Rend. Lincei Mat. Appl. 24 (2013), 409–[436](#page-27-0) DOI 10.4171/RLM/659

Algebraic Geometry \sim On special quadratic birational transformations whose base locus has dimension at most three, by GIOVANNI STAGLIANO, communicated on 9 November 2012.

ABSTRACT. — We study birational transformations $\varphi : \mathbb{P}^n \longrightarrow \overline{\varphi(\mathbb{P}^n)} \subseteq \mathbb{P}^N$ defined by linear systems of quadrics whose base locus is smooth and irreducible of dimension \leq 3 and whose image $\overline{\varphi(\mathbb{P}^n)}$ is sufficiently regular.

KEY WORDS: Birational transformation, quadratic form, base locus.

2010 Mathematics Subject Classification: 14E05, 14J30.

CONTENTS

INTRODUCTION

In this note we continue the study of special quadratic birational transformations $\varphi : \mathbb{P}^n \longrightarrow S := \overline{\varphi(\mathbb{P}^n)} \subseteq \mathbb{P}^N$ started in [\[41](#page-27-0)], by reinterpreting techniques and wellknown results on special Cremona transformations (see [\[12\]](#page-26-0), [[13](#page-26-0)], [\[14](#page-26-0)] and [[24](#page-26-0)]). While in [[41](#page-27-0)] we required that S was a hypersurface, here we allow more freedom in the choice of S, but we only treat the case in which the dimension of the base locus \mathfrak{B} is $r = \dim(\mathfrak{B}) \leq 3$. In the last section, we shall also obtain partial results in the case $r = 4$.

Note that for every closed subscheme $X \subset \mathbb{P}^{n-1}$ cut out by the quadrics containing it, we can consider \mathbb{P}^{n-1} as a hyperplane in \mathbb{P}^n and hence X as a subscheme of \mathbb{P}^n . So the linear system $|\mathscr{I}_{X,\mathbb{P}^n}(2)|$ of all quadrics in \mathbb{P}^n containing X defines a quadratic rational map $\psi : \mathbb{P}^n \longrightarrow \mathbb{P}^N$ $(N = h^0(\mathcal{I}_{X, \mathbb{P}^n}(2)) - 1 =$ $n + h^0(\mathcal{I}_{Y,\mathbb{P}^{n-1}}(2))$, which is birational onto the image and whose inverse is defined by linear forms, i.e. ψ is of type (2, 1). Conversely, every birational transformation $\psi : \mathbb{P}^n \dashrightarrow \overline{\psi(\mathbb{P}^n)} \subseteq \mathbb{P}^N$ of type $(2, 1)$ whose image is nondegenerate, normal and linearly normal arise in this way. From this it follows that there are many (special) quadratic transformations. However, when the image S of the transformation φ is sufficiently regular, by straightforward generalization of [[14,](#page-26-0) Proposition 2.3], we obtain strong numerical and geometric restrictions on the base locus \mathfrak{B} . For example, as soon as S is not too much singular, the secant variety $\text{Sec}(\mathfrak{B}) \subset \mathbb{P}^n$ has to be a hypersurface and \mathfrak{B} has to be a QEL-variety of type $\delta = \delta(\mathfrak{B}) = 2 \dim(\mathfrak{B}) + 2 - n$; in particular $n \leq 2 \dim(\mathfrak{B}) + 2$ and $\text{Sec}(\mathfrak{B})$ is a hyperplane if and only if φ is of type $(2, 1)$. So the classification of transformations φ of type $(2, 1)$ whose base locus has dimension ≤ 3 essentially follows from classification results on QEL-manifold: [\[38,](#page-27-0) Propositions 1.3 and 3.4], [[30](#page-26-0), Theorem 2.2] and [[11](#page-25-0), Theorems 4.10 and 7.1].

When φ is of type $(2, d)$ with $d \geq 2$, then Sec (\mathfrak{B}) is a nonlinear hypersurface and it is not so easy to exhibit examples. The most difficult cases of this kind are those for which $n = 2r + 2$ i.e. $\delta = 0$. In order to classify these transformations, we first determine the Hilbert polynomial of $\mathfrak B$ in Lemmas 4.2 and 5.2, by using the usual Castelnuovo's argument, Castelnuovo's bound and some refinement of Castelnuovo's bound, see [\[10\]](#page-25-0) and [[34\]](#page-27-0). Consequently we deduce Propositions 4.4 and 5.7 by applying the classification of smooth varieties of low degree: [\[25\]](#page-26-0), $[27]$ $[27]$, $[29]$, $[16]$, $[17]$, $[6]$ $[6]$, $[26]$ $[26]$ $[26]$. We also apply the double point formula in Lemmas: 4.3, 5.3, 5.4, 5.5 and 5.6, in order to obtain additional informations on d and $\Delta = \text{deg}(S)$.

We summarize our classification results in Table 1. In particular, we provide an answer to a question left open in the recent preprint [\[4\]](#page-25-0).

1. Notation and general results

Throughout the paper we work over $\mathbb C$ and keep the following setting.

ASSUMPTION 1.1. Let $\varphi : \mathbb{P}^n \longrightarrow S := \overline{\varphi(\mathbb{P}^n)} \subseteq \mathbb{P}^{n+a}$ be a quadratic birational transformation with smooth connected base locus $\mathfrak B$ and with S nondegenerate, linearly normal and factorial.

Recall that we can resolve the indeterminacies of φ with the diagram

(1.1)
$$
\begin{array}{ccc}\n & & \mathbb{P}^n \\
& & \pi \\
& & \pi \\
& & \pi\n\end{array}
$$

where $\pi : \mathbb{P}^n = Bl_{\mathfrak{B}}(\mathbb{P}^n) \to \mathbb{P}^n$ is the blow-up of \mathbb{P}^n along \mathfrak{B} and $\pi' =$ $\varphi \circ \pi : \widetilde{\mathbb{P}^n} \to \mathbb{S}$. Denote by \mathfrak{B}' the base locus of φ^{-1} , E the exceptional divisor of π , $E' = \pi^{-1}(\mathfrak{B}')$, $H = \pi^*(H_{\mathbb{P}^n})$, $H' = \pi'^*(H_S)$, and note that, since $\pi' \vert_{\widetilde{P}^n \setminus E'} : \widetilde{P}^n \setminus E' \to \mathbf{S} \setminus \mathfrak{B}'$ is an isomorphism, we have $(\text{sing}(\mathbf{S}))_{\text{red}} \subseteq (\mathfrak{B}')_{\text{red}}$. We also that $\pi_{\text{red}}(\mathfrak{B}) \neq \dim(\mathfrak{B}')$ and $\pi_{\text{red}}(\mathfrak{B}) \neq \dim(\mathfrak{B}')$ and $\pi_{\text{red}}(\mathfrak{B})$ and also put $r = \dim(\mathfrak{B})$, $r' = \dim(\mathfrak{B}')$, $\lambda = \deg(\mathfrak{B})$, $g = g(\mathfrak{B})$ the sectional genus of

 $\mathfrak{B}, c_j = c_j(\mathcal{T}_{\mathfrak{B}}) \cdot H_{\mathfrak{B}}^{r-j}$ (resp. $s_j = s_j(\mathcal{N}_{\mathfrak{B}, \mathbb{P}^n}) \cdot H_{\mathfrak{B}}^{r-j}$) the degree of the *j*-th Chern class (resp. Segre class) of $\mathfrak{B}, \Delta = \text{deg}(S), c = c(S)$ the *coindex* of S (the last of which is defined by $-K_{\text{reg}(S)} \sim (n+1-c)H_{\text{reg}(S)}$, whenever Pic $(S) = \mathbb{Z}\langle H_S \rangle$.

ASSUMPTION 1.2. We suppose that there exists a rational map $\hat{\varphi} : \mathbb{P}^{n+a} \longrightarrow \mathbb{P}^n$ defined by a sublinear system of $|\mathcal{O}_{\mathbb{P}^{n+a}}(d)|$ and having base locus $\hat{\mathcal{B}}$ such that $\varphi^{-1} = \hat{\varphi}|_{\mathbf{S}}$ and $\mathfrak{B}' = \hat{\mathfrak{B}} \cap \mathbf{S}$. We then will say that φ^{-1} is *liftable* and that φ is of type $(2, d)$.

REMARK 1.3. If $a \geq 2$ and $\psi : \mathbb{P}^n \longrightarrow \mathbb{Z} := \overline{\psi(\mathbb{P}^n)} \subset \mathbb{P}^{n+a}$ is a birational transformation with Z factorial, from [[33](#page-26-0)] it follows that there exists a Cremona transformation $\tilde{\psi}: \mathbb{P}^{n+a} \longrightarrow \mathbb{P}^{n+a}$ such that $\tilde{\psi}(Z) \simeq \mathbb{P}^n \subset \mathbb{P}^{n+a}$ and $\psi^{-1} = \tilde{\psi}|_Z$; in particular, if ϖ denotes the linear projection of \mathbb{P}^{n+a} onto $\widetilde{\psi}(\mathbf{Z})$, we have $\psi^{-1} = (\varpi \circ \tilde{\psi})|_{\mathbf{Z}}$. But this in general does not ensure the liftability of ψ^{-1} , because we only have that $\text{Bs}(\psi^{-1}) \subseteq \text{Bs}(\varpi \circ \tilde{\psi}) \cap \mathbb{Z}$.

Assumption 1.2 yields the relations:

(1.2)
$$
H' \sim 2H - E, \qquad H \sim dH' - E',
$$

$$
E' \sim (2d - 1)H - dE, \qquad E \sim (2d - 1)H' - 2E',
$$

and hence also $Pic(\overline{P^n}) \simeq \mathbb{Z}\langle H \rangle \oplus \mathbb{Z}\langle E \rangle \simeq \mathbb{Z}\langle H' \rangle \oplus \mathbb{Z}\langle E' \rangle$. Note that, by the proofs of $[14,$ $[14,$ $[14,$ Proposition 1.3 and 2.1(a)] and by factoriality of S, we obtain that E' is a reduced and irreducible divisor. Moreover we have $Pic(S) \simeq Pic(S \setminus \mathcal{B}') \simeq$ $Pic(\overline{P^n} \backslash E') \simeq \mathbb{Z} \langle H' \rangle \simeq \mathbb{Z} \langle H_S \rangle$. Finally, we require the following:¹

ASSUMPTION 1.4. $(sing(S))_{red} \neq (\mathfrak{B}')_{red}$.

Now we point out that, since E' is irreducible, by Assumption 1.4 and [[14](#page-26-0), Theorem 1.1], we deduce that $\pi'|_{V}: V \to U$ coincides with the blow-up of U along Z, where $U = \text{reg}(S) \setminus \text{sing}((\mathfrak{B}')_{\text{red}})$, $V = \pi'^{-1}(U)$ and $Z = U \cap (\mathfrak{B}')_{\text{red}}$. It follows that $K_{\widetilde{p}n} \sim (-n-1)H + (n-r-1)E \sim (c-n-1)H' + (n-r'-1)E'$,
from which together with (1.2) we obtain $2r+3$, $r = r-r'-1$ and $s =$ from which, together with (1.2), we obtain $2r + 3 - n = n - r^2 - 1$ and $c =$ $(1 - 2d)r + dn - 3d + 2$. One can also easily see that, for the general point $x \in \text{Sec}(\mathfrak{B}) \setminus \mathfrak{B}, \overline{\varphi^{-1}(\varphi(x))}$ is a linear space of dimension $n - r' - 1$ and $\overline{\varphi^{-1}(\varphi(x))} \cap \mathfrak{B}$ is a quadric hypersurface, which coincides with the entry locus $\Sigma_{r}(\mathfrak{B})$ of \mathfrak{B} with respect to x. For more details we refer the reader to [\[14,](#page-26-0) Proposition 2.3] and [[41](#page-27-0), Proposition 3.1]. So we can establish one of the main results useful for our purposes:

PROPOSITION 1.5. Sec $(\mathfrak{B}) \subset \mathbb{P}^n$ is a hypersurface of degree $2d - 1$ and \mathfrak{B} is a *OEL*-variety of type $\delta = 2r + 2 - n$.

¹See Example 6.4 and [[41](#page-27-0), Example 4.6] for explicit examples of special quadratic birational transformations for which Assumption 1.4 is not satisfied.

In many cases, $\mathfrak B$ has a much stronger property of being *QEL*-variety. Recall that a subscheme $X \subset \mathbb{P}^n$ is said to have the K_2 property if X is cut out by quadratic forms F_0, \ldots, F_N such that the Koszul relations among the F_i are generated by linear syzygies. We have the following fact (see [[42](#page-27-0)] and [[1\]](#page-25-0)):

FACT 1.6. Let $X \subset \mathbb{P}^n$ be a smooth variety cut out by quadratic forms F_0, \ldots, F_N satisfying K_2 property and let $F = [F_0, \ldots, F_N] : \mathbb{P}^n \longrightarrow \mathbb{P}^N$ be the induced rational map. Then for every $x \in \mathbb{P}^n \backslash X$, $\overline{F^{-1}(F(x))}$ is a linear space of dimension $n + 1$ $rank((\partial F_i/\partial x_j(x))_{i,j})$; moreover, $dim(F^{-1}(F(x))) > 0$ if and only if $x \in Sec(X) \setminus X$ and in this case $\overline{F^{-1}(F(x))} \cap X$ is a quadric hypersurface, which coincides with the entry locus $\Sigma_{x}(X)$ of X with respect to x.

We have a simple sufficient condition for the K_2 property (see [[3,](#page-25-0) Proposition 2]):

FACT 1.7. Let $X \subseteq \mathbb{P}^n$ be a smooth linearly normal variety and suppose $h^1(\mathcal{O}_X) = 0$ if $\dim(X) \geq 2$. Putting $\lambda = \deg(X)$ and $s = \text{codim}_{\mathbb{P}^n}(X)$ we have:

- if $\lambda \leq 2s + 1$, then X is arithmetically Cohen-Macaulay;
- if $\lambda \leq 2s$, then the homogeneous ideal of X is generated by quadratic forms;
- if $\lambda \leq 2s 1$, then the syzygies of the generators of the homogeneous ideal of X are generated by the linear ones.

REMARK 1.8. Let $\psi : \mathbb{P}^n \longrightarrow \mathbb{Z} := \overline{\psi(\mathbb{P}^n)} \subseteq \mathbb{P}^{n+a}$ be a birational transformation $(n \geq 3)$.

We point out that, from Grothendieck's Theorem on parafactoriality (Samuel's Conjecture) [[21](#page-26-0), XI Corollaire 3.14] it follows that Z is factorial whenever it is a local complete intersection with $\dim(\text{sing}(\mathbf{Z})) < \dim(\mathbf{Z}) - 3$. Of course, every complete intersection in a smooth variety is a local complete intersection.

Moreover, ψ^{-1} is liftable whenever Pic $(\mathbf{Z}) = \mathbb{Z} \langle H_{\mathbf{Z}} \rangle$ and Z is factorial and projectively normal. So, from [\[32\]](#page-26-0) and [\[22,](#page-26-0) IV Corollary 3.2], ψ^{-1} is liftable whenever **Z** is either smooth and projectively normal with $n \ge a + 2$ or a factorial complete intersection.

2. Numerical restrictions

Proposition 1.5 already provides a restriction on the invariants of the transformation φ ; here we give further restrictions of this kind.

PROPOSITION 2.1. Let $\varepsilon = 0$ if $\langle \mathfrak{B} \rangle = \mathbb{P}^n$ and let $\varepsilon = 1$ otherwise.

• If $r = 1$ we have:

$$
\lambda = (n^2 - n + 2\varepsilon - 2a - 2)/2,
$$

\n
$$
g = (n^2 - 3n + 4\varepsilon - 2a - 2)/2.
$$

• If $r = 2$ we have:

$$
\chi(\mathcal{O}_{\mathfrak{B}}) = (2a - n^2 + 5n + 2g - 6\varepsilon + 4)/4,
$$

$$
\lambda = (n^2 - n + 2g + 2\varepsilon - 2a - 4)/4.
$$

• If $r = 3$ we have:

$$
\chi(\mathcal{O}_{\mathfrak{B}}) = (4\lambda - n^2 + 3n - 2g - 4\varepsilon + 2a + 6)/2.
$$

PROOF. By Proposition 1.5 we have $h^0(\mathbb{P}^n, \mathcal{I}_{\mathfrak{B}}(1)) = \varepsilon$. Since S is normal and linearly normal, we have $h^0(\mathbb{P}^n, \mathcal{I}_{\mathfrak{B}}(2)) = n + 1 + a$ (see [[41](#page-27-0), Lemma 2.2]). Moreover, since $n \leq 2r + 2$ (being $\delta \geq 0$), proceeding as in [\[41,](#page-27-0) Lemma 3.3] (or apply-ing [\[34,](#page-27-0) Proposition 1.8]), we obtain $h^{j}(\mathbb{P}^n, \mathcal{I}_{\mathfrak{B}}(k)) = 0$ for every $j, k \ge 1$. So we obtain $\chi(\mathcal{O}_{\mathfrak{B}}(1)) = n + 1 - \varepsilon$ and $\chi(\mathcal{O}_{\mathfrak{B}}(2)) = (n + 1)(n + 2)/2 - (n + 1 + a)$.

PROPOSITION 2.2

• If $r = 1$ we have:

$$
c_1 = 2 - 2g,
$$

\n
$$
s_1 = (-n - 1)\lambda - 2g + 2,
$$

\n
$$
d = (2\lambda - 2^n)/((2n - 2)\lambda - 2^{n+1} - 4g + 4),
$$

\n
$$
\Delta = (1 - n)\lambda + 2^n + 2g - 2.
$$

• If $r = 2$ we have:

$$
c_1 = \lambda - 2g + 2,
$$

\n
$$
c_2 = -((n^2 - 3n)\lambda - 2^{n+1} + (4 - 4g)n + 4g + 2\Delta - 4)/2,
$$

\n
$$
s_1 = -n\lambda - 2g + 2,
$$

\n
$$
s_2 = 2n\lambda + 2^n + (4g - 4)n - \Delta,
$$

\n
$$
d\Delta = (2 - n)\lambda + 2^{n-1} + 2g - 2.
$$

• If $r = 3$ we have:

$$
c_1 = 2\lambda - 2g + 2,
$$

\n
$$
c_2 = -((n^2 - 5n + 2)\lambda - 2^n + (4 - 4g)n + 12g + 2d\Delta - 12)/2,
$$

\n
$$
c_3 = ((2n^3 - 12n^2 + 22n - 12)\lambda + 92^n + n(-32^n + 18g + 6d\Delta - 18) + (6 - 6g)n^2 - 24g + (-6d - 6)\Delta + 24)/6,
$$

\n
$$
s_1 = (1 - n)\lambda - 2g + 2,
$$

\n
$$
s_2 = ((4n - 4)\lambda + 2^n + (8g - 8)n - 8g - 2d\Delta + 8)/2,
$$

\n
$$
s_3 = ((2n^3 - 12n^2 + 10n)\lambda + 32^n + n(-32^n + 12g + 6d\Delta - 12) + (12 - 12g)n^2 - 3\Delta)/3.
$$

PROOF. See also [\[12\]](#page-26-0) and [\[13\]](#page-26-0). By [[12](#page-26-0), page 291] we see that

$$
H^{j} \cdot E^{n-j} = \begin{cases} 1, & \text{if } j = n; \\ 0, & \text{if } r+1 \le j \le n-1; \\ (-1)^{n-j-1} s_{r-j}, & \text{if } j \le r. \end{cases}
$$

Since $H' = 2H - E$ and $H = dH' - E'$ we have

(2.1)
$$
\Delta = H'^n = (2H - E)^n,
$$

(2.2)
$$
d\Delta = dH^m = H^{m-1} \cdot (dH' - E') = (2H - E)^{n-1} \cdot H.
$$

From the exact sequence $0 \to \mathcal{T}_{\mathfrak{B}} \to \mathcal{T}_{\mathbb{P}^n}|_{\mathfrak{B}} \to \mathcal{N}_{\mathfrak{B}, \mathbb{P}^n} \to 0$ we get:

(2.3)
$$
s_1 = -\lambda(n+1) + c_1,
$$

(2.4)
$$
s_2 = \lambda {n+2 \choose 2} - c_1(n+1) + c_2,
$$

(2.5)
$$
s_3 = -\lambda {n+3 \choose 3} + c_1 {n+2 \choose 2} - c_2(n+1) + c_3,
$$

:

Moreover $c_1 = -K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^{r-1}$ and it can be expressed as a function of λ and g. Thus we found $r + 3$ independent equations on the $2r + 5$ variables: c_1, \ldots, c_r , $s_1, \ldots, s_r, d, \Delta, \lambda, q, n.$

Remark 2.3. Proposition 2.2 holds under less restrictive assumptions, as shown in the above proof. Here we treat the special case: let $\psi : \mathbb{P}^8 \longrightarrow \mathbb{Z} := \psi(\mathbb{P}^8) \subseteq$ \mathbb{P}^{8+a} be a quadratic rational map whose base locus is a smooth irreducible 3-dimensional variety X. Without any other restriction on ψ , denoting with $\pi: Bl_X(\mathbb{P}^8) \to \mathbb{P}^8$ the blow-up of \mathbb{P}^8 along X and with $s_i(X) = s_i(\mathcal{N}_{X,\mathbb{P}^8})$, we have

(2.6)
$$
\deg(\psi) \deg(\mathbf{Z}) = (2\pi^* (H_{\mathbb{P}^8}) - E_X)^8
$$

$$
= -s_3(X) - 16s_2(X) - 112s_1(X) - 448 \deg(X) + 256.
$$

Moreover, if ψ is birational with liftable inverse and dim $(\text{sing}(\mathbf{Z})) \leq 6$, we also have

(2.7)
$$
d \deg(\mathbf{Z}) = (2\pi^* (H_{\mathbb{P}^8}) - E_X)^7 \cdot \pi^* (H_{\mathbb{P}^8})
$$

$$
= -s_2(X) - 14s_1(X) - 84 \deg(X) + 128,
$$

where d denotes the degree of the linear system defining ψ^{-1} .

Proposition 2.4 is a translation of the well-known double point formula (see for example [\[36\]](#page-27-0) and [\[31\]](#page-26-0)), taking into account Proposition 1.5.

PROPOSITION 2.4. If $\delta = 0$ then

$$
2(2d-1) = \lambda^2 - \sum_{j=0}^r \binom{2r+1}{j} s_{r-j}(\mathcal{F}_{\mathfrak{B}}) \cdot H_{\mathfrak{B}}^j.
$$

3. Case of dimension 1

Lemma 3.1 directly follows from Propositions 2.1 and 2.2.

LEMMA 3.1. If $r = 1$, then one of the following cases holds:

(A) $n = 3$, $a = 1$, $\lambda = 2$, $q = 0$, $d = 1$, $\Delta = 2$; (B) $n = 4$, $a = 0$, $\lambda = 5$, $q = 1$, $d = 3$, $\Delta = 1$; (C) $n = 4$, $a = 1$, $\lambda = 4$, $q = 0$, $d = 2$, $\Delta = 2$; (D) $n = 4$, $a = 2$, $\lambda = 4$, $g = 1$, $d = 1$, $\Delta = 4$; (E) $n = 4$, $a = 3$, $\lambda = 3$, $q = 0$, $d = 1$, $\Delta = 5$.

PROPOSITION 3.2. If $r = 1$, then one of the following cases holds:

(I) $n = 3$, $a = 1$, \mathfrak{B} is a conic; (II) $n = 4$, $a = 0$, $\mathfrak B$ is an elliptic curve of degree 5; (III) $n = 4$, $a = 1$, $\mathfrak B$ is the rational normal quartic curve; (IV) $n = 4$, $a = 3$, \mathfrak{B} is the twisted cubic curve.

PROOF. From Lemma 3.1 it remains only to exclude case (D) . In this case \mathfrak{B} is a complete intersection of two quadrics in \mathbb{P}^3 and also it is an *OADP*-curve. This is absurd because the only $OADP$ -curve is the twisted cubic curve.

4. Case of dimension 2

Proposition 4.1 follows from [[38](#page-27-0), Propositions 1.3 and 3.4] and [\[11,](#page-25-0) Theorem 4.10].

PROPOSITION 4.1. If $r = 2$, then either $n = 6$, $d \ge 2$, $\langle \mathfrak{B} \rangle = \mathbb{P}^6$, or one of the following cases holds:

- (V) $n = 4, d = 1, \delta = 2, \mathfrak{B} = \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3 \subset \mathbb{P}^4;$
- (VI) $n = 5$, $d = 1$, $\delta = 1$, \mathfrak{B} is a hyperplane section of $\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$;
- (VII) $n = 5, d = 2, \delta = 1, \mathfrak{B} = v_2(\mathbb{P}^2) \subset \mathbb{P}^5$ is the Veronese surface;
- (VIII) $n = 6$, $d = 1$, $\delta = 0$, $\mathfrak{B} \subset \mathbb{P}^{\zeta}$ is an OADP-surface, i.e. \mathfrak{B} is as in one of the following cases:
	- (VIII₁) $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(3))$ or $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(2) \oplus \mathcal{O}(2))$;
	- (VIII₂) del Pezzo surface of degree 5 (hence the blow-up of \mathbb{P}^2 at 4 points p_1, \ldots, p_4 and $|H_{\mathfrak{B}}| = |3H_{\mathbb{D}^2} - p_1 - \cdots - p_4|$.

LEMMA 4.2. If $r = 2$, $n = 6$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^6$, then one of the following cases holds:

(A) $a = 0$, $\lambda = 7$, $q = 1$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 0$; (B) $0 \le a \le 3$, $\lambda = 8 - a$, $q = 3 - a$, $\gamma(\mathcal{O}_{\Re}) = 1$.

PROOF. By Proposition 2.1 it follows that $q = 2\lambda + a - 13$ and $\chi(\mathcal{O}_{\mathfrak{B}}) =$ $\lambda + a - 7$. By [\[41,](#page-27-0) Lemma 6.1] and using that $q \ge 0$ (proceeding as in [[41](#page-27-0), Proposition 6.2]), we obtain $(13 – a)/2 \le \lambda \le 8 - a$.

LEMMA 4.3. If $r = 2$, $n = 6$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^6$, then one of the following cases holds:

- $a = 0, d = 4, \Delta = 1;$
- $a = 1, d = 3, \Delta = 2;$
- $a = 2, d = 2, \Delta = 4;$
- $a = 3, d = 2, \Delta = 5.$

PROOF. We have $s_1(\mathcal{T}_{\mathfrak{B}}) \cdot H_{\mathfrak{B}} = -c_1$ and $s_2(\mathcal{T}_{\mathfrak{B}}) = c_1^2 - c_2 = 12\chi(\mathcal{O}_{\mathfrak{B}}) - 2c_2$. So, by Proposition 2.4, we obtain

(4.1)
$$
2(2d-1) = \lambda^2 - 10\lambda - 12\chi(\mathcal{O}_{\mathfrak{B}}) + 2c_2 + 5c_1.
$$

Now, by Propositions 2.1 and 2.2, we obtain

(4.2)
$$
d\Delta = 2a + 4, \quad \Delta = (g^2 + (-2a - 4)g - 16d + a^2 - 4a + 75)/8,
$$

and then we conclude by Lemma 4.2.

PROPOSITION 4.4. If $r = 2$, $n = 6$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^6$ then one of the following cases holds:

- (IX) $a = 0$, $\lambda = 7$, $g = 1$, $\mathfrak B$ is an elliptic scroll $\mathbb P_{\mathcal C}(\mathscr E)$ with $e(\mathscr E) = -1$;
- (X) $a = 0$, $\lambda = 8$, $g = 3$, $\mathfrak B$ is the blow-up of $\mathbb P^2$ at 8 points $p_1 \dots, p_8$, $|H_{\mathfrak B}| =$ $|4H_{\mathbb{D}^2} - p_1 - \cdots - p_8|$;
- (XI) $a = 1, \lambda = 7, g = 2, \mathfrak{B}$ is the blow-up of \mathbb{P}^2 at 6 points $p_0 \dots, p_5$, $|H_{\mathfrak{B}}| =$ $|4H_{\mathbb{P}^2} - 2p_0 - p_1 - \cdots - p_5|$;
- (XII) $a = 2$, $\lambda = 6$, $g = 1$, **B** is the blow-up of \mathbb{P}^2 at 3 points p_1 , p_2 , p_3 , $|H_{\mathfrak{B}}|$ = $|3H_{\mathbb{P}^2} - p_1 - p_2 - p_3|;$

(XIII) $a = 3$, $\lambda = 5$, $q = 0$, $\mathfrak B$ is a rational normal scroll.

PROOF. For $a = 0$, $a = 1$ and $a \in \{2, 3\}$ the statement follows, respectively, from [\[12\]](#page-26-0), [\[41,](#page-27-0) Proposition 6.2] and [\[25](#page-26-0)].

5. Case of dimension 3

Proposition 5.1 follows from: [\[38](#page-27-0), Proposition 1.3 and 3.4], [[18](#page-26-0)], [[30](#page-26-0)], [\[19,](#page-26-0) page 62] and [[11](#page-25-0)].

PROPOSITION 5.1. If $r = 3$, then either $n = 8$, $d \ge 2$, $\langle \mathfrak{B} \rangle = \mathbb{P}^8$, or one of the following cases holds:

$$
\qquad \qquad \Box
$$

- (XIV) $n = 5$, $d = 1$, $\delta = 3$, $\mathfrak{B} = Q^3 \subset \mathbb{P}^4 \subset \mathbb{P}^5$ is a quadric;
- (XV) $n = 6$, $d = 1$, $\delta = 2$, $\mathfrak{B} = \mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5 \subset \mathbb{P}^6$;
- (XVI) $n = 7$, $d = 1$, $\delta = 1$, $\mathfrak{B} \subset \mathbb{P}^6$ is as in one of the following cases: (XVI_1) $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(2))$;
- $(XVI₂)$ linear section of $\mathbb{G}(1,4) \subset \mathbb{P}^9$; (XVII) $n = 7$, $d = 2$, $\delta = 1$, \mathfrak{B} is a hyperplane section of $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$;
- (XVIII) $n = 8$, $d = 1$, $\delta = 0$, $\mathfrak{B} \subset \mathbb{P}^7$ is an OADP-variety, i.e. \mathfrak{B} is as in one of the following cases:
	- $(XVIII_1) \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(3))$ or $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(2) \oplus \mathcal{O}(2))$;
	- $(XVIII_2)$ Edge variety of degree 6 (i.e. $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$) or Edge variety of degree 7;
	- (XVIII₃) $\mathbb{P}_{\mathbb{P}^2}(\mathscr{E})$, where \mathscr{E} is a vector bundle with $c_1(\mathscr{E})=4$ and $c_2(\mathscr{E})=8$, given as an extension by the following exact sequence $0 \to \mathcal{O}_{\mathbb{P}^2} \to \mathscr{E} \to \mathscr{I}_{\{p_1,\ldots,p_8\},\mathbb{P}^2}(4) \to 0.$

In the following we denote by $\Lambda \subsetneq C \subsetneq S \subsetneq \mathfrak{B}$ a sequence of general linear sections of B.

LEMMA 5.2. If $r = 3$, $n = 8$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^8$, then one of the following cases holds:

(A) $a = 0$, $\lambda = 13$, $g = 8$, $K_S \cdot H_S = 1$, $K_S^2 = -1$; (B) $a = 1, \lambda = 12, g = 7, K_S \cdot H_S = 0, K_S^2 = 0;$ (C) $0 \le a \le 6$, $\lambda = 12 - a$, $g = 6 - a$, $K_S \cdot H_S = -2 - a$.

PROOF. Firstly we note that, from the exact sequence $0 \rightarrow \mathcal{T}_S \rightarrow \mathcal{T}_{\mathfrak{B}}|_S \rightarrow \mathcal{O}_S(1)$ \rightarrow 0, we deduce $c_2 = c_2(S) + c_1(S) = 12\chi(\mathcal{O}_S) - K_S^2 - K_S \cdot H_S$ and hence

$$
(5.1) \quad K_S^2 = 14\lambda + 12\chi(\mathcal{O}_S) - 12g + d\Delta - 116 = -22\lambda + 12g + d\Delta - 12a + 184.
$$

Secondly we note that (see [[41](#page-27-0), Lemma 6.1]), putting $h_{\Delta}(2) := h^0(\mathbb{P}^5, \mathcal{O}(2))$ – $h^0(\mathbb{P}^5, \mathscr{I}_{\Lambda}(2))$, we have

(5.2)
$$
\min\{\lambda, 11\} \le h_{\Lambda}(2) \le 21 - h^0(\mathbb{P}^8, \mathcal{I}_{\mathfrak{B}}(2)) = 12 - a.
$$

Now we establish the following:

CLAIM 5.2.1. If $K_S \cdot H_S \leq 0$ and $K_S \neq 0$, then $\lambda = 12 - a$ and $g = 6 - a$.

PROOF OF THE CLAIM. Similarly to [\[41,](#page-27-0) Case 6.1], we obtain that $P_{\mathfrak{B}}(-1)=0$ and $P_{\mathfrak{B}}(0) = 1 - q$, where $q := h^1(S, \mathcal{O}_S) = h^1(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}})$; in particular $g = -5q$ $a + 6$ and $\lambda = -3q - a + 12$. Since $g \ge 0$ we have $5q \le 6 - a$ and the possibilities are: if $a \le 1$ then $q \le 1$; if $a \ge 2$ then $q = 0$. If $(a, q) = (0, 1)$ then $(q, \lambda) = (1, 9)$ and the case is excluded by [[19](#page-26-0), Theorem 12.3]²; if $(a, q) = (1, 1)$ then $(q, \lambda) =$

² Note that $\mathfrak B$ cannot be a scroll over a curve (this follows from (5.8) and (5.9) below and also it follows from [\[34,](#page-27-0) Proposition 3.2(i)]).

 $(0, 8)$ and the case is excluded by [[19](#page-26-0), Theorem 12.1]. Thus we have $q = 0$ and hence $g = 6 - a$ and $\lambda = 12 - a$; in particular we have $a \le 6$.

Now we discuss the cases according to the value of a.

CASE 5.2.1 ($a = 0$). It is clear that φ must be of type (2,5) and hence $K_S^2 =$ $-22\lambda + 12g + 189$. By Claim 5.2.1, if $K_S \cdot H_S = 2g - 2 - \lambda < 0$, we fall into case (C). So we suppose that $K_S \cdot H_S \geq 0$, namely that $g \geq \lambda/2 + 1$. From Castelnuovo's bound it follows that $\lambda \geq 12$ and if $\lambda = 12$ then $K_S \cdot H_S = 0$, $g = 7$ and hence $K_S^2 = 9$. Since this is impossible by Claim 5.2.1, we conclude that $\lambda \geq 13$. Now by (5.2) it follows that $11 \leq h_\Lambda(2) \leq 12$, but if $h_\Lambda(2) = 11$ from Castelnuovo Lemma [[10](#page-25-0), Lemma 1.10] we obtain a contradiction. Thus we have $h_{\Lambda}(2) = 12$ and $h^0(\mathbb{P}^5, \mathcal{I}_{\Lambda}(2)) = h^0(\mathbb{P}^8, \mathcal{I}_{\mathfrak{B}}(2)) = 9$. So from [[10](#page-25-0), Theorem 3.1] we deduce that $\lambda \leq 14$ and furthermore, by the refinement of Castelnuovo's bound contained in [[10](#page-25-0), Theorem 2.5], we obtain $g \le 2\lambda - 18$. In summary we have the following possibilities:

(i) $\lambda = 13, g = 8, K_S \cdot H_S = 1, \chi(\mathcal{O}_S) = 2, K_S^2 = -1;$ (ii) $\lambda = 14, g = 8, K_S \cdot H_S = 0, \chi(\mathcal{O}_S) = -1, \overline{K_S^2} = -23;$ (iii) $\lambda = 14$, $g = 9$, $K_S \cdot H_S = 2$, $\chi(\mathcal{O}_S) = 1$, $K_S^2 = -11$; (iv) $\lambda = 14, g = 10, K_S \cdot H_S = 4, \chi(\mathcal{O}_S) = 3, \tilde{K}_S^2 = 1.$

Case (i) coincides with case (A) . Case (ii) is excluded by Claim 5.2.1. In the circumstances of case (iii), we have $h^1(S, \mathcal{O}_S) = h^2(S, \mathcal{O}_S) = h^0(S, K_S)$. If $h^1(S, \mathcal{O}_S)$ > 0 , since $(K_{\mathfrak{B}} + 4H_{\mathfrak{B}}) \cdot K_S = K_S^2 + 3K_S \cdot H_S = -5 < 0$, we see that $K_{\mathfrak{B}} + 4H_{\mathfrak{B}}$ is not nef and then we obtain a contradiction by [[28](#page-26-0)]. If $h^1(S, \mathcal{O}_S) = 0$, then we also have $h^1(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}}) = h^2(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}}) = 0$ and hence $\chi(\mathcal{O}_{\mathfrak{B}}) = 1 - h^3(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}}) \le 1$, against the fact that $\chi(\mathcal{O}_{\mathfrak{B}}) = 2\lambda - g - 17 = 2$. Thus case (iii) does not occur. Finally, in the circumstances of case (iv), note that $h^0(S, K_S) = 2 + h^1(S, \mathcal{O}_S) \ge 2$ and we write $|K_S| = |M| + F$, where $|M|$ is the mobile part of the linear system $|K_S|$ and F is the fixed part. If $M_1 = M$ is a general member of $|M|$, there exists $M_2 \in |M|$ having no common irreducible components with M_1 and so $M^2 =$ $M_1 \cdot M_2 = \sum_p (M_1 \cdot M_2)_p \geq 0$; furthermore, by using Bertini Theorem, we see that sing $(\overline{M_1})$ consists of points p such that the intersection multiplicity $(M_1 \cdot M_2)_p$ of M_1 and M_2 in p is at least 2. By definition, we also have $M \cdot F \geq 0$ and so we deduce $2p_a(M)-2 = M \cdot (M + K_S) = 2M^2 + M \cdot F \geq 0$, from which $p_a(M) \ge 1$ and $p_a(M) = 2$ if $F = 0$. On the other hand, we have $M \cdot H_S \leq K_S \cdot H_S = 4$ and, since S is cut out by quadrics, M does not contain planar curves of degree ≥ 3 . If $M \cdot H_S = 4$, then $F = 0$, $M^2 = 1$ and M is a (possibly disconnected) smooth curve; since $p_a(M) = 2$, M is actually disconnected and so it is a disjoint union of twisted cubics, conics and lines. But then we obtain the contradiction that $p_a(M) = 1 - \frac{d}{dx}$ (connected components of $M \le 0$. If $M \cdot H_S \leq 3$, then M must be either a twisted cubic or a union of conics and lines. In all these cases we again obtain the contradiction that $p_a(M) = 1 \#\{\text{connected components of } M\} \leq 0$. Thus case (iv) does not occur.

CASE 5.2.2 ($a = 1$). By [[41,](#page-27-0) Proposition 6.4] we fall into case (B) or (C).

CASE 5.2.3 ($a \ge 2$). By (5.2) it follows that $\lambda \le 10$ and by Castelnuovo's bound it follows that $K_S \cdot H_S \leq -4 < 0$. Thus, by Claim 5.2.1 we fall into case (C). \Box

Now we apply the double point formula (Proposition 2.4) in order to obtain additional numerical restrictions under the hypothesis of Lemma 5.2.

LEMMA 5.3. If
$$
r = 3
$$
, $n = 8$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^8$, then

$$
K_{\mathfrak{B}}^3 = \lambda^2 + 23\lambda - 24g - (7d + 1)\Delta - 4d + 36a - 226.
$$

PROOF. We have (see [[23](#page-26-0), App. A, Exercise 6.7]):

$$
s_1(\mathcal{T}_{\mathfrak{B}}) \cdot H_{\mathfrak{B}}^2 = -c_1(\mathfrak{B}) \cdot H_{\mathfrak{B}}^2 = K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2,
$$

\n
$$
s_2(\mathcal{T}_{\mathfrak{B}}) \cdot H_{\mathfrak{B}} = c_1(\mathfrak{B})^2 \cdot H_{\mathfrak{B}} - c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}} = K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} - c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}}
$$

\n
$$
= 3K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 - 2H_{\mathfrak{B}}^3 - 2c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}} + 12(\chi(\mathcal{O}_{\mathfrak{B}}(H_{\mathfrak{B}})) - \chi(\mathcal{O}_{\mathfrak{B}})),
$$

\n
$$
s_3(\mathcal{T}_{\mathfrak{B}}) = -c_1(\mathfrak{B})^3 + 2c_1(\mathfrak{B}) \cdot c_2(\mathfrak{B}) - c_3(\mathfrak{B}) = K_{\mathfrak{B}}^3 + 48\chi(\mathcal{O}_{\mathfrak{B}}) - c_3(\mathfrak{B}).
$$

Hence, applying the double point formula and using the relations $\chi(\mathcal{O}_{\mathfrak{B}}) = 2\lambda$ $g + a - 17$, $\chi(\mathcal{O}_{\mathfrak{B}}(H_{\mathfrak{B}})) = 9$, we obtain:

$$
4d - 2 = 2 \deg(\text{Sec}(\mathfrak{B}))
$$

= deg(\mathfrak{B})² - s₃($\mathcal{F}_{\mathfrak{B}}$) - 7s₂($\mathcal{F}_{\mathfrak{B}}$) · $H_{\mathfrak{B}}$ - 21s₁($\mathcal{F}_{\mathfrak{B}}$) · $H_{\mathfrak{B}}^2$ - 35 $H_{\mathfrak{B}}^3$
= deg(\mathfrak{B})² - 21 deg(\mathfrak{B}) - 42 $K_{\mathfrak{B}}$ · $H_{\mathfrak{B}}^2$ + 14 c_2 (\mathfrak{B}) · $H_{\mathfrak{B}} - K_{\mathfrak{B}}^3$
+ c_3 (\mathfrak{B}) - 84 χ ($\mathcal{O}_{\mathfrak{B}}$ ($H_{\mathfrak{B}}$)) + 36 χ ($\mathcal{O}_{\mathfrak{B}}$)
= - $K_{\mathfrak{B}}^3$ + λ^2 + 23 λ - 24 g - ($7d$ + 1) Δ + 36 a - 228.

LEMMA 5.4. If $r = 3$, $n = 8$, $\langle \mathfrak{B} \rangle = \mathbb{P}^8$ and \mathfrak{B} is a quadric fibration over a curve, then one of the following cases holds:

• $a = 3$, $\lambda = 9$, $q = 3$, $d = 3$, $\Delta = 5$; • $a = 4$, $\lambda = 8$, $q = 2$, $d = 2$, $\Delta = 10$.

PROOF. Denote by β : $(\mathfrak{B}, H_{\mathfrak{B}}) \rightarrow (Y, H_Y)$ the projection over the curve Y such that $\beta^*(H_Y) = K_{\mathfrak{B}} + 2H_{\mathfrak{B}}$. We have

$$
0 = \beta^* (H_Y)^2 \cdot H_{\mathfrak{B}} = K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} + 4K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 + 4H_{\mathfrak{B}}^3,
$$

\n
$$
0 = \beta^* (H_Y)^3 = K_{\mathfrak{B}}^3 + 6K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} + 12K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 + 8H_{\mathfrak{B}}^3,
$$

\n
$$
\chi(\mathcal{O}_{\mathfrak{B}}(H_{\mathfrak{B}})) = \frac{1}{12} K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} - \frac{1}{4} K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 + \frac{1}{6} H_{\mathfrak{B}}^3 + \frac{1}{12} c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}} + \chi(\mathcal{O}_{\mathfrak{B}}),
$$

from which it follows that

(5.3)
$$
K_{\mathfrak{B}}^3 = -8\lambda + 24g - 24,
$$

(5.4)
$$
c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}} = -36\lambda + 26g - 12a + 298.
$$

Hence, by Lemma 5.3 and Proposition 2.2, we obtain

(5.5)
$$
d\Delta = 23\lambda - 16g + 12a - 180,
$$

(5.6)
$$
\Delta + 4d = \lambda^2 - 130\lambda + 64g - 48a + 1058.
$$

Now the conclusion follows from Lemma 5.2, by observing that the case $a = 6$ cannot occur. In fact, if $a = 6$, by [[25](#page-26-0)] it follows that \mathfrak{B} is a rational normal scroll and by a direct calculation (or by Lemma 5.6) we see that $d = 2$ and $\Delta = 14$.

LEMMA 5.5. If $r = 3$, $n = 8$, $\langle \mathfrak{B} \rangle = \mathbb{P}^8$ and \mathfrak{B} is a scroll over a smooth surface Y, then we have:

$$
c_2(Y) = ((7d - 1)\lambda^2 + (177 - 679d)\lambda + (292d - 92)g - 28d^2 + (5554 - 252a)d + 36a - 1474)/(2d + 2),
$$

$$
\Delta = (\lambda^2 - 107\lambda + 48g - 4d - 36a + 878)/(d + 1).
$$

PROOF. Similarly to Lemma 5.4, denote by β : $(\mathfrak{B}, H_{\mathfrak{B}}) \rightarrow (Y, H_Y)$ the projection over the surface Y such that $\beta^*(H_Y) = K_{\mathfrak{B}} + 2H_{\mathfrak{B}}$. Since $\beta^*(H_Y)^3 = 0$ we obtain

$$
K_{\mathfrak{B}}^3 = -8H_{\mathfrak{B}}^3 - 12K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 - 6K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} = -30K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^2 + 4H_{\mathfrak{B}}^3 + 6c_2(\mathfrak{B}) \cdot H_{\mathfrak{B}} - 72\chi(\mathcal{O}_{\mathfrak{B}}(H_{\mathfrak{B}})) + 72\chi(\mathcal{O}_{\mathfrak{B}}) = 130\lambda - 72g - 6d\Delta + 72a - 1104.
$$

Now we conclude comparing the last formula with Lemma 5.3 and using the relation

$$
(5.7) \quad 70\lambda - 44g + (7d - 1)\Delta - 596 = c_3(\mathfrak{B}) = c_1(\mathbb{P}^1)c_2(Y) = 2c_2(Y). \Box
$$

LEMMA 5.6. If $r = 3$, $n = 8$, $\langle \mathfrak{B} \rangle = \mathbb{P}^8$ and \mathfrak{B} is a scroll over a smooth curve, then we have: $a = 6$, $\lambda = 6$, $q = 0$, $d = 2$, $\Delta = 14$.

PROOF. We have a projection β : $(\mathfrak{B}, H_{\mathfrak{B}}) \rightarrow (Y, H_Y)$ over a curve Y such that $\beta^*(H_Y) = K_{\mathfrak{B}} + 3H_{\mathfrak{B}}$. By expanding the expressions $\beta^*(H_Y)^2 \cdot H_{\mathfrak{B}} = 0$ and $\beta^*(H_Y)^3 = 0$ we obtain $K_{\mathfrak{B}}^2 \cdot H_{\mathfrak{B}} = 3\lambda - 12g + 12$ and $K_{\mathfrak{B}}^3 = 54(g - 1)$, and hence by Lemma 5.3 we get

(5.8)
$$
\lambda^2 + 23\lambda - 78g - (7d+1)\Delta - 4d + 36a - 172 = 0.
$$

Also, by expanding the expression $\chi(\mathcal{O}_\mathfrak{B}(H_\mathfrak{B})) = 9$ we obtain $c_2 = -35\lambda + 30g$ $12a + 294$ and hence by Proposition 2.2 we get

(5.9)
$$
22\lambda - 20g - d\Delta + 12a - 176 = 0.
$$

Now the conclusion follows from Lemma 5.2. \Box

Finally we conclude our discussion about classification with the following:

PROPOSITION 5.7. If $r = 3$, $n = 8$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^8$, then one of the following cases holds:

- (XIX) $a = 0$, $\lambda = 12$, $g = 6$, $\mathfrak B$ is a scroll $\mathbb P_Y(\mathscr E)$ over a birationally ruled sur*face Y* with $K_Y^2 = 5$, $c_2(\mathscr{E}) = 8$ and $c_1^2(\mathscr{E}) = 20$;
- (XX) $a = 0$, $\lambda = 13$, $q = 8$, $\mathfrak B$ is obtained as the blow-up of a Fano variety X at a point $p \in X$, $|H_{\mathfrak{B}}| = |H_X - p|$;
- (XXI) $a = 1$, $\lambda = 11$, $q = 5$, $\mathfrak B$ is the blow-up of Q^3 at 5 points p_1, \ldots, p_5 , $|H_{\mathfrak{B}}| = |2H_{O^3} - p_1 - \cdots - p_5|;$
- (XXII) $a = 1$, $\lambda = 1$, $g = 5$, $\mathfrak B$ is a scroll over $\mathbb{P}_{\mathbb{P}^1}(\mathcal O \oplus \mathcal O(-1))$;
- (XXIII) $a = 1$, $\lambda = 12$, $g = 7$, \mathfrak{B} is a linear section of $S^{10} \subset \mathbb{P}^{15}$;
- $(XXIV)$ $a = 2$, $\lambda = 10$, $q = 4$, \mathfrak{B} is a scroll over Q^2 ;
- (XXY) $a = 3$, $\lambda = 9$, $q = 3$, $\mathfrak B$ is a scroll over $\mathbb P^2$ or a quadric fibration over \mathbb{P}^1 ;
- (XXVI) $a = 4$, $\lambda = 8$, $g = 2$, \mathfrak{B} is a hyperplane section of $\mathbb{P}^1 \times Q^3$;
- (XXVII) $a = 6$, $\lambda = 6$, $g = 0$, \mathfrak{B} is a rational normal scroll.

PROOF. For $a = 6$ the statement follows from [\[25\]](#page-26-0). The case with $a = 5$ is ex-cluded by [[25](#page-26-0)] and Example 6.19. For $a = 4$ the statement follows from [\[29\]](#page-26-0). For $a \in \{2, 3\}$, by [\[16\]](#page-26-0), [[17](#page-26-0)] and [\[27\]](#page-26-0) it follows that the abstract structure of \mathfrak{B} is as asserted, or $a = 2$ and \mathfrak{B} is a quadric fibration over \mathbb{P}^1 ; the last case is excluded by Lemma 5.4. For $a = 1$ the statement is just [[41](#page-27-0), Proposition 6.6]. Now we treat the cases with $a = 0$.

CASE 5.7.1 ($a = 0, \lambda = 12$). Since deg(\mathfrak{B}) $\leq 2 \text{codim}_{\mathbb{D}^8}(\mathfrak{B}) + 2$, it follows that $(\mathfrak{B}, H_{\mathfrak{B}})$ must be as in one of the cases $(a), \ldots, (h)$ of [\[26](#page-26-0), Theorem 1]. Cases $(a),$ (d) , (e) , (g) , (h) are of course impossible and case (c) is excluded by Lemma 5.4. If $\mathfrak B$ is as in case (b), by Lemma 5.6 we obtain that $\mathfrak B$ is a scroll over a birationally ruled surface. Now suppose that $(\mathfrak{B}, H_{\mathfrak{B}})$ is as in case (f). Thus there is a reduction (X, H_X) as in one of the cases:

- (f1) $X = \mathbb{P}^3$, $H_X \in |\mathcal{O}(3)|$;
- $(f2)$ $X = Q^3$, $H_X \in |O(2)|$;
- (f3) X is a \mathbb{P}^2 -bundle over a smooth curve such that $\mathcal{O}_X(H_X)$ induces $\mathcal{O}(2)$ on each fiber.

By definition of reduction we have $X \subset \mathbb{P}^N$, where $N = 8 + s$, deg $(X) = \lambda + s$ $12 + s$ and s is the number of points blown up on X to get \mathfrak{B} . Case (f1) and (f2) are impossible because they force λ to be respectively 16 and 11. In case (f3), we have a projection β : $(X, H_X) \rightarrow (Y, H_Y)$ over a curve Y such that $\beta^*(H_Y) =$ $2K_X + 3H_X$. Hence we get

$$
K_X H_X^2 = (2K_X + 3H_X)^2 \cdot H_X/12 - K_X^2 \cdot H_X/3 - 3H_X^3/4
$$

= $-K_X^2 \cdot H_X/3 - 3H_X^3/4$,

from which we deduce that

$$
0 = (2K_X + 3H_X)^3 = 8K_X^3 + 36K_X^2 \cdot H_X + 54K_X \cdot H_X^2 + 27H_X^3
$$

= 8K_X^3 + 18K_X^2 \cdot H_X - 27H_X^3/2
= 8(K_{\mathfrak{B}}^3 - 8s) + 18K_X^2 \cdot H_X - 27(\text{deg}(\mathfrak{B}) + s)/2
= 18K_X^2 \cdot H_X - 155s/2 - 210.

Since $s \le 12$ (see [[7,](#page-25-0) Lemma 8.1]), we conclude that case (f) does not occur. Thus, $\mathfrak{B} = \mathbb{P}_{Y}(\mathscr{E})$ is a scroll over a surface Y; moreover, by Lemma 5.5 and [[5,](#page-25-0) Theorem 11.1.2], we obtain $K_Y^2 = 5$, $c_2(\mathscr{E}) = K_Y^2 - K_S^2 = 8$ and $c_1^2(\mathscr{E}) = \lambda + c_2(\mathscr{E}) =$ 20.

CASE 5.7.2 ($a = 0, \lambda = 13$). The proof is located in [\[34,](#page-27-0) page 16], but we sketch it for the reader's convenience. By Lemma 5.2 we know that $\chi(\mathcal{O}_S) = 2$ and K_S is an exceptional curve of the first kind. Thus, if we blow-down the divisor K_S , we obtain a $K3$ -surface. By using adjunction theory (see for instance $[5]$ $[5]$ $[5]$ or Ionescu's papers cited in the references) and by Lemmas 5.4, 5.5 and 5.6 it follows that the adjunction map $\phi_{|K_{\mathfrak{B}}+2H_{\mathfrak{B}}|}$ is a generically finite morphism; moreover, since $(K_{\mathfrak{B}} + 2H_{\mathfrak{B}}) \cdot K_S = 0$, we see that $\phi_{|K_{\mathfrak{B}} + 2H_{\mathfrak{B}}|}$ is not a finite morphism. So, we deduce that there is a $(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}(-1))$ inside \mathfrak{B} and, after the blow-down of this divisor, we get a smooth Fano 3-fold $X \subset \mathbb{P}^9$ of sectional genus 8 and degree 14. \Box

6. Examples

The calculations in the following examples can be verified with the aid of the computer algebra system [\[20\]](#page-26-0).

EXAMPLE 6.1 $(r = 1, 2, 3; n = 3, 4, 5; a = 1; d = 1)$. See also [[41](#page-27-0), §2]. If $Q \subset$ $\mathbb{P}^{n-1} \subset \mathbb{P}^n$ is a smooth quadric, then the linear system $|\mathscr{I}_{Q,\mathbb{P}^n}(2)|$ defines a birational transformation $\psi : \mathbb{P}^n \longrightarrow S \subset \mathbb{P}^{n+1}$ of type $(2, 1)$ whose image is a smooth quadric.

EXAMPLE 6.2 $(r = 1; n = 4; a = 0; d = 3)$. See also [\[12\]](#page-26-0). If $X \subset \mathbb{P}^4$ is a nondegenerate curve of genus 1 and degree 5, then X is the scheme-theoretic intersection of the quadrics (of rank 3) containing X and $|\mathcal{I}_{X}\mathbb{P}^{4}(2)|$ defines a Cremona transformation $\mathbb{P}^4 \longrightarrow \mathbb{P}^4$ of type $(2, 3)$.

EXAMPLE 6.3 $(r = 1, 2, 3; n = 4, 5, 7; a = 1, 0, 1; d = 2)$. See also [[14](#page-26-0)] and [\[41,](#page-27-0) Example 4.1]. If $X \subset \mathbb{P}^n$ is a Severi variety, then $|\mathscr{I}_{X,\mathbb{P}^n}(2)|$ defines a birational transformation $\psi : \mathbb{P}^n \longrightarrow \mathbb{P}^n$ of type $(2, 2)$ whose base locus is X. The restriction of ψ to a general hyperplane is a birational transformation $\mathbb{P}^{n-1} \longrightarrow S \subset \mathbb{P}^n$ of type $(2, 2)$ and S is a smooth quadric.

EXAMPLE 6.4 $(r = 1; n = 4; a = 2; d = 1$ —not satisfying 1.4). We have a special birational transformation $\psi : \mathbb{P}^4 \longrightarrow S \subset \mathbb{P}^6$ of type $(2, 1)$ with base locus X, image S and base locus of the inverse Y , as follows:

$$
X = V(x_0x_1 - x_2^2 - x_3^2, -x_0^2 - x_1^2 + x_2x_3, x_4),
$$

\n
$$
S = V(y_2y_3 - y_4^2 - y_5^2 - y_0y_6, y_2^2 + y_3^2 - y_4y_5 + y_1y_6),
$$

\n
$$
P_S(t) = (4t^4 + 24t^3 + 56t^2 + 60t + 24)/4!,
$$

\n
$$
\text{sing}(S) = V(y_6, y_5^2, y_4y_5, y_3y_5, y_2y_5, y_4^2, y_3y_4, y_2y_4, 2y_1y_4 + y_0y_5,
$$

\n
$$
y_0y_4 + 2y_1y_5, y_3^2, y_2y_3, y_2^2, y_1y_2 + 2y_0y_3, 2y_0y_2 + y_1y_3),
$$

\n
$$
P_{sing}(S)(t) = t + 5,
$$

\n
$$
(\text{sing}(S))_{red} = V(y_6, y_5, y_4, y_3, y_2),
$$

\n
$$
Y = (Y)_{red} = (\text{sing}(S))_{red} = V(y_6, y_5, y_4, y_3, y_2).
$$

See also [\[41,](#page-27-0) Example 4.6] for another example in which 1.4 is not satisfied.

EXAMPLE 6.5 $(r = 1, 2, 3; n = 4, 5, 6; a = 3; d = 1)$. See also [[39](#page-27-0)] and [[40](#page-27-0)]. If $X = \mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5 \subset \mathbb{P}^6$, then $|\mathscr{I}_{X,\mathbb{P}^6}(2)|$ defines a birational transformation $\psi : \mathbb{P}^6 \longrightarrow S \subset \mathbb{P}^9$ of type $(2, 1)$ whose base locus is X and whose image is $S = \mathbb{G}(1, 4)$. Restricting ψ to a general $\mathbb{P}^5 \subset \mathbb{P}^6$ (resp. $\mathbb{P}^4 \subset \mathbb{P}^6$) we obtain a birational transformation $\mathbb{P}^5 \longrightarrow S \subset \mathbb{P}^8$ (resp. $\mathbb{P}^4 \longrightarrow S \subset \mathbb{P}^7$) whose image is a smooth linear section of $\mathbb{G}(1,4) \subset \mathbb{P}^9$.

EXAMPLE 6.6 $(r = 2; n = 6; a = 0; d = 4)$. See also [[12](#page-26-0)] and [[24](#page-26-0)]. Let $Z =$ $\{p_1, \ldots, p_8\} \subset \mathbb{P}^2$ be such that no 4 of the p_i are collinear and no 7 of the p_i lie on a conic and consider the blow-up $X = \text{Bl}_Z(\mathbb{P}^2)$ embedded in \mathbb{P}^6 by $|4\hat{H}_{\mathbb{P}^2}$ – $p_1 - \cdots - p_8$. Then the homogeneous ideal of X is generated by quadrics and $|\mathcal{I}_{X,\mathbb{P}^6}(2)|$ defines a Cremona transformation $\mathbb{P}^6 \dashrightarrow \mathbb{P}^6$ of type $(2, 4)$. The same happens when $X \subset \mathbb{P}^6$ is a septic elliptic scroll with $e = -1$.

EXAMPLE 6.7 ($r = 2; n = 6; a = 1; d = 3$). See also [[41](#page-27-0), Examples 4.2 and 4.3]. If $X \subset \mathbb{P}^6$ is a general hyperplane section of an Edge variety of dimension 3 and degree 7 in \mathbb{P}^7 , then $|\mathscr{I}_{X,\mathbb{P}^6}(2)|$ defines a birational transformation $\psi : \mathbb{P}^6 \longrightarrow$ $S \subset \mathbb{P}^7$ of type (2,3) whose base locus is X and whose image is a rank 6 quadric.

EXAMPLE 6.8 $(r = 2; n = 6; a = 2; d = 2)$. If $X \subset \mathbb{P}^6$ is the blow-up of \mathbb{P}^2 at 3 general points p_1 , p_2 , p_3 with $|H_X| = |3H_{p^2} - p_1 - p_2 - p_3|$, then Sec (X) is a cubic hypersurface. By Fact 1.6 and 1.7 we deduce that $|\mathscr{I}_{X,\mathbb{P}^6}(2)|$ defines a birational transformation $\psi : \mathbb{P}^6 \longrightarrow S \subset \mathbb{P}^8$ and its type is $(2, 2)$. The image S is a complete intersection of two quadrics, $dim(sing(S)) = 1$ and the base locus of the inverse is $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$. Alternatively, we can obtain the transformation $\psi : \mathbb{P}^6 \dashrightarrow S \subset \mathbb{P}^8$ by restriction to a general $\mathbb{P}^6 \subset \mathbb{P}^8$ of the special Cremona transformation $\mathbb{P}^8 \dashrightarrow \mathbb{P}^8$ of type $(2, 2)$.

EXAMPLE 6.9 $(r = 2; n = 6; a = 3; d = 2)$. See also [\[39\]](#page-27-0) and [\[40](#page-27-0)]. If $X =$ $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1)\oplus \mathcal{O}(4))$ or $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(2)\oplus \mathcal{O}(3))$, then $|\mathscr{I}_{X,\mathbb{P}^6}(2)|$ defines a birational transformations $\psi : \mathbb{P}^6 \longrightarrow S \subset \mathbb{P}^9$ of type $(2, 2)$ whose base locus is X and whose image is $S = \mathbb{G}(1, 4)$.

EXAMPLE 6.10 ($r = 2, 3; n = 6, 7; a = 5; d = 1$). See also [[43](#page-27-0), III Theorem 3.8]. If $X = \mathbb{G}(1, 4) \subset \mathbb{P}^9 \subset \mathbb{P}^{10}$, then $|\mathcal{I}_{X, \mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow S \subset \mathbb{P}^{15}$ of type $(2, 1)$ whose base locus is X and whose image is the spinorial variety $S = S^{10} \subset \mathbb{P}^{15}$. Restricting ψ to a general $\mathbb{P}^7 \subset \mathbb{P}^{10}$ (resp. $\mathbb{P}^6 \subset \mathbb{P}^{10}$) we obtain a special birational transformation $\mathbb{P}^7 \longrightarrow S \subset \mathbb{P}^{12}$ (resp. $\mathbb{P}^6 \longrightarrow S \subseteq \mathbb{P}^{11}$ whose dimension of the base locus is $r = 3$ (resp. $r = 2$) and whose image is a linear section of $S^{10} \subset \mathbb{P}^{15}$. In the first case $S = \psi(\mathbb{P}^7)$ is smooth while in the second case the singular locus of $S = \psi(P^6)$ consists of 5 lines, image of the 5 Segre 3-folds containing del Pezzo surface of degree 5 and spanned by its pencils of conics.

EXAMPLE 6.11 $(r = 2, 3; n = 6, 7; a = 6; d = 1)$. See also [\[39\]](#page-27-0), [[40](#page-27-0)] and [\[43](#page-27-0), III] Theorem 3.8]. We have a birational transformation $\psi : \mathbb{P}^8 \dashrightarrow \mathbb{G}(1,5) \subset \mathbb{P}^{14}$ of type $(2, 1)$ whose base locus is $\mathbb{P}^1 \times \mathbb{P}^3 \subset \mathbb{P}^7 \subset \mathbb{P}^8$ and whose image is $\mathbb{G}(1, 5)$. Restricting ψ to a general $\mathbb{P}^7 \subset \mathbb{P}^8$ we obtain a birational transformation $\mathbb{P}^7 \longrightarrow S \subseteq \mathbb{P}^{13}$ whose base locus X is a rational normal scroll and whose image S is a smooth linear section of $\mathbb{G}(1,5) \subset \mathbb{P}^{14}$. Restricting ψ to a general $\mathbb{P}^6 \subset \mathbb{P}^8$ we obtain a birational transformation $\psi = \psi|_{\mathbb{P}^6} : \mathbb{P}^6 \longrightarrow S \subset \mathbb{P}^{12}$ whose base locus X is a rational normal scroll (hence either $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(3))$ or $X =$ $\mathbb{P}_{p1}(\mathcal{O}(2)\oplus \mathcal{O}(2))$ and whose image S is a singular linear section of $\mathbb{G}(1,5)$ \subset \mathbb{P}^{14} . In this case, we denote by $Y \subset S$ the base locus of the inverse of ψ and by $F = (F_0, \ldots, F_5) : \mathbb{P}^5 \dashrightarrow \mathbb{P}^5$ the restriction of ψ to $\mathbb{P}^5 = \text{Sec}(X)$. We have

$$
Y = \overline{\psi(\mathbb{P}^5)} = \overline{F(\mathbb{P}^5)} = \mathbb{G}(1,3) \subset \mathbb{P}^5 \subset \mathbb{P}^{12},
$$

\n
$$
J_4 := \{x = [x_0, \dots, x_5] \in \mathbb{P}^5 \setminus X : \text{rank}((\partial F_i/\partial x_j(x))_{i,j}) \le 4\}_{\text{red}}
$$

\n
$$
= \{x = [x_0, \dots, x_5] \in \mathbb{P}^5 \setminus X : \dim(\overline{F^{-1}(F(x))}) \ge 2\}_{\text{red}} \text{ and } \dim(J_4) = 3,
$$

\n
$$
\overline{\psi(J_4)} = (\text{sing}(\mathbf{S}))_{\text{red}} = \mathbb{P}_{\mathbb{P}^1}(\mathbb{O}(2)) \subset Y.
$$

EXAMPLE 6.12 ($r = 3; n = 8; a = 0; d = 5$). See also [\[24\]](#page-26-0). If $\mathcal{X} \subset \mathbb{P}^9$ is a general 3-dimensional linear section of $\mathbb{G}(1,5) \subset \mathbb{P}^{14}$, $p \in \mathcal{X}$ is a general point and $X \subset \mathbb{P}^8$ is the image of X under the projection from p, then the homogeneous ideal of X is generated by quadrics and $|\mathcal{I}_{X,\mathbb{P}^8}(2)|$ defines a Cremona transformation $\mathbb{P}^8 \dashrightarrow \mathbb{P}^8$ of type $(2, 5)$.

EXAMPLE 6.13 $(r = 3; n = 8; a = 1; d = 3)$. See also [\[41,](#page-27-0) Example 4.5]. If $X \subset \mathbb{P}^8$ is the blow-up of the smooth quadric $Q^3 \subset \mathbb{P}^4$ at 5 general points p_1, \ldots, p_5 with $|H_X| = |2H_Q^2 - p_1 - \cdots - p_5|$, then $|\mathscr{I}_{X, \mathbb{P}^8}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{8} \to \mathbb{S} \subset \mathbb{P}^9$ of type $(2, 3)$ whose base locus is X and whose image is a cubic hypersurface with singular locus of dimension 3.

EXAMPLE 6.14 $(r = 3; n = 8; a = 1; d = 4$ —incomplete). By [[2\]](#page-25-0) (see also [[9](#page-25-0)]) there exists a smooth irreducible nondegenerate linearly normal 3-dimensional variety $X \subset \mathbb{P}^8$ with $h^1(X, \mathcal{O}_X) = 0$, degree $\lambda = 11$, sectional genus $g = 5$, having the structure of a scroll $\mathbb{P}_{\mathbb{F}^1}(\mathscr{E})$ with $c_1(\mathscr{E}) = 3C_0 + 5f$ and $c_2(\mathscr{E}) = 10$ and hence having degrees of the Segre classes $s_1(X) = -85$, $s_2(X) = 386$, $s_3(X) = -1330$. Now, by Fact 1.7, $X \subseteq \mathbb{P}^8$ is arithmetically Cohen-Macaulay and by Riemann-Roch, denoting with C a general curve section of X , we obtain

(6.1)
$$
h^{0}(\mathbb{P}^{8}, \mathcal{I}_{X}(2)) = h^{0}(\mathbb{P}^{6}, \mathcal{I}_{C}(2)) = h^{0}(\mathbb{P}^{6}, \mathcal{O}_{\mathbb{P}^{6}}(2)) - h^{0}(C, \mathcal{O}_{C}(2)) = 28 - (2\lambda + 1 - g),
$$

hence $h^0(\mathbb{P}^8, \mathcal{I}_X(2)) = 10$. If the homogeneous ideal of X is generated by quadratic forms or at least if $X = V(H^0(\mathcal{I}_X(2)))$, the linear system $|\mathcal{I}_X(2)|$ defines a rational map $\psi : \mathbb{P}^8 \longrightarrow S = \psi(\mathbb{P}^8) \subset \mathbb{P}^9$ whose base locus is X and whose image S is nondegenerate. Now, by (2.6) we deduce $deg(\psi) deg(S) = 2$, from which $deg(\psi) = 1$ and $deg(S) = 2$.

EXAMPLE 6.15 $(r = 3; n = 8; a = 1; d = 4)$. See also [\[14,](#page-26-0) §4] and [[41](#page-27-0), Example 4.4]. If $X \subset \mathbb{P}^8$ is a general linear 3-dimensional section of the spinorial variety $S^{10} \subset \mathbb{P}^{15}$, then $|\mathscr{I}_{X,\mathbb{P}^{8}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{8} \longrightarrow$ $S \subset \mathbb{P}^9$ of type (2,4) whose base locus is X and whose image is a smooth quadric.

EXAMPLE 6.16 $(r = 3; n = 8; a = 2; d = 3)$ $(r = 3; n = 8; a = 2; d = 3)$ $(r = 3; n = 8; a = 2; d = 3)$. By [[17](#page-26-0)] (see also [8]) there exists a smooth irreducible nondegenerate linearly normal 3-dimensional variety $X \nightharpoonup P^8$ with $h^1(X, \mathcal{O}_X) = 0$, degree $\lambda = 10$, sectional genus $g = 4$, having the structure of a scroll $\mathbb{P}_{Q^2}(\mathscr{E})$ with $c_1(\mathscr{E}) = \mathscr{O}_Q(3, 3)$ and $c_2(\mathscr{E}) = 8$ and hence having degrees of the Segre classes $s_1(X) = -76$, $s_2(X) = 340$, $s_3(X) = -1156$. By Fact 1.7, $X \subset \mathbb{P}^8$ is arithmetically Cohen-Macaulay and its homogeneous ideal is generated by quadratic forms. So by (6.1) we have $h^0(\mathbb{P}^8, \mathcal{I}_X(2)) = 11$ and the linear system $|\mathscr{I}_X(2)|$ defines a rational map $\psi : \mathbb{P}^8 \longrightarrow S \subset \mathbb{P}^{10}$ whose base locus is X and whose image S is nondegenerate. By (2.6) it follows that deg(ψ) deg(S) = 4 and hence $deg(\psi) = 1$ and $deg(S) = 4$.

EXAMPLE 6.17 $(r = 3; n = 8; a = 3; d = 2, 3)$. By [\[16\]](#page-26-0) (see also [\[8](#page-25-0)]) there exists a smooth irreducible nondegenerate linearly normal 3-dimensional variety $X \subset \mathbb{P}^8$ with $h^1(X, \mathcal{O}_X) = 0$, degree $\lambda = 9$, sectional genus $g = 3$, having the structure of a scroll $\mathbb{P}_{p^2}(\mathscr{E})$ with $c_1(\mathscr{E})=4$ and $c_2(\mathscr{E})=7$ (resp. of a quadric fibration over \mathbb{P}^1) and hence having degrees of the Segre classes $s_1(X) = -67$, $s_2(X) = 294$, $s_3(X) = -984$ (resp. $s_1(X) = -67$, $s_2(X) = 295$, $s_3(X) = -997$). By Fact 1.7, $X \subset \mathbb{P}^8$ is arithmetically Cohen-Macaulay and its homogeneous ideal is generated by quadratic forms. So by (6.1) we have $h^0(\mathbb{P}^8, \mathcal{I}_X(2)) = 12$ and the linear system $|\mathcal{I}_X(2)|$ defines a rational map $\psi : \mathbb{P}^8 \longrightarrow S \subset \mathbb{P}^{11}$ whose base locus is X and whose image S is nondegenerate. By (2.6) it follows that $deg(\psi) deg(S) = 8$ (resp. deg (ψ) deg $(S) = 5$) and in particular deg $(\psi) \neq 0$ i.e. $\psi : \mathbb{P}^8 \dashrightarrow S$ is generically quasi-finite. Again by Fact 1.7 and Fact 1.6 it follows that ψ is birational and hence deg(S) = 8 (resp. deg(S) = 5).

EXAMPLE 6.18 $(r = 3; n = 8; a = 4; d = 2)$. Consider the composition

$$
f: \mathbb{P}^1 \times \mathbb{P}^3 \to \mathbb{P}^1 \times Q^3 \subset \mathbb{P}^1 \times \mathbb{P}^4 \to \mathbb{P}^9,
$$

where the first map is the identity of \mathbb{P}^1 multiplied by $[z_0, z_1, z_2, z_3] \mapsto [z_0^2, z_0 z_1, z_2, z_3]$ $z_0 z_2, z_0 z_3, z_1^2 + z_2^2 + z_3^2$, and the last map is $([t_0, t_1], [y_0, \ldots, y_4]) \mapsto [t_0 y_0, \ldots, t_n]$ $t_0y_4, t_1y_0, \ldots, t_1y_4] = [x_0, \ldots, x_9]$. In the equations defining $f(\mathbb{P}^1 \times \mathbb{P}^3) \subset \mathbb{P}^9$, by replacing x_9 with x_0 , we obtain the quadrics:

$$
(6.2) \qquad -x_0x_3 + x_4x_8, \ -x_0x_2 + x_4x_7, \ x_3x_7 - x_2x_8, \ -x_0x_5 + x_6^2 + x_7^2 + x_8^2, \n-x_0x_1 + x_4x_6, \ x_3x_6 - x_1x_8, \ x_2x_6 - x_1x_7, \ -x_0^2 + x_1x_6 + x_2x_7 + x_3x_8, \n-x_0^2 + x_4x_5, \ x_3x_5 - x_0x_8, \ x_2x_5 - x_0x_7, \ x_1x_5 - x_0x_6, \ x_1^2 + x_2^2 + x_3^2 - x_0x_4.
$$

Denoting with I the ideal generated by quadrics (6.2) and $X = V(I)$, we have that I is saturated (in particular $I_2 = H^0(\mathcal{I}_{Y \text{p}}(2))$) and X is smooth. The linear system $|\mathscr{I}_{Y,\mathbb{P}^8}(2)|$ defines a birational transformation $\psi : \mathbb{P}^8 \dashrightarrow S \subset \mathbb{P}^{12}$ whose base locus is \overline{X} and whose image is the variety S with homogeneous ideal generated by:

(6.3)
$$
y_6y_9 - y_5y_{10} + y_2y_{11}, y_6y_8 - y_4y_{10} + y_1y_{11}, y_5y_8 - y_4y_9 + y_0y_{11},
$$

\n $y_2y_8 - y_1y_9 + y_0y_{10}, y_2y_4 - y_1y_5 + y_0y_6,$
\n $y_2^2 + y_5^2 + y_6^2 + y_7^2 - y_7y_8 + y_0y_9 + y_1y_{10} + y_4y_{11} - y_3y_{12}.$

We have deg(S) = 10 and dim(sing(S)) = 3. The inverse of $\psi : \mathbb{P}^8 \longrightarrow S$ is defined by:

(6.4)
$$
-y_7y_8 + y_0y_9 + y_1y_{10} + y_4y_{11}, y_0y_5 + y_1y_6 - y_4y_7 - y_{11}y_{12}, y_0y_2 - y_4y_6 - y_1y_7 - y_{10}y_{12}, -y_1y_2 - y_4y_5 - y_0y_7 - y_9y_{12}, -y_0^2 - y_1^2 - y_4^2 - y_8y_{12}, -y_3y_8 - y_9^2 - y_{10}^2 - y_{11}^2, -y_3y_4 - y_5y_9 - y_6y_{10} - y_7y_{11}, -y_1y_3 - y_2y_9 - y_7y_{10} + y_6y_{11}, -y_0y_3 - y_7y_9 + y_2y_{10} + y_5y_{11}.
$$

Note that $S \subset \mathbb{P}^{12}$ is the intersection of a quadric hypersurface in \mathbb{P}^{12} with the cone over $\mathbb{G}(1,4) \subset \mathbb{P}^9 \subset \mathbb{P}^{12}$.

EXAMPLE 6.19 $(r = 3; n = 8; a = 5$ —with non liftable inverse). If $X \subset \mathbb{P}^8$ is the blow-up of \mathbb{P}^3 at a point p with $|H_X| = |2H_{\mathbb{P}^3} - p|$, then (modulo a change of coordinates) the homogeneous ideal of X is generated by the quadrics:

(6.5)
$$
x_6x_7 - x_5x_8
$$
, $x_3x_7 - x_2x_8$, $x_5x_6 - x_4x_8$, $x_2x_6 - x_1x_8$, $x_5^2 - x_4x_7$,
\n $x_3x_5 - x_1x_8$, $x_2x_5 - x_1x_7$, $x_3x_4 - x_1x_6$, $x_2x_4 - x_1x_5$, $x_2x_3 - x_0x_8$,
\n $x_1x_3 - x_0x_6$, $x_2^2 - x_0x_7$, $x_1x_2 - x_0x_5$, $x_1^2 - x_0x_4$.

The linear system $|\mathcal{I}_{X,\mathbb{P}^8}(2)|$ defines a birational transformation $\psi : \mathbb{P}^8 \longrightarrow \mathbb{P}^{13}$ whose base locus is X and whose image is the variety S with homogeneous ideal

generated by:

(6.6)
$$
y_8y_{10} - y_7y_{12} - y_3y_{13} + y_5y_{13}
$$
, $y_8y_9 + y_6y_{10} - y_7y_{11} - y_3y_{12} + y_1y_{13}$,
\n $y_6y_9 - y_5y_{11} + y_1y_{12}$, $y_6y_7 - y_5y_8 - y_4y_{10} + y_2y_{12} - y_0y_{13}$,
\n $y_3y_6 - y_5y_6 + y_1y_8 + y_4y_9 - y_2y_{11} + y_0y_{12}$, $y_3y_4 - y_2y_6 + y_0y_8$,
\n $y_3^2y_5 - y_3y_5^2 + y_1y_3y_7 - y_2y_3y_9 + y_2y_5y_9 - y_0y_7y_9 - y_1y_2y_{10} + y_0y_5y_{10}$.

We have deg(S) = 19, dim(sing(S)) = 4 and the degrees of Segre classes of X are: $s_1 = -49$, $s_2 = 201$, $s_3 = -627$. So, by (2.7), we deduce that the inverse of $\psi : \mathbb{P}^8 \dashrightarrow S$ is not liftable; however, a representative of the equivalence class of ψ^{-1} is defined by:

(6.7)
$$
y_{12}^2 - y_{11}y_{13}, y_8y_{12} - y_6y_{13}, y_8y_{11} - y_6y_{12},
$$

$$
-y_6y_{10} + y_7y_{11} + y_3y_{12} - y_5y_{12}, y_8^2 - y_4y_{13}, y_6y_8 - y_4y_{12},
$$

$$
y_3y_8 - y_2y_{12} + y_0y_{13}, y_6^2 - y_4y_{11}, y_5y_6 - y_1y_8 - y_4y_9.
$$

We also point out that $Sec(X)$ has dimension 6 and degree 6 (against Proposition 1.5).

EXAMPLE 6.20 $(r = 3; n = 8; a = 6; d = 2)$. See also [[39](#page-27-0)] and [\[40\]](#page-27-0). If $X =$ $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1)\oplus \mathcal{O}(1)\oplus \mathcal{O}(4))$ or $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1)\oplus \mathcal{O}(2)\oplus \mathcal{O}(3))$ or $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(2)\oplus$ $\mathcal{O}(2) \oplus \mathcal{O}(2)$, then $|\mathcal{I}_{Y\cap S}(2)|$ defines a birational transformation $\mathbb{P}^8 \dashrightarrow S \subseteq$ \mathbb{P}^{14} of type (2, 2) whose base locus is X and whose image is $S = \mathbb{G}(1, 5)$.

EXAMPLE 6.21 ($r = 3; n = 8; a = 7; d = 1$). See also [[11](#page-25-0), Example 2.7] and [\[29\]](#page-26-0). Let $Z = \{p_1, \ldots, p_8\} \subset \mathbb{P}^2$ be such that no 4 of the p_i are collinear and no 7 of the p_i lie on a conic and consider the scroll $\mathbb{P}_{\mathbb{P}^2}(\mathscr{E}) \subset \mathbb{P}^7$ associated to the very ample vector bundle ℓ of rank 2, given as an extension by the following exact sequence $0 \to \mathcal{O}_{\mathbb{P}^2} \to \mathscr{E} \to \mathscr{I}_{Z,\mathbb{P}^2}(4) \to 0$. The homogeneous ideal of $X \subset \mathbb{P}^7$ is generated by 7 quadrics and so the linear system $|\mathscr{I}_{X,\mathbb{P}^8}(2)|$ defines a birational transformation $\psi : \mathbb{P}^8 \dashrightarrow S \subset \mathbb{P}^{15}$ of type $(2, 1)$. Since we have $c_1(X) = 12$, $c_2(X) = 15$, $c_3(X) = 6$, we deduce $s_1(\mathcal{N}_{X, \mathbb{P}^8}) = -60$, $s_2(\mathcal{N}_{X, \mathbb{P}^8}) = 267$, $s_3(\mathcal{N}_{X,\mathbb{P}^8}) = -909$, and hence deg(S) = 29, by (2.6). The base locus of the inverse of ψ is $\psi(\mathbb{P}^7) \simeq \mathbb{P}^6 \subset S \subset \mathbb{P}^{15}$. We also observe that the restriction of $\psi|_{\mathbb{P}^7} : \mathbb{P}^7 \dashrightarrow \mathbb{P}^6$ to a general hyperplane $H \simeq \mathbb{P}^6 \subset \mathbb{P}^7$ gives rise to a transformation as in Example 6.6.

EXAMPLE 6.22 $(r = 3; n = 8; a = 8, 9; d = 1)$. If $X \subset \mathbb{P}^7 \subset \mathbb{P}^8$ is a 3dimensional Edge variety of degree 7 (resp. degree 6), then $|\mathcal{I}_{X,\mathbb{P}^8}(2)|$ defines a birational transformation $\mathbb{P}^8 \longrightarrow S \subset \mathbb{P}^{16}$ (resp. $\mathbb{P}^8 \longrightarrow S \subset \mathbb{P}^{17}$) of type $(2, 1)$ whose base locus is X and whose degree of the image is deg(S) = 33 (resp. $deg(S) = 38$). For memory overflow problems, we were not able to calculate the scheme sing (S) ; however, it is easy to obtain that $1 \le \dim(\text{sing}(S)) < \dim(Y) =$ 6 and dim $(\text{sing}(Y)) = 1$, where Y denotes the base locus of the inverse.

EXAMPLE 6.23 $(r = 3; n = 8; a = 10; d = 1)$. See also [\[39\]](#page-27-0), [\[40\]](#page-27-0) and [\[43,](#page-27-0) III] Theorem 3.8]. We have a birational transformation $\mathbb{P}^{10} \longrightarrow \mathbb{G}(1,6) \subset \mathbb{P}^{20}$ of type (2, 1) whose base locus is $\mathbb{P}^1 \times \mathbb{P}^4 \subset \mathbb{P}^9 \subset \mathbb{P}^{10}$ and whose image is $\mathbb{G}(1, 6)$. Restricting it to a general $\mathbb{P}^8 \subset \mathbb{P}^{10}$ we obtain a birational transformation $\psi : \mathbb{P}^8 \longrightarrow S \subset \mathbb{P}^{18}$ whose base locus X is a rational normal scroll (hence either $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(3))$ or $X = \mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(2) \oplus \mathcal{O}(2)))$ and whose image S is a linear section of $\mathbb{G}(1,6) \subset \mathbb{P}^{20}$. We denote by $Y \subset S$ the base locus of the inverse of ψ and by $F = (F_0, \ldots, F_9) : \mathbb{P}^7 \dashrightarrow \mathbb{P}^9$ the restriction of ψ to $\mathbb{P}^7 = \text{Sec}(X)$. We have

$$
Y = \overline{\psi(\mathbb{P}^7)} = \overline{F(\mathbb{P}^7)} = \mathbb{G}(1, 4) \subset \mathbb{P}^9 \subset \mathbb{P}^{18},
$$

\n
$$
J_6 := \{x = [x_0, \dots, x_7] \in \mathbb{P}^7 \setminus X : \text{rank}((\partial F_i/\partial x_j(x))_{i,j}) \le 6\}_{\text{red}}
$$

\n
$$
= \{x = [x_0, \dots, x_7] \in \mathbb{P}^7 \setminus X : \underline{\dim}(\overline{F^{-1}(F(x))}) \ge 2\}_{\text{red}} \text{ and } \underline{\dim}(J_6) = 5,
$$

\n
$$
\overline{\psi(J_6)} = (\text{sing}(\mathbf{S}))_{\text{red}} \subset Y \text{ and } \underline{\dim}(\overline{\psi(J_6)}) = 3.
$$

7. Summary results

THEOREM 7.1. Table 1 classifies all special quadratic transformations φ as in §1 and with $r \leq 3$.

As a consequence, we generalize [\[41,](#page-27-0) Corollary 6.8].

COROLLARY 7.2. Let $\varphi : \mathbb{P}^n \longrightarrow S \subseteq \mathbb{P}^{n+a}$ be as in §1. If φ is of type (2, 3) and S has coindex $c = 2$, then $n = 8$, $r = 3$ and one of the following cases holds:

- $\Delta = 3$, $a = 1$, $\lambda = 11$, $q = 5$, $\mathfrak B$ is the blow-up of Q^3 at 5 points;
- $\Delta = 4$, $a = 2$, $\lambda = 10$, $q = 4$, \mathfrak{B} is a scroll over Q^2 ;
- $\Delta = 5$, $a = 3$, $\lambda = 9$, $g = 3$, \mathfrak{B} is a quadric fibration over \mathbb{P}^1 .

PROOF. We have that $\mathfrak{B} \subset \mathbb{P}^n$ is a *OEL*-variety of type $\delta = (r - d - c + 2)/d$ $(r-3)/3$ and $n = ((2d - 1)r + 3d + c - 2)/d = (5r + 9)/3$. From Divisibility Theorem [\[38,](#page-27-0) Theorem 2.8], we deduce $(r, n, \delta) \in \{(3, 8, 0), (6, 13, 1), (9, 18, 2)\}\$ and from the classification of CC-manifolds [\[30,](#page-26-0) Theorem 2.2], we obtain $(r, n, \delta) = (3, 8, 0)$. Now we apply the results in §5.

We can also regard Corollary 7.2 in the same spirit of [[41](#page-27-0), Theorem 5.1], where we have classified the transformations φ of type $(2, 2)$, when S has coindex 1. Moreover, in the same fashion, one can prove the following:

PROPOSITION 7.3. Let φ be as in §1 and of type (2, 1). If $c = 2$, then $r \ge 1$ and \mathfrak{B} is $\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$ or one of its linear sections. If $c = 3$, then $r \geq 2$ and \mathfrak{B} is either $\mathbb{P}^1 \times \mathbb{P}^3 \subset \mathbb{P}^7$ or $\mathbb{G}(1, 4) \subset \mathbb{P}^9$ or one of their linear sections. If $c = 4$, then $r \geq 3$ and **B** is either an OADP 3-fold in \mathbb{P}^7 or $\mathbb{P}^1 \times \mathbb{P}^4 \subset \mathbb{P}^9$ or one of its hyperplane sections.

In Table 1 we use the following shortcuts:

- \exists^* : flags cases for which is known a transformation φ with base locus $\mathfrak B$ as required, but we do not know if the image S satisfies all the assumptions in §1;
- \exists ^{**}: flags cases for which is known that there is a smooth irreducible variety $X \subset \mathbb{P}^n$ such that, if $X = V(H^0(\mathcal{I}_X(2)))$, then the linear system $|\mathcal{I}_X(2)|$ defines a birational transformation $\varphi : \mathbb{P}^n \longrightarrow S = \overline{\varphi(\mathbb{P}^n)} \subset \mathbb{P}^{n+a}$ as stated;
- ?: flags cases for which we do not know if there exists at least an abstract variety B having the structure and the invariants required;
- \exists : flags cases for which everything works fine.

r	\boldsymbol{n}	$\mathfrak a$	λ	\mathfrak{g}	Abstract structure of ⁹	\overline{d}	Δ	\mathcal{C}_{0}	Existence	
1	3	1	$\overline{2}$	Ω	$v_2(\mathbb{P}^1) \subset \mathbb{P}^2$	1	$\overline{2}$	1	\exists	Ex. 6.1
	$\overline{\mathcal{L}}$	θ	5	$\mathbf{1}$	Elliptic curve	3	$\mathbf{1}$	Ω	\exists	Ex. 6.2
	4	1	4	Ω	$v_4(\mathbb{P}^1) \subset \mathbb{P}^4$	$\overline{2}$	$\mathfrak{2}$	1	\exists	Ex. 6.3
	4	3	3	θ	$v_3(\mathbb{P}^1) \subset \mathbb{P}^3$	1	5	$\overline{2}$	\exists	Ex. 6.5
$\overline{2}$	$\overline{4}$	$\mathbf{1}$	$\overline{2}$	θ	$\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$	1	$\overline{2}$	1	\exists	Ex. 6.1
	5	θ	4	θ	$v_2(\mathbb{P}^2) \subset \mathbb{P}^5$	$\overline{2}$	1	0	\exists	Ex. 6.3
	5	3	3	θ	Hyperplane section of $\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$	$\mathbf{1}$	5	$\overline{2}$	\exists	Ex. 6.5
	6	Ω	7	1	Elliptic scroll $P_C(\mathscr{E})$ with $e(\mathscr{E}) = -1$	$\overline{4}$	$\mathbf{1}$	Ω	\exists	Ex. 6.6
	6	Ω	8	\mathcal{E}	Blow-up of \mathbb{P}^2 at 8 points p_1, \ldots, p_8 , $ H_{\mathfrak{B}} = 4H_{\mathbb{P}^2} - p_1 - \cdots - p_8 $	$\overline{4}$	1	Ω	ㅋ	Ex. 6.6
	6	1	7	$\overline{2}$	Blow-up of \mathbb{P}^2 at 6 points p_0, \ldots, p_5 , $ H_{\mathfrak{B}} = 4H_{\mathbb{P}^2} - 2p_0 - p_1 - \cdots - p_5 $	3	$\overline{2}$	1	\exists	Ex. 6.7
	6	$\overline{2}$	6	$\mathbf{1}$	Blow-up of \mathbb{P}^2 at 3 points p_1 , p_2 , p_3 , $ H_{\mathfrak{B}} = 3H_{\mathbb{P}^2} - p_1 - p_2 - p_3 $	$\overline{2}$	$\overline{4}$	$\overline{2}$	\exists	Ex. 6.8
	6	3	5	θ	$\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(4))$ or $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(2) \oplus \mathcal{O}(3))$	$\mathfrak{2}$	5	$\overline{2}$	\exists	Ex. 6.9
	6	5	5	$\mathbf{1}$	Blow-up of \mathbb{P}^2 at 4 points $p_1 \dots, p_4$, $ H_{\mathfrak{B}} = 3H_{\mathbb{P}^2} - p_1 - \cdots - p_4 $	$\mathbf{1}$	12	3	\exists	Ex. 6.10
	6	6	4	θ	$\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(1) \oplus \mathcal{O}(3))$ or $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O}(2) \oplus \mathcal{O}(2))$	1	14	3	\exists	Ex. 6.11
3	5	1	$\overline{2}$	Ω	$Q^3 \subset \mathbb{P}^4$	$\mathbf{1}$	$\overline{2}$	1	\exists	Ex. 6.1
	6	3	3	Ω	$\mathbb{P}^1 \times \mathbb{P}^2 \subset \mathbb{P}^5$	1	5	$\mathcal{D}_{\mathcal{L}}$	\exists	Ex. 6.5
	7	1	6	$\mathbf{1}$	Hyperplane section of $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$	$\overline{2}$	\mathfrak{D}	$\mathbf{1}$	\exists	Ex. 6.3
	7	5	5	$\mathbf{1}$	Linear section of $\mathbb{G}(1,4) \subset \mathbb{P}^9$	$\mathbf{1}$	12	3	\exists	Ex. 6.10
	7	6	4	θ	$\mathbb{P}_{\mathbb{D}^1}(\mathcal{O}(1) \oplus \mathcal{O}(1) \oplus \mathcal{O}(2))$	$\mathbf{1}$	14	3	\exists	Ex. 6.11

Table 1. All transformations φ as in §1 and with $r \leq 3$

3	8	θ	12	6	Scroll $\mathbb{P}_Y(\mathscr{E})$, Y birat. ruled surface, $K_Y^2 = 5$, $c_2(\mathscr{E}) = 8$, $c_1^2(\mathscr{E}) = 20$	5	1	Ω	γ	
	8	Ω	13	$\mathsf{\overline{R}}$	Variety obtained as the projection of a Fano variety X from a point $p \in X$	5	1	Ω	\exists	Ex. 6.12
	8	1	11	5	Blow-up of Q^3 at 5 points p_1, \ldots, p_5 , $ H_{\mathfrak{B}} = 2H_{Q^3} - p_1 - \cdots - p_5 $	\mathcal{E}	3	$\overline{2}$	\exists	Ex. 6.13
	8	1	11	5	Scroll over $\mathbb{P}_{\mathbb{P}^1}(\mathcal{O} \oplus \mathcal{O}(-1))$	$\overline{4}$	\mathfrak{D}	1	\exists^{**}	Ex. 6.14
	8	1	12	7	Linear section of $S^{10} \subset \mathbb{P}^{15}$	$\overline{4}$	$\overline{2}$	1	\exists	Ex. 6.15
	8	\mathfrak{D}	10	4	Scroll over Q^2	\mathcal{E}	4	\mathfrak{D}	\exists^*	Ex. 6.16
	8	3	9	3	Scroll over \mathbb{P}^2	$\overline{2}$	8	\mathcal{L}	FE	Ex. 6.17
	8	3	9	3	Quadric fibration over \mathbb{P}^1	3	5	\mathfrak{D}	\exists^*	Ex. 6.17
	8	$\overline{\mathcal{A}}$	8	$\overline{2}$	Hyperplane section of $\mathbb{P}^1 \times Q^3$	\mathfrak{D}	10	\mathcal{L}	\exists^*	Ex. 6.18
	8	6	6	Ω	Rational normal scroll	\mathcal{L}	14	3	ㅋ	Ex. 6.20
	8	7	8	3	$\mathbb{P}_{\mathbb{P}^2}(\mathscr{E}),$ where $0 \to \mathcal{O}_{\mathbb{P}^2} \to$ $\rightarrow \mathscr{E} \rightarrow \mathscr{I}_{\{p_1,\dots,p_8\},\,\mathbb{P}^2}(4) \rightarrow 0$	1	29	$\overline{4}$	\exists^*	Ex. 6.21
	8	8	7	$\overline{2}$	Edge variety	1	33	$\overline{\mathcal{A}}$	\exists^*	Ex. 6.22
	8	9	6	1	$\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^7$	1	38	4	\exists^*	Ex. 6.22
	8	10	5	Ω	Rational normal scroll	1	42	$\overline{4}$	\exists	Ex. 6.23

Table 1 (Continued)

8. Towards the case of dimension 4

In this section we treat the case in which $r = 4$. However, when $\delta = 0$, we are well away from having an exhaustive classification.

Proposition 8.1 follows from [[38](#page-27-0), Propositions 1.3, 3.4, Corollary 3.2] and [\[30,](#page-26-0) Theorem 2.2].

PROPOSITION 8.1. If $r = 4$, then either $n = 10$, $d \ge 2$, $\langle \mathfrak{B} \rangle = \mathbb{P}^{10}$, or one of the following cases holds:

- $n = 6, d = 1, \delta = 4, \mathfrak{B} = Q^4 \subset \mathbb{P}^5$ is a quadric;
- $n = 8$, $d = 1$, $\delta = 2$, $\mathfrak{B} \subseteq \mathbb{P}^7$ is either $\mathbb{P}^1 \times \mathbb{P}^3 \subseteq \mathbb{P}^7$ or a linear section of $\mathbb{G}(1,4) \subset \mathbb{P}^9;$
- $n = 8$, $d = 2$, $\delta = 2$, \mathfrak{B} is $\mathbb{P}^2 \times \mathbb{P}^2 \subset \mathbb{P}^8$;
- $n = 9, d = 1, \delta = 1, \mathfrak{B}$ is a hyperplane section of $\mathbb{P}^1 \times \mathbb{P}^4 \subset \mathbb{P}^9$;
- $n = 10$, $d = 1$, $\delta = 0$, $\mathfrak{B} \subset \mathbb{P}^9$ is an OADP-variety.

In Proposition 8.2, we more generally assume that the image S is nondegenerate, normal and linearly normal (not necessarily factorial) and furthermore we do

not assume Assumptions 1.2 and 1.4. As noted earlier, we have $P_{\mathfrak{B}}(1) = 11$ and $P_{\mathfrak{B}}(2)=55-a$ and hence

$$
P_{\mathfrak{B}}(t) = \lambda \binom{t+3}{4} + (1-g) \binom{t+2}{3} + (2g - 3\lambda + \chi(\mathcal{O}_{\mathfrak{B}}) - a + 31) \binom{t+1}{2} + (-g + 2\lambda - 2\chi(\mathcal{O}_{\mathfrak{B}}) + a - 21)t + \chi(\mathcal{O}_{\mathfrak{B}}).
$$

PROPOSITION 8.2. If $r = 4$, $n = 10$ and $\langle \mathfrak{B} \rangle = \mathbb{P}^{10}$, then one of the following cases holds:

- $a = 10$, $\lambda = 7$, $g = 0$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is a rational normal scroll;
- $a = 7$, $\lambda = 10$, $q = 3$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is either – a hyperplane section of $\mathbb{P}^1 \times Q^4 \subset \mathbb{P}^{11}$ or $- \mathbb{P}(\mathscr{T}_{\mathbb{D}^2} \oplus \mathscr{O}_{\mathbb{D}^2}(1)) \subset \mathbb{P}^{10}$;
- $a = 6$, $\lambda = 11$, $g = 4$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is a quadric fibration over \mathbb{P}^1 ;
- $a = 5$, $\lambda = 12$, $g = 5$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is one of the following:
- \mathbb{P}^4 blown up at 4 points $p_1 \ldots, p_4$ embedded by $|2H_{\mathbb{D}^4} p_1 \cdots p_4|$, – a scroll over a ruled surface,
- $-$ a quadric fibration over \mathbb{P}^1 ;
- $a = 4$, $\lambda = 14$, $g = 8$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is either – a linear section of $\mathbb{G}(1,5) \subset \mathbb{P}^{14}$ or
	- the product of \mathbb{P}^1 with a Fano variety of even index;
- $a = 4$, $\lambda = 13$, $g = 6$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$, \mathfrak{B} is either – a scroll over a birationally ruled surface or - a quadric fibration over \mathbb{P}^1 ;
- $a = 3, 14 \le \lambda \le 16, g \le 11, \chi(\mathcal{O}_{\mathfrak{B}}) = (-g + 2\lambda 18)/3;$
- $a = 2, 15 \le \lambda \le 18, g \le 14, \chi(\mathcal{O}_{\mathfrak{B}}) = (-g + 2\lambda 19)/3;$
- $a = 1, 15 \le \lambda \le 20, g \le 17, \chi(\mathcal{O}_{\mathfrak{B}}) = (-g + 2\lambda 20)/3;$
- $a = 0, 15 \leq \lambda$.

PROOF. Denote by $\Lambda \subsetneq C \subsetneq S \subsetneq X \subsetneq \mathfrak{B}$ a sequence of general linear sections of B and put $h_{\Lambda}(2) := h^0(\mathbb{P}^6, \mathcal{O}(2)) - h^0(\mathbb{P}^6, \mathcal{I}_{\Lambda}(2))$. Since C is a nondegenerate curve in \mathbb{P}^7 , we have $\lambda \geq 7$. By Castelnuovo's argument [[41](#page-27-0), Lemma 6.1], it follows that

$$
(8.1) \t7 \le \min\{\lambda, 13\} \le h_{\Lambda}(2) \le 28 - h^{0}(\mathbb{P}^{10}, \mathcal{I}_{\mathfrak{B}}(2)) = 17 - a
$$

and in particular we have $a \leq 10$. Moreover

- if $\lambda \geq 13$, then $h_{\Delta}(2) \geq 13$ and $a \leq 4$, by (8.1);
- if $\lambda \geq 15$, then $h_{\Delta}(2) \geq 14$ and $a \leq 3$, by Castelnuovo Lemma [\[10,](#page-25-0) Lemma 1.10];
- if $\lambda \geq 17$, then $h_{\Delta}(2) \geq 15$ and $a \leq 2$, by [\[10,](#page-25-0) Theorem 3.1];
- if $\lambda \geq 19$, then $h_{\Delta}(2) \geq 16$ and $a \leq 1$, by [\[10,](#page-25-0) Theorem 3.8];
- if $\lambda \geq 21$, then $h_{\Delta}(2) \geq 17$ and $a = 0$, by [[37](#page-27-0), Theorem 2.17(b)].

According to the above statements, we consider the refinement $\theta = \theta(\lambda)$ of Castelnuovo's bound $\rho = \rho(\lambda)$, contained in [[10](#page-25-0), Theorem 2.5]. So, we have

$$
(8.2) \qquad K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^3 = 2g - 2 - 3\lambda \le 2\theta(\lambda) - 2 - 3\lambda \le 2\rho(\lambda) - 2 - 3\lambda.
$$

Now, if $t \geq 1$, by Kodaira Vanishing Theorem and Serre Duality, it follows that $P_{\mathfrak{B}}(-t) = h^4(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}}(-t)) = h^0(\mathfrak{B}, K_{\mathfrak{B}}+tH_{\mathfrak{B}});$ hence, if $P_{\mathfrak{B}}(-t) \neq 0$, then $K_{\mathfrak{B}} + tH_{\mathfrak{B}}$ is an effective divisor and we have either $K_{\mathfrak{B}} \cdot H_{\mathfrak{B}}^3 > -tH_{\mathfrak{B}}^4 = -t\lambda$ or $K_{\mathfrak{B}} \sim -tH_{\mathfrak{B}}$. Thus, by (8.2) and straightforward calculation, we deduce (see Figure 1):

Figure 1. Upper bounds of $K_{\mathfrak{B}} \cdot H^3_{\mathfrak{B}}$

(8.2.a) if $\lambda \le 8$, then either $P_{\mathfrak{B}}(-3) = P_{\mathfrak{B}}(-2) = P_{\mathfrak{B}}(-1) = 0$ or $\lambda = 8$ and $K_{\mathfrak{B}} \sim -3H_{\mathfrak{B}};$

(8.2.b) if $\lambda \leq 14$, then either $P_{\mathfrak{B}}(-2) = P_{\mathfrak{B}}(-1) = 0$ or $\lambda = 14$ and $K_{\mathfrak{B}} \sim -2H_{\mathfrak{B}}$; (8.2.c) if $\lambda \leq 24$, then either $P_{\mathfrak{B}}(-1) = 0$ or $\lambda = 24$ and $K_{\mathfrak{B}} \sim -H_{\mathfrak{B}}$.

In the same way, one also sees that $h^4(\mathfrak{B}, \mathcal{O}_{\mathfrak{B}}) = 0$ whenever $\lambda \leq 31$. Now we discuss the cases according to the value of a.

CASE 8.2.1 ($9 \le a \le 10$). We have $\lambda \le 8$. From the classification of del Pezzo varieties in [[19](#page-26-0), I §8], we see that the case $\lambda = 8$ with $K_{\mathfrak{B}} \sim -3H_{\mathfrak{B}}$ is impossible and so we obtain $\lambda = 11 - 2a/5$, $g = 1 - a/10$, by (8.2.a). Hence $a = 10$, $\lambda = 7$, $g = 0$ and \mathfrak{B} is a rational normal scroll.

CASE 8.2.2 ($5 \le a \le 8$). We have $\lambda \le 12$. By (8.2.b) we obtain $g =$ $(3\lambda + a - 31)/2$ and $\chi(\mathcal{O}_{\mathfrak{B}}) = (\lambda + a - 11)/6$ and, since $\chi(\mathcal{O}_{\mathfrak{B}}) \in \mathbb{Z}$, we obtain $\lambda = 17 - a$, $g = 10 - a$, $\chi(\mathcal{O}_{\Re}) = 1$. So, we can determine the abstract structure of \mathfrak{B} by [\[17\]](#page-26-0), [\[6](#page-25-0)], [\[27,](#page-26-0) Theorem 2], [\[7,](#page-25-0) Lemmas 4.1 and 6.1] and we also deduce that the case $a = 8$ does not occur, by [\[16\]](#page-26-0).

CASE 8.2.3 ($a = 4$). We have $\lambda \leq 14$. Again by (8.2.b), we deduce that either $g = (3\lambda - 27)/2$ and $\chi(\mathcal{O}_{\mathfrak{B}}) = (\lambda - 7)/6$ or \mathfrak{B} is a Mukai variety with $\lambda = 14$ $(g = 8 \text{ and } \chi(\mathcal{O}_{\mathfrak{B}}) = 1)$. In the first case, since $\chi(\mathcal{O}_{\mathfrak{B}}) \in \mathbb{Z}$ and $g \geq 0$, we obtain $\lambda = 13$, $g = 6$, $\gamma(\mathcal{O}_{\mathfrak{B}}) = 1$ and then we can determine the abstract structure of B by [\[26,](#page-26-0) Theorem 1] and [\[7](#page-25-0), Lemmas 4.1 and 6.1]. In the second case, if $b_2 =$ $b_2(\mathfrak{B}) = 1$ then \mathfrak{B} is a linear section of $\mathbb{G}(1, 5) \subset \mathbb{P}^{14}$, otherwise \mathfrak{B} is a Fano variety of product type, see [[35](#page-27-0), Theorems 2 and 7].

CASE 8.2.4 ($a = 3$). We have $\lambda \le 16$ and $\chi(\mathcal{O}_{\mathfrak{B}}) = (-g + 2\lambda - 18)/3$, by (8.2.c). Moreover, if $\lambda \le 14$, by (8.2.b) it follows that $\lambda = 14$, $q = 7$ and $\gamma(\mathcal{O}_{\mathfrak{B}}) = 1$.

CASE 8.2.5 ($a = 2$). We have $\lambda \le 18$ and $\chi(\mathcal{O}_{\mathfrak{B}}) = (-g + 2\lambda - 19)/3$, by (8.2.c). Moreover, by (8.2.b) it follows that $\lambda \geq 15$.

CASE 8.2.6 ($a = 1$). We have $\lambda \le 20$ and $\gamma(\mathcal{O}_{\mathfrak{B}}) = (-q + 2\lambda - 20)/3$, by (8.2.c). Moreover, if $\lambda \leq 14$, by (8.2.b) it follows that $\lambda = 10$, $g = 0$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 0$, which is of course impossible.

CASE 8.2.7 ($a = 0$). If $\lambda \le 14$, by (8.2.b) and (8.2.c) it follows that $\lambda = 11$, $q = 1$, $\gamma(\mathcal{O}_{\mathfrak{B}})=0$. Thus, $\mathfrak B$ must be an elliptic scroll and φ must be of type $(2,6)$; so, by (8.3) we obtain the contradiction $c_2(\mathfrak{B}) \cdot H^2_{\mathfrak{B}} = (990 + c_4(\mathfrak{B}))/37 = 990/37 \notin \mathbb{Z}$. \Box

REMARK 8.3. Under the hypothesis of Proposition 8.2, reasoning as in Proposition 2.2, we obtain that if φ is of type $(2, d)$, then

(8.3)
$$
37c_2(\mathfrak{B}) \cdot H^2_{\mathfrak{B}} - c_4(\mathfrak{B}) = -231\lambda + 188g + (1 - 9d)\Delta + 3396,
$$

$$
(8.4) \qquad 37c_3(\mathfrak{B}) \cdot H_{\mathfrak{B}} + 7c_4(\mathfrak{B}) = 655\lambda - 428g + (26d - 7)\Delta - 5716.
$$

REMARK 8.4. If Eisenbud-Green-Harris Conjecture $I_{11,6}$ holds (see [\[15\]](#page-26-0)), then we have that $\lambda \le 24$, even in the case with $a = 0$. If $a = 0$ and $\lambda \le 24$, we have $g \leq \theta(24) = 25$ and one of the following cases holds:

- $\lambda = 24$, $g = 25$, $\chi(\mathcal{O}_{\mathfrak{B}}) = 1$ and \mathfrak{B} is a Fano variety of coindex 4;
- $q \leq 24$ and $\gamma(\mathcal{O}_{\mathfrak{B}})=(-q+2\lambda-21)/3$.

EXAMPLE 8.5. Note that in Proposition 8.1, all cases with $\delta > 0$ really occur (see §6); when $\delta = 0$, an example is obtained by taking a general 4-dimensional linear section of $\mathbb{P}^1 \times \mathbb{P}^5 \subset \mathbb{P}^{11} \subset \mathbb{P}^{12}$. Below we collect some examples of special quadratic birational transformations appearing in Proposition 8.2.

• If $X \subset \mathbb{P}^{10}$ is a (smooth) 4-dimensional rational normal scroll, then $|\mathscr{I}_{X,\mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \mathbb{G}(1,6) \subset \mathbb{P}^{20}$ of type $(\overline{2}, \overline{2})$.

- • If $X \subset \mathbb{P}^{10}$ is a general hyperplane section of $\mathbb{P}^1 \times Q^4 \subset \mathbb{P}^{11}$, then $|\mathscr{I}_{X, \mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \psi(\mathbb{P}^{10}) \subset \mathbb{P}^{17}$ of type $(2, 2)$ whose image has degree 28.
- If $X = \mathbb{P}(\overline{\mathcal{I}}_{\mathbb{P}^2} \oplus \mathcal{O}_{\mathbb{P}^2}(1)) \subset \mathbb{P}^{10}$, since $h^1(X, \mathcal{O}_X) = h^1(\mathbb{P}^2, \mathcal{O}_{\mathbb{P}^2}) = 0$, $|\mathcal{I}_{X, \mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \overline{\psi(\mathbb{P}^{10})} \subset \mathbb{P}^{17}$ (see Facts 1.7 and 1.6).
- There exists a smooth linearly normal 4-dimensional variety $X \subset \mathbb{P}^{10}$ with $h^1(X, \mathcal{O}_X) = 0$, degree 11, sectional genus 4, having the structure of a quadric fibration over \mathbb{P}^1 (see [6, Remark 3.2.5]); thus $|\mathscr{I}_{X,\mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \psi(\mathbb{P}^{10}) \subset \mathbb{P}^{16}$ (see Facts 1.7 and 1.6).
- If $X \subseteq \mathbb{P}^{10}$ is the blow-up of \mathbb{P}^4 at 4 general points p_1, \ldots, p_4 , embedded by $|2H_{\mathbb{P}^4} - p_1 - \cdots - p_4|$, then $|\mathscr{I}_{X,\mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \overline{\psi(\mathbb{P}^{10})} \subset \mathbb{P}^{15}$ whose image has degree 29; in this case Sec (X) is a complete intersection of two cubics.
- If $X \subset \mathbb{P}^{10}$ is a general 4-dimensional linear section of $\mathbb{G}(1, 5) \subset \mathbb{P}^{14}$, then $|\mathscr{I}_{X,\mathbb{P}^{10}}(2)|$ defines a birational transformation $\psi : \mathbb{P}^{10} \longrightarrow \overline{\psi(\mathbb{P}^{10})} \subset \mathbb{P}^{14}$ of type $(2, 2)$ whose image is a complete intersection of quadrics.

ACKNOWLEDGEMENTS. The author wishes to thank Prof. Francesco Russo for helpful discussions on this paper.

REFERENCES

- [1] A. Alzati, Special linear systems and syzygies, Collect. Math., 59:239–254, 2008.
- [2] A. Alzati G. M. Besana, Criteria for very ampleness of rank two vector bundles over ruled surfaces, Available at http://arxiv.org/abs/0902.3639, 2009.
- [3] A. ALZATI F. RUSSO, Special subhomaloidal systems of quadrics and varieties with one apparent double point, Math. Proc. Camb. Philos. Soc., 134(1):65–82, 2003.
- [4] A. ALZATI J. C. SIERRA, Special birational transformations of projective spaces, Available at http://arxiv.org/abs/1203.5690, 2012.
- [5] M. C. BELTRAMETTI A. J. SOMMESE, The Adjunction Theory of Complex Projective Varieties, De Gruyter expositions in mathematics 16, de Gruyter, 1995.
- [6] G. M. BESANA A. BIANCOFIORE, Degree eleven manifolds of dimension greater or equal to three, Forum Math., 17(5):711–733, 2005.
- [7] G. M. Besana A. Biancofiore, Numerical constraints for embedded projective manifolds, Forum Math., 17(4):613–636, 2005.
- [8] G. M. BESANA M. L. FANIA, The dimension of the Hilbert scheme of special threefolds, Comm. Algebra, 33(10):3811–3829, 2005.
- [9] G. M. BESANA M. L. FANIA F. FLAMINI, Hilbert scheme of some threefold scrolls *over* \mathbb{F}_1 , Available at http://arxiv.org/abs/1110.5464, 2011.
- [10] C. CILIBERTO, *Hilbert functions of finite sets of points and the genus of a curve in a pro*jective space, In Space Curves, volume 1266 of Lecture Notes in Mathematics, pages 24–73. Springer Berlin/Heidelberg, 1987.
- [11] C. CILIBERTO M. MELLA F. RUSSO, Varieties with one apparent double point, J. Algebraic Geom., 13(3):475–512, 2004.
- [12] B. CRAUDER - S. KATZ, Cremona transformations with smooth irreducible fundamental locus, Amer. J. Math., 111(2):289–307, 1989.
- [13] B. CRAUDER S. KATZ, Cremona transformations and Hartshorne's conjecture, Amer. J. Math., 113(2):269–285, 1991.
- [14] L. EIN N. SHEPHERD-BARRON, Some special Cremona transformations, Amer. J. Math., 111(5):783–800, 1989.
- [15] D. EISENBUD M. GREEN J. HARRIS, Some conjectures extending Castelnuovo theory, Astérisque, 218:187-202, 1993.
- [16] M. L. FANIA E. L. LIVORNI, Degree nine manifolds of dimension greater than or equal to 3, Math. Nachr., 169(1):117–134, 1994.
- [17] M. L. Fania E. L. Livorni, Degree ten manifolds of dimension n greater than or equal to 3, Math. Nachr., 188(1):79–108, 1997.
- [18] T. FUJITA, *Projective threefolds with small secant varieties*, Sci. pap. Coll. Gen. Educ. Univ. Tokyo., 32:33–46, 1982.
- [19] T. FUJITA, Classification Theories of Polarized Varieties, volume 155 of London Math. Soc. Lecture Notes Ser, Cambridge Univ. Press, 1990.
- [20] D. R. GRAYSON M. E. STILLMAN, Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/, 2010.
- [21] A. GROTHENDIECK, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, volume 2, North-Holland Publishing Co., 1968, Séminaire de Ge´ome´trie Alge´brique du Bois-Marie, 1962 (SGA 2). Advanced Studies in Pure Mathematics.
- [22] R. Hartshorne, Ample subvarieties of algebraic varieties, volume 156 of Lecture Notes in Mathematics, Springer-Verlag, 1970.
- [23] R. HARTSHORNE, Algebraic Geometry, volume 52 of Graduate Texts in Mathematics, Springer-Verlag, 1977.
- [24] K. HULEK S. KATZ F.-O. SCHREYER, Cremona transformations and syzygies, Math. Z., 209:419–443, 1992.
- [25] P. Ionescu, Embedded projective varieties of small invariants, In Algebraic Geometry Bucharest 1982, volume 1056 of Lecture Notes in Mathematics, pages 142–186. Springer Berlin/Heidelberg, 1984.
- [26] P. Ionescu, On varieties whose degree is small with respect to codimension, Math. Ann., 271:339–348, 1985.
- [27] P. Ionescu, Embedded projective varieties of small invariants, II, Rev. Roumaine Math. Pures Appl., 31:539–544, 1986.
- [28] P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc., 99(03):457–472, 1986.
- [29] P. Ionescu, Embedded projective varieties of small invariants, III, In Algebraic Geometry, volume 1417 of Lecture Notes in Mathematics, pages 138–154. Springer Berlin/ Heidelberg, 1990.
- [30] P. IONESCU F. RUSSO, *Conic-connected manifolds*, J. reine angew. Math., 2010:145– 157, 2010.
- [31] D. LAKSOV, Some enumerative properties of secants to non-singular projective schemes, Math. Scand., 39:171–190, 1976.
- [32] M. E. LARSEN, On the topology of complex projective manifolds, Invent. Math., 19:251–260, 1973.
- [33] M. MELLA E. POLASTRI, *Equivalent birational embeddings*, Bull. London Math. Soc., 41(1):89–93, 2009.
- [34] M. MELLA - F. RUSSO, Special Cremona transformations whose base locus has dimension at most three, Preprint, 2005.
- [35] S. MUKAI, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Natl. Acad. Sci. USA, 86(9):3000–3002, 1989.
- [36] C. A. M. Peters J. Simonis, A secant formula, Quart. J. Math., 27(2):181–189, 1976.
- [37] I. PETRAKIEV, Castelnuovo theory via Gröbner bases, J. Reine Angew. Math., 619:49– 73, 2008.
- [38] F. Russo, Varieties with quadratic entry locus, I, Math. Ann., 344:597–617, 2009.
- [39] F. Russo A. Simis, On birational maps and Jacobian matrices, Compositio Math., 126:335–358, 2001.
- [40] J. G. SEMPLE, On representations of the S_k 's of S_n and of the Grassmann manifolds $G(k, n)$, Proc. London Math. Soc., s2-32(1):200–221, 1931.
- [41] G. STAGLIANO, On special quadratic birational transformations of a projective space into a hypersurface, Available at http://arxiv.org/abs/1203.5417, 2012.
- [42] P. Vermeire, Some results on secant varieties leading to a geometric flip construction, Compositio Math., 125:263–282, 2001.
- [43] F. L. Zak, Tangents and secants of algebraic varieties, volume 127 of Translations of Mathematical Monographs, AMS, Providence, RI, 1993.

Received 19 October 2012, and in revised form 28 October 2012.

> Ph.D. in Mathematics (XXIII cycle) University of Study of Catania gstagliano@dmi.unict.it