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Abstract. — We present the recent results in [3] concerning quasi-periodic solutions for quasi-

linear and fully nonlinear forced perturbations of KdV equations. For Hamiltonian or reversible
nonlinearities the solutions are linearly stable. The proofs are based on a combination of di¤erent

ideas and techniques: (i) a Nash-Moser iterative scheme in Sobolev scales. (ii) A regularization pro-
cedure, which conjugates the linearized operator to a di¤erential operator with constant coe‰cients

plus a bounded remainder. These transformations are obtained by changes of variables induced by
di¤eomorphisms of the torus and pseudo-di¤erential operators. (iii) A reducibility KAM scheme,

which completes the reduction to constant coe‰cients of the linearized operator, providing a sharp
asymptotic expansion of the perturbed eigenvalues.
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1. Introduction

One of the most challenging and open questions in KAM theory concerns its
possible extension to quasi-linear and fully nonlinear PDEs, namely partial di¤er-
ential equations whose nonlinearities contain derivatives of the same order as the
linear operator. Besides its mathematical interest, this question is also relevant in
view of applications to physical real world nonlinear models, for example in fluid
dynamics and elasticity.

The aim of this Note is to present the recent results in [3] about KAM theory
for quasi-periodically forced KdV equations of the form

ut þ uxxx þ ef ðot; x; u; ux; uxx; uxxxÞ ¼ 0; x a T :¼ R=2pZ:ð1Þ

To the best of our knowledge, these are the first KAM results for quasi-linear or
fully nonlinear PDEs.

KAM and Nash-Moser theory for PDEs, which counts nowadays on a wide
literature, started with the pioneering works of Kuksin [20] and Wayne [27], and
was developed in the 1990s by Craig-Wayne [13], Bourgain [10], Pöschel [24] (see
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also [22], [12] for more references). These papers concern wave and Schrödinger
equations with bounded Hamiltonian nonlinearities.

The first KAM results for unbounded perturbations have been obtained by
Kuksin [21], [22], and, then, Kappeler-Pöschel [18], for Hamiltonian, analytic
perturbations of KdV. Here the highest constant coe‰cients linear operator
is qxxx and the nonlinearity contains one space derivative qx. Their approach
has been recently improved by Liu-Yuan [23] and Zhang-Gao-Yuan [28] for
1-dimensional derivative NLS (DNLS) and Benjamin-Ono equations, where the
highest order constant coe‰cients linear operator is qxx and the nonlinearity con-
tains one derivative qx. These methods apply to dispersive PDEs with derivatives
like KdV, DNLS, but not to derivative wave equations (DNLW) which contain
first order derivatives qx, qt in the nonlinearity.

For DNLW, KAM theorems have been recently proved by Berti-Biasco-
Procesi for both Hamiltonian [7] and reversible [8]–[9] equations. The key ingre-
dient is an asymptotic expansion of the perturbed eigenvalues that is su‰ciently
accurate to impose the second order Melnikov non-resonance conditions. In this
way, the scheme produces a constant coe‰cients normal form around the in-
variant torus (reducibility), implying the linear stability of the solution. This is
achieved introducing the notion of ‘‘quasi-Töplitz’’ vector field, which is inspired
to ‘‘quasi-Töplitz’’ and ‘‘Töplitz-Lipschitz’’ Hamiltonians, developed, respec-
tively, in Procesi-Xu [25] and Eliasson-Kuksin [14], [15].

Existence of quasi-periodic solutions can also be proved by imposing only the
first order Melnikov conditions. This approach has been developed by Bourgain
[10], [11] extending the work of Craig-Wayne [13] for periodic solutions. It is
especially convenient for PDEs in higher space dimension, because of the high
multiplicity of the eigenvalues, see also Berti-Bolle [6]. This method does not pro-
vide informations about the stability of the quasi-periodic solutions, because the
linearized equations have variable coe‰cients.

All the aforementioned results concern ‘‘semilinear’’ PDEs, namely equations
in which the nonlinearity depends on the unknown and its derivatives up to an
order strictly less than that one of the linear di¤erential operator. For quasi-linear
or fully nonlinear PDEs the perturbative e¤ect is much stronger and the possi-
bility of extending KAM theory in this context is doubtful, see [18], [12], [23],
because of the possible phenomenon of formation of singularities outlined in
Klainerman and Majda [19]. For example Kappeler-Pöschel [18] (Remark 3,
page 19) wrote: ‘‘. . . it would be interesting to obtain perturbation results which
also include terms of higher order, at least in the region where the KdV approxima-
tion is valid. However, results of this type are still out of reach, if true at all’’.

For quasi-linear and fully nonlinear PDEs, the literature concerns, so far, only
periodic solutions. We quote the classical bifurcation results of Rabinowitz [26]
for fully nonlinear forced wave equations with a small dissipation term. More re-
cently, Baldi [1] proved existence of periodic forced vibrations for quasi-linear
Kirchho¤ equations. Here the quasi-linear perturbation term depends explicitly
only on time. Both these results are proved via Nash-Moser methods.

For the water waves equations, which are a fully nonlinear PDE, we mention
the pioneering work of Iooss-Plotnikov-Toland [16] about the existence of time
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periodic standing waves, and of Iooss-Plotinikov [17] for 3-dimensional traveling
water waves. The key idea is to use di¤eomorphisms of the torus T2 and pseudo-
di¤erential operators, in order to conjugate the linearized operator to a constant
coe‰cients operator plus a su‰ciently regularizing remainder. This is enough to
invert the whole linearized operator by Neumann series, see Remark 2.

Very recently Baldi [2] has further developed the techniques of [16], proving
the existence of periodic solutions for fully nonlinear autonomous, reversible
Benjamin-Ono equations.

These approaches do not imply the linear stability of the solutions (see com-
ment 2 below) and, unfortunately, they do not work for quasi-periodic solutions,
because stronger small divisors di‰culties arise (see Remark 2).

In [3] we combine di¤erent ideas and techniques. The key analysis concerns
the linearized KdV operator (15) obtained at any step of the Nash-Moser itera-
tion. First, we use changes of variables, like quasi-periodic time-dependent di¤eo-
morphisms of the space variable x, a quasi-periodic reparametrization of time,
multiplication operators and Fourier multipliers, in order to reduce the linearized
operator to constant coe‰cients up to a bounded remainder (see (21)). These
transformations, which are inspired to [2], [16], are very di¤erent from the usual
KAM transformations. Then we perform a quadratic KAM reducibility scheme
à la Eliasson-Kuksin, which completely diagonalizes the linearized operator. For
reversible or Hamiltonian KdV perturbations we get that the eigenvalues of this
diagonal operator are purely imaginary, i.e. we prove the linear stability. In sec-
tion 3 we present the main ideas of the proof in more details.

We remark that the present approach could be also applied to quasi-linear and
fully nonlinear perturbations of dispersive PDEs like 1-dimensional NLS and
Benjamin-Ono equations (but not to the wave equation, which is not dispersive).

In order to highlight the main ideas, we have considered in [3] the simplest set-
ting of nonlinear perturbations of the Airy-KdV operator qt þ qxxx and we look
for small amplitude solutions.

2. Main results

We consider equation (1) where e > 0 is a small parameter, the nonlinearity is
quasi-periodic in time with diophantine frequency vector

o ¼ lo a Rn; l a L :¼ 1

2
;
3

2

� �
; jo � ljb 3g0

jljt0 El a Znnf0g;ð2Þ

and f ðj; x; zÞ, j a Tn, z :¼ ðz0; z1; z2; z3Þ a R4, is a finitely many times di¤eren-
tiable function, namely

f a CqðTn � T� R4;RÞð3Þ

for some q a N large enough. For simplicity we fix in (2) the diophantine expo-
nent t0 :¼ n. The only ‘‘external’’ parameter in (1) is l, which is the length of the
frequency vector (this corresponds to a time scaling).
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We consider the following questions:

• For e small enough, do there exist quasi-periodic solutions of (1) for positive mea-
sure sets of l a L?

• Are these solutions linearly stable?

Clearly, if f ðj; x; 0Þ is not identically zero, then u ¼ 0 is not a solution of (1) for
eA 0. Thus we look for non-trivial ð2pÞnþ1-periodic solutions uðj; xÞ of

o � qjuþ uxxx þ ef ðj; x; u; ux; uxx; uxxxÞ ¼ 0ð4Þ

in the Sobolev space

Hs :¼ HsðTn � T;RÞ :¼

8<
:uðj; xÞ ¼

X
ðl; jÞ AZ n�Z

ul; je
iðl�jþjxÞ a R; ul; j ¼ u�l;�j;

kuk2s :¼
X

ðl; jÞ AZ n�Z

ðmaxf1; jlj; j jjgÞ2sjul; jj2 < l

9=
;:

From now on, we fix s0 :¼ ðnþ 2Þ=2 > ðnþ 1Þ=2, so that for all sb s0 the
Sobolev space Hs is a Banach algebra, and it is continuously embedded
HsðTnþ1Þ ,! CðTnþ1Þ.

We need some assumptions on the nonlinearity. We first consider quasi-linear
perturbations satisfying

• Type (Q)

q2z3z3 f ¼ 0; qz2 f ¼ aðjÞðq2z3x f þ z1q
2
z3z0

f þ z2q
2
z3z1

f þ z3q
2
z3z2

f Þð5Þ

for some function aðjÞ (independent on x).

We note that every Hamiltonian nonlinearity, see (9), satisfies (Q) with aðjÞ ¼ 2.
In step 3 in section 3 we explain the reason for assuming condition (Q).

Theorem 1 (Existence). There exist s :¼ sðnÞ > 0, q :¼ qðnÞ a N, such that: For
every quasi-linear nonlinearity f a Cq of the form

f ¼ qxðgðot; x; u; ux; uxxÞÞð6Þ

satisfying the (Q)-condition (5), for all e a ð0; e0Þ, where e0 :¼ e0ð f ; nÞ is small
enough, there exists a Cantor set Ce HL of asymptotically full Lebesgue measure,
i.e.

jCej ! 1 as e ! 0;ð7Þ

such that, El a Ce the perturbed KdV equation (4) has a solution uðe; lÞ a Hs with
kuðe; lÞks ! 0 as e ! 0.
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We may ensure the linear stability of the solutions requiring further conditions
on the nonlinearity, see Theorem 5 for the precise statement. The first case con-
cerns Hamiltonian KdV equations

ut ¼ qx‘L2Hðt; x; u; uxÞ; Hðt; x; u; uxÞ :¼
Z
T

u2x
2
þ eFðot; x; u; uxÞ dx;ð8Þ

which have the form (1), (6) with

f ðj; x; u; ux; uxx; uxxxÞ ¼ qxðqxfðqz1F Þðj; x; u; uxÞg � ðqz0F Þðj; x; u; uxÞÞ:ð9Þ

The phase space of (8) is

H 1
0 ðTÞ :¼ uðxÞ a H 1ðT;RÞ :

Z
T

uðxÞ dx ¼ 0

� �

endowed with the non-degenerate symplectic form

Wðu; vÞ :¼
Z
T

ðq�1
x uÞv dx; u; v a H 1

0 ðTÞ;ð10Þ

where q�1
x u is the periodic primitive of u with zero average, namely

q�1
x e ijx :¼ e ijx

ij
Ej a Znf0g; q�1

x 1 ¼ 0:

The Hamiltonian nonlinearity f in (9) satisfies both (6) and (5). As a conse-
quence, Theorem 1 implies the existence of quasi-periodic solutions of (8). In
addition, exploiting the symplectic structure, we also prove their linear stability.

Theorem 2 (Hamiltonian KdV). For all Hamiltonian quasi-linear KdV equa-
tions (8) the quasi-periodic solution uðe; lÞ found in Theorem 1 is linearly

stable (see Theorem 5).

The stability of the quasi-periodic solutions also follows by the reversibility
condition

f ð�j;�x; z0;�z1; z2;�z3Þ ¼ �f ðj; x; z0; z1; z2; z3Þ:ð11Þ

Condition (11) implies that the infinite-dimensional non-autonomous dynamical
system

ut ¼ Vðt; uÞ; Vðt; uÞ :¼ �uxxx � ef ðot; x; u; ux; uxx; uxxxÞ

is reversible with respect to the involution

S : uðxÞ ! uð�xÞ; S2 ¼ I ;
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namely

�SVð�t; uÞ ¼ Vðt;SuÞ:

In this case it is natural to look for ‘‘reversible’’ solutions of (4), namely

uðj; xÞ ¼ uð�j;�xÞ:ð12Þ

In this case we also consider fully nonlinear perturbations f which may depend on
uxxx in a nonlinear way. We assume that

• Type (F)

qz2 f ¼ 0;ð13Þ

namely f is independent of uxx, see step 3 in section 3.

Theorem 3 (Reversible KdV). There exist s :¼ sðnÞ > 0, q :¼ qðnÞ a N, such
that: for every nonlinearity f a Cq that satisfies

(i) the reversibility condition (11), and
(ii) either the (F)-condition (13) or the (Q)-condition (5),

for all e a ð0; e0Þ, where e0 :¼ e0ð f ; nÞ is small enough, there exists a Cantor set
CeHL with Lebesgue measure satisfying (7), such that for all l a Ce the perturbed
KdV equation (4) has a solution uðe; lÞ a Hs that satisfies (12), with kuðe; lÞks ! 0
as e ! 0. In addition, uðe; lÞ is linearly stable.

Let us make some comments on the results.
1. — The previous theorems (in particular the Hamiltonian Theorem 2) give

a positive answer to the question posed by Kappeler-Pöschel [18], page 19, Re-
mark 3, about the possibility of KAM type results for quasi-linear perturbations
of KdV.

2. — In Theorem 1 we do not have informations about the linear stability
of the solutions because the nonlinearity f has no special structure and it may
happen that some eigenvalues of the linearized operator have non zero real part
(partially hyperbolic tori). We remark that, in any case, the approach of [3]
allows to compute the eigenvalues (i.e. Lyapunov-exponents) of the linearized op-
erator with any order of accuracy. With further conditions on the nonlinearity—
like reversibility or in the Hamiltonian case—the eigenvalues are purely imagi-
nary, and the torus is linearly stable. The present situation is very di¤erent with
respect to [13], [11], [6] and also [16]–[17], [2], where the lack of stability informa-
tions is due to the fact that the linearized equation has variable coe‰cients, and it
is not reduced as in Theorem 4 below.

3. — One cannot expect the existence of quasi-periodic solutions of (4) for
any perturbation f . Actually, if f ¼ mA 0 is a constant, then, integrating (4) in
ðj; xÞ we find the contradiction em ¼ 0. This is a consequence of the fact that

Kerðo � qj þ qxxxÞ ¼ Rð14Þ
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is non trivial. Both the condition (6) (which is satisfied by the Hamiltonian non-
linearities) and the reversibility condition (11) allow to overcome this obstruc-
tion, working in a space of functions with zero average. The degeneracy (14) also
reflects in the fact that the solutions of (4) appear as a 1-dimensional family
cþ ucðe; lÞ parametrized by the ‘‘average’’ c a R. We could also avoid this degen-
eracy by adding a ‘‘mass’’ term þmu in (1), but it does not seem to have physical
meaning.

4. — In Theorem 1 we have not considered the case in which f is fully non-
linear and satisfies condition (F) in (13), because any nonlinearity of the form (6)
is automatically quasi-linear (and so the first condition in (5) holds) and (13) triv-
ially implies the second condition in (5) with aðjÞ ¼ 0.

5. — The solutions u a Hs have the same regularity in both variables ðj; xÞ.
The main reason is that the compositions operators that we use in the first (and
fourth) step of the reduction procedure (see section 3) mix the time and space
variables.

6. — In the Hamiltonian case (8), the nonlinearity f in (9) satisfies the revers-
ibility condition (11) if and only if F ð�j;�x; z0;�z1Þ ¼ F ðj; x; z0; z1Þ.

Theorems 1–3 are based on a Nash-Moser iterative scheme, as developed in
[5]. An essential ingredient in the proof—which also implies the linear stability
of the quasi-periodic solutions—is the reducibility of the linear operator

L :¼ LðuÞ ¼ o � qj þ ð1þ a3ðj; xÞÞqxxx þ a2ðj; xÞqxxð15Þ
þ a1ðj; xÞqx þ a0ðj; xÞ

obtained linearizing (4) at any approximate (or exact) solution u. The coe‰cients
ai ¼ aiðj; xÞ ¼ aiðu; eÞðj; xÞ are periodic functions of ðj; xÞ, depending on u, e,
obtained from the partial derivatives of ef ðj; x; z0; z1; z2; z3Þ as

aiðj; xÞ ¼ eðqzi f Þðj; x; uðj; xÞ; uxðj; xÞ; uxxðj; xÞ; uxxxðj; xÞÞ:ð16Þ

Let Hs
x :¼ HsðTÞ denote the usual Sobolev spaces of functions of x a T only

(phase space).

Theorem 4 (Reducibility). There exist s > 0, q a N, depending on n, such that:
For every nonlinearity f a Cq that satisfies the hypotheses of Theorems 1 or 3, for
all e a ð0; e0Þ, where e0 :¼ e0ð f ; nÞ is small enough, for all u in the ball kuks0þs a 1,
there exists a Cantor like set LlðuÞHL such that, for all l a LlðuÞ:

i) for all s a ðs0; q� sÞ, if kuksþs < þl then there exist linear invertible bounded

operators W1, W2 : H
sðTnþ1Þ ! HsðTnþ1Þ with bounded inverse, that semi-

conjugate the linear operator LðuÞ in (15) to the diagonal operator Ll, namely

LðuÞ ¼ W1LlW�1
2 ; Ll :¼ o � qj þDlð17Þ

where

Dl :¼ diagj AZfmjg
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and

mj :¼ ið�m3 j
3 þm1 jÞ þ rj; m3;m1 a R; sup

j

jrjjaCe:ð18Þ

ii) For each fixed j a Tn, the operators WiðjÞ, defined by setting

ðWiðjÞhÞðxÞ :¼ ðWihÞðj; xÞ Eh ¼ hðxÞ a Hs
x;

are also bounded linear bijections of the phase space H s
x,

WiðjÞ;W�1
i ðjÞ : Hs

x ! Hs
x; i ¼ 1; 2:

A curve hðtÞ ¼ hðt; �Þ a Hs
x is a solution of the quasi-periodically forced linear KdV

equation

qthþ ð1þ a3ðot; xÞÞqxxxhþ a2ðot; xÞqxxhþ a1ðot; xÞqxhþ a0ðot; xÞh ¼ 0ð19Þ

if and only if the transformed curve

vðtÞ :¼ vðt; �Þ :¼ W�1
2 ðotÞ½hðtÞ� a Hs

x

is a solution of the constant coe‰cients dynamical system

qtvþDlv ¼ 0; _vvj ¼ �mjvj; Ej a Z:ð20Þ

In the reversible or Hamiltonian case all the mj are purely imaginary.

The exponents mj can be e¤ectively computed. All the solutions of (20) are

vðtÞ ¼
X
j AZ

vjðtÞe ijx; vjðtÞ ¼ e�mj tvjð0Þ:

If the mj are purely imaginary—as in the reversible or the Hamiltonian cases—all
the solutions of (20) are almost periodic in time (in general) and the Sobolev
norm

kvðtÞkH s
x
¼
�X
j AZ

jvjðtÞj23 j42s
�1=2

¼
�X
j AZ

jvjð0Þj23 j42s
�1=2

¼ kvð0ÞkH s
x

is constant in time. As a consequence we have:

Theorem 5 (Linear stability). Assume the hypothesis of Theorem 4 and, in addi-
tion, that f is Hamiltonian (see (9)) or it satisfies the reversibility condition (11).
Then, Es a ðs0; q� s� s0Þ, kuksþs0þs < þl, there exists K0 > 0 such that for all
l a LlðuÞ, e a ð0; e0Þ, all the solutions of (19) satisfy

khðtÞkH s
x
aK0khð0ÞkH s

x
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and, for some a a ð0; 1Þ,

khð0ÞkH s
x
� eaK0khð0ÞkH sþ1

x
a khðtÞkH s

x
a khð0ÞkH s

x
þ eaK0khð0ÞkH sþ1

x
:

3. Ideas of the proof

The proofs are based on a Nash-Moser iterative scheme in the Sobolev spaces
Hs. The main issue concerns the invertibility of the linearized KdV operator L
in (15), at each step of the iteration, and the proof of tame estimates for its right
inverse L�1. These informations are obtained by conjugating L to constant co-
e‰cients.

We now explain the main ideas of the reducibility scheme. The term of L that
produces the strongest perturbative e¤ects to the spectrum (and eigenfunctions) is
a3ðj; xÞqxxx, and, then, a2ðj; xÞqxx. The usual KAM transformations are not able
to deal with these terms because they are ‘‘too close’’ to the identity. Our strategy
is the following. First, we conjugate the operator L in (15) to a constant coe‰-
cients third order di¤erential operator plus a zero order remainder

L5 ¼ o � qj þm3qxxx þm1qx þR0;ð21Þ

where m1;m3 a R, m3 ¼ 1þOðeÞ, m1 ¼ OðeÞ. We use changes of variables in-
duced by di¤eomorphisms of the torus, reparametrization of time, and pseudo-
di¤erential operators, that we now shortly present.

1. — The first step is to eliminate the space variable dependence of the highest
order perturbation a3ðj; xÞqxxx. We use a j-dependent change of variable of the
form

ðAhÞðj; xÞ :¼ hðj; xþ bðj; xÞÞ:

Note that A converges pointwise to the identity if b ! 0, but it does not con-
verge in operatorial norm. Choosing b such that

ð1þ a3ðj; xÞÞð1þ bxðj; xÞÞ
3 ¼ b3ðjÞ ¼ independent on x;ð22Þ

the transformation A conjugates L to

L1 :¼ A�1LA ¼ o � qj þ b3ðjÞqyyy þ b2ðj; yÞqyy þ b1ðj; yÞqy þ b0ðj; yÞ:

For b odd, A preserves the reversible structure.
For the Hamiltonian KdV (8) we use instead the modified transformation

ðAhÞðj; xÞ :¼ ð1þ bxðj; xÞÞhðj; xþ bðj; xÞÞð23Þ

which is symplectic, namely, for each j a Tn,

WðAðjÞh;AðjÞvÞ ¼ Wðh; vÞ Eh; v a H 1
0 ;
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where

ðAðjÞhÞðxÞ :¼ ð1þ bxðj; xÞÞhðxþ bðj; xÞÞ; Eh a H 1
0 ðTÞ:

Hence (23) preserves the Hamiltonian structure, namely the corresponding conju-
gated operator L1 is still Hamiltonian. Choosing b as in (22), the coe‰cient b3ðjÞ
is the same as above, and, moreover, b2ðj; yÞ ¼ 2qyb3ðjÞ ¼ 0.

2. — In the second step we eliminate the time dependence of the coe‰cient of
qyyy by a quasi-periodic time re-parametrization

ðBhÞðj; yÞ :¼ hðjþ oaðjÞ; yÞ; j a Tn; aðjÞ a R:

Calling the new angle Q :¼ jþ oaðjÞ, we choose a so that

B�1L1B ¼ rL2; L2 :¼ o � qQ þm3qyyy þ c2ðQ; yÞqyy þ c1ðQ; yÞqy þ c0ðQ; yÞ

where m3 a R and rðQÞ is close to 1. This transformation preserves the reversible
and the Hamiltonian structure.

3. — The next goal is to eliminate the term c2ðQ; yÞqyy obtaining an operator
of the form

L3 :¼ M�1L2M ¼ o � qQ þm3qyyy þ d1ðQ; yÞqy þ d0ðQ; yÞ:

This is achieved by a conjugation with a multiplication operators M, assuming
condition (Q) (see (5)) or (F) (see (13)). Indeed, after a computation, it turns out
that the second order term is zero if

Z
T

a2ðj; xÞ
1þ a3ðj; xÞ

dx ¼ 0:ð24Þ

If (F) holds, then the coe‰cient a2ðj; xÞ ¼ 0, and (24) is satisfied. If (Q) holds,
then a2ðj; xÞ ¼ aðjÞqxa3ðj; xÞ, and so

Z
T

a2ðj; xÞ
1þ a3ðj; xÞ

dx ¼
Z
T

aðjÞqxðlog½1þ a3ðj; xÞ�Þ dx ¼ 0:

In both cases (Q) and (F), condition (24) is satisfied.
We remark that, in the Hamiltonian case, this step is not needed because the

term c2qyy has already been eliminated (namely b2C 0).

Remark 1. Without assumptions (Q) or (F), we can always reduce L to a time
dependent operator

L3 ¼ o � qQ þm3qyyy þ d2ðQÞqyy þ d1ðQ; yÞqy þ d0ðQ; yÞ:

If d2ðQÞ were a constant, then this term would even simplify the analysis, killing the
small divisors. The pathological situation that we want to eliminate assuming (Q) or
(F) is when d2ðQÞ changes sign. In such a case this term acts as a friction when
d2ðQÞ < 0 and as an amplifier when d2ðQÞ > 0.
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4. — Finally, in order to obtain (21), we conjugate L3 via a translation of
the space variable Thðj; xÞ :¼ hðj; xþ pðjÞÞ (renaming the variables j :¼ Q,
x :¼ y), and a transformation of the form

S ¼ I þ wðj; xÞq�1
x :

In the Hamiltonian case, we use the symplectic map

S ¼ expfp0wðj; xÞq�1
x g ¼ I þ p0wðj; xÞq�1

x þOðw2q�2
x Þ

where p0 is the projection p0 :¼ qxq
�1
x on H 1

0 ðTÞ, namely p0e
ijx ¼ e ijx for jA 0,

and p01 ¼ 0.

Remark 2. We could iterate the regularization procedure at any finite order
k ¼ 0; 1; . . . , conjugating L to an operator of the form DþR, where

D ¼ o � qj þD; D ¼ m3q
3
x þm1qx þ � � � þm�kq

�k
x ; mi a R;

has constant coe‰cients, and the rest R is arbitrarily regularizing in space, namely

qk
x �R ¼ bounded:ð25Þ

One cannot iterate this regularization infinitely many times, because it is not a qua-
dratic scheme, and therefore, because of the small divisors, it does not converge.
This regularization procedure is su‰cient to prove the invertibility of L, giving
tame estimates for the inverse, in the periodic case, but it does not work for quasi-

periodic solutions. In order to use Neumann series, one needs that D�1R ¼
ðD�1q�k

x Þðqk
xRÞ is bounded, namely, in view of (25), that D�1q�k

x is bounded. In
the region where the eigenvalues ðio � l þDjÞ of D are small, space and time deriv-
atives are related, jo � ljP j jj3, where l is the Fourier index of time, j is that of
space, and Dj ¼ �im3 j

3 þ im1 j þ � � � are the eigenvalues of D. Imposing the first
order Melnikov conditions jio � l þDjj > gjlj�t

, in that region ðD�1q�k
x Þ has eigen-

values

1

ðio � l þDjÞ j k

����
����< jljt

gj jjk
<

Cjljt

jo � ljk=3
:

In the periodic case, o a R, l a Z, jo � lj ¼ joj jlj, and this determines the order of
regularization that is required by the procedure: kb 3t. In the quasi-periodic case,
instead, jlj is not controlled by jo � lj, and the argument fails.

5. — Once (21) has been obtained, we implement a quadratic reducibility
KAM scheme to diagonalize L5, namely to conjugate L5 to the diagonal opera-
tor Ll in (17). Since we work with finite regularity we perform a Nash-Moser
smoothing regularization (in time). In order to decrease the size of the perturba-
tion R at each step, we use standard KAM transformations of the form

F ¼ I þC; F ¼ eC in the Hamiltonian case:
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If C is a solution of the homological equation

o � qjCþ ½D;C� þPNR ¼ ½R� where ½R� :¼ diagj AZR
j
j ð0Þð26Þ

and PN is the time-Fourier truncation operator, then

Lþ :¼ F�1LF ¼ o � qj þDþ þRþ;

where

Dþ :¼ Dþ ½R�; Rþ :¼ F�1ðP?
NRþRC�C½R�Þ:

Note that Lþ has the same form of L, but the remainder Rþ is the sum of a
quadratic function of C, R and a remainder supported on high modes.

This iterative scheme converges because the initial remainder R0 in (21) is a
bounded operator (of the space variable x) and this property is preserved, along
the iteration, passing from R to Rþ. This is the reason why we have performed
the regularization procedure in steps 1–4 above, before starting with the KAM
reducibility scheme. The homological equation (26) may be solved imposing the
second order Melnikov non-resonance conditions

jio � l þ mjðlÞ � mkðlÞjb
gj j3 � k3j

3l4t ; El a Zn; jljaN; j; k a Z;

where mjðlÞ are the eigenvalues of the diagonal operator D. We may verify that
for most parameters l a ½1=2; 3=2� these conditions are verified thanks to the
sharp control of the eigenvalues mjðlÞ :¼ �im3ðe; lÞ j3 þ im1ðe; lÞ j þ rjðe; lÞ
where supjjrjðe; lÞj ¼ OðeÞ.

Note that the eigenvalues mj could be not purely imaginary, i.e. rj could have
a non-zero real part which depends on the nonlinearity (unlike the reversible or
Hamiltonian case, where rj a iR). In such a case, the invariant torus could be
(partially) hyperbolic. Since we do not control the real part of rj (i.e. the hyper-
bolicity may vanish), we perform the measure estimates proving the diophantine
lower bounds of the imaginary part of the small divisors.

All the above transformations, both those of the regularization procedure
and those of the KAM reducibility scheme, are also quasi-periodically time-
dependent families of transformations of the phase space (of functions of x
only), namely they are ‘‘Töplitz in time’’. For this reason we deduce the dynam-
ical consequence of Theorem 4-ii) concerning all the solutions of (19) and, there-
fore, Theorem 5.

We note that the transformations used in [16] (as well as those of [11], [6])
have not the Töplitz-in-time structure. This is another reason (in addition to com-
ment 2, page 442) for which stability informations are not obtained in [16], [11], [6].
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Università degli Studi di Napoli Federico II

Via Cintia, Monte S. Angelo, 80126 Napoli, Italy

pietro.baldi@unina.it

Massimiliano Berti

Dipartimento di Matematica e Applicazioni ‘‘R. Caccioppoli’’

Universita’ degli Studi di Napoli Federico II

Via Cintia, Monte S. Angelo, 80126 Napoli, Italy

m.berti@unina.it

Riccardo Montalto

SISSA

Via Bonomea 265, 34136 Trieste, Italy

riccardo.montalto@sissa.it

450 p. baldi, m. berti and r. montalto


	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk20
	mk21
	mk22
	mk23
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk24
	mk25
	mk26
	mk27
	mk28
	mkEnd-page

