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Abstract. — We formulate function field analogues for the Zilber-Pink Conjecture and for the

Bounded Height Conjecture. The ‘‘special’’ varieties in our formulation are varieties defined over
the constant field. We prove our function field Zilber-Pink Conjecture for all subvarieties, and we

prove our function field Bounded Height Conjecture for a certain class of curves. We explain that
for our problems the algebraic groups are no longer ‘‘special’’; instead the relevant notion is the

transcendence degree over the constant field of the field of definition for our varieties*.
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1. Introduction

The Manin-Mumford Conjecture (proven by Raynaud [13, 14] in the abelian
case and by Hindry [9] in the semiabelian case) asserts that if G is a semiabelian
variety defined over the complex numbers C, and V is an irreducible subvariety
of G which is not a translate of an algebraic subgroup of G by a torsion point,
then V does not contain a Zariski dense set of torsion points. If for each integer
mb 0 we define G ½m� as the union of all algebraic subgroups of G of codimension
at least m, then the Manin-Mumford Conjecture states that V BG ½dimG� is not
Zariski dense in V , as long as V is not a torsion translate of an algebraic sub-
group of G.

Zilber and Pink (see [18] and [12]) generalized this by conjecturing that if V
is not contained in a proper algebraic subgroup of G, then V BG ½dimVþ1� is not
Zariski dense in V (that Zilber-Pink implies Manin-Mumford is seen by a simple
standard induction on the dimensions). By contrast rather little is known here; we
mention only the key results for the multiplicative G ¼ Gn

m. After earlier works
by Bombieri, Zannier and the third author (see for example the first of these
[1]), the fourth author (see [11]) succeeded in settling the case of curves V over Q
(see also [4] for a di¤erent proof ). The case dimV ¼ n� 1 amounts to Manin-
Mumford, but in [2] the case dimV ¼ n� 2 over Q was settled. All this was
extended to C in [3]. We may remark that despite the subsequent breakthroughs
by Habegger the case of surfaces V in G5

m remains open. See Zannier’s recent
book [17] for more information on these and related topics.

*Presented by U. Zannier.



The main object of this paper is to formulate and prove function field versions
of these statements, for the moment without any reference to group varieties. In
the proofs of the above results over Q, a fundamental role is played by heights,
notably an inequality of Vojta sharpened by Rémond [15] and the Bounded
Height Theorem of Habegger [6]. Perhaps surprisingly we do not need such tools
in our proofs. Nevertheless we formulate function field versions also here, and
another small surprise is that their proofs do not seem at all straightforward,
even for plane curves. We prove height boundedness for a class of ‘‘separated
variable’’ curves defined by F ðxÞ ¼ GðyÞ.

We start by explaining what takes the place of algebraic subgroups in our
version without algebraic groups. In the case G ¼ Gn

m the Manin-Mumford Con-
jecture enables us to characterize torsion translates of algebraic subgroups as
the varieties containing a Zariski dense set of torsion points. Now torsion points
are simply the points over Q whose canonical height is zero. In our situation we
postulate a function field K finitely generated over an algebraically closed field k
of constants, and given a transcendence basis there is a canonical height on K
which is zero precisely on k. If for simplicity we consider varieties in a‰ne space
X ¼ An, then we have a height on Kn and the points of zero height are precisely
those in kn. And the varieties containing a Zariski dense set of points in kn are
of course just those defined over k; that is, the constant varieties. Or in the
standard terminology, these are our ‘‘special’’ varieties. Thus we should make
the following

Definition 1.1. For X ¼ An and an integer mb 0 write X ðmÞ for the union of
all subvarieties of X of codimension at least m which are defined over k.

This leads naturally to our analogue of the Zilber-Pink Conjecture; however
we can actually prove it, even over arbitrary characteristic, as the following result
about an ‘‘unlikely intersection’’.

Theorem 1.2. Let V in X ¼ An be an absolutely irreducible subvariety defined
over K which is not contained in a proper subvariety of X defined over k. Then
V BX ðdimVþ1Þ is not Zariski dense in V.

In fact it is sometimes just as easy to ‘‘descend’’ and obtain a finiteness result,
and then we can even do this in an e¤ective way. The following is a natural ana-
logue of the definition in [2] (p. 25), but expressed in terms of the complement
of V ta.

Definition 1.3. The constant-anomalous part Z0
V of a variety V in X ¼ An is

the union of all subvarieties W in V such that W is contained in some constant sub-
variety Y of X satisfying

dimW > maxf0; dimV þ dimY � ng:

The following is a quantitative version of the Torsion Openness and Torsion
Finiteness Conjectures in [2] (p. 25). Recall that our height on K can be uniquely
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extended to the algebraic closure K and then to Kn (see references at the end of
this section).

Conjecture 1.4. There are constants c0, k, l depending only on n, and c de-
pending only on n and K, with the following properties. Let V in X ¼ An be an
absolutely irreducible subvariety defined over K. Then Z0

V is Zariski closed in V
and

F 0
V ¼ ðVnZ0

V ÞBX ðdimVþ1Þ

is at most finite. Further suppose V is defined by the vanishing of polynomials of
total degree at most Db 1 with coe‰cients in K of height at most hb 1. Then
Z0

V is defined by the vanishing of polynomials of total degree at most cDkhl with
coe‰cients in K of height at most cDkhl, and

(a) the cardinality of F 0
V is at most cDkhl,

(b) the cardinality of F 0
V is even at most c0D

k,
(c) the points of F 0

V over K have height at most cDkhl.

One might even expect l ¼ 1. The analogous conjectures over Q or C in Gn
m

do not seem to have been formally written down yet, perhaps because they are
considered rather di‰cult to prove, but they are generally believed; see for exam-
ple the discussion on pages 37, 38, 136, 137 of [17]. In view of Habegger’s pre-
print [8], part (a) for curves defined over Q may not be out of reach, but part
(b) is known essentially only for plane curves. In our situation we can prove
relatively easily everything for curves except (b); and something can be done for
surfaces. Here we give the proof of (a) when the curve in An has a field of defini-
tion which for convenience is purely transcendental over k, as well as the very
simple proof of (b) for plane curves.

Next we explain our results on bounded height. Bombieri, Zannier and the
third author in [1] considered curves V over Q in G ¼ Gn

m, and they proved that
if V is not contained in a translate of a proper algebraic subgroup then the points
of V BG ½1� over Q have height bounded above. Again we have to get rid of alge-
braic subgroups in the function field analogue; but now the necessity of allowing
translates by non-torsion points causes additional problems. Any translate of a
proper algebraic subgroup of Gn

m is contained in a variety which is the zero locus
for an equation xa1

1 � � � xan
n ¼ a defined over kðaÞ, which has transcendence degree

over k at most equal to 1. Accordingly, in our setting, we propose the following
definition, even for Y of arbitrary dimension (this is consistent with a remark of
Zannier made to the third author).

Definition 1.5. The variety Y in An is quasi-constant if it is defined over a sub-
field of K which has transcendence degree over k at most equal to 1.

We discuss in section 4 some further justification for this definition.
We propose the following preliminary version for curves, also over arbitrary

characteristic.
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Conjecture 1.6. Let V in X ¼ An be an absolutely irreducible curve defined
over K which is not contained in a proper quasi-constant subvariety of An. Then
the points of V BX ð1Þ over K have height bounded above.

This gives a ‘‘likely intersection’’ because it is expected that there are infinitely
many points in question. In fact the statement is independent of the choice of the
transcendence basis defining the height.

We cannot prove Conjecture 1.6 even for plane curves n ¼ 2, although the
analogous result in G2

m is not too di‰cult. But we provide some evidence for it
in section 5.

The corresponding assertions for V of higher dimension are not so easy to
state, because one must allow for exceptional sets W sitting inside V as in
Definition 1.3. With our concept of quasi-constant the natural analogue of
Definitions 1.1 and 1.2 of [2] is (but as before expressed in terms of the comple-
ment of V oa)

Definition 1.7. The anomalous part ZV of a variety V in X ¼ An is the union
of all subvarieties W in V such that W is contained in some quasi-constant subvari-
ety Y of X satisfying

dimW > maxf0; dimV þ dimY � ng:

In [2] the authors defined an analogue of ZV for V in G ¼ Gn
m, proved that it

is Zariski closed in V , and conjectured that the points of

ðVnZV ÞBG ½dimV �

over Q have height bounded above. This was proved by Habegger in [6] (see also
[7]). Accordingly we propose, also over arbitrary characteristic,

Conjecture 1.8. Let V in X ¼ An be an absolutely irreducible subvariety
defined over K. Then the points of

ðVnZV ÞBX ðdimVÞ

over K have height bounded above.

Unfortunately it is not always the case that our ZV is Zariski closed, and
we were unable to modify Definition 1.5 to rectify this. However an analogous
phenomenon was noted in [2] over Q in Gn

m. Again we discuss such matters in
detail in section 4.

One could formulate also a quantitative version along the lines of Conjecture
1.4, but in view of our extremely modest progress in proving even Conjecture 1.6
for curves we refrain from this. Here quite a lot is known over Q in Gn

m; see also
[8].

Our paper is arranged as follows. In section 2 we prove Theorem 1.2 and we
explain why the assumption on V is necessary. The proof is completely e¤ective
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and to demonstrate this we give a simple example. We also explain why the whole
of Z0

V has to be removed in Conjecture 1.4, and we prove this conjecture for
curves V . Then in section 3 we give a family of examples where it can be proved
that V BX ðdimVþ1Þ is even empty. So we get an ‘‘impossible intersection’’ as in
[10]. In fact it seems likely that this holds for ‘‘almost all’’ V in a suitable sense
(as explained later), and we provide some evidence for this by considering lines
in A2 and A3. No analogues of our results here are known in Gn

m.
In section 4 we justify further our definition of quasi-constant and discuss why

the methods of [11] seem to fail in the setting of Conjecture 1.8. Then we focus
on curves as in Conjecture 1.6. We explain the necessity of removing ZV , and in
section 5 we prove Conjecture 1.6 for a special class of plane curves.

Now we recall the construction of the Weil height for a function field. So, let k
be an algebraically closed field (of arbitrary characteristic) and let K be a func-
tion field over k of finite transcendence degree. Let t1; . . . ; te be a fixed transcen-
dence basis for K=k and we fix a model of Pe whose function field is kðt1; . . . ; teÞ.
We construct the set of all valuations on kðt1; . . . ; teÞ which correspond to the ir-
reducible divisors of Pe; essentially a place of kðt1; . . . ; teÞ either corresponds to
an irreducible polynomial in k½t1; . . . ; te� or it is the place at infinity corresponding
to the (negative) total degree of a rational function. We let W be the set of all
valuations of K which extend the places of kðt1; . . . ; teÞ constructed above. By
abuse of language, we will also call each v a W a place of K ; note that for each
nonzero x a k, we have jxjv ¼ 1, where j � jv is the corresponding norm for the
place v. Finally, we note that K admits a product formula with respect to the set
of places W (see [16]); i.e., there exists a set of positive integers fNvgv AW such that
for all x a K � we have

Y
v AW

jxjNv

v ¼ 1:ð1:8:1Þ

Then we define the Weil height for points over K with respect to the set of places
from W as in [16, Chapter 2].

We thank Jonathan Kirby for his remarks on an early draft of this paper.
The research here was started in a working group session during the AIM

workshop ‘‘Unlikely intersections in algebraic groups and Shimura varieties’’
in Pisa (Italy), and Zoé Chatzidakis and David Masser gratefully acknowledge
the support of the American Insitute of Mathematics and the hospitality of the
Centro di Ricerca Matematica Ennio De Giorgi.

2. Unlikely intersections

In fact Theorem 1.2 is trivially implied by the following

Theorem 2.1. Let V in X ¼ An be an absolutely irreducible proper subvariety
defined over K. Then there is a proper subvariety V0 in X defined over k such that
V BX ðdimVþ1Þ is contained in V0.
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Proof. The proof is by induction on e ¼ trdegk K , and without loss of general-
ity we will suppose that K is the compositum of the field k and of the field of def-
inition of V . We can also assume that V is not contained in a proper subvariety
of X defined over k, for otherwise we could take this as V0. Choose a finite tuple
T such that K ¼ kðTÞ.

Let P be a generic point for V (over K , in some algebraically closed field con-
taining K). Then the transcendence degree trdegk kðPÞ ¼ n; otherwise P would
belong to a proper subvariety of X defined over k. Moreover, our hypothesis on
V also implies that eb n� d, where d is the dimension of V ; otherwise, let Y be
the algebraic locus of ðP;TÞ over k; then dimY ¼ d þ e < n, which on projecting
down to X would contradict our assumption on V .

Now choose a subset T0 of T which is maximal algebraically independent over
kðPÞ. Then jT0j ¼ eþ d � n, trdegkðT0Þ kðP;T0Þ ¼ n, and the elements of T lie in

kðP;T0Þ. We now let Z be the algebraic locus of ðP;TÞ over K0 :¼ kðT0Þ, and
p : Z ! An the projection on the first n coordinates. As P is a generic of An and
p�1ðPÞ is finite, the Fibre Dimension Theorem delivers a Zariski closed subset ~VV
of An, defined over K0, and not containing P so not containing V , such that if
Q a Ann ~VV , then dim p�1ðQÞa 0.

Let Q a ðAnn ~VVÞBV ; then ðQ;TÞ a Z, and therefore trdegk K0ðQÞb e since
T a K0ðQÞ; i.e.,

trdegk kðQÞb e� jT0j ¼ n� d:

Such a Q cannot lie in a subvariety of An of codimensionb d þ 1. Hence

V BX ðdþ1Þ H ~VV :

Let W be an irreducible component of ~VV BV ; then dimW a d � 1, and W is
defined over K . It su‰ces to show that W BX ðdþ1Þ is contained in a proper sub-
variety of An which is defined over k. Let Q be a generic of W over K , let K1 be
a subfield of K with trdegkðK1Þ ¼ e� 1, and let W1 be the algebraic locus of Q
over K1. Then dimW1 ¼ dimW þ 1a d, and W1 contains W . Hence

W BX ðdþ1Þ JW1BX ðdþ1Þ JW1BX ðdimW1þ1Þ;

by induction hypothesis applied to W1, we obtain the desired result. r

The hypothesis on V in Theorem 1.2 is essential as shown by the following
example (similar examples exist in higher dimensions too).

Let V HA3 be the line given by the equations x ¼ 0 and y ¼ tz, where t is
transcendental over k. Clearly, V has infinitely many points in common with
the union of all curves in A3 defined over k. Indeed, for each positive integer n,
the point ð0; tnþ1; tnÞ a V BCn, where Cn HA3 is given by the equations x ¼ 0
and yn ¼ znþ1.

As an example of the method of proof of Theorem 1.2 we consider the surface
V in X ¼ A3 given by

y2z ¼ xðx� zÞðx� tzÞ;
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the ‘‘projective generic Legendre elliptic curve’’, defined over kðtÞ transcendental
over k. Then p is from ðx; y; z;wÞ in A4 defined by

0 ¼ y2z� xðx� zÞðx� wzÞ ¼ y2 � xzðx� zÞ � xzðx� zÞw

to ðx; y; zÞ in A3; and it is clear that p�1ðx; y; zÞ is a single point if xzðx� zÞA 0.
Thus V BX ð3Þ is contained in the three lines defined by

x ¼ y ¼ 0; x ¼ z ¼ 0; x� z ¼ y ¼ 0;

and it is plainly the set of the k-rational points on these lines.
As for Conjecture 1.4, we will now show that the whole of Z0

V must be re-
moved from V to get the finiteness of the points inside X ðdþ1Þ, where d ¼ dimV .
More precisely, let W in V be any ‘‘constant-anomalous’’ irreducible subvariety,
with dimW ¼ l, contained in some constant Y in X ¼ An, with dimY ¼ j, such
that l > maxf0; d þ j � ng; we will show that W BX ðdþ1Þ is Zariski dense in W .

We choose such an irreducible Y of minimal dimension. As W JY we have
la j. If l ¼ j then W ¼ Y , and hence it must be removed from V in order to
obtain the finiteness of points inside X ðdþ1Þ. Thus we may assume l < j; renum-
bering coordinates, we may assume that x1; . . . ; xl are independent on W and
x1; . . . ; xl; xlþ1; . . . ; xj are independent on Y , and that the projection on the first
j coordinates is finite on YnY0, where Y0 is a proper subvariety of Y , which is
defined over k. Note that by minimality of j, the variety Y0 does not contain
W ; hence for a Zariski dense set of k-rational points ðx1; . . . ; xlÞ a Al we can
find a point P :¼ ðx1; . . . ; xl; . . . ; xnÞ a W . We know nothing about xlþ1; . . . ; xn
(because we don’t know the field of definition of W ); but since Y is defined over
k the xjþ1; . . . ; xn are in kðxlþ1; . . . ; xjÞ. Thus

trdegk kðPÞa j � la n� ðd þ 1Þ:

Consequently P lies in X ðdþ1Þ as required. Since the projection on the first l co-
ordinates of the set S consisting of all such points P a W is Zariski dense, we
conclude that the Zariski closure of S has dimension l and thus it equals W .

As for Conjecture 1.4 for curves V , the set Z0
V is either V or empty, so we can

forget about it.
We next prove part (b) for any plane curve C, where there is a single equation

of degree at most D over K but not over k. If CBX ð2Þ contains at least S distinct
points (now defined over k), then we can find a curve C0 defined over k of degree
at most D0 ¼ ½

ffiffiffiffiffiffi
2S

p
� passing through them, since ðD0 þ 1ÞðD0 þ 2Þ=2 > S. So

CBC0 has at least S distinct points. As C cannot be a component of C0 we see
from Bezout that SaDD0 aD

ffiffiffiffiffiffi
2S

p
and so Sa 2D2 as required in (b). Of

course here the points of CBX ð2Þ have zero height so (c) is trivial.
We now prove (a) for any curve V in An whose field of definition is a purely

transcendental extension K ¼ kðTÞ of k for T ¼ ft1; . . . ; teg. In general this re-
striction could be removed using the Chow Form to determine the exact field of
definition, but we omit the (somewhat tedious) details here.
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By linear algebra we can suppose that V is actually defined by Ma
Dþn
n

� �
a

2nDn of the given equations defining it. Now any coe‰cient in these equations
can be written as a rational function of T of degree at most h. By clearing
common denominators (which would not arise with a better notion of height),
we see that the locus V of ðP;TÞ over k (with P as in the proof of Theorem
1.2) is defined by M equations in x1; . . . ; xn, y1; . . . ; ye with total degree at
most Dþ Dþn

n

� �
ha 3nhDn (it would be better to use bidegree here). It follows

that its degree is at most 3nhDnMa 6n2hD2n (we are being very generous
here). We can assume that T0 ¼ ft1; . . . ; tf g with f ¼ eþ 1� nb 0. Now for
each j ¼ f þ 1; . . . ; e the nþ f þ 1 > 1þ e ¼ dimk V coordinates x1; . . . ; xn,
y1; . . . ; yf ; yj are algebraically dependent over k, and since deg pðVÞa degV
we get a relation over k of total degree at most 6n2hD2n. As the elements of
T0 are algebraically independent over kðPÞ this relation must involve yj; let
gj be its leading coe‰cient as a polynomial in yj. Now we see that p�1ðQÞ is
finite as long as gðQ;T0ÞA 0 for g ¼

Q
gj. This defines ~VV of degree at most

6n2hD2nðe� f Þa 6n3hD2n. Intersecting it with V , we see that the cardinality of
V BX ð2Þ is at most 6n3hD2n degV a 6n3hD3n as required in (a) (we had to be
a bit careful that the exponent of D did not involve the unknown e after all we
were working in Anþe).

By Galois this su‰ces to bound the degrees over K of the points of this finite
set. And using Arithmetic Bezout one could obtain a height estimate as in (c) of
Conjecture 1.4. But as k ¼ k is infinite all these with Northcott would not be
quite enough to determine V BX ð2Þ completely, even though there would be no
trouble to do this for any particular V .

3. Impossible intersections

In this section we construct many surfaces V in X ¼ A4 with V BX ð3Þ not just
finite but empty. Namely take t, s algebraically independent over k, su‰ciently
general polynomials f , g over k, and define V by

y ¼ f ðt; xÞ; w ¼ gðs; zÞ

with coordinates x, y, z, w. We will deduce a contradiction from the existence of
a point ðx; h; z;oÞ on V lying in a constant curve C.

As x, y are algebraically dependent over k on C, and so also x, h, the
additional relation h ¼ f ðt; xÞ implies that both x, h are in kðtÞ, provided say
f ðT ;X Þ really involves T . Similarly z is in kðsÞ with a similar proviso on g. If
further f is such that f ðT ; x0Þ is never in k for any x0 in k, then we can deduce
that either x or h is not in k. Say x is not in k. Then the relation between x, z over
k implies that z is in kðtÞ. So z is in kðtÞBkðsÞ ¼ k. Similarly o is in k. But then
o ¼ gðs; zÞ can be ruled out by imposing a condition on gðS; z0Þ analogous to
that above on f ðT ; x0Þ.

Thus indeed V BX ð3Þ is empty. An explicit example is

y ¼ t2xþ t; w ¼ s2zþ s:
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Or we may consider lines V in X ¼ A2 of the form

f ðtÞxþ gðtÞy ¼ hðtÞ

with polynomials f , g, h over k. It is immediate that V BX ð2Þ (consisting of the
points over k) is empty provided f , g, h are linearly independent over k. This
clearly holds for ‘‘almost all’’ choices in any reasonable sense. For example we
may introduce an integral parameter db 0 and consider ð f ; g; hÞ in the space
X ¼ A3ðdþ1Þ defined by maxfdeg f ; deg g; deg hga d; then provided db 2 the
subset for which V BX ð2Þ is not empty is proper Zariski closed in X. Thus we
have an example of ‘‘ubiquitous impossible intersections’’.

With more elaborate methods we can establish a similar result for lines in A3

of the form

f1ðt; sÞxþ g1ðt; sÞyþ h1ðt; sÞz ¼ l1ðt; sÞ
f2ðt; sÞxþ g2ðt; sÞyþ h2ðt; sÞz ¼ l2ðt; sÞ

with respect to total degree and A4ðdþ1Þðdþ2Þ. But we omit the proof.

4. Likely intersections and bounded height

First we discuss the concept of being quasi-constant (see Definition 1.5) for a sub-
variety Y of An. As noted before, quasi-constant varieties are the function field
analogue of the cosets of proper algebraic subgroups of Gn

m. So, working in par-
allel with the multiplicative group (since our ambient space is An) one observes
that Y JGn

m is contained in a coset of a proper algebraic subgroup if there exist
a1; . . . ; an a Z, not all equal to 0, such that xa1

1 � � � xan
n is constant on Y . Hence one

might expect that the proper definition of a subvariety Y of An contained in a
‘‘coset’’ for the function field case be that there exists a nonzero rational map
c a kðX1; . . . ;XnÞ which is constant when restricted to Y . However this notion
would prove not su‰ciently restrictive in order to guarantee a positive answer
for Conjectures 1.8 and 1.6. Indeed, if one replaces our notion of a subvariety
Y JAn being ‘‘quasi-constant’’ with the stronger condition that Y is the intersec-
tion of finitely many hypersurfaces of the form f ðx1; . . . ; xnÞ ¼ agðx1; . . . xnÞ for
various a a K and polynomials f , g over k, then we have the following example
which would contradict the corresponding strengthening of Conjecture 1.6.

Example 4.1. Let K ¼ kðtÞ transcendental over k, and let V JA2 be the
line xþ ty ¼ t2. It is immediate to see that there exists no rational function
c a kðX ;YÞ whose restriction to V is constant. On the other hand, for each
m a N the point ðtm; t� tm�1Þ lies both on V and on the rational curve in para-
metric form

x ¼ lm; y ¼ l� lm�1;

which is defined over k. Therefore the points from the intersection of V with the
union of all curves defined over k have unbounded heights.
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However, we note that V is clearly quasi-constant and thus we do not have a
counterexample to Conjecture 1.6.

We considered also the following perhaps more plausible substitute for
‘‘quasi-constant’’. Namely that Y should be the intersection of finitely many
hypersurfaces of the form f ða; x1; . . . ; xnÞ ¼ 0 for various a in K and f in
k½X0;X1; . . . ;Xn�. We will say that such a subvariety Y is semi-constant.

If Y is itself a hypersurface, then there is a single equation and so this is the
same as quasi-constant. In particular, for any curve V , the assumption of Con-
jecture 1.6 is equivalent to the fact that V is not contained in any semi-constant
subvariety of X . Also, an analogue of Conjecture 1.8 can be formulated by using
semi-constant subvarieties instead of quasi-constant ones in the definition of ZV .
It provides a weaker bounded height conjecture. Indeed, the analogue of the
quasi-constant anomalous locus ZV is larger than ZV itself. We will call it the
semi-constant anomalous locus.

But now the following example shows that this substitute Z 0
V for ZV can be

non-Zariski closed.

Example 4.2. Let t, s, u, v, w be algebraically independent over k, and let V in
A3 be a generic plane

z� u ¼ vðx� tÞ þ wðy� sÞ

passing through P ¼ ðt; s; uÞ. It contains infinitely many lines defined by

z� vx ¼ f ðvÞ; y ¼ a0

for a0 ¼ w�1ð f ðvÞ � uþ vtþ wsÞ and any polynomial f over k. Clearly these
have the required form.

We claim that there is no semi-constant curve C in V passing through P. Be-
cause V itself is not semi-constant, this will su‰ce to verify Z 0

V is non-Zariski
closed.

If the claim is false, then the various resulting equations f ða; t; s; uÞ ¼ 0 over
k for C would show that all the a lie in F ¼ kðt; s; uÞ. So C is defined over F .
We can easily pick a point Q ¼ ðx; h; zÞAP in CðFÞ. As C lies in V we deduce
z� u ¼ vðx� tÞ þ wðh� sÞ, an absurdity because 1, v, w are linearly independent
over F .

As mentioned, even our original ZV need not be Zariski closed, as the follow-
ing example shows.

Example 4.3. Let t, s, u be algebraically independent over k and let V JA3 be
the plane defined by the equation z ¼ tyþ s (so a product in A�A2). It contains
the infinitely many lines Lc defined by

y ¼ c; z ¼ tcþ s
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for any c in k, and clearly Lc is quasi-constant. Again V itself is not quasi-
constant, and as in Example 4.2 it su‰ces to show that there is no quasi-
constant curve C in V through some suitable point, say P ¼ ðu; s; tsþ sÞ in V .
But C would be defined over a field k1 of transcendence degree at most 1 over
k, and so the transcendence degree of F ¼ k1ðPÞ over k1 would be at most 1.
Thus the transcendence degree of F over k would be at most 2, an obvious
absurdity.

This example is perhaps not so disturbing as the previous one; already in
the first two paragraphs of section 5 of [2] we restricted to particular cosets in
G ¼ G3

m involving various a but satisfying multiplicative relations. Specifically
x1 ¼ a1x3, x2 ¼ a2x3 with a1, a2 multiplicatively dependent. We obtained a
corresponding non-Zariski closed analogue of ZV for V defined by x3 ¼ x1 þ x2
(so now a1 þ a2 ¼ 1). Only on such particular cosets can one obtain points in
V BG ½2� of unbounded heights like ðar

1; a2a
r
1; a

r
1Þ ðr a ZÞ.

Similarly in Example 4.3 each Lc contains points of unbounded height like
ð f ðtcþ sÞ; c; tcþ sÞ ð f ðTÞ a k½T �Þ in V BX ð2Þ, indicating the need to remove ZV .

In fact all of ZV must be removed in Conjecture 1.8. We see this just as for
Z0

V in Conjecture 1.4. Namely with dimV ¼ d let W in V be any irreducible
‘‘anomalous’’ subvariety, with dimW ¼ l, contained in some quasi-constant Y
in X ¼ An, with dimY ¼ j, such that l > maxf0; d þ j � ng; we will show that
W BX ðdÞ contains a Zariski dense set of points of unbounded height.

We choose such an irreducible Y of minimal dimension, defined over some
subfield k1 of K with transcendence degree 1 over k. As W JY we have la j.
If l ¼ j then W ¼ Y , and hence it must be removed from V in order to obtain
the boundedness of height inside X ðdÞ. Thus we may assume l < j; renum-
bering coordinates, we may assume that x1; . . . ; xl are independent on W and
x1; . . . ; xl; xlþ1; . . . ; xj are independent on Y , and that the projection on the first
j coordinates is finite on YnY0, where Y0 is a proper subvariety of Y also defined
over k1. Note that by minimality of j, the variety Y0 does not contain W . Fix t in
k1 not in k. We deduce that, for a Zariski dense set of points ðx1; . . . ; xlÞ a Al

where each xi ¼ fiðtÞ for polynomials f1; . . . ; fl over k of arbitrarily large degree,
there exist xlþ1; . . . ; xn such that P :¼ ðx1; . . . ; xnÞ a W . We know nothing about
xlþ1; . . . ; xj; but since Y is defined over k1 the xjþ1; . . . ; xn are in k1ðxlþ1; . . . ; xjÞ.
Thus

trdegk kðPÞa 1þ j � la n� d:

Consequently P lies in X ðdÞ as required, and it has unbounded height as we
vary the polynomials f1ðtÞ; . . . ; flðtÞ. Also, since the set S of all such points
P ¼ ðx1; . . . ; xnÞ a W for su‰ciently large degree polynomials xi ¼ fiðtÞ projects
dominantly onto A l corresponding to the first l coordinates, we conclude that
the Zariski closure of S has dimension l ¼ dimW . Since W is irreducible we
conclude that S is Zariski dense in W .

The rest of this section is restricted to zero characteristic.
In some respects, Example 4.1 shows that Conjecture 1.8 does not follow

directly from any of the approaches that were used in [6] (see also [7] and [11])
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to prove the classical Bounded Height Conjecture. We give more details below,
focusing mainly on the methods of [11].

Comparing Conjecture 1.8 and the classical Bounded Height Conjecture, we
see that both are of the following kind. For any integer db 1, we specify a family
Fd of dominant morphisms j : X ! Ad

K and define a corresponding anomalous
locus ZV ;FJV for any subvariety V of X . The problem is then to show that, for
any subvariety V of dimension d, the height is bounded on an intersection of the
form

ðVnZV ;FÞB
[

j AFd

j�1ðxÞ;

where x has height zero.
If X ¼ Gn

m is a multiplicative torus, the Bounded Height Conjecture is of
this type with x ¼ ð1; . . . ; 1Þ and Fd defined as the family of all dominant homo-
morphisms Gn

m ! Gd
m. The corresponding anomalous locus ZV ;F was defined

in [2]. It has the following remarkable property: for any subvariety V of dimen-
sion d,

ZV ;FAV , any j a Fd induces a dominant morphism on V :

In particular, when we do have to prove that the height is bounded, i.e. when
VnZV ;F is non-empty, V satisfies the extra assumption degðjjV Þ > 0 for any
element j a Fd . This is actually the only thing we need to know about V . The
main step of the proof is then to derive finer numerical estimates from this prop-
erty. For instance, we have a uniform lower bound on degðjjV Þ when j is varied
among all ‘‘normalized’’ elements of Fd (see definition 7.1 in [11]). For simplicity,
assume V is a curve so that any element of Fd is normalized. The lower bound
then says that there is a real number c > 0 such that

degðjjV Þb ckjk;ð4:3:1Þ

for any j a Fd , where kjk is the sum, in absolute value, of the exponents of the
monomial j (cf. proof of theorem 9.20 in [11]). Using diophantine approxi-
mation, we deduce that the following height inequality holds: there exist real
numbers c1; c2 > 0 such that

hðjðxÞÞb c1kjkhðxÞ;ð4:3:2Þ

for any j a Fd and any x a VnZV ;F of height at least c2 (see for example theo-
rem 9.30 in [11]). This readily proves that the height is bounded on the intersection
of interest as any of its points satisfies an equation of the form jðxÞ ¼ x for some
j a Fd ; so either hðxÞ < c2 or inequality (4.3.2) gives hðxÞa ð1=c1kjkÞhðxÞ ¼ 0.

Conjecture 1.8 is of the same form again, with x ¼ ð0; . . . ; 0Þ and Fd given by
the family of all dominant morphisms X ! Ad

K defined over k. Hence, it makes
sense to use the same approach again. However, the anomalous locus ZV ;F, as
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defined here, has a weaker relation with Fd than in the classical case. Indeed,
both halves of the equivalence above are now false.

First, Example 4.3 shows there exist subvarieties V of X with V AZV ;F, such
that jðVÞ is of lower dimension than V for some j a Fd . Hence, one half of the
equivalence is false, although we recover it by restricting to curves. Indeed, the
conclusion follows from the stronger assumption that V AZ 0

V ;F, where Z 0
V ;F is

the semi-constant anomalous locus, which is equivalent to V AZV ;F in the case
of curves.

Then, there are examples such as 4.1 showing that some subvarieties V of X
with V ¼ ZV ;F have the property that any j a Fd induces a dominant morphism
on V .

Actually, Example 4.1 even shows that the methods of [6] and [11] fail to give
a proof of Conjecture 1.8. At least, these proofs don’t translate directly into a
proof of Conjecture 1.8. Indeed, for a curve V lying in X , the condition that
any j a F1 induces a dominant morphism over V already implies a lower bound
similar to (4.3.1) with c ¼ 1 and kjk defined as the total degree of the polynomial
j. In particular, for any curve as in Example 4.1, the lower bound on the degree
is satisfied, though the height is unbounded. It shows that, in the setting of Con-
jecture 1.8, height inequalities of the type (4.3.2) do not necessarily follow from
lower bounds of the type (4.3.1). New ideas are thus needed to prove the conjec-
ture along those lines.

5. Bounded height; an example

We can prove certain special cases of Conjecture 1.8; our strategy is tailored spe-
cifically to Conjecture 1.8 and revolves around properties of irreducibility similar
to Bertini’s Theorem.

As above let k be any algebraically closed field of any characteristic, let
K ¼ kðt; sÞ for t, s algebraically independent over k, and let h be the Weil height
function on K such that hðtÞ ¼ hðsÞ ¼ 1.

We need the following result, a direct consequence of Lemma 2.1 (p. 1053)
of [5].

Lemma 5.1. Supose x in kðt; sÞ satisfies an equation FðxÞ ¼ 0 with F ðX Þ ¼
a0X

D þ � � � þ aD in k½X ; t; s� irreducible over k½t; s�. Then DhðxÞ ¼
maxfdeg a0; . . . ; deg aDg for the total degrees.

As a warm-up, we consider the line V in X ¼ A2 defined by

y ¼ txþ s

and we prove that

maxfhðxÞ; hðhÞga 3

for any ðx; hÞ in V BX ð1Þ over kðt; sÞ.
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There is a non-zero polynomial f over k with f ðx; hÞ ¼ 0, and we can sup-
pose f irreducible; let d be its total degree. We deduce F ðxÞ ¼ 0 for FðX Þ ¼
f ðX ; tX þ sÞ. We claim that F is irreducible over k½t; s� (the intuition here is
that V is a ‘‘generic’’ line with respect to the curve defined by f hence Bertini).
For a non-trivial factorization f ðX ; tX þ sÞ ¼ f1ðX ; t; sÞ f2ðX ; t; sÞ in k½X ; t; s�
would imply

f ðX ;Y Þ ¼ f1ðX ;T ;Y � TX Þ f2ðX ;T ;Y � TXÞ:

Thus both factors here would have to be independent of T , say ~ff1ðX ;Y Þ and
~ff2ðX ;YÞ, leading to a non-trivial factorization of f . This proves the claim.

Now FðXÞ has degree D ¼ d because t is transcendental over k, and so from
Lemma 5.1 we see that dhðxÞa d. So hðxÞa 1 and finally

hðhÞ ¼ hðtxþ sÞa hðtxÞ þ hðsÞa hðtÞ þ hðxÞ þ hðsÞa 3:

Here we can easily see that V BX ð1Þ is infinite, as suggested by the term ‘‘likely
intersection’’; for each positive integer r it contains ðx; xrÞ where x ¼ xr satisfies
xr ¼ txþ s and so clearly has degree r over kðt; sÞ.

It may be instructive also to deduce a similar bound for points ðx; hÞ on

sy2 ¼ xðx� 1Þðx� tÞ

the ‘‘a‰ne generic twisted Legendre elliptic curve’’ C contained in A2 defined
over kðt; sÞ. We can write this as z ¼ uxþ v for z ¼ y2

xðx�1Þ and u ¼ 1
s
, v ¼ � t

s
.

Because the values of z, x stay algebraically dependent over k for any point
ðx; yÞ ¼ ðx; hÞ a CBX ð1Þ and hðuÞ ¼ hðvÞ ¼ 1 we see at once from the above

that hðxÞa 1 and h
h2

xðx�1Þ

� �
a 3, whence

2hðhÞ ¼ hðh2Þa 3þ hðxðx� 1ÞÞa 5:

But the main goal of the present section is to prove bounded height for curves
V defined by

slðyÞ ¼ gðx; tÞ;

where l is a polynomial over k of degree greater than 0 and gðX ;TÞ is a polyno-
mial over k having an irreducible factor involving both X and T .

First we proceed with a few reductions, as for twisted Legendre. We may
assume lðyÞ ¼ y and also that all the irreducible factors of gðX ;TÞ involve both
X and T . Indeed, if gðX ;TÞ ¼ g0ðX Þg1ðTÞ~ggðX ;TÞ for g0, g1, ~gg over k then we
may replace

y

g0ðxÞ
by y and s

g1ðtÞ
by s. Thus we are now dealing with

sy ¼ gðx; tÞ

and all the irreducible factors of gðX ;TÞ involve both X and T .
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Pick ðx; hÞ in V BX ð1Þ over kðt; sÞ. There is a non-zero polynomial f over k
with f ðx; hÞ ¼ 0, and we can suppose f irreducible; let d be its total degree. We
deduce FðxÞ ¼ 0 now for

F ðXÞ ¼ sdY f ðX ; gðX ; tÞ=sÞ

in k½X ; t; s� with dY ¼ degY f ðX ;Y Þ.
The case dY ¼ 0 is easy, as from ~ff ðxÞ ¼ 0 (where ~ff ðXÞ ¼ f ðX ; 1Þ) we get

hðxÞ ¼ 0 and then from sh ¼ gðx; tÞ an upper bound for hðhÞ independent of f .
Thus we may assume dY b 1. We may also assume

dX ¼ degX f ðX ;YÞb 1;

otherwise hðhÞ ¼ 0 and then gðx; tÞ ¼ sh leads to a similar bound for hðxÞ.
Namely, if hA 0 then gðX ; tÞ � sh is clearly irreducble in k½t; s� and again we
may use Lemma 5.1; and otherwise gðx; tÞ ¼ 0 and there are at most finitely
many possibilities for x.

Now write F ðXÞ ¼ a0X
D þ � � � þ aD for a0; . . . ; aD in k½t; s� with a0A 0. Put

eT ¼ degT gðX ;TÞ, so that eT b 1 by our hypotheses on g.

Claim 5.2. We have maxfdeg a0; . . . ; deg aDga deT .

Proof. Each nonzero monomial from each ai comes from a monomial X aY b of
f ðX ;Y Þ with ba dY , so in FðX Þ we see only coe‰cients involving sdY�bt jb for
some ja eT . Here the total degree is

dY þ bð j � 1Þa dY þ bðeT � 1Þa dY þ dY ðeT � 1Þ ¼ dYeT a deT

as desired. r

Claim 5.3. We have Db d.

Proof. A monomial X aY b in f ðX ;YÞ leads to terms sdY�btX aþi in FðX Þ,
where t is in k½t� and ia eXb for eX ¼ degX gðX ;TÞb 1. Taking i ¼ eXb we
get M0 ¼ sdY�bt0X

c for t0A 0 in k½t� and c ¼ aþ eXb. We choose ða; bÞ first
to maximize c and second to maximize a. Now all other monomials X a 0

Y b 0
in

f ðX ;Y Þ give rise to degree in X strictly less than c unless a 0 þ eXb
0 ¼ aþ eXb.

But then a 0 < a so b 0 > b and these have degree dY � b 0 < dY � b in s, so they
cannot annihilate M0. Since eX b 1 and there exist monomials X aY b with
aþ b ¼ d, we are done. r

Claim 5.4. The polynomial FðX Þ is irreducible over k½t; s�.

Proof. Assume the contrary and let F ðXÞ ¼ f1ðX ; t; sÞ f2ðX ; t; sÞ for non-trivial
f1, f2 over k. We first note that each di ¼ degs fi ði ¼ 1; 2Þ is positive. Otherwise if
say d1 ¼ 0 then by substituting s ¼ gðX ; tÞ=Y we would get

gðX ; tÞdY f ðX ;Y Þ ¼ Y dY ~ff1ðX ; tÞ f2ðX ; t; gðX ; tÞ=YÞ:

Now, using that f is irreducible, we obtain that f ðX ;YÞ and ~ff1ðX ; tÞ are coprime
unless ~ff1ðX ; tÞ is in k½X � but even this is impossible as dY b 1. Thus ~ff1ðX ; tÞ
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divides gðX ; tÞdY . So each irreducible factor pðX ; tÞ of ~ff1ðX ; tÞ divides gðX ; tÞ.
But also pðX ; tÞ divides FðX Þ ¼ sdY f ðX ; gðX ; tÞ=sÞ so pðX ; tÞ divides sdY f ðX ; 0Þ.
Therefore pðX ; tÞ lies in k½X �. As this holds for each p, we deduce that ~ff1ðX ; tÞ
lies in k½X �. But as we assumed that gðX ; tÞ has no non-constant factors in k½X �,
this is a contradiction.

Hence indeed we may assume that di b 1 ði ¼ 1; 2Þ.
Also we may assume that fi ði ¼ 1; 2Þ is not divisible by s. Otherwise s divides

f1 f2 ¼ F ðXÞ ¼ sdY f ðX ; gðX ; tÞ=sÞ contradicting the definition of dY . We note
also that d1 þ d2 ¼ degs F ¼ dY .

Finally write

giðX ; t;YÞ ¼ Y di fiðX ; t; gðX ; tÞ=Y Þ ði ¼ 1; 2Þ

both involving Y . Thus

gðX ; tÞdY f ðX ;YÞ ¼ g1ðX ; t;Y Þg2ðX ; t;YÞ:

If we look at this in kðX ; tÞ½Y � then we get a non-trivial factorization of the
irreducible f ðX ;YÞ and so the contradiction that proves Claim 5.4. r

Using Claims 5.2, 5.3, 5.4 and Lemma 5.1 we conclude from F ðxÞ ¼ 0 that
hðxÞa eT , and then we get an upper bound for hðhÞ independent of f since
sh ¼ gðx; tÞ. This completes the proof of Conjecture 1.8 for all curves of the
form slðyÞ ¼ gðx; tÞ.
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