 15.

Case 8.2.6 (a ¼ 1). We have la 20 and wðOBÞ ¼ ð�gþ 2l� 20Þ=3, by (8.2.c).
Moreover, if la 14, by (8.2.b) it follows that l ¼ 10, g ¼ 0, wðOBÞ ¼ 0, which is
of course impossible.

Case 8.2.7 (a ¼ 0). If la 14, by (8.2.b) and (8.2.c) it follows that l ¼ 11, g ¼ 1,
wðOBÞ ¼ 0. Thus, B must be an elliptic scroll and j must be of type ð2; 6Þ; so, by
(8.3) we obtain the contradiction c2ðBÞ �H 2

B ¼ ð990þ c4ðBÞÞ=37 ¼ 990=37 B Z.
r

Remark 8.3. Under the hypothesis of Proposition 8.2, reasoning as in Proposi-
tion 2.2, we obtain that if j is of type ð2; dÞ, then

37c2ðBÞ �H 2
B � c4ðBÞ ¼ �231lþ 188gþ ð1� 9dÞDþ 3396;ð8:3Þ

37c3ðBÞ �HB þ 7c4ðBÞ ¼ 655l� 428gþ ð26d � 7ÞD� 5716:ð8:4Þ

Remark 8.4. If Eisenbud-Green-Harris Conjecture I11;6 holds (see [15]), then
we have that la 24, even in the case with a ¼ 0. If a ¼ 0 and la 24, we have
ga yð24Þ ¼ 25 and one of the following cases holds:

• l ¼ 24, g ¼ 25, wðOBÞ ¼ 1 and B is a Fano variety of coindex 4;

• ga 24 and wðOBÞ ¼ ð�gþ 2l� 21Þ=3.

Example 8.5. Note that in Proposition 8.1, all cases with d > 0 really occur
(see §6); when d ¼ 0, an example is obtained by taking a general 4-dimensional
linear section of P1 � P5 HP11HP12. Below we collect some examples of spe-
cial quadratic birational transformations appearing in Proposition 8.2.

• If X HP10 is a (smooth) 4-dimensional rational normal scroll, then jIX ;P10ð2Þj
defines a birational transformation c : P10

aGð1; 6ÞHP20 of type ð2; 2Þ.
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• If X HP10 is a general hyperplane section of P1 �Q4 HP11, then jIX ;P10ð2Þj
defines a birational transformation c : P10

acðP10ÞHP17 of type ð2; 2Þ
whose image has degree 28.

• If X ¼ PðTP2 aOP2ð1ÞÞHP10, since h1ðX ;OX Þ ¼ h1ðP2;OP2Þ ¼ 0, jIX ;P10ð2Þj
defines a birational transformation c : P10

acðP10ÞHP17 (see Facts 1.7 and
1.6).

• There exists a smooth linearly normal 4-dimensional variety X HP10 with
h1ðX ;OX Þ ¼ 0, degree 11, sectional genus 4, having the structure of a quadric
fibration over P1 (see [6, Remark 3.2.5]); thus jIX ;P10ð2Þj defines a birational
transformation c : P10

acðP10ÞHP16 (see Facts 1.7 and 1.6).

• If X HP10 is the blow-up of P4 at 4 general points p1; . . . ; p4, embedded
by j2HP4 � p1 � � � � � p4j, then jIX ;P10ð2Þj defines a birational transformation

c : P10
acðP10ÞHP15 whose image has degree 29; in this case SecðX Þ is a

complete intersection of two cubics.

• If X HP10 is a general 4-dimensional linear section of Gð1; 5ÞHP14, then

jIX ;P10ð2Þj defines a birational transformation c : P10
acðP10ÞHP14 of

type ð2; 2Þ whose image is a complete intersection of quadrics.
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