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Abstract. — In 1973 Schinzel proved in [20] that the standard logarithmic height h on the maxi-

mal totally real field extension of the rationals is either zero or bounded from below by a positive
constant. In this paper we study this property for canonical heights associated to rational functions

and the corresponding dynamical system on the a‰ne line.*
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1. Introduction

We fix an algebraic closure Q and we denote the maximal totally real algebraic
subfield by Qtr. Let h be the standard logarithmic height on the algebraic num-
bers. We say that a field F HQ has the Bogomolov property relative to h if and
only if hðaÞ is either zero or bounded from below by a positive constant for all
a a F . This notation was introduced 2001 by Bombieri and Zannier in [9]. The
name is given in analogy to the famous Bogomolov conjecture, yielding a lower
bound of the Néron-Tate height on a certain set of algebraic points on an abelian
variety (see [8], Theorem 11.10.17). By Northcott’s theorem, every number field
has the Bogomolov property relative to h. In Table 1 we summerize some exam-
ples of fields F of infinite degree over Q with the Bogomolov property relative
to h. Let K be a number field, then we denote by Kab the maximal abelian field
extension of K . Furthermore, a field is called totally p-adic if and only if it may
be embedded in a finite extension of Qp. This is a p-adic analogue of the field Qtr.

We want to study the behavior of canonical heights associated to rational
functions on Qtr, and hence variations of Schinzel’s result. For convenience we
will state it again as a theorem.

Theorem 1.1 (Schinzel). The field Qtr has the Bogomolov property relative to h.

Schinzel did not use the notation ‘‘Bogomolov property’’ in his paper. As we
have mentioned above, this notation was introduced nearly 30 years after
Schinzel’s result. The proof of Schinzel gives the sharp lower bound 1
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If one is interested only in a quantitative result, one can use Bilu’s equidistribu-
tion theorem (see [8], Theorem 4.3.1) as follows:

Assume there is a sequence fangn AN in Qtrnf�1; 0; 1g, such that the height of
these points tends to zero. Then, by Bilu’s equidistribution theorem, the equidis-
tributed probability measures on the set of conjugates of the ai converge weakly
to the probability measure on the unit circle. But the support of each such Galois
measure lies in the real line. Hence they cannot cover the unit circle, which leads
to a contradiction.

See also [17] for a very short proof of Schinzel’s original result. Roughly speak-
ing, the field Qtr seems to be arithmetically ‘‘easy’’. In this paper we will give a
complete classification of rational functions defined over the algebraic numbers
such that Qtr has the Bogomolov property relative to the canonical height com-
ing from this rational map. For a rational function f we denote by PrePerð f Þ the
set of preperiodic points of f ; i.e. points with finite forward orbit. Our result
reads as follows.

Theorem A. Let f a QðxÞ be a rational function of degree at least two. Then the
following statements are equivalent:

i) Qtr has the Bogomolov property relative to ĥhf .
ii) There is a s a GalðQ=QÞ such that the Julia set of sð f Þ is not contained in R.
iii) The set PrePerð f ÞBQtr is finite.

Statements i) and iii) will follow directly from ii) by the equidistribution theorem
of Yuan which is a far-reaching generalization of Bilu’s theorem.

In Section 2 we give a short introduction to canonical dynamical heights and
state a few facts on Julia sets that will be needed in the proof of Theorem A.
Section 3 contains a proof of a partial result of our main theorem. This result is
completely covered by Theorem A, but the proof is very simple and shows the
strategy for proving Theorem A very clearly. In Section 4 we prove the main
theorem and give an additional equivalence in the case of a polynomial. One class
of polynomials with real Julia set are Chebyshev polynomials. We will briefly
study these polynomials in Section 5.

Table 1. Fields with the Bogomolov property relative to h.

Field Reference

Qtr Schinzel [20]

finite extensions of K ab Amoroso, Zannier [4]

totally p-adic fields Bombieri, Zannier [9]

QðEtorÞ;E=Q elliptic curve Habegger [16]

472 l. pottmeyer



Acknowledgment. Most of this work was done during a research stay at the Institute for
computational and experimental research in mathematics (ICERM) in Providence. I am thank-

ful for their hospitality during February and March 2012, and for the support of the DFG-
Graduiertenkolleg GRK 1692. Furthermore I would like to thank Fabrizio Barroero, Paul Fili,

Walter Gubler, Khoa Nguyen, Adam Towsley, Tom Tucker and Umberto Zannier for lively discus-
sions and very helpful remarks and suggestions. Moreover, I thank the referee for the very careful

reading of a first version of this paper.

2. Heights and dynamical systems

Canonical heights associated to rational functions defined over the algebraic
numbers can be defined using the next theorem due to Call and Silverman.

Theorem 2.1. Let f a QðxÞ be a rational function of degree greater one. There
is a unique height function ĥhf , called the canonical height related to f , such that for
all a a Q we have

iÞ ĥhf ð f ðaÞÞ ¼ degð f Þĥhf ðaÞ and iiÞ ĥhf ¼ hþOð1Þ:

The canonical height ĥhf vanishes precisely on the set PrePerð f Þ.

See [21], Chapter 3.4, for a proof and additional information including the fol-
lowing two properties which we will use frequently.

Proposition 2.2. With the notation from Theorem 2.1 we have

a) ĥhf ðaÞ ¼ 0 , a a PrePerð f Þ,
b) jfa j ĥhf ðaÞaA; degðaÞaBgj < l for all A;B a R.

Proposition 2.2 b) is commonly known as Northcott’s theorem.

Definition. Let f a QðxÞ be a rational function of degree at least 2. We say
that a field F HQ has the Bogomolov property relative to ĥhf , if and only if there
exists a positive constant c such that ĥhf ðaÞb c for all a a FnPrePerð f Þ.

Notice that the standard height h fulfills hðadÞ ¼ dhðaÞ, for all a a Q and all
d a N. Hence we find

ĥhxd ¼ h for all db 2;

and for f ¼ xd the above definition coincides with the definition given by
Bombieri and Zannier in [9].

In fact, we work with rational functions on the Riemann sphere which we
identify with CA flg. On the Riemann sphere, we will always use the complex
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topology which is induced by the chordal metric r. Let z a C, recall that the
chordal metric is given by

rðz; z 0Þ :¼
jz�z 0 jffiffiffiffiffiffiffiffiffiffi

1þjzj2
p ffiffiffiffiffiffiffiffiffiffiffi

1þjz 0 j2
p if z 0Al

1ffiffiffiffiffiffiffiffiffiffi
1þjzj2

p if z 0 ¼ l

8><
>: :

The Julia set of such a map f is the set of points where f acts ‘‘chaotically’’.

Definition. Let f be a self map of the Riemann sphere. The Fatou set Fð f Þ of
f is the maximal open subset of the Riemann sphere, satisfying the condition:
For all a a Fð f Þ and all e > 0 there exists a d > 0 such that

rða; bÞ < d ) rð f nðaÞ; f nðbÞÞ < e

for all n a N. The Julia set Jð f Þ of f is the complement of Fð f Þ.

In addition to the canonical height associated with a rational function f of
degreeb 2 there exists a f -invariant canonical probability measure mf which is
supported on the Julia set of f (see [15]).

2.3. Although we do not need the theory of polarized algebraic dynamical sys-
tems for our main theorem, we will briefly recall the basic definitions. For de-
tailed information we refer to [23] and the references therein.

Let K be a number field, and let X be a smooth projective variety of dimen-
sion n with a morphism f : X ! X , both defined over K. Moreover, let L be
an ample line bundle on X . The triple ðX ;L; f Þ is called (polarized) algebraic
dynamical system if we have f �LGLnq, for qb 2. We need to fix a line bundle
L to associate a canonical height and a canonical measure to the algebraic dy-
namical system. The canonical height ĥhX ;L; f for ðX ;L; f Þ is uniquely determined
by the properties given in Theorem 2.1. Namely,

ĥhX ;L; f ð f ðPÞÞ ¼ qĥhX ;L; f ðPÞ EP a X ðKÞ and ĥhX ;L; f ¼ hL þOð1Þ;

where hL is any Weil height on X (see [11]).
For a fixed non-archimedean v a MK we write Cv to denote the completion of

an algebraic closure of Kv. This is a complete and algebraically closed field (see
[10], Proposition 3.4.3). We consider ðX ;L; f Þ as an algebraic dynamical system
defined over Cv and denote by X an

v the associated Berkovich space to X=Cv. For
the theory of Berkovich spaces we refer to [7]. As in the special case above, there
exists a v-adic canonical f -invariant measure mf ; v on X an

v associated to ðX ;L; f Þ.
This is also true for archimedean v a MK , where we set X

an
v :¼ XðCÞ regarded as

a complex manifold.
The canonical height associated to the algebraic dynamical system

ðP1
K ;Oð1Þ; f Þ, f a KðxÞ of degreeb 2, is the function ĥhf from Theorem 2.1. The

map f extends uniquely to a continuous function on P1ðCvÞ, v a MK . We
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define the Berkovich Julia set JB
v ð f Þ of f , to be the support of the canonical

measure mf ; v.
Let P a X ðQÞ be arbitrary and let dP be the Dirac measure at P. We denote

the set fsðPÞ j s a GalðQ=KÞg of K-Galois conjugates of P by GKðPÞ, and define
the probability measure

dP :¼ jGKðPÞj�1
X

P 0 AGK ðPÞ
dP 0 :

Now we can formulate Yuan’s equidistribution theorem (see [22], Theorem 3.7).

Theorem 2.4 (Yuan). Let ðX ;L; f Þ be a polarized algebraic dynamical system
defined over the number field K, and let fPigi AN be a sequence of pairwise distinct
points in XðQÞ such that

i) ĥhf ðPiÞ ! 0, as i ! l,
ii) every infinite subsequence of fPigi AN is Zariski dense in X.

For any v a MK the measures di :¼ dPi
converge weakly to mf ; v. This means that for

every continuous function j : X an
v ! C we have

Z
X an

v

jðxÞdi ¼ jGKðPiÞj�1
X

P 0
i
AGK ðPiÞ

jðP 0
iÞ !

Z
X an

v

jðxÞmf ; v;

as i ! l.

Of course, the second requirement on the sequence fPigi AN in the above theorem
is always true if X ¼ P1.

We want to study canonical heights ĥhf on the field Qtr. This was our main
motivation for the next theorem and a first version only covers Corollary 2.6.
Paul Fili pointed out that the same proof applies in a more general setting (see
[14]).

Theorem 2.5. Let f a QðxÞ be a rational function of degreeb 2, and let K be a
number field with valuation v a MK such that the Berkovich Julia set JB

v ð f Þ is not
contained in the closure of ðP1Þanv ðKÞ. If L=K is a Galois extension lying in Kv, then
L has the Bogomolov property relative to ĥhf . Furthermore, there are only finitely
many preperiodic points of f in L.

Proof. Let F be a number field such that f a FðxÞ and K JF . Assume there is
a sequence faigi AN in L of pairwise distinct elements satisfying ĥhf ðaiÞ ! 0 for

i ! l. Denote by di the equidistributed probability measures on the set GF ðaiÞ.
The support of di lies in Kv for all i a N, as L=K was assumed to be Galois. No-
tice that the choice of F implies GF ðaiÞJGKðaiÞ, for all i a N.

By assumption, there exists an a a JB
v ð f Þ ¼ suppðmf ; vÞ which is not contained

in the closure of Kv in ðP1Þanv . As ðP1Þanv is a Hausdor¤ space, there is an open
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neighborhood U of a such that U BKv ¼ j. By Theorem 2.4, the measures di
converge weakly to mf ; v and hence

0 ¼ lim
i!l

diðUÞ ¼ mf ; vðUÞA 0:

This is a contradiction, and hence there cannot exist such a sequence faigi AN.
r

The case K ¼ Q, L ¼ Qtr and v ¼ l yields the following result.

Corollary 2.6. Let f a QðxÞ be a rational function of degreeb 2 such that the
Julia set Jð f Þ of f is not contained in the real line. Then Qtr has the Bogomolov
property relative to ĥhf . Furthermore, there are only finitely many preperiodic points
of f in Qtr.

Notice again that h ¼ ĥhx2 and the Julia set of the map x2 is indeed the unit circle.
Hence Schinzel’s result (in a non-e¤ective version) is a special case of Corollary
2.6.

Remark 2.7. Corollary 2.6 also includes a special case of a theorem of Zhang
([24], Corollary 2). Let E be an elliptic curve defined over a number field K with
Néron-Tate height ĥhE . Then there exists a rational map f a KðxÞ, called Lattès
map, such that ĥhEðPÞ ¼ 1

2 ĥhf ðxðPÞÞ for all P a EðQÞ. Further, the Julia set of f is
the complete Riemann sphere. Hence Theorem 2.6 tells us that there is a positive
constant c such that ĥhEðPÞb c for all non-torsion points P a EðQtrÞ and there
are only finitely many torsion points in EðQtrÞ. Notice that there is an e¤ective
constant c in the case where K is totally real (see [5], Theorem 17).

In the non-archimedean case, Theorem 2.5 gives a dynamical version of the result
of Bombieri and Zannier stated in the introduction ([9], Theorem 2). For details
on this case we refer to [14].

We will collect some important facts on Julia sets of rational maps.

Facts 2.8. Let f a CðxÞ be a rational function of degree at least two. Then we
have

a) Jð f Þ is not empty,
b) Jð f Þ is completely invariant, i.e. f ðJð f ÞÞ ¼ f �1ðJð f ÞÞ ¼ Jð f Þ,
c) there are no isolated points in Jð f Þ,
d) Jð f Þ is the closure of the repelling periodic points of f ,

e) The backward orbit of any a a Jð f Þ (i.e.
S

n ANfb a Q j f nðbÞ ¼ ag) is dense in
Jð f Þ.

Proof. For proofs of these statements we refer to [6], Theorem 4.2.1, Theorem
3.2.4, Theorem 5.7.1, Theorem 6.9.2 and Theorem 4.2.7 ii). r
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3. A first example

A natural question arising from Corollary 2.6 is the following. Does Qtr have
the Bogomolov property relative to ĥhf even if Jð f Þ is contained in the real line?
Before proving our main theorem which gives a complete answer to this question,
we will give a counterexample. Therefore we need a map whose Julia set is con-
tained in the real line. If we restrict to the polynomial case, we have the following
lemma.

Lemma 3.1. Let f a C½x� be a polynomial of degree at least 2. Then we have
Jð f ÞHR if and only if all preperiodic points of f are real.

Proof. If all preperiodic points of f are real, then in particular the closure of
the repelling periodic points of f lies in the real line. This set is just Jð f Þ (see
Fact 2.8 d)). Next we assume Jð f ÞHR. As we have a polynomial, the Julia set
of f is the boundary of the compact set

fy a C j j f nðyÞj n l; as n ! lg:

See [19], Lemma 9.4. This set is called the filled Julia set of f . For a polynomial
it follows from the definitions of the Julia set and the filled Julia set that l is in
neither of both sets. Hence, both sets are bounded. By assumption, Jð f Þ is a
closed subset of a closed interval I . The only bounded subset of the Riemann
sphere with such a boundary is the set itself, proving that Jð f Þ coincides with
the filled Julia set. Of course all preperiodic points of f are contained in the filled
Julia set, proving the lemma. r

Example 1. The Julia set of fcðxÞ ¼ x2 � c a C½x� is contained in the real line if
and only if c a R and cb 2. To prove this claim we assume first that c is either

non-real or < 2. Then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4cþ 1

p
� 1

2 þ c
q

is a non-real preperiodic point of fc,
and from Lemma 3.1 we know Jð fcÞQR. If cb 2, then the pre-image of the in-
terval ½�c; c� is contained in this interval. Induction yields f �n

c ð½�c; c�ÞJ ½�c; c�
for all n a N. Moreover, the fixed point 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4cþ 1

p
þ 1

2 of fc is repelling and lies

in the interval ½�c; c�. By Facts 2.8 d) and e), we conclude Jð fcÞJ ½�c; c�.

Proposition 3.2. Let c be a rational with cb 2. Then Qtr does not have the
Bogomolov property relative to ĥhfc .

Proof. Take an � a ð�c; cÞBQ such that � is not a preperiodic point of fc. This
is possible by Northcott’s theorem (see Proposition 2.2). As seen in the example,
the set f �n

c ð�Þ is contained in R for all n a N. Moreover, the sets f �n
c ð�Þ are

Galois invariant, since c and � were chosen to be rational numbers. Hence,
f �n
c ð�Þ is actually contained in Qtr. For all n we take an arbitrary gn in f �n

c ð�Þ
and get a sequence fgngn AN in Qtr, with ĥhfcðgnÞ ¼ 1

2n ĥhfcð�Þ. This tends to zero,
proving the claim. Notice that the canonical height of these gn is positive, as �
(and thus gn) are not preperiodic. r
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4. Proof of the main result

We already stated in the Introduction that Yuan’s equidistribution theorem will
play an essential role in the proof of our main theorem. Another important ingre-
dient is the following theorem of Eremenko and van Strien (see [13], Theorem 2
and the discussion afterwards).

Theorem 4.1. Let f a CðxÞ be an rational function of degree at least 2.
If Jð f ÞHR, then there exist finitely many intervals I1; . . . ; Ir such that
f �1ðI1 A � � �A IrÞJ I1 A � � �A Ir.

Remark 4.2. Let f be a rational function defined over C such that
j f ðRÞBRÞj ¼ l. Write f ¼ p

q
, with polynomials p; q a C½x� and p monic. Then

f is actually defined over R. To prove this claim we denote by q the coe‰cient-
wise complex conjugation of q. Then f ¼ pq

qq
¼ p1

r
þ i

p2
r
, with real polynomials p1,

p2, r. By assumption, p2 must be zero and hence f is defined over R. In par-
ticular, f is defined over R whenever Jð f ÞJR (see Fact 2.8 b)).

Every s in GalðQ=QÞ extends to a unique endomorphism of QðxÞ with sðxÞ ¼ x.

So we can define the rational map sð f Þ for all f a QðxÞ and all s a GalðQ=QÞ.

Lemma 4.3. Let f a QðxÞ be a rational map of degree > 1. Then we have
ĥhf ¼ ĥhsð f Þ � s.

Proof. This follows directly from the definition and the trivial facts degð f Þ ¼
degðsð f ÞÞ and sð f ðaÞÞ ¼ sð f ÞðsðaÞÞ for all a a Q. r

Now we are prepared to prove our main theorem which we will state again for
the reader’s convenience.

Theorem A. As usual let f a QðxÞ be a rational map of degree at least two.
Then the following statements are equivalent:

i) Qtr has the Bogomolov property relative to ĥhf .
ii) There is a s a GalðQ=QÞ, such that the Julia set Jðsð f ÞÞ is not contained in R.
iii) The set PrePerð f ÞBQtr is finite.

Proof. Notice again that Jð f Þ cannot be empty, see Fact 2.8 a). By Corol-
lary 2.6, we will conclude easily that ii) yields i) and iii). Assume there is a
s a GalðQ=QÞ such that Jðsð f ÞÞ is not contained in the real line. Then Corollary
2.6 implies that Qtr has the Bogomolov property relative to ĥhsð f Þ. By Lemma 4.3
we know that s�1ðQtrÞ ¼ Qtr has the Bogomolov property relative to ĥhf as well,
which yields i). Notice that Qtr is a Galois extension of Q. Moreover, we have
jPrePerð f ÞBQtrj ¼ js�1ðPrePerðsð f ÞÞBQtrÞj. This is a finite set by Corollary
2.6, proving iii).

The implication iii) ) ii) is not hard either. Assume Jðsð f ÞÞ is contained in
the real line for all s a GalðQ=QÞ. Using Facts 2.8, we see that Jð f Þ contains the
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infinite set of repelling periodic points of f . For all maps sð f Þ, s a GalðQ=QÞ,
there are only finitely many non-repelling periodic points (see [6], 9.6). Hence
there are infinitely many points a a Q such that sðaÞ is a repelling periodic point

of sð f Þ, for all s a GalðQ=QÞ. It follows from our assumption that all these a are
totally real. In particular we get jPrePerð f ÞBQtrj ¼ l.

Finally, we prove that i) implies ii). Assume again that Jðsð f ÞÞ is contained in
the real line for all s a GalðQ=QÞ. As in Remark 4.2 we find that f a KðxÞ for a
totally real number field K . Let s1; . . . ; sd be a complete set of embeddings of K
into Q. By Theorem 4.1 we have for each sið f Þ a finite set of intervals such that
all backward orbits of these intervals again lie in this finite set of intervals. Thus,
for all si we can choose a real interval ðai; biÞ such that the backward orbit of
any c a ðai; biÞ under sið f Þ is contained in the real line. For all si take a ci a
ðai; biÞBQ and choose a global e > 0 such that ðci � e; ci þ eÞH ðai; biÞ for all
1a ia d. All the si give rise to non-equivalent absolute values on K . By the ap-
proximation theorem of Artin and Whaples (see [18], Chapter II, 1), there exists a
c a K, such that jsiðc� ciÞj ¼ jsiðcÞ � cij < e. This implies that siðcÞ lies in the
interval ðai; biÞ for all si. For this conclusion we used the fact that K , and hence
c, is totally real. There are infinitely many points c with this property in K, but as
a number field K contains only finitely many preperiodic points of f (by North-
cott’s theorem, Proposition 2.2 b)). Thus we can assume that c is no preperiodic
point of f .

For every g with f nðgÞ ¼ c we have sð f ÞnðsðgÞÞ ¼ sðcÞ, n a N. From the
choice of our intervals it follows that all conjugates of g are in the real line, and
hence we can conclude f �nðcÞHQtr. Now choose for all n a N a gn in f �nðcÞ.
This gives a sequence fgng in Qtr, such that

0A ĥhf ðgnÞ ¼
1

degð f Þn ĥhf ðcÞ ! 0:

Notice that we have chosen a non-preperiodic c. This shows that Qtr cannot have
the Bogomolov property relative to ĥhf . r

In the case where f a Q½x� is a polynomial we can give a further nice equivalence.

Corollary 4.4. Let f a Q½x� be a polynomial. Then the following statements
are equivalent:

i) Qtr does not have the Bogomolov property relative to ĥhf
ii) Jðsð f ÞÞHR for all s a GalðQ=QÞ
iii) PrePerð f ÞHQtr

iv) ĥhf ðaÞ > 0 for all a a QnQtr

Proof. i) and ii) are equivalent by Theorem A and the equivalence of iii) and
iv) is trivial by Proposition 2.2 a). The equivalence of ii) and iii) follows from
Lemma 3.1 and the fact sðPrePerð f ÞÞ ¼ PrePerðsð f ÞÞ for all s in the absolute
Galois group of Q. r
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Remark 4.5. The Bogomolov property is in general not preserved under finite
field extension. The known counterexample (see [3] and [1]) is the extension QtrðiÞ
which does not have the Bogomolov property relative to the standard height h.
We can prove this fact using dynamical methods and Theorem A. The Möbius
transformation gðxÞ ¼ xþi

x�i
maps the real line onto the unit circle. Take the map

g�1 � x2 � g. By [6], Theorem 3.1.4, we have Jðg�1 � x2 � gÞ ¼ g�1ðJðx2ÞÞ ¼ R.
The same is true for the only Galois conjugate x�i

xþi
of g. Furthermore, it is easy

to check that we have ĥhg�1�x2�g ¼ h � g. Now Theorem A tells us that there are
pairwise distinct totally real algebraic numbers fajgj AN such that

0A ĥhg�1�x2�gðajÞ ¼ hðgðajÞÞ ! 0:

As gðajÞ is in QtrðiÞ for all j a N, this concludes the proof.

5. Chebyshev polynomials and open questions

Let’s go back to the quadratic polynomials fc ¼ x2 � c a Q½x�. We have seen in
Proposition 3.2 that the canonical heights ĥhfc can get arbitrarily small on Qtr for
every rational cb 2. This behavior may change completely for non-rational c.

Let q > 4 be an element in QnQ2. Then the Julia set of f ffiffi
q

p is real. However,
we claim that Qtr does not have the Bogomolov property relative to ĥhf ffiffiqp . This is
due to the facts that f� ffiffi

q
p is a Galois conjugate of f ffiffi

q
p , and that Jð f� ffiffi

q
p Þ is not

contained in the real line (see Example 1). Now Theorem A proves the claim.
In the set of rational maps over Q with real Julia set there is one special

class, namely that of the Chebyshev polynomials. Let j : C� ! C be the map
x 7! xþ x�1 and let d be a natural number. We recall that the d-th Chebyshev
polynomial is the unique polynomial Td such that the following diagram com-
mutes.

Q� ���!x 7! xd

Q�

j

???y
???yj

Q ���!Td
Q

ð1Þ

We see at once that f2 fits into this diagram for d ¼ 2. Hence we have f2 ¼ T2.
An interesting fact we can deduce from Theorem A is that Qtr has the Bogomo-
lov property relative to the standard height h coming from the map x 7! xd , but
not relative to ĥhTd

, although these heights are related in a very strong way. This
relation can be easily made explicit.

Proposition 5.1. For all z a Q� and all natural numbers db 2 we have
ĥhTd

ðzþ z�1Þ ¼ 2hðzÞ.

Proof. As in (1) we define jðxÞ ¼ xþ x�1. We have to check that 1
2 ĥhTd

� j
fulfills the two conditions given in Theorem 2.1 for the canonical height
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ĥhxd ¼ h. Using the commutativity of (1) we get 1
2 ĥhTd

ðjðzdÞÞ ¼ 1
2 ĥhTd

ðTdðjðzÞÞÞ ¼
d 1

2 ĥhTd
ðjðzÞÞ. As j has degree two, we also have 1

2 ĥhTd
� j ¼ 1

2 h � jþOð1Þ ¼
hþOð1Þ. r

Definition. A Salem number is a real algebraic integer a > 1 such that all
conjugates of a have absolute valuea 1 and at least one conjugate has absolute
value equal to 1.

As one conjugate of the Salem number a has absolute value 1, the inverse of a
conjugate is again a conjugate of a. This implies, using the definition, that a�1

is the only real conjugate of a and all other conjugates lie on the unit circle.
Hence aþ a�1 is a totally real number.

We have seen that the Bogomolov property for Qtr does not hold relative to
ĥhTd

, db 2. The next best bound one can ask for is a bound of Lehmer strength.
This means, one can ask whether there exists a positive constant c > 0 such that
degðaÞĥhTd

ðaÞb c for all a in QtrnPrePerðTdÞ. This would be a quite strong result,
because it would imply that the absolute value of a Salem number is bounded
away from one thus proving Lehmer’s conjecture for Salem numbers. This fol-
lows from Proposition 5.1 and the fact that aþ a�1 is totally real for all Salem
numbers a. On the other hand the existence of such a bound c seems to be very
likely, as Qtr has the Bogomolov property relative to all ĥhf2�e

for every algebraic
� > 0.

Let K be a number field. Recall, that Kab is the maximal abelian field exten-
sion of K. Amoroso and Zannier proved in [4] that Kab has the Bogomolov
property relative to the standard height h. Their result also implies the Bogo-
molov property of these fields relative to ĥhTd

, the canonical height associated to
a Chebyshev polynomial of degree at least one.

Proposition 5.2. Let TdðxÞ be the d-th Chebyshev polynomial, where d is at
least 2. Let K be any number field. Then the field K ab has the Bogomolov property
relative to ĥhTd

.

Proof. Let a be an arbitrary element in KabnPrePerðTdÞ. Take a pre-image b of
a under the map z 7! zþ z�1. Then we have ½KabðbÞ : Kab�a 2. From the choice
of a we know hðbÞA 0, hence by Proposition 5.1 and [4], Theorem 1.1, we get

ĥhTd
ðaÞ ¼ 2hðbÞb cðKÞ log 4

log log 10

� ��13

;

for a constant cðKÞ > 0 only depending on the ground field K. r

The result of Amoroso and Zannier we have used here is an extension of a theo-
rem due to Amoroso and Dvornicich. Amoroso and Dvornicich proved in [2]
that the maximal abelian field extension over Q has the Bogomolov property
relative to h, answering a question raised by Zannier at a conference in Zako-
pane, Poland, held in honor of Schinzel’s 60th birthday.
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The result that Qab has the Bogomolov property relative to h can also be
stated dynamically.

The field QðPrePerð f ÞÞ has the Bogomolov property relative to ĥhf , where f ¼ x2.

Kronecker’s theorem (Proposition 2.2 a) for the map xd ) and Proposition 5.1 show
that the preperiodic points of Td are given by the set fzþ z�1 j z root of unityg.
Hence QðPrePerðTdÞÞ is an abelian extension of Q and Proposition 5.2 shows
that the statement above is also true if f is a Chebyshev polynomial. An interest-
ing question is for which other rational maps f this property is true. According to
the results of Habegger in [16] it seems to be very likely that this holds for Lattès
maps f defined over the rational numbers.

Notice that, up to linear conjugation, the maps xd and Td are the only poly-
nomials such that infinitely many preperiodic points lie in Qab. This was proven
by Dvornicich and Zannier in [12], Theorem 2.

Although we cannot prove a higher dimensional analogue of Theorem A, we
will state a possible generalization as a question.

Question 1. Let ðX ;L; f Þ be a polarized algebraic dynamical system defined
over a totally real number field K. Which of the following statements are equiv-
alent?

i) There exists a positive constant c such that ĥhX ;L; f on XðQtrÞ is either zero or
bounded from below by a positive constant.

ii) There is a s a GalðQ=QÞ such that the Julia set Jðsð f ÞÞ is not contained in
X ðRÞ.

iii) The set PrePerð f ÞBX ðQtrÞ is not Zariski dense in X.
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