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ABSTRACT. — We study birational transformations ¢ : P" -—— ¢p(P") < PV defined by linear sys-
tems of quadrics whose base locus is smooth and irreducible of dimension < 3 and whose image
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INTRODUCTION

In this note we continue the study of special quadratic birational transformations
@:P"—8S:=p(P") = P started in [41], by reinterpreting techniques and well-
known results on special Cremona transformations (see [12], [13], [14] and [24]).
While in [41] we required that S was a hypersurface, here we allow more freedom
in the choice of S, but we only treat the case in which the dimension of the base
locus B is r = dim(B) < 3. In the last section, we shall also obtain partial results
in the case r = 4.

Note that for every closed subscheme X < P! cut out by the quadrics con-
taining it, we can consider P"~! as a hyperplane in P” and hence X as a sub-
scheme of P”. So the linear system |.#x p»(2)| of all quadrics in " containing
X defines a quadratic rational map ¥ : P" -— PV (N =h%(Iy pr(2)) — 1 =
n+h0(fX,PH (2))), which is birational onto the image and whose inverse is
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defined by linear forms, i.e. ¥ is of type (2, 1). Conversely, every birational trans-
formation ¥ : P" —— (P") = P of type (2,1) whose image is nondegenerate,
normal and linearly normal arise in this way. From this it follows that there
are many (special) quadratic transformations. However, when the image S of
the transformation ¢ is sufficiently regular, by straightforward generalization of
[14, Proposition 2.3], we obtain strong numerical and geometric restrictions on
the base locus B. For example, as soon as S is not too much singular, the secant
variety Sec(B) = P” has to be a hypersurface and B has to be a QFL-variety of
type 0 = 0(B) = 2dim(B) + 2 — n; in particular n < 2dim(B) + 2 and Sec(B) is
a hyperplane if and only if ¢ is of type (2,1). So the classification of transforma-
tions ¢ of type (2, 1) whose base locus has dimension < 3 essentially follows from
classification results on QFL-manifold: [38, Propositions 1.3 and 3.4], [30, Theo-
rem 2.2] and [11, Theorems 4.10 and 7.1].

When ¢ is of type (2,d) with d > 2, then Sec(B) is a nonlinear hypersurface
and it is not so easy to exhibit examples. The most difficult cases of this kind are
those for which n = 2r+ 2 i.e. 6 = 0. In order to classify these transformations,
we first determine the Hilbert polynomial of B in Lemmas 4.2 and 5.2, by using
the usual Castelnuovo’s argument, Castelnuovo’s bound and some refinement
of Castelnuovo’s bound, see [10] and [34]. Consequently we deduce Propositions
4.4 and 5.7 by applying the classification of smooth varieties of low degree: [25],
[27], [29], [16], [17], [6], [26]. We also apply the double point formula in Lemmas:
4.3, 5.3, 54, 5.5 and 5.6, in order to obtain additional informations on d and
A = deg(S).

We summarize our classification results in Table 1. In particular, we provide
an answer to a question left open in the recent preprint [4].

1. NOTATION AND GENERAL RESULTS

Throughout the paper we work over C and keep the following setting.

AsSUMPTION 1.1. Let ¢ : P" —— S := ¢(P") = P"** be a quadratic birational
transformation with smooth connected base locus B and with S nondegenerate,
linearly normal and factorial.

Recall that we can resolve the indeterminacies of ¢ with the diagram

(1.1) / \

where 7 : P" = Blg(P") — P" is the blow-up of P” along B and 7' =
pon:P" —S. Denote by B’ the base locus of ¢!, E the exceptional divisor
of n, E'=n"YB'), H=n"(Hp), H' =n"(Hs), and note that, since
n’|@,\E, : P"\E’ — S\B' is an isgmorphism, we have (sing(S)),.q = (B)oq- We
also put r = dim(B), r' = dim(B"), 1 = deg(B), g = g(B) the sectional genus of
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B, ¢; = ¢;(7p) - Hy ' (tesp. s; = 5;(Nig pn) - Hyy ) the degree of the j-th Chern
class (resp. Segre class) of B, A = deg(S), ¢ = ¢(S) the coindex of S (the last of
which is defined by —Kiegs) ~ (1 + 1 — ¢) Hyeg(s), Wwhenever Pic(S) = Z{Hs)).

AssuMPTION 1.2. We suppose that there exists a rational map ¢ : P"™ - P”
defined by a sublinear system of |Opna(d)| and having base locus B such that
¢! = ¢|lg and B = B ~'S. We then will say that ¢p~! is /iftable and that ¢ is of

type (2,d).

REMARK 1.3. Ifa>2and y : P" - Z := (P") = P"" is a birational trans-
formation with Z factorial, from [33] it follows that there exists a Cremona
transformation ¢ : P"*¢ ——» P"* such that Y(Z) ~ P" = P"™ and y ' = y|,;
in particular, if @ denotes the linear projection of P"** onto J(Z), we have
Yyl = (wo 1/;)|Z. But this in general does not ensure the liftability of YL, be-
cause we only have that Bs(jy ') = Bs(w o /) N Z.

Assumption 1.2 yields the relations:

H' ~2H - E, H~dH —E,

(1.2) , / /

E'~(2d —1)H —dE, E~ (2d—1)H' —2E'
and hence also Pic(P") ~ Z{H) @ Z{E) ~ Z{H') ® Z<{E'). Note that, by the
proofs of [14, Proposition 1.3 and 2.1(a)] and by factoriality of S, we obtain that
E'is a reduced and irreducible divisor. Moreover we have Pic(S) ~ Pic(S\B') ~
Pic(P"\E') ~ Z{H')y ~ 7Z{Hs). Finally, we require the following:!

ASSUMPTION 1.4. (sing(S)),.q # (B')eq-

Now we point out that, since E’ is irreducible, by Assumption 1.4 and [14,
Theorem 1.1], we deduce that #’|, : V" — U coincides with the blow-up of U
along Z, where U = reg(S)\sing((B'),eq), V' =71 (U) and Z = U N (B') 4. It
follows that Kgi ~ (-n—1)H +(n—r—1)E~(c—n—1)H"+(n—r"—1)E',
from which, together with (1.2), we obtain 2r+3—n=n—r'—1 and ¢ =
(1 =2d)r+dn—3d+2. One can also easily see that, for the general point
x € Sec(B)\B, ¢ '(p(x)) is a linear space of dimension n—r'—1 and
¢~ '(p(x)) "B is a quadric hypersurface, which coincides with the entry locus
2 (B) of B with respect to x. For more details we refer the reader to [14, Propo-
sition 2.3] and [41, Proposition 3.1]. So we can establish one of the main results
useful for our purposes:

ProPoOSITION 1.5. Sec(B) = P” is a hypersurface of degree 2d — 1 and B is a
QFEL-variety of type 6 =2r+2 —n.

!See Example 6.4 and [41, Example 4.6] for explicit examples of special quadratic birational
transformations for which Assumption 1.4 is not satisfied.
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In many cases, B has a much stronger property of being QFL-variety. Recall
that a subscheme X = P” is said to have the K, property if X is cut out by qua-
dratic forms Fy, ..., Fy such that the Koszul relations among the F; are generated
by linear syzygies. We have the following fact (see [42] and [1]):

Fact 1.6. Let X = P" be a smooth variety cut out by quadratic forms Fy, ..., Fy
satisfying K property and let F = [Fy, ..., Fy] : P" —» P" be the induced rational
map. Then for every x € P"\X, F~1(F(x)) is a linear space of dimension n+ 1 —
rank((0F;/0x;(x)), ;); moreover, dim(F~'(F(x))) > 0 if and only if x € Sec(X)\X
and in this case F~1(F(x)) n X is a quadric hypersurface, which coincides with the
entry locus £(X) of X with respect to x.

We have a simple sufficient condition for the K, property (see [3, Proposition

2]):

Fact 1.7. Let X =« P" be a smooth linearly normal variety and suppose
h'(Ox) =0 if dim(X) > 2. Putting ). = deg(X) and s = codimp~(X) we have:

® jf i <2s+ 1, then X is arithmetically Cohen-Macaulay;

e if ) < 2s, then the homogeneous ideal of X is generated by quadratic forms;

e jf ) < 2s— 1, then the syzygies of the generators of the homogeneous ideal of X
are generated by the linear ones.

REMARK 1.8. Lety : P" —— Z := y(P") < P"™ be a birational transformation
(n>3).

We point out that, from Grothendieck’s Theorem on parafactoriality
(Samuel’s Conjecture) [21, XI Corollaire 3.14] it follows that Z is factorial when-
ever it is a local complete intersection with dim(sing(Z)) < dim(Z) — 3. Of
course, every complete intersection in a smooth variety is a local complete inter-
section.

Moreover, i~ is liftable whenever Pic(Z) = Z{Hz) and Z is factorial and
projectively normal. So, from [32] and [22, IV Corollary 3.2], ' is liftable
whenever Z is either smooth and projectively normal with n > a + 2 or a factorial
complete intersection.

2. NUMERICAL RESTRICTIONS

Proposition 1.5 already provides a restriction on the invariants of the transforma-
tion ¢; here we give further restrictions of this kind.

PROPOSITION 2.1. Let ¢ =0 if {B) = P" and let ¢ = 1 otherwise.
e Jf'r =1 we have:

A= n*—n+2e—2a—-2)/2,
g=n*—=3n+4e—2a—2))2.
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o [f'r =2 we have:

2(Og) = 2a —n® + 51+ 2g — 6c + 4) /4,
A= (n—n+2g+2—2a—4)/4

e [fr =3 we have:
1(Og) = (42 —n? +3n—2g — de +2a +6)/2.

PROOF. By Proposition 1.5 we have h°(P", #g(1)) = e. Since S is normal and
linearly normal, we have h°(P", #g(2)) = n + 1 + a (see [41, Lemma 2.2]). More-
over, since n < 2r + 2 (being ¢ > 0), proceeding as in [41, Lemma 3.3] (or apply-
ing [34, Proposition 1.8]), we obtain 4/(P", #g(k)) = 0 for every j,k > 1. So we
obtain y(Og(1)) =n+1—c¢and y(Og(2))=(n+1)(n+2)/2—-(n+1+a). O

PrOPOSITION 2.2

e [fr=1 we have:
Ccl = 2 — 2g,
si=(—n—1)1-2g+2,
d=(2.-2"/(2n—2))—2"" —4g+4),
A=(1-n)l+2"+29-2.

e [fr =2 we have:

cg=A—2g+2,

cr=—((n*=3n)A—2""" £ (4 —dg)n+4g+2A —4))2,
§] = —ni—2g+2,

$2=2ni+2"+ (49 —4)n — A,

dA = (2 —n)i+2"1 429 2.

o Jfr =3 we have:

€ =24—2g+2,
¢y = —((n* = 5n+2)A— 2"+ (4 — 4g)n + 12g + 2dA — 12)/2,

c3 = ((2n® — 12n% + 22n — 12)2 + 92" 4 n(—32" + 18g + 6dA — 18)
+ (6 — 6g)n* — 24g + (—6d — 6)A + 24) /6,

(1 —n)\—2g+2,

((4n—4)A+2"+ (89 —8)n — 8g — 2dA +8)/2,

((2n® — 1212 + 10n) 2 + 32" 4 n(—32" + 12g + 6dA — 12)

+ (12 — 12g)n* — 3A)/3.

51

5

53
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PRrROOF. See also [12] and [13]. By [12, page 291] we see that

1, if j=mn;
HI - E"T =10, ifr+l1<j<n-—1;
()" s, if <

Since H' =2H — E and H = dH' — E’ we have

(2.1) A=H"=(2H - E)",
(2.2) dA=dH" = H" ' . (dH' — E')= (2H — E)"' - H.

From the exact sequence 0 — Jg — Tpr|g — Ny pr — 0 we get:

(2.3) s =—An+1)+ ¢,

n+2
(2.4) s =2( ; J-a+ ) +e,

n+3 n+2

(25) S3——ﬂ< 3 )+Cl< P )—Cz(n+1)+63,
Moreover ¢ = — Ky - Hé‘l and it can be expressed as a function of /1 and g¢.
Thus we found r + 3 independent equations on the 2r + 5 variables: ¢y, ..., ¢,
Sl,...,Sr,d,A,/l,g,n. (]

REMARK 2.3. Proposition 2.2 holds under less restrictive assumptions, as shown
in the above proof. Here we treat the special case: let  : P8 —— Z := y(P?) <
P8 be a quadratic rational map whose base locus is a smooth irreducible
3-dimensional variety X. Without any other restriction on s, denoting with
7 : Bly(P%) — P? the blow-up of P® along X and with s;(X) = 5i(Ny ps), we
have '

(26)  deg(y)deg(Z) = (2" (Hps) — Ex)"

= —53(X) — 1652(X) — 112s1(X) — 448 deg(X) + 256.

Moreover, if i is birational with liftable inverse and dim(sing(Z)) < 6, we also
have

(2.7) ddeg(Z) = (2n*(Hps) — Ex)’ - n* (Hps)
= —Sz(X) — 14S1(X) — 84deg(X) + 128,

where d denotes the degree of the linear system defining y .

Proposition 2.4 is a translation of the well-known double point formula (see for
example [36] and [31]), taking into account Proposition 1.5.
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ProrosiTION 2.4, If0 = 0 then

202d — 1) = 1> — i(”; l)sr,j(g-%) . HY,.

Jj=0

3. CASE OF DIMENSION 1
Lemma 3.1 directly follows from Propositions 2.1 and 2.2.

LemMA 3.1. Ifr =1, then one of the following cases holds:

Ay n=3,a=1,1=2,9g=0,d=1,A=2;
B) n=4,a=0,A=5g9g=1,d=3A=1;
C)n=4a=1,1=49=0,d=2,A=2
D)yn=4,a=2,1=49=1,d=1,A=4
(E) n=4,a=3,1=3,9=0,d=1,A=5

PROPOSITION 3.2. If'r = 1, then one of the following cases holds:

(I) n=3,a=1, B is a conic,

(I1) n=4,a=0, B is an elliptic curve of degree 5;
(IIT) n =4, a = 1, B is the rational normal quartic curve;
(IV) n=4, a =3, B is the twisted cubic curve.

PRrROOF. From Lemma 3.1 it remains only to exclude case (D). In this case B is a
complete intersection of two quadrics in P and also it is an OADP-curve. This is
absurd because the only OADP-curve is the twisted cubic curve. O

4. CASE OF DIMENSION 2

Proposition 4.1 follows from [38, Propositions 1.3 and 3.4] and [11, Theorem
4.10].

PROPOSITION 4.1. If r =2, then either n =6, d > 2, (B> = P°, or one of the
following cases holds:

V)n=4,d=1,0=2,8=P' xP! c P3P
(V) n=5d=1,0=1,Bisa hyperplane section of P! x P? < P3;
(VII) n=5,d =2,6 =1, B = vy(P?) = P is the Veronese surface;
(VI) n=6,d =1,5 =0, B = P° is an OADP-surface, i.e. B is as in one of the

following cases:

(VIL) Ppi(0(1) @ O(3)) or Ppi(0(2) @ 0(2));

(VIIL,) del Pezzo surface of degree (hence the blow-up of P? at 4 points
pis---,pa and |Hg| = [3Hp: — pr — -+ — pal).
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LEMMA 4.2. Ifr=2,n=6and (B> = PO, then one of the following cases holds:

(A)a=0,2=7,9=1, x(Og) =0;
B) 0<a<3,i=8-a,g=3—a,y(0g)=1.

PRrOOF. By Proposition 2.1 it follows that g =21+a— 13 and y(Og)=
J+a—17.By[4], Lemma 6.1] and using that g > 0 (proceeding as in [41, Prop-
osition 6.2]), we obtain (13 —a)/2 <1 <8 —a. O

LEMMA 4.3. Ifr=2,n= 6 and (B> = P°, then one of the following cases holds:

ea=0,d=4A=1;
ea=1,d=3A=2;
ea=2d=2A=4
ea=3d=2A=>5

-
-

PROOF. We have s1(7g) - Hg = —c; and 5:(7g) = ¢ — 2 = 12x(Og) — 2c5.
So, by Proposition 2.4, we obtain

4.1 2(2d — 1) = 22 — 104 — 12x(Og) + 2¢5 + 5¢;

Now, by Propositions 2.1 and 2.2, we obtain

(42) dA=2a+4, A= (g*+(-2a—4)g—16d+a*—4da+75)/8,

and then we conclude by Lemma 4.2. O

PROPOSITION 4.4. If r =2, n= 6 and (B> = P°® then one of the following cases
holds:

(IX) a=0,A="17,¢9=1,Bis an elliptic scroll Pc(&) with e(&) = —1;
(X) a=0, =8, g=23, B is the blow-up of P*> at 8 points p; ..., ps, |Hg| =

[4Hp> — p1 — - = ps|;
XI) a=1,A=17,9=2, B is the blow-up of P* at 6 points py ..., ps, |Hg| =
|4Hp> —2po — p1 — -+ — psl;

(XII) a=2,2=6,g=1, B is the blow-up of P> at 3 points pi, ps, ps, |Hg| =
[3Hp> — p1 — pa — p3l;
(XIIT) a =3, 2=15,9 =0, B is a rational normal scroll.

PROOF. For a =0, a=1 and a € {2,3} the statement follows, respectively,
from [12], [41, Proposition 6.2] and [25]. m|
5. CASE OF DIMENSION 3

Proposition 5.1 follows from: [38, Proposition 1.3 and 3.4], [18], [30], [19, page
62] and [11].

PROPOSITION 5.1. If r =3, then either n =8, d > 2, (B> = P}, or one of the
following cases holds:
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(XVL) linear section of G(1,4) = P?;

(XVII) n=17,d =2, = 1, B is a hyperplane section of P> x P? < P8;

(XVII) n=8,d =1,6 =0, 8B < P is an OADP-variety, i.e. B is as in one of the
following cases:

XIV) n=5,d=1,0=3,B=0cP*cP’isa quadric;
XV)n=6,d=1,0=2,8="P'xP>cP’cP’
(XVI) n=7,d=1,6=1,B c P is as in one ofthefollowzng cases:
(XVI) P (0(1) & 0(1) @ 0 (2))
n ¢

(XVIIL) Ppi(0(1) ® O(1) @ O(3)) or ( (1) @ C(2) ® 0(2));
(XVIIL,) Edge variety of degree 6 (i.e x P! x PY) or Edge variety of
degree 7;

(XVIIL3) Pp2(&), where & is a vector bundle with ¢ (&) =4 and
(&) =8, given as an extension by the following exact se-

In the following we denote by A < C £ S & B a sequence of general linear
sections of B.

LEMMA 5.2. If r=3, n=8 and {B> =P8, then one of the following cases
holds:

(A) a=0,A=13,9=8, Ks-Hs =1, Ki = —1;
(B) a:1JA:12:g:7;KS'HS:0:K§:0"
C)0<a<6,A=12—-a,g=6—a,Kg-Hs=-2—a.

Proor. Firstly we note that, from the exact sequence 0 — T3 — Tg|g — Us(1)
— 0, we deduce ¢ = ¢2(S) + ¢1(S) = 12x(0s) — K — K5 - Hs and hence

(5.1) K2 =142+ 127(0s) — 129+ dA — 116 = =22/ + 12g + dA — 12a + 184.

Secondly we note that (see [41, Lemma 6.1]), putting sx(2) := h°(P°, 0(2)) —
h°(P°,.#5(2)), we have

(5.2) min{Z, 11} < ha(2) <21 = h°(P8, 7g(2)) = 12 — a.

Now we establish the following:

Cram 5.2.1. If Ks-Hg <0and Kg +0,then 1 =12—aand g =6 — a.
PRrROOF OF THE CLAIM. Similarly to [41, Case 6.1], we obtain that Pg(—1) =0
and Py(0) =1 — g, where ¢ :=h'(S, Os) = h' (B, Oy); in particular g = —5¢ —
a+6and A = -3¢ —a+ 12. Since g > 0 we have 5¢ < 6 — a and the possibilities

are:if a <1 then ¢ < 1;if a > 2 then ¢ = 0. If (a,¢) = (0, 1) then (g,4) = (1,9)
and the case is excluded by [19, Theorem 12.3]%; if (a,q) = (1, 1) then (g,1) =

2 Note that B cannot be a scroll over a curve (this follows from (5.8) and (5.9) below and also it
follows from [34, Proposition 3.2(1)]).
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(0,8) and the case is excluded by [19, Theorem 12.1]. Thus we have ¢ = 0 and
hence g = 6 — a and A = 12 — ¢; in particular we have a < 6. |

Now we discuss the cases according to the value of a.

CASE 5.2.1 (@ =0). It is clear that ¢ must be of type (2,5) and hence K2 =
—224+4+12g 4+ 189. By Claim 5.2.1, if Ks-Hs=2g9—2—2<0, we fall into
case (C). So we suppose that Kg-Hg >0, namely that g > 1/2+ 1. From
Castelnuovo’s bound it follows that A > 12 and if A =12 then Kg-Hg =0,
g =7 and hence K2 =9. Since this is impossible by Claim 5.2.1, we conclude
that A > 13. Now by (5.2) it follows that 11 < hx(2) < 12, but if hx(2) =11
from Castelnuovo Lemma [10, Lemma 1.10] we obtain a contradiction. Thus we
have /15 (2) = 12 and h°(P°, 74 (2)) = h°(P?, 7% (2)) = 9. So from [10, Theorem
3.1] we deduce that A < 14 and furthermore, by the refinement of Castelnuovo’s
bound contained in [10, Theorem 2.5], we obtain g < 24 — 18. In summary we
have the following possibilities:

Case (i) coincides with case (A). Case (ii) is excluded by Claim 5.2.1. In the cir-
cumstances of case (iii), we have h'(S, Us) = h*(S, Os) = h°(S, Ks). If h'(S, Os)
> 0, since (Ky + 4Hy) - Ks = K2 + 3Ks - Hs = —5 < 0, we see that Ky + 4Hy is
not nef and then we obtain a contradiction by [28]. If 2!(S, Os) = 0, then we also
have 7! (B, Og) = h*(B, Oy) = 0 and hence y(Ox) = 1 — 13 (B, Oy) < 1, against
the fact that y(Og) =24 — g — 17 = 2. Thus case (iii) does not occur. Finally,
in the circumstances of case (iv), note that 4°(S,Kg) =2+ h'(S,0s) > 2 and
we write |Ks| = |M| + F, where |M| is the mobile part of the linear system |Kg|
and F is the fixed part. If M} = M is a general member of |M]|, there exists
M, € |[M| having no common irreducible components with M; and so M? =
M- M, = Mz) > 0; furthermore, by using Bertini Theorem, we see
that sing(M 15 con51sts of points p such that the intersection multiplicity
(M, - Mz)p of My and M, in p is at least 2. By definition, we also have
M - F >0 and so we deduce 2p,(M) —2=M - (M + Kg) =2M?* + M - F > 0,
from which p,(M) >1 and p,(M) =2 if F =0. On the other hand, we have
M - Hg < Kg- Hg =4 and, since S is cut out by quadrics, M does not contain
planar curves of degree > 3. If M - Hg = 4, then F = 0, M> = 1 and M is a (pos-
sibly disconnected) smooth curve; since p,(M) =2, M is actually disconnected
and so it is a disjoint union of twisted cubics, conics and lines. But then we obtain
the contradiction that p,(M) =1 — #{connected components of M} < 0. If
M - Hg < 3, then M must be either a twisted cubic or a union of conics and
lines. In all these cases we again obtain the contradiction that p,(M) =1 —
#{connected components of M} < 0. Thus case (iv) does not occur.

CASE 5.2.2 (a=1). By [41, Proposition 6.4] we fall into case (B) or (C).
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CASE 5.2.3 (a = 2). By (5.2) it follows that 1 < 10 and by Castelnuovo’s bound
it follows that Kg - Hg < —4 < 0. Thus, by Claim 5.2.1 we fall into case (C). 0O

Now we apply the double point formula (Proposition 2.4) in order to obtain
additional numerical restrictions under the hypothesis of Lemma 5.2.

LEMMA 5.3. Ifr=3,n =28 and (B> = P8, then
Ky = 2> 4231 — 249 — (7d + 1)A — 4d + 36a — 226.
PrOOF. We have (see [23, App. A, Exercise 6.7]):
51(Tg) - Hg = —c1(B) - Hy = Ky - Hg,
52(7g) - Hy = ¢1(B)* - Hy — ¢2(B) - Hy = K§ - Hy — c2(B) - Hy
= 3Ky - Hg — 2Hg — 22(B) - Hy + 12(1(0s(Hy)) — 2(0s)),
53(Tg) = —c1(B)* +2¢1(B) - c2(B) — c3(B) = K + 487(Og) — c3(B).

Hence, applying the double point formula and using the relations y(Og) = 24 —
g+a—17, x(Og(Hg)) =9, we obtain:

4d —2 = 2deg(Sec(B))
= deg(B)* — 53(Tw) — T52(Tg) - Hg — 2151(Tp) - Hg — 35Hg,
= deg(B)” — 21 deg(B) — 42Ky - HE + 14¢,(B) - Hy — K
+¢3(B) — 84x(Ox(Hsy)) + 36x(Ox)
= —Kg + A7+ 231 —24g — (7d + 1)A + 36a — 228. O

LEMMA 5.4. Ifr=3,n=38, (B> = P% and B is a quadric fibration over a curve,
then one of the following cases holds:

[ ]
>

-

3,=9,¢
° 4,7 =38

>

-

PROOF. Denote by f: (B, Hy) — (Y, Hy) the projection over the curve Y such
that f*(Hy) = Kg + 2Hg. We have

0:'3*<Hy)2 - Hg :K%-H%+4Kg; -H%+4H%,
0=p"(Hy)> = K + 6K% - Hy + 12Ky - H3 + SHJ,

1 1 1 1
1(Ox(Hy)) = 12K% Hy — 7 Ky - Hy +5H§a +15¢2(8) - Hy + 2(03),
from which it follows that
(5.3) Kg = —87 + 249 — 24,

(5.4) 2(B) - Hy = —36/. + 269 — 12a + 298.
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Hence, by Lemma 5.3 and Proposition 2.2, we obtain

(5.5) dA =237 —16g + 12a — 180,
(5.6) A +4d = )% — 1302 + 64g — 48a + 1058.
Now the conclusion follows from Lemma 5.2, by observing that the case a = 6

cannot occur. In fact, if @ = 6, by [25] it follows that B is a rational normal scroll
and by a direct calculation (or by Lemma 5.6) we see that d =2 and A = 14. O

LEMMA 5.5. Ifr=3,n=28,{(B) = P? and B is a scroll over a smooth surface Y,
then we have:

(YY) = ((7d = 1)2> + (177 — 679d) 1. + (292d — 92)g — 28>

+ (5554 — 252a)d + 36a — 1474)/(2d + 2),
A= (22 =107+ 48g — 4d — 36a +878)/(d + 1).
PRrROOF. Similarly to Lemma 5.4, denote by f: (B, Hg) — (Y, Hy) the projec-
tion over the surface Y such that f*(Hy) = Kg + 2Hg. Since f*(Hy)* = 0 we
obtain
Kg = —8Hy — 12Ky - Hg — 6Ky - Hy
= —30Ky - Hg, + 4Hg, + 6¢2(B) - Hg — 72O (Hs)) + 725(Os3)
=130/ — 729 — 6dA + 72a — 1104.

Now we conclude comparing the last formula with Lemma 5.3 and using the
relation

(5.7)  70) —44g+ (7d — 1)A — 596 = ¢3(B) = 1 (P )ea(Y) = 262(Y). O

LEMMA 5.6. If r=3,n=28, (8)= P? and B is a scroll over a smooth curve,
then we have: a =6, 1 =6,9=0,d =2, A = 14.

PrOOF. We have a projection f: (B,Hg) — (Y,Hy) over a curve Y such
that f*(Hy) = Ky + 3Hg. By expanding the expressions f*(Hy)* - Hg = 0 and

B*(Hy)' =0 we obtain Kg-Hg=32—12g+12 and K = 54(g— 1), and
hence by Lemma 5.3 we get

(5.8) 22 +23)—78g — (7d + 1)A — 4d + 36a — 172 = 0.

Also, by expanding the expression y((y(Hg)) = 9 we obtain ¢; = =351 + 30g —
12a + 294 and hence by Proposition 2.2 we get

(5.9) 22/, —20g — dA + 12a — 176 = 0.

Now the conclusion follows from Lemma 5.2. 0
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Finally we conclude our discussion about classification with the following:

PROPOSITION 5.7. Ifr =3, n =8 and (B> = P*, then one of the following cases
holds:

(XIX) a=0, =12, g =6, B is a scroll Py(&) over a birationally ruled sur-
face Y with K} =5, ¢2(&) = 8 and ¢} (&) = 20;
(XX) a=0,4=13,g =8, Bis obtained as the blow-up of a Fano variety X at
a point p e X, |Hyg| = |Hy — p|;
(XXI) a=1, =11, g =35, B is the blow-up of Q3 at 5 points py,...,ps,
|Hy| = [2Hgs — py — -+ — ps|;
(XXI) a=1,2=11,g =35, 23 is a scroll over Ppi (0 @ O(—1));
(XXI) a=1,2=12,¢g =7, B is a linear section ofSlO c P,
(XXIV) a=2,41=10,g =4, B is a scroll over Q2
)

S

XXV a = 3, 2=9,g=3, B is a scroll over P> or a quadric fibration over

(XXVI) a= 4, ) =8, g9 =2, B is a hyperplane section of P! x Q3;
(XXVII) a =6, =06,g =0, B is a rational normal scroll.

PrROOF. For a = 6 the statement follows from [25]. The case with ¢ =5 is ex-
cluded by [25] and Example 6.19. For ¢ =4 the statement follows from [29].
For a € {2,3}, by [16], [17] and [27] it follows that the abstract structure of B is
as asserted, or « = 2 and 9B is a quadric fibration over P'; the last case is excluded
by Lemma 5.4. For a = 1 the statement is just [41, Proposition 6.6]. Now we treat
the cases with a = 0

Casg 5.7.1 (a=0,4=12). Since deg(B) < 2codimps(B) + 2, it follows that
(B, Hy) must be as in one of the cases (a),. .., (h) of [26, Theorem 1]. Cases (a),
(d), (e), (g), (h) are of course impossible and case (c) is excluded by Lemma 5.4. If
B is as in case (b), by Lemma 5.6 we obtain that B is a scroll over a birationally
ruled surface. Now suppose that (B, Hg) is as in case (). Thus there is a reduc-
tion (X, Hy) as in one of the cases:

(fl) X = P°, Hy € |0(3)[;

(2) X =0°, Hy € |0(2)];

(f3) X is a P2-bundle over a smooth curve such that Oy (Hy) induces (/(2) on
each fiber.

By definition of reduction we have X = P", where N = 8 + s, deg(X) = A +s5 =
12 + s and s is the number of points blown up on X to get B. Case (f1) and (f2)
are impossible because they force 4 to be respectively 16 and 11. In case (f3), we
have a projection f: (X,Hy) — (Y,Hy) over a curve Y such that f*(Hy) =
2Ky + 3Hy. Hence we get

KyH2 = 2Ky +3Hy)* - Hy/12 — K% - Hy/3 — 3H; /4
= K} - Hy/3 —3H} /4,



422 G. STAGLIANO
from which we deduce that

0= 2Ky + 3Hy)’ = 8K} + 36K2 - Hy + 54Ky - H: +27H}
=8K; + 18K; - Hy — 27H; /2
= 8(Kg — 85) + 18K% - Hy — 27(deg(B) + 5)/2
= 18K} - Hy — 155s/2 — 210.

Since s < 12 (see [7, Lemma 8.1]), we conclude that case (f) does not occur. Thus,
B = Py (&) is a scroll over a surface Y; moreover, by Lemma 5.5 and [5, Theo-
rem 11.1.2], we obtain K} =5, 2(6) = K§ — KZ =8 and ¢}(&) = A+ 2(8) =
20.

CASE 5.7.2 (a = 0,4 = 13). The proof is located in [34, page 16], but we sketch
it for the reader’s convenience. By Lemma 5.2 we know that y(0s) = 2 and Ky is
an exceptional curve of the first kind. Thus, if we blow-down the divisor Kg, we
obtain a K3-surface. By using adjunction theory (see for instance [5] or Ionescu’s
papers cited in the references) and by Lemmas 5.4, 5.5 and 5.6 it follows that the
adjunction map ¢, 2, 18 a generically finite morphism; moreover, since
(Ky +2Hy) - Ks = 0, we see that ¢x, >y, is not a finite morphism. So, we de-
duce that there is a (P2, Up>(—1)) inside B and, after the blow-down of this divi-
sor, we get a smooth Fano 3-fold X = P of sectional genus 8 and degree 14.

6. EXAMPLES

The calculations in the following examples can be verified with the aid of the
computer algebra system [20].

ExamMPLE 6.1 (r=1,2,3;n=3,45;a=1;d=1). See also [41, §]. If O c
P"~! < P" is a smooth quadric, then the linear system | p»(2)| defines a bira-
tional transformation y : P" -—— S < P"! of type (2, 1) whose image is a smooth
quadric.

EXAMPLE 6.2 (r=1;n=4;a=0;d = 3). See also [12]. If X = P* is a non-
degenerate curve of genus 1 and degree 5, then X is the scheme-theoretic intersec-
tion of the quadrics (of rank 3) containing X and |4, +(2)| defines a Cremona
transformation P* - P* of type (2, 3). 7

ExamMPLE 6.3 (r=1,2,3;n=4,5,7;a=1,0,1;d =2). See also [14] and [41,
Example 4.1]. If X < P” is a Severi variety, then |y p»(2)| defines a birational
transformation v : P" --» P" of type (2,2) whose base locus is X. The restriction
of Y to a general hyperplane is a birational transformation P"~' ——> S = P” of
type (2,2) and S is a smooth quadric.

EXAMPLE 6.4 (r = 1;n=4;a = 2;d = 1—not satisfying 1.4). We have a special
birational transformation v : P* -—»S < P® of type (2,1) with base locus X,
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image S and base locus of the inverse Y, as follows:

22 2 2
X = V(xox1 — x; — X3, —X§ — X] + X2X3, X4),

S = V(y2y3 - J/f - y? — yoy6,y§ + y% — Y45 + V1s),
Ps(f) = (41* + 247 + 5612 + 601 + 24) /4,

sing(S) = V(¥e, ¥3, va¥s, ¥3¥s, Y295, Va» Y3 V4, Y2V 201 V4 + Yoy,
Yoya + 20115, V3, Y213, Y3, V132 + 20003, 20012 + ¥133),
Pgng(s) (1) = 1+5,
(sing(S))req = V(Y65 s, ya5 ¥3, ¥2),
Y = (Y)eq = (SIN(S))req = V(¥6, Vs, Yas 3, y2)-

See also [41, Example 4.6] for another example in which 1.4 is not satisfied.

ExaMPLE 6.5 (r=1,2,3;n=4,5,6;a=3;d =1). See also [39] and [40]. If
X =P!' x P> = P’ = P, then |#, p¢(2)| defines a birational transformation
Y :P®—>S <P’ of type (2,1) whose base locus is X and whose image is
S = G(1,4). Restricting i to a general P°> < P¢ (resp. P* = P%) we obtain a
birational transformation P> —— S < P? (resp. P* —» S = P7) whose image is a
smooth linear section of G(1,4) = P?.

EXAMPLE 6.6 (r=2;n=6;a=0;d =4). See also [12] and [24]. Let Z =
{p1,...,ps} = P? be such that no 4 of the p; are collinear and no 7 of the p; lie
on a conic and consider the blow-up X = Bl(P?) embedded in P° by [4H> —
p1 — -+ — ps|. Then the homogeneous ideal of X is generated by quadrics and
|7, po(2)| defines a Cremona transformation P — PS of type (2,4). The same
happens when X — P° is a septic elliptic scroll with e = —1.

EXAMPLE 6.7 (r =2;n = 6;a = 1;d = 3). See also [41, Examples 4.2 and 4.3]. If
X < P% is a general hyperplane section of an Edge variety of dimension 3 and
degree 7 in P7, then |-y pe(2)| defines a birational transformation i : Pé —
S c P7 of type (2,3) whose base locus is X and whose image is a rank 6
quadric.

EXAMPLE 6.8 (r=2n=6;a=2;d=2). If X  P° is the blow-up of P? at
3 general points py, p», p3 with |Hy| = |3Hp> — p1 — p» — p3|, then Sec(X) is
a cubic hypersurface. By Fact 1.6 and 1.7 we deduce that |.#y 6(2)| defines a
birational transformation i : P® — S < P® and its type is (2,2). The image S is
a complete intersection of two quadrics, dim(sing(S)) = 1 and the base locus of
the inverse is P2 x P2 = P%. Alternatively, we can obtain the transformation
Y : P® S < P® by restriction to a general P® = P® of the special Cremona
transformation P® - P% of type (2,2).

EXAMPLE 6.9 (r=2;n=6;a=3;d=2). See also [39] and [40]. If X =
Ppi(O(1) @ 0(4)) or X = Ppi1(O(2) ® 0(3)), then | Sy pe(2)| defines a birational
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transformations i : P® — S = P? of type (2,2) whose base locus is X and whose
image is S = G(1,4).

ExXAMPLE 6.10 (r=2,3;n=06,7;a = 5;d =1). See also [43, III Theorem 3.8].
If X =G(1,4) c P’ < P, then 2% Uj,lo( )| defines a birational transformation
Y : P —5S <P of type (2,1) whose base locus is X and whose image is
the spinorial variety S = §'° P!>, Restricting ¥ to a general P” < P'° (resp.
P® = P'%) we obtain a special birational transformation P7 — S < P'? (resp.
P® S < P'") whose dimension of the base locus is r = 3 (resp. r = 2) and
whose image is a linear section of S' = P!°. In the first_case S = y(P7) is
smooth while in the second case the singular locus of S = (?®) consists of 5
lines, image of the 5 Segre 3-folds containing del Pezzo surface of degree 5 and
spanned by its pencils of conics.

ExampPLE 6.11 (r=2,3;n=06,7;a=6;d =1). See also [39], [40] and [43, III
Theorem 3.8]. We have a birational transformation  : P¥ - G(1,5) = P'* of
type (2,1) whose base locus is P! x P3 = P” < P® and whose image is G(1,5).
Restricting i to a general P’ < P® we obtain a birational transformation
P7-—S = P'3 whose base locus X is a rational normal scroll and whose image
S is a smooth linear section of G(1,5) = P4, Restricting Y to a general P® c P?
we obtain a birational transformation = e : P® —»S = P!> whose base
locus X is a rational normal scroll (hence either X = P (O0(1) @ O(3)) or X =
Poi(O(2) @ O0(2))) and whose image S is a singular 11near section of G(1,5) <
[P’ . In this case, we denote by Y < S the base locus of the inverse of iy and by
F = (Fy,...,Fs): P° — P3 the restriction of y to P> = Sec(X). We have

Y = y(P%) = F(P%) = 6(1,3) = P’ < P12,
Jy = {x = [x0,...,xs] € P\ X : rank((0F;/0x;(x)), ) <4}
= {x=[x0,...,xs5) € P\ X : dim(F~1(F(x))) > 2}, and dim(J4) = 3,
P(Ja) = (Sing(S)) g = Ppr (0(2)) < V.

EXAMPLE 6.12 (r = 3;n=8;a = 0;d = 5). See also [24]. If = P° is a general
3—dimensior1al linear section of G(1,5) < P peZ is a general point and
X < P? is the image of 2 under the projection from p, then the homogeneous

ideal of X is generated by quadrics and |.#y s(2)] defines a Cremona transforma-
tion P® — P? of type (2, 5).

ExaMpPLE 6.13 (r=3;n=8;a=1;d =3). See also [41, Example 4.5]. If
X < P? is the blow-up of the smooth quadric 0 = P* at 5 general points
pi,-..,ps with |Hy| = |2HQ3 p1 — -+ — ps|, then |Fy s(2)| defines a bira-
tional transformation i : P¥ —» S [I3’9 of type (2,3) whose base locus is X and
whose image is a cubic hypersurface with singular locus of dimension 3.

EXAMPLE 6.14 (r=3;n=28;a = 1;d = 4—incomplete). By [2] (see also [9])
there exists a smooth irreducible nondegenerate linearly normal 3-dimensional
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variety X < P® with 2! (X, 0y) = 0, degree A = 11, sectional genus g = 5, having
the structure of a scroll Py (&) with ¢1(&) = 3Cy + 5f and ¢»(&) = 10 and hence
having degrees of the Segre classes s1(X) = —85, s:(X) = 386, s3(X) = —1330.
Now, by Fact 1.7, X  P? is arithmetically Cohen-Macaulay and by Riemann-
Roch, denoting with C a general curve section of X, we obtain

(6.1) KPS, 7y (2)) = hO(PC, 7c(2)) = hO(PS, 0ps(2)) — HO(C, Oc(2))
=28 —(2i+1—y),

hence h°(P¥,.7x(2)) = 10. If the homogeneous ideal of X is generated by qua-
dratic forms or at least if X = V(H"(#x(2))), the linear system |.#y(2)| defines

a rational map  : P¥ - S = (P®) < P° whose base locus is X and whose im-
age S is nondegenerate. Now, by (2.6) we deduce deg(y/) deg(S) = 2, from which
deg(¥) = 1 and deg(S) = 2.

ExAMPLE 6.15 (r=3;n=8;a=1;d =4). See also [14, §4] and [41, Example
44]. If X = P® is a general linear 3-dimensional section of the spinorial va-
riety S1° = P'°, then |7y ps(2)| defines a birational transformation y : P® -
S = P? of type (2,4) whose base locus is X and whose image is a smooth
quadric.

EXAMPLE 6.16 (r=3;n=8;a=2;d =3). By [17] (see also [8]) there exists a
smooth irreducible nondegenerate linearly normal 3-dimensional variety X < P3
with 4! (X, 0x) = 0, degree 4 = 10, sectional genus g = 4, having the structure
of a scroll Py: (&) with ¢1(&) = Op(3,3) and ¢»(&) = 8 and hence having degrees
of the Segre classes s1(X) = —76, s2(X) = 340, s3(X) = —1156. By Fact 1.7,
X < P? is arithmetically Cohen-Macaulay and its homogeneous ideal is gener-
ated by quadratic forms. So by (6.1) we have /°(P%,.7y(2)) = 11 and the linear
system |£y(2)| defines a rational map y : P® ——» S = P'* whose base locus is X’
and whose image S is nondegenerate. By (2.6) it follows that deg(y/) deg(S) = 4
and hence deg(/) = 1 and deg(S) = 4.

EXAMPLE 6.17 (r =3;n=8;a = 3;d = 2,3). By [16] (see also [8]) there exists a
smooth irreducible nondegenerate linearly normal 3-dimensional variety X < P8
with A1 (X, Oy) = 0, degree A = 9, sectional genus g = 3, having the structure of
a scroll Pp:(&) with ¢;(6) =4 and ¢»(&) = 7 (resp. of a quadric fibration over
P!) and hence having degrees of the Segre classes s;(X) = —67, 5,(X) = 294,
53(X) = =984 (resp. s1(X) = —67, s2(X) =295, 53(X) =—-997). By Fact 1.7,
X < P8 is arithmetically Cohen-Macaulay and its homogeneous ideal is gener-
ated by quadratic forms. So by (6.1) we have /°(P%,.7y(2)) = 12 and the linear
system |#y(2)| defines a rational map  : P® ——» S < P!'! whose base locus is X'
and whose image S is nondegenerate. By (2.6) it follows that deg(y) deg(S) = 8
(resp. deg(y) deg(S) = 5) and in particular deg(y) # 0 i.e. Y : P® -—— S is generi-
cally quasi-finite. Again by Fact 1.7 and Fact 1.6 it follows that y is birational
and hence deg(S) = 8 (resp. deg(S) = 5).
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EXAMPLE 6.18 (r = 3;n=8;a = 4;d = 2). Consider the composition
[P x P35 P! x 0 c P! x P4 - P,
where the first map is the identity of P! multiplied by [z, 21,22, 23] — [23, 2071,
2022,2023,2% + Z% + Z%], and the last map is ([Zo, l‘]], [y(), R y4]) — [Z()yo, R
104, 1190, - - -, t1ya] = [0, . .., Xo]. In the equations defining (P! x P3) = P?, by
replacing x9 with xp, we obtain the quadrics:
(6.2) —X0X3 + X4Xg, —X0X2 + X4X7, X3X7 — XoXg, —X0X5 + xé + x% + x§,
—X0X] + X4X6, X3Xe — X1X8, X2X6 — X1X7, *X% + X1X6 + X2X7 + X3X3,
—x(z) + X4X5, X3X5 — X0X§, X2X5 — X9X7, X1 X5 — XX, x12 + x% + x% — X0X4.
Denoting with 7 the ideal generated by quadrics (6.2) and X = V(I), we have
that 7 is saturated (in particular I, = H°(.y 55(2))) and X is smooth. The linear
system |y ps(2)| defines a birational transformation i : P® —S < P'? whose

base locus is X and whose image is the variety S with homogeneous ideal gener-
ated by:

(6.3)  yeyo — ysyio0 + Yavi1, Ye¥s — YaYio + YiVit, Ys¥s — Vayo + yoyii,
Y2ys — Y1Y9 + YoVio, VaYa — Y1Vs5 + Yobs,
y% + y§ + yé + y% — Y7y8 + Yoy9 + YiVio + Yayi1 — V3yiz-

We have deg(S) = 10 and dim(sing(S)) = 3. The inverse of ¥ : P® — S is de-
fined by:

(6.4) —y7¥8 + YoYo + Yiyio + yayii, YoYs + Y1Ve — Yay1 — yudiz,
Yoy2 = VaYe — V1V7 — VioViz, —V1V2 — V4Vs — YoV7 — Vod12,
—Y§ — ¥ — ¥i — Y&y, —ays — Y5 — Vo — Y
—Y3Ya — Ys¥9 — Ve¥V10 — Y1Vi1, —V1¥V3 — V2¥9 — V7Vio + VeVii,
—Yoy3 — Y1y9 + yayio + ysyii-

Note that S = P'? is the intersection of a quadric hypersurface in P! with the
cone over G(1,4) c P? < P2,

EXAMPLE 6.19 (r = 3;n = 8;a = 5—with non liftable inverse). If X < P is the
blow-up of P? at a point p with |Hy| = [2Hps — p|, then (modulo a change of
coordinates) the homogeneous ideal of X is generated by the quadrics:
2
(6.5) X6X7 — X5X8, X3X7 — X2Xg, X5X6 — X4X8, X2Xg — X|Xg, X5 — X4X7,
X3X5 — X1Xg, X2X5 — X1X7, X3X4 — X|X6, X2 X4 — X1X5, X2X3 — XXg,
2 2
X1X3 = XoX6, X3 — XoX7, X1X2 — X0X5, X] — Xo.X4.

The linear system |.y ;s(2)| defines a birational transformation y : P8 —— P13
whose base locus is X and whose image is the variety S with homogeneous ideal
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generated by:

(6.6)  ys¥io — yiyiz — YaVi3 + Ysyiz, Ys¥o + YeVio — Yiyii — yayia + Yivis,
Y6Yo — Vs¥i1 + Y1Yiz, Ye¥7 — Vs¥g — Yayio + V2Vi2 — YoV13,
Y3Ve — Vs¥e + Y1¥8 + Yayo — yayi1 + Yoyi2, V3Va — Y2Ve + Yo)s,
y%)’s - )’3)’? + V1Y3Y7 — V2y3Yo + Yaysye — Yoy1ye — yiyayio + YoVsyio-

We have deg(S) = 19, dim(sing(S)) =4 and the degrees of Segre classes of X
are: s; = —49, s, = 201, 53 = —627. So, by (2.7), we deduce that the inverse of
Y : P¥ -5 S is not liftable; however, a representative of the equivalence class of
! is defined by:

(6.7) Vi — Y113, YsVi2 — YeV13, VsVil — VeVi2,
—V6Y10 + YIV11 + YaVi2 — VsPia, Vg — Vadis, Vels — Yayia,
¥3¥8 — Y2Y12 + Yoyis, yé — VaVi1, VsVe — V1V8 — V4a)o.

We also point out that Sec(X') has dimension 6 and degree 6 (against Proposition
1.5).

ExXAMPLE 6.20 (r=3;n=38;a=6;d =2). See also [39] and [40]. If X =
Ppl(@(1)®@( )@ 0(4)) or X =Py (0(1) @ 02) ®U(3)) or X =Ppi(0(2) ®

0(2) ® 0(2)), then [y ps(2)] deﬁnes a birational transformation P® - S <
P! of type (2,2) whose base locus is X and whose i image is S = G(1,5).

ExaMPLE 6.21 (r=3;n=8;a=7;d =1). See also [11, Example 2.7] and [29].
Let Z={p1,...,ps} = P2 be such that no 4 of the p; are collinear and no 7 of
the p; lie on a conic and consider the scroll Py2(&) = P7 associated to the very
ample vector bundle & of rank 2, given as an extension by the following exact
sequence 0 — Up> — & — .7, 52(4) — 0. The homogeneous ideal of X = P7 is
generated by 7 quadrlcs and so the linear system |.#y ps(2)| defines a birational
transformation 1 : P® -—S = P> of type (2,1). Since we have ¢;(X) = 12,
a(X) =15, «(X)=6, we deduce s1(Nyps)=—60, s52(Ny ps)=267,
53(Ny ps) = —909, and hence deg(S) = 29, by (2.6). The base locus of the in-
verse of Y is Y(P") ~P% =S c P We also observe that the restriction of
¥|p7 : P7 — P% to a general hyperplane H ~ P® = P’ gives rise to a transforma-
tion as in Example 6.6.

EXAMPLE 622 (r=3n=8;a=89d=1). If XcP'cP? is a 3-
dimensional Edge variety of degree 7 (resp. degree 6), then |y ps(2)[ defines
a birational transformation P® -—»S < P'6 (resp. P® — S = P'7) of type (2, 1)
whose base locus is X and whose degree of the image is deg(S) = 33 (resp.
deg(S) = 38). For memory overflow problems, we were not able to calculate the
scheme sing(S); however, it is easy to obtain that 1 < dim(sing(S)) < dim(Y) =
6 and dim(sing(Y)) = 1, where Y denotes the base locus of the inverse.
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ExAMPLE 6.23 (r=3;n=8;a=10;d =1). See also [39], [40] and [43, III
Theorem 3.8]. We have a birational transformation P! -— G(1,6) = P? of
type (2, 1) whose base locus is P! x P* = P? = P!° and whose image is G(1,6).
Restricting it to a general P® = P! we obtain a birational transformation
Y : P® —S < P'® whose base locus X is a rational normal scroll (hence either
X =P (0(1)@0(1)® 03)) or X =Pu(0(1)®0O2) @ O(2))) and whose
image S is a linear section of G(1,6) = P?. We denote by ¥ = S the base
locus of the inverse of ¥ and by F = (Fp,...,Fy) : P7 — P the restriction of
Y to P = Sec(X). We have

Y=yP)=F(P)=06(1,4) < P’ < P8,
Js = {x=[x0,...,x7] e P\ X : rank((0F;/0x;(x)); ;) < 6} o4
= {x=[x0,...,%7] € P\X : dim(F~1(F(x))) = 2}, and dim(Js) = 5,
W (J6) = (sing(S)),eq = Y and dim(y(Js)) = 3.

7. SUMMARY RESULTS

THEOREM 7.1. Table 1 classifies all special quadratic transformations ¢ as in §1
and with r < 3.

As a consequence, we generalize [41, Corollary 6.8].

COROLLARY 7.2. Let ¢ :P" S < P"" be as in§1. If ¢ is of type (2,3) and S
has coindex ¢ = 2, then n = 8, r = 3 and one of the following cases holds:

e A=3a=1,.=11,9=>5,Bis the blow-up of Q3 at 5 points;
e A=4,a=2,1=10,9=4,Bisa scroll over Q*;
e A=5a=31=9

PRrOOF. We have that B < P" is a QEL-variety of typed = (r—d — ¢ +2)/d =
(r—3)/3 and n=((2d — 1)r+3d+c—2)/d = (5r+9)/3. From Divisibility
Theorem [38, Theorem 2.8], we deduce (r,n,0) € {(3,8,0),(6,13,1),(9,18,2)}
and from the classification of CC-manifolds [30, Theorem 2.2], we obtain
(r,n,0) = (3,8,0). Now we apply the results in §5. |

We can also regard Corollary 7.2 in the same spirit of [41, Theorem 5.1],
where we have classified the transformations ¢ of type (2,2), when S has coindex
1. Moreover, in the same fashion, one can prove the following:

PROPOSITION 7.3. Let ¢ be as in §1 and of type (2,1). If c =2, then r > 1 and B
is P! x P2 < P or one of its linear sections. If ¢ =3, then r > 2 and B is either
P! x P3 < P7 or G(1,4) < P° or one of their linear sections. If ¢ = 4, then r > 3
and B is either an OADP 3-fold in P7 or P' x P* = P° or one of its hyperplane
sections.
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In Table 1 we use the following shortcuts:
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3*: flags cases for which is known a transformation ¢ with base locus B as re-
quired, but we do not know if the image S satisfies all the assumptions in §1;

3**: flags cases for which is known that there is a smooth irreducible variety
X < P" such that, if X = V(H"(#x(2))), then the linear system |.#x(2)| de-
fines a birational transformation ¢ : P" -——» S = ¢(P") = P"*“ as stated;

7. flags cases for which we do not know if there exists at least an abstract vari-

ety B having the structure and the invariants required;

3. flags cases for which everything works fine.

| r H n ‘ a ‘ A ‘ g ‘ Abstract structure of B | d ‘ A ‘ c H Existence
31210 n(Ph < P? 1|2 (1|3 Ex6.l
4101|511 Elliptic curve 3/1]0|3 Ex.62
: 411|410 v(Ph) c P4 212 (1|3 Ex 63
41311310 y3 (Pl < P? 1|5]2|3 Ex65
4111210 P! x P! c P? 1| 2]1]3 Ex6.l
5101410 v (P?) < P3 211 (0|3 Ex 63
503 | 3 |0| Hyperplane section of P' x P2 P’ [1| 5 |23 Ex. 6.5
6|10 | 7 |1] Eliptic scroll Pc(&) withe(6)=—-1 [4]| 1|03 Ex. 6.6
5 -
6| 083 Blomilr iﬂfH;:f E‘l’lﬂtf P b Ps {41 loll3 Ex 66
2, .
26| 1|72 ?}?;T'ipﬁgi _dtzgopfl;tls L 555|’ 32 1]l3 Ex67
5 ;
6|21]6]1 BIOTZ:II) ing;: i 1;?‘?%’ L 1;?3' Ph» 1ol 4023 Ex68
6135 |0|Pu(0(1)®0@4)) orPu(02)@®0(3) 2] 5 |2]|3 Ex 69
2, :
61551 Bl°|V;1-;F:°fl3[P’H;t 4 ,lif"ft.s.’.’l_' sl (233 Exeo
66| 4|0|Pu(0(1)®03))orPpi(02)®0O2))|1|14]3] 3 Ex. 611
5111210 Q3 cpt 1/2]1]3 Ex6.l
613310 P! x P? c P3 1|5]2|3 Ex65
37| 1| 6 |1]| Hyperplane section of P> x P2 P® [2] 2 [1{ 3 Ex. 63
71551 Linear section of G(1,4) = P’ 1[12(3||3 Ex6.10
7161410 Ppi (0(1) ® 0(1) @ 0(2)) 1[14|3]3 Ex.6.11

Table 1. All transformations ¢ as in §1 and with r < 3
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8|0 |12]6 SCfI‘;g "iYS(’éa 32,((1;)bifaét,- Cr%l(lf;)i e s oo
oo 1] ey e o ot T o e o
gl 1 |111l5]| Blow-upof 03 at 5 points py,..., ps, 3l 3|2l Bx 613
|Hy| = |2Hgs — p1 — -+ — ps|
8| 1 |11]5 Scroll over Ppi (0 @ O(—1)) 412 |1 3* Ex. 6.14
8|1 127 Linear section of S'® < P' 412 |1{3 Ex6.15
812|104 Scroll over Q2 314 |23 Ex 6.16
311813193 Scroll over P2 218 |3] 3 Ex.6.17
81319 |3 Quadric fibration over P! 315|123 Ex 6.17
81418 |2 Hyperplane section of P! x Q3 21103} 3° Ex. 6.18
816160 Rational normal scroll 2114133 Ex.6.20
87183 Pre(6), where 0 — (ﬁ[;)z:o 112043 Ex 621
{p1,esps}, P2
818|712 Edge variety 1[33(41 3" Ex. 622
81961 P'x P! x P! < P’ 1[38]4| 3" Ex.6.22
8110 5|0 Rational normal scroll 1142|413 Ex.6.23

Table 1 (Continued)

8. TOWARDS THE CASE OF DIMENSION 4

In this section we treat the case in which » = 4. However, when ¢ = 0, we are well
away from having an exhaustive classification.

Proposition 8.1 follows from [38, Propositions 1.3, 3.4, Corollary 3.2] and [30,
Theorem 2.2].

PROPOSITION 8.1. If r = 4, then either n = 10, d > 2, (B> = P'° or one of the
following cases holds:

=6,d=1,0=4B=0*c P’ is a quadric;
8, d=1,0=2, B P’ is either P' x P> = P’ or a linear section of
9

B is P2 x P? < P3;
X s B is a hyperplane section of P! x P* < P?;
0,d=1,0=0B<cP’isan OADP-variety.

In Proposition 8.2, we more generally assume that the image S is nondegener-
ate, normal and linearly normal (not necessarily factorial) and furthermore we do
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not assume Assumptions 1.2 and 1.4. As noted earlier, we have Pg(1) = 11 and
Pg(2) = 55 — a and hence

t+1)

PQ;(I):A"<Z+3>+(1—g)<t+2)+(2g—3)»+)(((9~3)—a+31)< ;

4 3
+ (=g + 24— 2x(Og) + a — 21)t + x(Os).

PROPOSITION 8.2. If r=4, n =10 and (B> = P, then one of the following
cases holds:

e qg=10,2=7,9=0, y(Og) = 1, B is a rational normal scroll;
e q=7,72=10,9 =3, y(Og) =1, B is either
a hyperplane section of P! x 0* < P!! or
P(Tp @ Op2(1)) = PO,
=6,A=11,9 =4, y(Og) =1, B is a quadric fibration over P';
=51=12,9=5, x(Og) = 1, B is one of the following:
P* blown up at 4 points p; ..., ps embedded by |2Hps — py — -+ - — pal,
— a scroll over a ruled surface,
a quadric fibration over P';
=4, 2=14,9 =28, y(Og) =1, B is either
a linear section of G(1,5) < P'* or
— the product of P! with a Fano variety of even index;
e g=4,7=13,9=06, y(Og) =1, B is either
— a scroll over a birationally ruled surface or
— a quadric fibration over P';

I { Q |

[
N

e a=314<1<16,9g<1l, y(Og) =(—g+21—18)/3;
¢ a=215<.<18,g<14, y(Og) = (—g+24—19)/3;
ea=1,15<2<20,9<17, 7(Og) = (—g + 21— 20)/3;
e q=0,15< 4/

PrOOF. Denote by A= C =S <& X B a sequence of general linear sections
of B and put 1o (2) := h°(P°, 0(2)) — h°(P®, .75 (2)). Since C is a nondegenerate
curve in P’ we have 4 > 7. By Castelnuovo’s argument [41, Lemma 6.1], it fol-
lows that

(8.1) 7 <min{Z, 13} < hp(2) <28 — hiO(P", 73(2)) =17 —a
and in particular we have a < 10. Moreover

e if 1 > 13, then x(2) > 13 and @ < 4, by (8.1);

e if 1> 15, then ha(2) > 14 and a < 3, by Castelnuovo Lemma [10, Lemma
1.10];

e if 1 > 17, then in(2) > 15 and a < 2, by [10, Theorem 3.1];

e if 1> 19, then i15(2) > 16 and @ < 1, by [10, Theorem 3.8];

e if 1 > 21, then hp(2) > 17 and a = 0, by [37, Theorem 2.17(b)].
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According to the above statements, we consider the refinement 6 = 6(1) of
Castelnuovo’s bound p = p(4), contained in [10, Theorem 2.5]. So, we have

(8.2) Kg-Hy =29 —2-3).<20()) —2—-3.<2p(7) —2 -3

Now, if 1 > 1, by Kodaira Vanishing Theorem and Serre Duality, it follows
that Py (—1) = h*(B, Os(—1)) = h°(B, Ky + tHy); hence, if Py(—1) #0, then
Ky + tHyg is an effective divisor and we have either Kg -H% > —tHg = —tA
or Ky ~ —tHg. Thus, by (8.2) and straightforward calculation, we deduce (see
Figure 1):

' ' ' ' I e —
o} 2B(A)-2-3A
/ A —F
/ oA ,»/
ey o
i Fa
/ /
.-"'f Fa
f/ ,"’!
/ /
-~ / /
L y y
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-
xf T /
. I// e
\\ - /\\\
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(=]
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o

Figure 1. Upper bounds of Ky - Hy,

(8.2.a) if A <8, then either Pyg(—3) = Py(—2) = Py(—1)=0 or A =8 and
KQ; ~ —3Hg;

(8.2.b) if 4 < 14, then either Pg(—2) = Pg(—1) =0 or A = 14 and Ky ~ —2Hgy;

(8.2.c) if A < 24, then either Pg(—1) =0 or A = 24 and Ky ~ —Hsg.

In the same way, one also sees that #*(B, Og) = 0 whenever 4 < 31. Now we dis-
cuss the cases according to the value of a.

Case 8.2.1 (9 <a <10). We have 4 <8. From the classification of del Pezzo
varieties in [19, I §8], we see that the case A = 8 with Ky ~ —3Hgy is impossible
and so we obtain 1 =11 — 2a/5, g =1—a/10, by (8.2.a). Hence a = 10, 1 =7,
g = 0 and B is a rational normal scroll.

CAase 822 (5<a<g®). We have A1<12. By (8.2.b) we obtain ¢g=
(34+a—31)/2 and y(Og) = (A+a—11)/6 and, since y(Oy) € Z, we obtain
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A=17—a,g=10—a, y(Og) = 1. So, we can determine the abstract structure of
B by [17], [6], [27, Theorem 2], [7, Lemmas 4.1 and 6.1] and we also deduce that
the case a = 8 does not occur, by [16].

CASE 8.2.3 (¢ =4). We have 1 < 14. Again by (8.2.b), we deduce that either
g=(32-27)/2 and y(Og) = (A —7)/6 or B is a Mukai variety with 1= 14
(g =8 and y(Og) = 1). In the first case, since y(0y) € Z and g > 0, we obtain
A=13,g=06, x(Og) =1 and then we can determine the abstract structure of
B by [26, Theorem 1] and [7, Lemmas 4.1 and 6.1]. In the second case, if by =
hy(B) =1 then B is a linear section of G(1,5) = P'*, otherwise B is a Fano
variety of product type, see [35, Theorems 2 and 7).

CASE 8.2.4 (a=3). We have 4 <16 and y(Og) = (—g + 22 — 18)/3, by (8.2.c).
Moreover, if 2 < 14, by (8.2.b) it follows that A = 14, g = 7 and y(0g) = 1.

CASE 8.2.5 (a=2). We have 4 < 18 and y(Og) = (—g + 24 —19)/3, by (8.2.c).
Moreover, by (8.2.b) it follows that 2 > 15.

CASE 8.2.6 (a =1). We have 4 <20 and y(Og) = (—g + 22 — 20)/3, by (8.2.c).
Moreover, if 1 < 14, by (8.2.b) it follows that 1 = 10, g = 0, y(Og) = 0, which is
of course impossible.

CASE 8.2.7 (a=0). If 2 <14, by (8.2.b) and (8.2.c) it follows that 1 = 11, g = 1,
2(0g) = 0. Thus, B must be an elliptic scroll and ¢ must be of type (2, 6); so, by
(8.3) we obtain the contradiction ¢»(B) - Hg = (990 + ¢4(B))/37 = 990/37 ¢ Z.

a

REMARK 8.3. Under the hypothesis of Proposition 8.2, reasoning as in Proposi-
tion 2.2, we obtain that if ¢ is of type (2,d), then

(8.3) 37¢5(B) - HE — c4(B) = —2314 + 1889 + (1 — 9d)A + 3396,
(84)  37¢3(B) - Hy + Tea(B) = 6551 — 428g + (26d — T)A — 5716,

REMARK 8.4. If Eisenbud-Green-Harris Conjecture /; ¢ holds (see [15]), then
we have that 4 < 24, even in the case with ¢ = 0. If « = 0 and 4 < 24, we have
g < 0(24) = 25 and one of the following cases holds:

e 1 =24 g=25 x(Og) =1 and B is a Fano variety of coindex 4;
e g<24and y(Og) = (—g+21-21)/3.

ExAMPLE 8.5. Note that in Proposition 8.1, all cases with ¢ > 0 really occur
(see §6); when 0 = 0, an example is obtained by taking a general 4-dimensional
linear section of P! x P° = P! = P'2. Below we collect some examples of spe-
cial quadratic birational transformations appearing in Proposition 8.2.

e If X < P'%is a (smooth) 4-dimensional rational normal scroll, then |.# p0(2)|
defines a birational transformation  : P — G(1,6) = P?° of type (2,2).
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e If X = P! is a general hyperplane section of P! x 0* = P!, then |7y pro(2)]
defines a birational transformation  : P10 — y(P1%) = P of type (2,2)
whose image has degree 28.

o If X = P(Jp: @ Opa(1)) = P, since h' (X, Ox) = h'(P?, 0p2) = 0, [ Iy po(2)]
defines a birational transformation v : P!1® — y(P1%) < P!7 (see Facts 1.7 and
1.6).

e There exists a smooth linearly normal 4-dimensional variety X < P!* with
h'(X,0x) =0, degree 11, sectional genus 4, having the structure of a quadric
fibration over P! (see [6, Remark 3.2.5)); thus |.#, »1(2)| defines a birational
transformation i : P! - (P'%) = P'° (see Facts 1.7 and 1.6).

o If X = P! is the blow-up of P* at 4 general points py,..., ps, embedded
by [2Hps — p1 — -+ — pal, then |Fy pi0(2)| defines a birational transformation
Y Py (P1%) < P! whose image has degree 29; in this case Sec(X) is a
complete intersection of two cubics.

o If X =« P! is a general 4-dimensional linear section of G(1,5) = P!, then
|7y p(2)| defines a birational transformation ¢ : P'" - y(P'%) = P of
type (2,2) whose image is a complete intersection of quadrics.

ACKNOWLEDGEMENTS. The author wishes to thank Prof. Francesco Russo for helpful discussions
on this paper.

REFERENCES

[1] A. ALzATI, Special linear systems and syzygies, Collect. Math., 59:239-254, 2008.

[2] A. ALzATI - G. M. BESANA, Criteria for very ampleness of rank two vector bundles
over ruled surfaces, Available at http://arxiv.org/abs/0902.3639, 2009.

[3] A. ALzATI - F. Russo, Special subhomaloidal systems of quadrics and varieties with
one apparent double point, Math. Proc. Camb. Philos. Soc., 134(1):65-82, 2003.

[4] A. ArLzaTi - J. C. SIERRA, Special birational transformations of projective spaces,
Available at http://arxiv.org/abs/1203.5690, 2012.

[5] M. C. BELTRAMETTI - A. J. SOMMESE, The Adjunction Theory of Complex Projective
Varieties, De Gruyter expositions in mathematics 16, de Gruyter, 1995.

[6] G. M. BESANA - A. BIANCOFIORE, Degree eleven manifolds of dimension greater or
equal to three, Forum Math., 17(5):711-733, 2005.

[7] G. M. BESANA - A. BIANCOFIORE, Numerical constraints for embedded projective
manifolds, Forum Math., 17(4):613-636, 2005.

[8] G. M. BEsanNA - M. L. FaNia, The dimension of the Hilbert scheme of special three-
folds, Comm. Algebra, 33(10):3811-3829, 2005.

[9] G. M. BEsaNa - M. L. FaNIA - F. FLAMINI, Hilbert scheme of some threefold scrolls
over Fy, Available at http://arxiv.org/abs/1110.5464, 2011.

[10] C. CILIBERTO, Hilbert functions of finite sets of points and the genus of a curve in a pro-
Jective space, In Space Curves, volume 1266 of Lecture Notes in Mathematics, pages
24-73. Springer Berlin/Heidelberg, 1987.

[11] C. CILIBERTO - M. MELLA - F. Russo, Varieties with one apparent double point,
J. Algebraic Geom., 13(3):475-512, 2004.



ON SPECIAL QUADRATIC BIRATIONAL TRANSFORMATIONS 435

[12] B. CRAUDER - S. KATZ, Cremona transformations with smooth irreducible fundamental
locus, Amer. J. Math., 111(2):289-307, 1989.

[13] B. CRAUDER - S. KATZ, Cremona transformations and Hartshorne’s conjecture, Amer.
J. Math., 113(2):269-285, 1991.

[14] L. EIN - N. SHEPHERD-BARRON, Some special Cremona transformations, Amer. J.
Math., 111(5):783-800, 1989.

[15] D. EISENBUD - M. GREEN - J. HARRIS, Some conjectures extending Castelnuovo
theory, Astérisque, 218:187-202, 1993.

[16] M. L. Fania - E. L. LIVORNI, Degree nine manifolds of dimension greater than or
equal to 3, Math. Nachr., 169(1):117-134, 1994.

[17] M. L. Fania - E. L. LivorNI, Degree ten manifolds of dimension n greater than or
equal to 3, Math. Nachr., 188(1):79-108, 1997.

[18] T. Fuinta, Projective threefolds with small secant varieties, Sci. pap. Coll. Gen. Educ.
Univ. Tokyo., 32:33-46, 1982.

[19] T. Funta, Classification Theories of Polarized Varieties, volume 155 of London Math.
Soc. Lecture Notes Ser, Cambridge Univ. Press, 1990.

[20] D. R. GRAYSON - M. E. STILLMAN, Macaulay2, a software system for research in
algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/, 2010.

[21] A. GROTHENDIECK, Cohomologie locale des faisceaux cohérents et théorémes de Lef-
schetz locaux et globaux, volume 2, North-Holland Publishing Co., 1968, Séminaire
de Géométrie Algébrique du Bois-Marie, 1962 (SGA 2). Advanced Studies in Pure
Mathematics.

[22] R. HARTSHORNE, Ample subvarieties of algebraic varieties, volume 156 of Lecture
Notes in Mathematics, Springer-Verlag, 1970.

[23] R. HARTSHORNE, Algebraic Geometry, volume 52 of Graduate Texts in Mathematics,
Springer-Verlag, 1977.

[24] K. HuLek - S. KAtz - F.-O. SCHREYER, Cremona transformations and syzygies,
Math. Z., 209:419-443, 1992.

[25] P. IoNEscu, Embedded projective varieties of small invariants, In Algebraic Geometry
Bucharest 1982, volume 1056 of Lecture Notes in Mathematics, pages 142-186.
Springer Berlin/Heidelberg, 1984.

[26] P. IONESCU, On varieties whose degree is small with respect to codimension, Math. Ann.,
271:339-348, 1985.

[27] P. IoNEscU, Embedded projective varieties of small invariants, II, Rev. Roumaine
Math. Pures Appl., 31:539-544, 1986.

[28] P. IoNEScuU, Generalized adjunction and applications, Math. Proc. Cambridge Philos.
Soc., 99(03):457-472, 1986.

[29] P. IoNEscu, Embedded projective varieties of small invariants, III, In Algebraic Geom-
etry, volume 1417 of Lecture Notes in Mathematics, pages 138—154. Springer Berlin/
Heidelberg, 1990.

[30] P. IoNEscu - F. Russo, Conic-connected manifolds, J. reine angew. Math., 2010:145—
157, 2010.

[31] D. LAKSOV, Some enumerative properties of secants to non-singular projective schemes,
Math. Scand., 39:171-190, 1976.

[32] M. E. LARSEN, On the topology of complex projective manifolds, Invent. Math.,
19:251-260, 1973.

[33] M. MELLA - E. POLASTRI, Equivalent birational embeddings, Bull. London Math. Soc.,
41(1):89-93, 20009.



436 G. STAGLIANO

[34] M. MELLA - F. Russo, Special Cremona transformations whose base locus has dimen-
sion at most three, Preprint, 2005.

[35] S. MuKal, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3,
Proc. Natl. Acad. Sci. USA, 86(9):3000-3002, 1989.

[36] C. A. M. PETERS - J. SIMONIS, A secant formula, Quart. J. Math., 27(2):181-189,
1976.

[37] 1. PETRAKIEV, Castelnuovo theory via Grébner bases, J. Reine Angew. Math., 619:49—
73, 2008.

[38] F. Russo, Varieties with quadratic entry locus, I, Math. Ann., 344:597-617, 2009.

[39] F. Russo - A. Swvis, On birational maps and Jacobian matrices, Compositio Math.,
126:335-358, 2001.

[40] J. G. SEMPLE, On representations of the Sy’s of S, and of the Grassmann manifolds
G(k,n), Proc. London Math. Soc., s2-32(1):200-221, 1931.

[41] G. STAGLIANO, On special quadratic birational transformations of a projective space
into a hypersurface, Available at http://arxiv.org/abs/1203.5417, 2012.

[42] P. VERMEIRE, Some results on secant varieties leading to a geometric flip construction,
Compositio Math., 125:263-282, 2001.

[43] F. L. ZAK, Tangents and secants of algebraic varieties, volume 127 of Translations of
Mathematical Monographs, AMS, Providence, RI, 1993.

Received 19 October 2012,
and in revised form 28 October 2012.

Ph.D. in Mathematics (XXIII cycle)
University of Study of Catania
gstagliano@dmi.unict.it



	mk1
	mk10
	mk11
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk20
	mk21
	mk22
	mk23
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk32
	mk33
	mk34
	mk35
	mk36
	mk37
	mk38
	mk39
	mk40
	mk41
	mk42
	mk43
	mkEnd-page

