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ABSTRACT. — While the choice of a norm in the space where an evolution problem is posed is in-
effective as far as the smoothness properties of the solution with respect to the space variables are
concerned, the asymptotic behavior of this solution when ¢t — 400 is greatly effected by a change
of the norm in the space. We illustrate this consideration by studying existence, uniqueness and
asymptotic behavior for the solution of a simple but very significant evolution problem.
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1. INTRODUCTION

In 1995 Gaetano Fichera gave a talk concerning the asymptotic behaviour of
solutions of evolution problems in the VIII International Conference on waves
and stability in continuous media (Palermo, October 914, 1995). Only the trans-
parencies were published on the Proceedings of the Conference ([2]).

Later Gaetano Fichera started to prepare a paper containing all the proofs
and details. Unfortunately his sudden death prevented him to finish it. Only the
first part of the paper was in a definitive form and it is published in [3].

The present paper is the continuation of [3] and hinges on the non organized
and incomplete part of the notes left by Fichera. We have completed them in
order to prove all the results he presented in Palermo talk.

Let us consider an evolution problem

d
(1.1) AL
w(0) = U,

where A(t,%) is an operator defined on %, which for each / € R™ maps % into
itself. Here % is a function class of functions defined for each ¢ > 0 and with
values in a topological vector space S.

Remarking that there exist infinitely many topologies compatible with the
linear structure of an infinite dimensional function space, Fichera posed a basic
question (see [3]):
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Let us suppose that system (1.1) is connected with some physical phenomenon;
then the subtle problem arises: is the topology to be introduced in the vector space
S uniquely determined by the physical problems under investigation?

The answer to this question is in general negative, how it can be shown by simple
examples. Since the mathematical model of the physical phenomenon given by the
Evolution Problem (1.1) depends on the topology introduced in S, we have to face a
very serious methodological difficulty due to the fact that the asymptotics of a tra-
jectory of (1.1) depends on the relevant topology introduced by the mathematicians
in S. This, from the point of view of Physics, is quite inadmissible.

After proving an existence and uniqueness theorem (Section 2), in Section 3
we study an example showing how the asymptotic behavior of the solution
when ¢t — 4o is greatly effected by a change of the norm in the space, despite
the fact that the regularity of solutions with respect to the space variables does
not change.

2. EXISTENCE AND UNIQUENESS THEOREM FOR AN EVOLUTION PROBLEM

Suppose that the weight function w € C°(R), w(x) > 1 and satisfies the following
conditions:

i),, Vy > 0, there exists a,(7") such that

+00 o —(x—¢)?/4(1—7) T
(2.1) /w Wdés EriciC R

ii),, Vy > 0, there exists b,(7") such that

+oo |é—x| ef(xff)2/4(tft) by(T)
22 [ sV

there exists a9 > 0 such that

iii),,

(2.3) /Jmﬁ < +4o0, Va> .

For example w(x) = 1 4+ x> and w(x) = e/l satisfy conditions i)
Subsections 2.1 and 2.2 below).
Let T be a positive real number. We denote by S7 the strip

it),,, iii),, (see

wa

Sr={(x,0): xeRO0<t<T}.

By S, we denote the half-plane ¢ > 0 of the (x, ¢)-plane. Let y > 0. In the follow-
ing we denote by F, and F,(T') the spaces F* and F,*(T), respectively (see [3,
Section 2]), that is the Banach spaces of real valued measurable functions such
that
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Ux)eF, < |U|l,=esssup|U(x)[w(x)]"| < +oo;
xeR

u(-,t) e F,, Vte(0,T);
u(x,1) € F(T) [[ull, = esssup [u(x, )[w(x)]"| < +o0.
St

We consider also

— L7 the space of real valued functions U(x), measurable in R, such that

10l = ([ 1017 ) < o0

— LP(T) the space of real valued functions u(x, ) such that u(-,7) € L/ for all
0<t<Tand

1/p
ull, , = esssup(/ |u(x, t)|"[w(x)]7dx) < +o00.
' (0,7) R

Given y > 0, we denote by %,(T') the class %, (T) defined in [3, Section 2] of
all functions defined in S,, such that u, uy, u.y,u; € F,(T) 0 C*(S,).
Let ¢(x, 7) be a real valued function such that

i), e(x.0) € C*(5..);
i), VT > 0,Vh =0,1,2 3c,(T) > 0: |en(x, 1) < en(T) V(x,1) € St.

The evolution problem we are going to consider is the following

Given c¢(x,t) satisfying i), ii), find u(x,t) belonging to U,(T) for any T > 0,
such that

(2.4) {ut(x, 1) = tuee(x, 1) + c(x, Du(x, 1) (x,1) € Sy,
(2.5) u(x,0) = p(x) xeR,

when ¢ € C*(R) and

(2.6) p"(x)eF, h=0,...,4

THEOREM 2.1. Set
(27) v(x, Z) = u(xa t) - (0()6);

Hyg(x, 1) = -l e /+w (&, 1)/ g,
vy =)' e T

For any T > 0, problem (2.4)—(2.5) is equivalent to the following integral equa-
tion

(2.8) v+ A (cv) =Af, veF,(T)
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where
(2.9) J(x, 1) = =¢"(x) = c(x, )p(x) € F)(T) 0 C”(S).
PrOOF. It is evident that under the hypothesis (2.6) u(x, t) € %,(T) if and only if
v(x,t) € U, (T).

A function u is solution of (2.4)—(2.5) if and only if v in (2.7) is solution of the
problem: Find v(x, t) belonging to U,(T) for any T > 0, such that

(2.10) {vxx(x, 1) —v(x,0) + c(x, )v(x, 1) = f(x,1), (x,1) € Se
(2.11) v(x,0) = 0.

If veu,(T), for any T > 0, is solution of (2.10)—(2.11) then, for [3, Theorem
2.1], the function v is solution of the integral equation (2.8).

This result can be inverted in the following sense: if f € F,(T)n C*(S,)
and v is a solution of (2.8) which belongs to F,(7), then from (2.8) we deduce
that

(2.12) // c(x, )p(x,0)[A(f —cv)(x,t) —v(x, 1) dxdt =0,
St

V(ﬂ € éoo(ST — aST)

If (see [3, (2.3)])
Hw) = - [ L [ weorenr
then (2.12) is equivalent to
S 00 = o 0t )0t 0 4 5 o) ) e
= [ (00) = o 0005, 00 s+ 04 ep) ) e
=[] G — e 0ot + 0,050 + <l 0t ) d
= [ o000+ 0,0.) + 0, 0)

B //S 06, 1) (0xx(x, 1) = 0a(x, 1) + (v, (v, 1) ddt = 0

and in conseguence v is a solution of (2.10), (2.11) in the weak sense. From the
classical regularization theory we deduce that v € F,(T) n C* (S ). Moreover
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v, vy X

A +e(x, oe(x, 1) = —cxo(x, )o(x, 1) + fr(x,1);  vx(x,0) =0
Pvee OUpx
2 o + (X, D)o (x, 1) = =2¢(x, 1o (x, 1) — (X, 0)0(X, 1) + frn(X, )

Uxx(x,0) = 0.

This implies v, € F,(T) n C*(S,) and, in consequence, vy € F,(T) N C*(S)
ie.ved, (T). O

We have shown the perfect equivalence between problem (2.4)—(2.5) in %,(T')
and the integral equation (2.8) in F,(7'), for any T > 0.

LeEMMA 2.1. If f(x,t) € F(T) then (Af)(x,t) € F,(T).
Proor. If f e F,(T) then

© —(x=¢)* /4(1-1)
A (x0] = 5= / hTE [ vrenimer s

I£I, f* de /+w e~ (x—)/4(1-1)
- de.
RV I N A T

From (2.1) we get

I/l ta,(T)
(2.13) A (x,0)] < 2\/7—; [WEX)]"’
which implies
71, < S -

LemMA 2.2, If v(x,t) € F(T) then (Acv)(x,t)e F(T) and (Hev) (x,1) €
F,(T).

PrOOF. Lemma 2.1 and the hypotheses on ¢(x, ¢) imply that (#cv)(x, t) belongs
to F,(T'). We have

X

A é_ —(x=&)/A(t—1
(Aev) (x,1) = 2\/_/ 1/2/w c(é,r)v(é,r)2<z_r)e (x=0)*/46=1) gg.

From (2.2) it follows

(2.14) (Hev) (. )] < j%) ’[ f §] )
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and
(e, < &@ T'2,(T) o], .

LeMMA 2.3. If ve F/(T) then, Vp =1, Yu<y—oy, A(cv)eL[(T) and
(A (cv)), € LL(T).

PRrOOF. From (2.13) and (2.14)

([ 1ren e oo ax) " < ST o ([wop i) "

([ 160w iwiaa) " <« DT 2D o (fpeman) "

The integrals in the right hand sides are finite for 4 < py — ay, for all p > 1. This
implies our assertion. O

THEOREM 2.2. Assume T > 0. For any € F,(T), the equation
(2.15) v+ A (cv) =y

has one and only one solution in F,(T). We have

+
8

v="Y (=1)(AHe)*y.

&
Il
S

The above series and the series obtained by differentiating with respect to x con-
verge in the norm of F,(T).

PrOOE. For a fixed ¢ > 0, we define the space Fy@

v(x,t) € F,(T), equipped with the norm

(T) formed by all functions

olll, = ess sup e pw ()] ([o(x, )] + [vx(x, 1))

St

We have
e T (loll, + [lvxll,) < [l < llvll, + lloxll,-

For any 7 € [0, T, keeping in mind (2.1) and (2.2), we find

e—(x=8)*/4(1—)
a0 < S el /( e [ e
co(T) o @ (T) e 1y
< 3ol os (5= 2);
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) N
|(Aev) (x,1)] < ;E/Z)HMH;;/ (t—r)dr R;% [w(f)]y dé

w(T), o b(T)
< XD, 2, [
Go(T) 1 B(T) e
S el 2 L (2
Hence
esssupfe™ (o) Acrl, 0] < G T vl
esssuple~ (o) (e0), (v, ) < T 2Dy

Sy . 2 \/E
We deduce that

_¢o(T) ra,(T)  by(T)
ol < drllell, - or == (T 2+ 2 2).

If we assume ¢ > (22 2;‘/7’ +1)% then 67 € (0,1) and Tv = Hev+  is a
contraction map on the space F,° (e (T ). Hence equation (2.8) has a unique solu-

tion in the space F (T ) given by

+00

(2.16) o 1) = 3 (=D (A P)(x. ).

s=0

The series (2.16) converges in the norm of E,(g)(T ). This completes the proof.
O

THEOREM 2.3. Let y be a fixed positive real number. Assume that ¢ satisfies con-
ditions (2.6) and c satisfies i),, ii),. There exists one and only one solution of the
problem (2.4), (2.5) such that

c?

i) u(x,t) e C*(S5,);
ii) VT > 0: u(x,t) € F,(T); uy(x,t) € F)(T);
i) Vp > 1 and Vu <y —op: u(x, 1) € LI(T), uy(x, 1) € LI(T).

We have

(2.17)  u(x,1) = Hop(x) = p(x) + (AF) (x, 1) + Y _(=1)*(He) " Hf (x,1)

where f(x,t) is defined in (2.9).



458 A. CIALDEA AND F. LANZARA

The above series and the series obtained by differentiating with respect to x con-
verge in the norms of F,(T), L[ (T) and, in particular, they are totally convergent in
St.

The series obtained by differentiating either twice with respect to x or once with
respect to t are totally convergent in every compact subset of Sr.

PROOE. Problem (2.4), (2.5) is equivalent to the integral equation (2.15) with
Y = Af € F, (Lemma 2.1). Existence and uniqueness follows from Theorem 2.2.
For Theorem 2.2 and (2.7) we deduce (2.17) and the convergence of the series on
the right hand side, together with the series obtained by differentiating with re-
spect to x, in the norm of F,(7T"). We deduce i) and ii).

From (2.13), (2.14) and ii), we have

co(T)a,(T) W, co(T)b,(T) 12[¥1,

A () (x, )] <

(Hey) (x,1)] <

2yn [w(x)]” Ve )
We prove by induction that, for s > 1
CIDN co(T)a,(T)

(218) |0y 0] < S Wl d(T) =S

Indeed, for (2.18) and (2.1)

JPRCE DN S O LI NPV Ry Ly Toa
ey ) = 5= [ <2 [ e ol e e e

co(T) s / ‘8 dr e
=¥, 2Vm 47 o IVi—tJr W) ac

R S AR R 1§ oY
|, d(T) W/o 59 = WL T

<y

Hence

Ity = S ([ o ) o,

A

and, Vp > 1 and Vu < y — o, there exists a constant 4, , , such that

+o0

D) Y,y < Ap sl

s=0

Le. the convergence in L[ (7).
Moreover, keeping in mind (2.18) and (2.2), for any s > 1,
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(2.19) I((%”C)S“lﬁ(x t))

S [ e e e g
<>@GMUW/@ dz
ogr 2l )y I Vies
€ — x| e 09/
* J2t o) wm a

(eo(T)ay(T))*co(T)b, I
<y, AL DD L [T e
o @(T) @(T)B(T) 2 T(14s) 1
- ”lpHy 2s+lgs/2 5! F(3/2+s) [W<x)]}'

< ), 2 TN (M) by(T) 21
\/_ 2s+1n—s/2 J [W(x)]"/ )

2\f
< [,

The last inequality follows from

T(l+s) 2 (29! 2

T3/2+s) vals+ )l = va
Then

s+1 s s+1/2
e = o, PGV T oy an)”

sp(s+1)/2 s!

and, Vp > 1 and Vu < y — a,

+o©

DA )y < Bos IV

s=0

This shows that also u, belongs to L7 (7") and then iii) holds. Moreover the series
in (2.17) and the series obtained by differentiating with respect to x converge in
the norm of L{j( ).

For i), ii),, (2.14) and [3, Theorems 2.3 and 2.4]:

(@) )] < Vbl 5 = (S = 1)V

SPUV%Q+MHE%LWN¢4} VT,
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For any s > 1,
() (e, ) | = 1A (e((H) W) (x, 1)) o

< () ) ) = (= ) VE

Keeping in mind ii),, (2.18) and (2.19)
|((c(AT) ) (x, 1)
< lex((A) )| + [e((A)Y). |

¢ S(a s—1 s—1/2
< () Oy gy @) B2 1y,

We deduce the convergence of the series

|((A#E) ) (3, D)1

gt

s=1

The convergence of the series obtained by differentiating with respect to ¢ follows
from the relation

() N (x, 0), = (He) (1) = el ) (H) Y (x,0),  (x.0) € S O
2.1. The weight w(x) = (1 + x?)

The function w(x) = (1 + x?) obviously satisfies condition (2.3) with oy = 1/2.
We show that it satisfies the hypotheses (2.1) and (2.2).

LeEMMA 2.4. For any y > 0 there exists a,(T') such that

.
/R%désm%, 0<t<t<T.
PROOF. Setting o = (¢ — x)/(2v1 — 1),
~(x=&)/4(t—7) o0 ~a?
I v R VW ey =
xl/4VT e do
/—|x/4ﬁ (1+ (x+20v71—7)%)’

+00 —g?
+/ e % do )
w/avT (14 (x +207—1)%)7
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We have (see [1, 7.1.13])

2

+00 —a +o0
/ ¢ 7 do < / e do = ﬁ elrfcﬂ
| |

AT (14 (x =201 —1)%) ~ JixijavT 2 4T
- T e—xz/léT e—x7/16T
s Cc
2 X2 T/x2 +1

Since the function y(y) = e /"7 (1 + y)"""/? is bounded in [0, c0) then

/+oc —0 dO' - CT
wavT (14 (x — 20— 7)) ~ (1+x2)"

I
For |o] < 07 We get

461

(2.21) |x + 20Vt —1| > |x| = 2|o|Vi—1 > |x|/2.
We deduce that
/Ix/4\/7 e do _ 47 / 702d - 4}’\/7':
< e o< ——.
T (14 (x+ 20T —1)%)7 — (4+x2)7 (1+x2)7
Concerning the last integral in (2.20)
/+oc e,oz do - 1 /+CC 670_2 o < \/7—[
< 0< ———.
w/avT (14 (x +20v7— )27 — (1 +32)" Jgjav 2(1 4 x2)7

This completes the proof.

LEMMA 2.5. For any y > 0 there exists b,(T) such that

¢ — x| =940 — by(T)
N ( +é) dé <t r(1+x2)y, 0<t<t<T.
PRrROOF. Setting 6 = (¢ — x)/(2Vt— 1),
€= x] entO A0
2.22 d
(2.22) R2Vt—1 (1+é) :
oo oe " do
=21 =
[ T(/|x/4ﬁ(1+(x—20\/f—f)2)y
+/x/4ﬁ |a|e’”2d0
VT (14 (x + 20v/7—7)%)

+/+w “do )
w/avT (1 + (x + 201 — 1))/
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We have

+o0 0_6_02 do +o0 ) e—x2/16T
/ 5= < / ge ’ do= .
WAVT (L4 (x =20V =7)7)"  Jj/avT 2
Since the function (y) = e /"7 (1 + »)” is bounded in [0, o0) then
/+oo e do - Cr
w/avT (14 (x = 20vi—10)%)7 — (1+x2)7
Due to (2.21) we deduce that

xl/4VT lole="" do 47 > 47
/ 5 < 2},/|<7e‘7 do < ——.
VT (1 + (x4 20V —1)%) — (4+x%)7 g (14 x?)

For the last integral in (2.22)

A

A oe " do 1 e o2 1
B y S N7 g dO' = —ZV .
/avT (1 4+ (x + 201 — 1)) (1 +x2)" JixjavT 2(1 +x2)
The last three inequalities and (2.22) lead to our assertion. O
2.2. The function w(x) = el

In this subsection we show that the function el satisfies (2.1) and (2.2). (2.3) is
obviously satisfied with oy = 0.

LEMMA 2.6. For any y >0,

+o0
/ e~ (=8 /A=)l g < %ﬁvt —eTe M 0<r<i<T.

o0

PROOF. Set o = 24/t — 7. We have

+o0 2,9 ; +o0 s
/ e~ (=87 /%% a1l dé = Oc/ e~ e lxtuol g

o0 — 0
—x/o s +00 s
= deyx/ e*” taye do + oceyx/ Ciﬂ % do.
—o0 —x/o
If x < 0 then
—x/a 2 2,24 x|/ 2/2)2
e}x/ eia +1}U da- — ei}lx‘eu Y / / ei(ailx// ) do-;
—w — 0

+0o0 5 55 +0o0 5
e—yx/ e 0 "0 o — ey\x\eoc y /4/ e—(U+o<y/2) do.

x/o x| /o
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If x > 0 then

400 s ) [x]/o 5
e—VX/ e~ "0 (g — o~ VIMg2y /4/ e—(0-2/2) do;

x/o 00

—x/a R - +o0 ,
e/x/ e TN o — ey|x\ea¢ y /4/ ef(a+ocy/2) do.

0 x|/

Hence

+00
/ o~ (=8 /o2 g el dé

o0

220 ) [x] /o )2 ' +00 22
_ e/ (e—/m / e~ (0=/2 gor 4 7l / (ot 2/2) do.)
—o0 |x] /o

The inequalities

x|/ +oo )
/ e~/ 4o < / e W) do < /x;

0 o0
+o +o
/ e 0’+3(y/2 dO' _ / 71’ dT — \/_E erf (| | + OW)
/o Ixlfay/2 2 o 2
< VR (o o VT i
2 2
complete the proof. O

LeMMA 2.7. For any y > 0 there exists b,(T) such that

(2.23) 2|f/l__| ~ YA g < T 1hy(T)e ™, 0<r<t<T.
— 7T

PrOOF. Set oo = 2+/t — 7. We have

€=
2\/t—r

+o0
— / e " e "l 4

o0

O* /41— e Ml ge

—x/o ) +00 R
— oceyx/ lole " T dg + oce_yx/ lole™ 7 dg.

0 —x/o
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If x < 0 then

—x/a ) ! 24 |x|/o /2)2
eyx/ lole 7+ dg = e Me?r/ / lole= /)" dg:

0 —0o0

+o0 ) . +o0 ,
e”/ lole™" %7 dg = e"Me*7 /4/ ge Tt/ 4g.

x/o |x[/ot
In the case x > 0

—x/o 2 2,2 oo 2
eyx/ lole ™"+ dg = e?Xlg2™y /4/ ge—(T+%/2) do;

e |x1/

N oo 2 2,2 4 ‘X‘/ 2
e/"/ lole™" ¥ dg = e Me* 7"/ / |lgle=(e=/ ' do.
—x/a _

o0

We deduce that
|é — .X| e—(x—f

)17 =7l g

., I/ ) o0
:aewm(e—y\x\ / ole=(=2/2” g 4+ 7 /

ge (/2 da) )

o0 || /o
From the inequalities
+0o0 +0 2
/ ge~ J+o<y/2 / ’L' _ _) - dr
||/ |l /oo /2
+00
- / re dr = Lo/ o Lo-aix,
s 2 2
x|/ V\/a+w/2 +oo
/ |ale~(o~ /2)* / r+—‘ fdr < / ‘r—f—%‘eﬂz dt
ocy/Z ) +00
—/ T——) _T'df—l—/ (r+ﬂ>e_72dr
—uy)2 2

—e VM4 % Vrerf (%)

we deduce that

- : 1 :
/R < . M -0 11dl g < ger®r/Ae i (e 2 et (2).

Then (2.23) is proved with b,(T) =2 +¢77" (1 + 2yV/Tr). O
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3. EXAMPLES

While, as far as the smoothness properties of the solution with respect to the
space variables are concerned, the choice of a norm is ineffective!, the asymptotic
behavior of this solution when ¢ — +oo is greatly effected by a change of the
norm in the space. It is true that the norm which is introduced in the space S is
suggested by physical considerations, however, there is not only one norm (e.g.
one topology) which suits the physical problem and, on the other hand, physical
experiments are not able to determine what the norm should be. We illustrate this
consideration by a simple but very significant example.

For fixed p>1,1>0,a>0,b>0and a+b >0, consider the space 7,/ (1)
of real valued function u(-, ) € C'(R), u(-, 1), u.(-, 1) € L/(R) equipped with the
norm |lu(-,7)|, , = aM(t) + bN(t) where

M(1) = (/j lu(x, 1)) (1 +x2)“dx>1/p;
N(t) = (/:O lun(x, 2|7 (1 —I—xz)”dx)l/p.

The function u(x,t) = (t +

1)1 + x2) Te~ (/D)D" solves the problem
(2.4), (2.5) with p(x) = (1 +x?) Te > /xF

D and

e, ) = (h(t+ 1) —k(t+ D)) + (k(t+ D =29 =) (1 +x7) 7!
+229(149) =30+ D* =4yt + DF(1 + x> 2
FARL+ )+ D = e+ DA+ x) 7+ 4+ DF (1 + D)
The function ¢ € C*(R) and satisfies conditions (2.6); for any fixed A, k € Z and

t € [0, T, the function c satisfies i), and ii),.
In the following we assume p > 1, y > 1/2 and u < y — 1/2. We obtain

(px?/(P+1)(+1)"

B0 M= (2 [ )

! ; 1
= (t+ 1)h(/ e P sg=1/2(1 5)Pe32 ds) ’
0

(t+1)* p—1—3/2 1/
—(t+ l)h—k/zp(/o (1 B (t:l)k)w n e’apo—*”zda) ’

! These smoothness properties in general depend on the smoothness of the data, no matter how a
norm in the vector space has been introduced.
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Define

—u-3/2
P (R R BT S
..
0 (t+ 1) <o <+

We have, for any k > 0 and y > p+ 3/2

lim fi(o) =e a2 |fi(o)| <e Pa"? (5> 0).

t—+0o0
Then
(r+1)k +o0
lim file)do = / e o do = \/—%
—oo 0 0 \/[3
We deduce that
k
. \1/2p k
Jim M(1) = b) =2
k
0 h<—
< »
From (3.1), foru < y—1/2,if k=0
40 h>0
. b S 1/p
tg?m M(t) = (/0 e sl (1 = g) P32 ds) h=0;
0 h<0

if k& < 0 we deduce that

where
: 1 r -1
Jowy = (/ sV (1 — )P ds) " (ﬁ M
0 1

Since
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one finds

1/p

R (f+1)k>p|u(x,l)pdx)

N =02 [ s (r+
~20+ ([ e (4 1)1 = 5)7

(1 sy o2 )

+0o0 1/
= (t+ l)h_k/2p+k/2 (/ g:(a) da) !

0

where
g:(o)
p—1=3/2+p/2 b4
= 2<1 B (t+al)k) (1 * (t+y1)k a (t+gl)k> oV <o < (t+ l)k
0 o> (t+ 1)~

Fork>0and u<y—1

lim g,(o) =2e"PaP"V/2  |g.(0)| <2(1 +9)PePcP~V2 (6> 0).

t—+o0

Then
(t+1)* +oo 1
lim gi(o)do = 2/ e PP~V g = 21_(p_42r )p*“’*l)/z.
0

11— 0

We deduce that

+o0 h Kk

2p 2

- _ (PN ey, kK
Jim N(z) = F( 2 ) P h=5,"2
ko k

Fork=0

40 h>0
lim N(7) = h=0

¢
P DY

0 h<0

: —sp P yp—1=3/2+p/2 (p—1)/2 lp
ooy :2( | e Ply+(1—s)r(1—ys) S ds) .
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Fork <0
+00 h>%_§
tg+mwN(l): .11y hz%—%
0 h %_%
where

(F(”T“)F(VP i %))1/11

Clp(y+1) —n)

Summarizing, we obtain that, for k > 0,y >3/2and u <y —3/2

dpyu-f/ =2y

a-o0+b-ow h>£
2p
/2 k
. k k k
[L1r+noo||u(~,t)||p_’ﬂ: a-0+b- 0 Z—§<h<5
p+ I\/p —(p1)/2p k k
a0+r( ) h=3,"3
k k
. . heo w0
a-04+56-0 1<2p 5
Fory>1/2and u<y—1/2,ifk=0
a-oo+b-ow h>0
. T\ 1/2p
Jim )l = Yae (0) 7 by =0
a-0+b-0 h<0
if £ < 0 then
a-o+b-ow h>0
tliljrnoonu('a[)”p,ﬂ: a'fp,ﬂ,y‘“b'dp,y.y h=0
a-0+b6-0 h<0

In addition it is easy to show that

0 h<0
sup [u(x,0)| = (t+ 1) lim suplu(x,n)|={1  h=0
xeR [=+%0 yeR

4+ h>0.
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For example, consider p=2, y>3/2 and u<y-—3/2. If k>0,
h=k/(2p) =k/4 >0 we have

lim (/M (e, )21+ xz)f‘dx)l/2 - (g)m.

=+ \ [

Ifk>0and 0 </ < k/4,

+o0 12
lim (/ e, (1 + ) dx) =0,

t—+o0 0

Ifk<0,h=—-k/4>0

. . 1/2 VT (2y — p+H\ve
2 2 — (VT 2
i (") =20 g =)

In all of the cases we have that

lim sup |u(x, )| = +o0.
[=+%0 xeR
In the last transparency [2] Gaetano Fichera wrote What of these norms has
a physical meaning? and he suggested that Asymptotic Theory of PDE should be
investigated considering the norm in the function space, where u(x, t) is valued, like
a datum, in other words by considering stability even with respect to the norm.
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