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Abstract. — In this paper we present a mathematical model for the flow of an acid solution

through a reacting porous medium. The solid matrix is supposed to be formed by families of spheres
with di¤erent radii and the fluid is supposed to saturate the pores. The system is described by

the evolution of the overall ion concentration and the radii of the spheres. The structure of the
mathematical problem is multi-scale in time and for each time-scale di¤erent simplified problems

can be obtained. We give some analytical results and display some numerical simulations to show
the behavior of the solutions. The main practical application of this model is the flow of acid solu-

tion through neutralizing cartridges in which solid particles of CaCO3 are used to neutralize a given
flow of an acid mine drainage.
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1. Introduction

Acid mine drainage (AMD) and Acid rock drainage (ARD) represent a serious
environmental hazard all around the world, especially since they can cause long
term damages to waterways and biodiversity. AMD is mainly originated by
the exposition of sulfide ores, chiefly iron pyrite, to water and oxygen and it
usually refers to the generation of acidic streams from abandoned mines (see
[15] and [6]).

Once a mine site begins to produce acid mine drainage, it will continue to
release acidic waters, even long after the mine plant has ended its activity. For
example acid mine drainage continues to emanate from mines in Europe estab-
lished during the Roman Empire prior to 467 BC, [6]. The consequences of
AMD can be tremendous for aquatic life, the first one to come into contact with
the acidic outflow. The extinction of entire fish population has been repeatedly
reported, but the danger occurs also for plants and animals living along the acid
stream, [14]. The impact on human health can also be very high, on account of
the AMD capability to leach metals from mine ore, thus making these metals
bioavailable. Among the most dangerous leached metals there are lead (toxic,
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poisonous and potentially cancerous), antimony (toxic and poisonous) and cad-
mium (known carcinogen).

Although the prevention of acid mine drainage formation would be the best
option, it is certainly not feasible in the vast majority of the locations where
the phenomenon is found. As a consequence, in such cases suitable processes
to collect and treat acid waters must be set up, in order to avoid environmental
pollution.

Many di¤erent options are suitable for AMD remediation purposes, the main
being the ones based on chemical reactions and/or the exploitation of biological
mechanism to neutralize and remove metals from the solution, [1], [7], [3], [13].
One of the possible approach to the neutralization process involves the use of a
basic chemical compound, such as sodium hydroxide, calcium hydroxide or cal-
cium carbonate, [2]. The process basically consists in the addition of a base to the
acidic water or in the flow of the acid solution through a basic bulk, in order to
raise the pH of the solution. The process triggers the oxidation and precipitation
of the dissolved heavy metals as hydroxides too. In this context any carbon car-
bonate waste is an ideal neutralizing agent since it is cheap, mainly formed by
calcium carbonate CaCO3, and it can be particularly e¤ective when available in
crushed or pulverized form, because of the large accessible reaction surface, [19].
Potential source of calcium carbonate waste are marble industries (such as the
Carrara marble district in Tuscan), paper industries (black liquor), sugar indus-
tries, hatcheries and food processing factories (for instance in Europe, approxi-
mately 1:5 � 105 Tons of eggshells are sent each year to landfills), limestone and
a lot more.

In a previous article [11] we have analyzed the erosion of a marble slab caused
by a strongly acidic solution, which, in turn, gradually raises its pH just as there is
no Hþ supply from the outside. The present paper is focussed on the neutraliza-
tion of AMD (deriving from pyrite, FeS2, waste) during its flow through a porous
medium made up of marble powder. The AMD’s that we are considering are
the result of several chemical reactions which occur between FeS2, H2O, oxygen
and other compounds. The AMD neutralization process occurs during the flow
through a cartridge containing marble dust. We model the cartridge as a porous
medium constituted by calcium carbonate spheres. The chemical reactions occur-
ring between the spheres and the acid solution are the following

CaCO3ðsÞ þ 2Hþ $ Ca2þ þH2Oþ CO2

CO2 þH2O $ H2CO3 $ Hþ þHCO3

CaCO3 þH2CO3 $ Ca2þ þ 2HCO3

CaCO3 þH2O $ Ca2þ þHCO3� þOH�

ð1:1Þ

The final e¤ect is a pH increase until an equilibrium value is reached, the equilib-
rium being function of the chemical and physical environmental parameters (e.g.
temperature, pH initial value, CO2 partial pressure, and so on).

In the sequel we present a model for reactions (1.1) that occur during
acid solution flow through cartridges used in experimental tests (see Fig. 1).
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The aim of the model, as well as of the experimental tests, is to give qualita-
tive and quantitative information that can be useful in designing systems of
reactive cartridges to be used for treating acid waste-water of mining plants.
This study, has been developed within the C.R.E.A. project (Sistema di Car-
tucce Reattive per gli E¿uenti Acidi di Miniera), funded by the Tuscan Re-
gional Government (POR FESR 2007–2013 Activity 1.1, Line A and B), whose
goal is improving the performances of the cartridges for mining plants waste
water.

The model is developed in the following way. We consider the basic R.E.V.,
DV � (representing volume element of the cartridge to be modeled), occupied by
solid spheres (in case of marble dust cartridge, the spheres diameter ranges be-
tween 1 and 60 mm) and by acid water. In the context of mixture theory (see,
e.g., [18] and [5]) we define the solid, fs, and liquid, fl , volume fractions suppos-
ing that at each point liquid and solid phases co-exist. Assuming saturation we
write fl ¼ 1� fs. So, to keep notation simple, here and in the sequel ð1� fÞ rep-
resents the solid volume fraction and f the porosity, or liquid volume fraction.
Once the main physical quantity are defined (such as the concentration of ions
Hþ or, equivalently, the solution pH), we write the mass balances for solid skele-
ton (i.e. for the CaCO3 spheres) and for Hþ, obtaining a system of two coupled
equations.

Figure 1. Experimental cartridge. (A) Reactive system overview, the three shown car-
tridges di¤er in calcium carbonate/inert fibres ratio. The reactive cartridges works with
an acid water upflow. (B) The calcium carbonate is in the form of powder, with a granu-
lometric distribution in the range 1–60 micron. The polymeric inert fibers are present in
three di¤erent forms, high density disks, low density disks and whiskers. Disks are regu-
larly alternated with calcium carbonate, while whiskers are homogeneously distributed in
the CaCO3 matrix.
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The system is studied in a one dimensional setting where all the main variables
depend on the longitudinal coordinate (the cartridge is modelled as a cylinder)
and on time only. This assumption is reasonable since transport occurs only
along the longitudinal direction and di¤usion does not play a significant role in
the system (see Remark 3).

The dimensionless formulation of the problem (obtained rescaling with the
typical experimental data) puts in evidence the existence of three time scales
(see section 3): (i) t�reac, the Hþ reaction characteristic time (the shortest); (ii)
t�conv, the convective characteristic time; and (iii) t�CaCo3 , the characteristic time
for the reduction of the spheres (the longest). We thus adopt a multiple time scale
approach, that allows to obtain the solution (within a known accuracy) at each
particular time scale.

In particular, focussing on the reaction and transport time scales, we prove
that the problem admits an explicit solution which, as physically expected, shows
that the CaCO3 consumption is negligible. The problem in the longest time scale
(i.e. the one characterizing the solid depletion) cannot be explicitly solved. We
however prove global existence and uniqueness.

Numerical simulations have been developed to validate our model. In partic-
ular we have compared the simulations with some simple experiments performed
using acid waste waters collected on the field of Abbadia San Salvatore (Mount
Amiata, Tuscany), within the context of CREA project. In such experiments
some strongly acid AMDs (pHP 2) were pumped through the neutralizing car-
tridge at a fixed rate (P5 m=s), see Fig. 1. The evolution of pH at the outlet was
then monitored (along with temperature, salinity, conductivity and other physical
parameters) and the e‰ciency of the cartridge (duration of its neutralizing e¤ect)
was assessed. The experiments have shown that the time needed to rise the pH to
circumneutral values (pHP 5–6) is of the order of 15/30 sec and that the car-
tridge is completely exhausted after approximately one month. Looking at the
simulations (Fig. 2, 5, 6) we see that they are in agreement with the experimental
results.

2. Definitions and basic assumptions

The aim of this section is to model the dynamics of the solid-liquid mixture whose
constituents are subject to a chemical reaction.

We consider a portion of a porous medium whose volume is1 DV �. The

quantity

Z
DV �

fð~xx�; t�Þd 3x� provides the volume of the liquid within DV �.

Because of saturation, the volume of the solid contained in DV � is

DV �
s ¼

Z
DV �

½1� fð~xx�; t�Þ�d 3x�:

1Throughout this paper the superscript ‘‘*’’ means that the quantity has physical dimension.
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If the liquid saturating the pores is an acid solution (e.g. hydrochloric acid), we
introduce

c�ph ¼
number of moles of Hþ ions dissolved into the water

volume occupied by water ¼ DV �
H2O

;

½c�ph� ¼ mol=lt:

The concentration of Hþ ions can be also expressed in terms of pH, where

pH ¼ �log10

� c�ph
1 mol=lt

�
:ð2:1Þ

We assume that the solid matrix is constituted by n families of CaCO3 spheres
with radii r�1 ; r

�
2 ; . . . ; r

�
n , uniformly mixed, so that the total solid volume fraction is

given by 1� f ¼ 4
3 p

Pn
i¼1 r

�3
i N�

i , where N
�
i , i ¼ 1; 2; . . . ; n, is the granulometric

distribution per unit volume, namely

N�
i ¼ number of spheres; per unit volume; whose radius is r�i ;

½N�
i � ¼ 1=cm3:

We assume2:

A1. N�
i , i ¼ 1; 2; . . . ; n, are given and constant in time. In particular, such an

assumption means that the spheres do not compact.

We have

f ¼ 1� 4

3
p
Xn
i¼1

r�3i N�
i :

Of course, the spheres radii are uniform in space at the beginning of the process.
But, due to the chemical reaction occurring on the spheres surface, the radii de-
crease according to the local (and generally non-uniform) concentration of Hþ.
So, spheres belonging to the same i th family (i.e. whose initial radius is r�i ), will
have, at time t�, di¤erent radius according to their spatial location. In this sense,
we write r�i ¼ r�i ð~xx�; t�Þ, acknowledging that the index i simply denotes the
spheres family (i.e. the initial spheres radius). This fact will be clarified also in
Remark 7.

Introducing N� ¼
Pn

i¼1 N
�
i , the granulometric fractions

Ni ¼
N�

i

N� ; i ¼ 1; 2; . . . ; n;

2 If compactification would be allowed, f could be, in principle, remain unchanged even though
ri, i ¼ 1; 2; . . . ; n, are reducing.
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and the dimensionless radii (r� is a reference radius),

ri ¼
r�i
r�

; i ¼ 1; 2; . . . ; n;

we have

f ¼ 1� 4

3
pr�3N�

Xn
i¼1

r3i Ni:ð2:2Þ

Remark 1. In case n ¼ 1 (i.e. just one family of spheres), we have

f ¼ 1� 4

3
pr�3N� , r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4pN� ð1� fÞ3

r
:ð2:3Þ

Following an Eulerian formalism, the continuity equation for the molar concen-
tration of Hþ is

q

qt�
ðc�phfÞ ¼ �‘� � ðc�ph~qq�Þ � G�;ð2:4Þ

with:

• ~qq�: liquid discharge, i.e. volume of solution passing through the unit surface in
the unit time, ½~qq�� ¼ cm=s:

• G�: number of moles of Hþ consumed in the unit time per unit volume of the
porous medium as an e¤ect of the chemical reaction, ½G�� ¼ mol=s cm3. As-
suming a first order kinetics (see [17], [4])

G� ¼ g�ðtotal reaction surface per unit volumeÞðc�ph � c�ph;oÞþ

¼ 4pg�N�
�Xn

i¼1

Nir
�2
i

�
ðc�ph � c�ph;oÞþ;

where g� is a constant usually referred as reaction rate ½g�� ¼ cm=s, c�ph;o is
the equilibrium concentration (i.e. the concentration at neutralization), and
where ð�Þþ denotes the positive part. In general c�ph;o depends on the reaction.
Here we assume that c�ph;o corresponds to pH ¼ 7, i.e. c�ph;o ¼ 10�7 mol=lt.

Equation (2.4) can be rewritten as

qðcfÞ
qt�

þ ‘� � ðc~qq�Þ ¼ �4pg�N�r�2
�Xn

i¼1

Nir
2
i

�
ðc� dÞþ;ð2:5Þ
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where

c ¼
c�ph

c�ph; ref
; d ¼

c�ph;o
c�ph; ref

;ð2:6Þ

with c�ph; ref reference concentration (to be selected) and r� is the characteristic
radius.

Remark 2. If only one family is present (namely n ¼ 1), we may express G� in
terms of f. Indeed, from (2.3), we have

G� ¼ g�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pN�3

p
ð1� fÞ2=3ðc�ph � c�ph;oÞþ:ð2:7Þ

Remark 3. More generally, in writing (2.4) we should take into account also of
the Hþ Fickian di¤usion. However, estimating the Péclet number Pe ¼ L�q�=D�,
with D� di¤usivity of the Hþ ions, we find (using typical values, i.e. D� ¼
10�4 cm2=s, and L� ¼ 40 cm, q� ¼ 0:15 cm=s, see Table 1) 1=Pe ¼ Oð10�5Þ. The
di¤usion can be safely neglected.

Now we have to write an evolution equation for ri. To this aim we take into
account the stoichiometric coe‰cients of reaction and introduce:

• S; number of moles of Hþ that react with one mole of CaCO3 per the unit time
(stoichiometric coe‰cient).

• M�
CaCO3

, CaCO3 molar mass (M�
CaCO3

Q100 gr=mol).

• r�
CaCO3

, CaCO3 density (2.7 gr=cm3).

Each sphere of (dimensionless) radius ri is exposed to the acid solution whose
(dimensionless) molar concentration of Hþ is c. Thus the number of CaCO3

moles that are removed form the surface of a sphere per unit time is
4pSg�c�ph; ref r

�2
i ðc� dÞ. The corresponding reduction in volume (per unit time) is

4p
M�

CaCO3

r�
CaCO3

Sg�c�ph; ref r
�2
i ðc� dÞþ:

Hence the rate at which ri decreases is given by

qri

qt�
¼ �

M�
CaCO3

r�r�
CaCO3

Sg�c�ph; ref ðc� dÞþ:ð2:8Þ

Remark 4. When n ¼ 1, exploiting (2.7) we may write explicitly the variation in
time of f

qf

qt�
¼ Sc�ph; ref

M�
CaCO3

r�
CaCO3

ðg�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36pN�3

p
Þð1� fÞ2=3ðc� dÞþ:ð2:9Þ
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To close the model we assume ~qq� ¼~qq�
o uniform and constant. This hypothesis

can be relaxed, for instance, when the inlet and outlet pressure are prescribed as
described in the following

Remark 5. When pressure at the boundary of the system is given (i.e. in case
of pressure driven flow), we may link ~qq� to the fluid pressure P� by means of an
empiric law (see e.g. [9], [10], [8]). For instance, considering Darcy’s law

~qq� ¼ �K �ðfÞ
m� ‘�P�;

with K � being the medium permeability and m� the fluid viscosity, we get

qðr�
l fÞ

qt�
� ‘� �

� r�
l K

�ðfÞ
m� ‘�P�

�
¼ 0;

to which we must add the boundary conditions: P�jinlet ¼ P�
in, and P�joutlet ¼ P�

out.

3. A one-dimensional case

We consider a cylinder whose length is L�. We assume azimuthal symmetry and
that there is no dependence on the radial coordinate of the cylinder. The axial
coordinate is denoted by x�. The flow occurs along x�; so that ~qq� ¼ q�

o~eex, where

q�
o is the given inlet discharge (constant in time and space). We introduce x ¼ x�

L� ,

t ¼ t�

t�ref
, with t�ref reference time (still to be selected). Next we set c�ph; ref ¼ c�A,

where c�A is the supremum of the inlet Hþ concentration c�ph; in, namely

c�A ¼ sup
tb0

c�ph; inðtÞ:ð3:1Þ

This means that the reference concentration is taken as the one we have at the
inlet corresponding to the lowest pH. In particular, we take

c�A ¼ 10�2 mol=lt; , pHA ¼ �log10

� c�A
1 mol=lt

�
¼ 2;

i.e. a strongly acid solution. Recalling (2.1), we also have c ¼ 102�pH.
We also define the following quantities:

• t�conv ¼
L�

q�
o

, characteristic convective time.

• t�CaCO3
¼

r�
CaCO3

r�

Sc�AM
�
CaCO3

g�
, characteristic time for the CaCO3 consumption (when

the solution is strongly acid).

• t�reac ¼ ð4pg�N�r�2Þ�1; characteristic reaction time, namely the Hþ reaction
time.
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The continuity equations (2.5) and the consumption rate equation (2.8) can be
rewritten as follows

1

t�ref

qðcfÞ
qt

þ 1

t�conv

qðcÞ
qx

¼ � 1

t�reac

�Xn
i¼1

Nir
2
i

�
ðc� dÞþ; Hþ ions;

1

t�ref

qri

qt
¼ � 1

t�CaCO3

ðc� dÞþ; i ¼ 1; 2; . . . ; n; CaCO3;

8>>>><
>>>>:

ð3:2Þ

with f given by (2.2).
System (3.2) has to be supplemented with two boundary conditions: one for

the flow qjx¼0 ¼ 1, and one for the Hþ concentration, i.e. cjx¼0 ¼ cinðtÞ. Of
course, by definition (3.1), c�in does not exceed the reference concentration (the
inlet pH is always not smaller than pHA), so that 0 < cinðtÞa 1. We also assume
a compatibility condition: coð0Þ ¼ cinð0Þ, where coðxÞ denotes the initial (dimen-
sionless) concentration

cðx; 0Þ ¼ coðxÞ:ð3:3Þ

Concerning d, from (2.6)2, we get d ¼ 10�5, because, as mentioned, c�ph;o ¼
10�7 mol=lt.

We define

y ¼ t�conv
t�CaCO3

; and e ¼ t�reac
t�CaCO3

:ð3:4Þ

Concerning the cartridges used in the experimental tests (see Fig. 1 and Table 1
we have

t�reacP 10 s; t�convP 102 s; t�CaCO3
P 104 s;ð3:5Þ

so that

yP 10�2; eP 10�3;ð3:6Þ

and

ŷy ¼ y

e
P 10:

We thus write

y ¼ ŷye; with ŷy ¼ Oð1Þ:ð3:7Þ

Table 1. Typical values of the parameters.

L� q�
o S N� g�

40 cm 0:15 cm=s 1 109 cm�3 2 � 10�5 cm=s
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Remark 6. We notice that the value of N� in Table 1 has been obtained through
granulometric analysis on the marble powder contained in the cartridge, whereas
the rate constant g has been determined through an experimental procedure
described in [12]. Both experiments have been performed within the context of
CREA project.

3.1. Two time scales approach

We select the consumption characteristic time t�CaCO3
as reference time setting

t�ref ¼ t�CaCO3
. We indeed are interested in analyzing the lifetime of the cartridge.

Hence, because of (3.4) and (3.7), system (3.2) can be rewritten as

qðcfÞ
qt

þ 1

ŷye

qðcÞ
qx

¼ � 1

e

�Xn
i¼1

Nir
2
i

�
ðc� dÞþ; Hþ ions;

qri

qt
¼ �ðc� dÞþ; i ¼ 1; 2; . . . ; n; CaCO3 spheres;

8>>><
>>>:

ð3:8Þ

with f given in terms of the ri’s by formula (2.2).
The system possess two natural time scales. The slower, represented by t, is the

one of the CaCO3 spheres consumption (in presence of a strongly acid solution).
Then we have the fast time scale (the reaction time scale) given by

t ¼ t

e
:ð3:9Þ

In such a time scale t ¼ Oð1Þ implies t ¼ OðeÞ, and t ¼ Oð1Þ implies t ¼ Oðe�1Þ.
Actually, there is also the convective time scale y which can be considered simply
multiplying the time scale t by a factor ŷy.

Next, we look for c, ri, f, and q, of the form cðx; tÞ ¼ Cðx; t=e; tÞ, riðx; tÞ ¼
Riðx; t=e; tÞ, i ¼ 1; 2 . . . n and f ¼ Fðx; t=e; tÞ. Thus, because of (3.9), we have
d

dt
¼ q

qt
þ 1

e

q

qt
.

Concerning the data, we assume:

A2. cin ¼ cinðtÞ, i.e. the inlet Hþ concentration does not vary in time intervals
whose amplitude is OðeÞ.

We then introduce the asymptotic expansion for the unknowns C, Ri

f ¼ f ð0Þ þ ef ð1Þ þ e2f ð2Þ þ � � � :ð3:10Þ

Inserting the above expansions in the dimensionless system (3.8), we obtain
initial-boundary value problems at successive order of e. Here we consider only
the leading order (i.e. the zero order), neglecting convergence issues and OðeÞ
corrections as well.
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3.1.1. Stationary solution. Let us go back to problem (3.8). First of all we ob-
serve that, because of assumption A1 and (2.2), f ¼ 1 entails ri ¼ 0, i ¼ 1; 2 . . . n.

So, if fðx; tÞ is analytic, then for every x a ½0; 1�, q
nf

qtn
¼ 0, when f ¼ 1, En a N.

This means that if at some point x and at some time t we have fðx; tÞ ¼ 1, then
fðx; tÞ ¼ 1 for all tb t. Once the solid fraction has disappeared, it can never be
formed again!

The stationary solution of problem (3.8) is given q ¼ 1, and by the solution of

qc

qx
¼ 0; cð0Þ ¼ cin;ð3:11Þ

that is clðxÞ ¼ cin > 1, and flðxÞ ¼ 1 (spheres completely consumed). Two
di¤erent situations may arise:

(i) f ¼ 1 is reached in a finite time.
(ii) f ¼ 1 is reached in an infinite time.

Suppose that fjx¼0 becomes 1 in a finite time t̂t at x ¼ 0. Then, from (3.8)2, we can
introduce t̂ti, i ¼ 1; 2; . . . ; n, representing the time at which the particles of radius
ri disappear at location x ¼ 0. We have

rið0Þ �
Z t̂ti

0

ðcinðtÞ � dÞþ dt ¼ 0;

so that

t̂t ¼ max
i¼1;2;...;n

ft̂tig:

In case x a ð0; 1� the time t̂tðxÞ can be found only numerically.

3.2. Zero order approximation

System (3.8) can be rewritten in terms of C

qðCfÞ
qt

þ 1

e

qðCfÞ
qt

þ 1

ŷye

qðCÞ
qx

¼ � 1

e

�Xn
i¼1

NiR
2
i

�
ðC � dÞþ;

qRi

qt
þ 1

e

qRi

qt
¼ �ðC � dÞþ:

8>>><
>>>:

ð3:12Þ

We use expansion (3.10) into (3.12)2 getting (at the zero order)

qR
ð0Þ
i

qt
¼ 0; i ¼ 1; 2; . . . ; n; ) R

ð0Þ
i ¼ R

ð0Þ
i ðx; tÞ:
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Therefore R
ð0Þ
i ¼ r

ð0Þ
i ðx; tÞ (i.e. no dependence on t) and

qR
ð0Þ
i

qt
¼ dR

ð0Þ
i

dt
:ð3:13Þ

Since

e
d

dt
¼ e

q

qt
þ q

qt
) dR

ð0Þ
i

dt
¼ qR

ð0Þ
i

qt
þ qR

ð1Þ
i

qt
:

From the second of (3.12) we have

qR
ð0Þ
i

qt
þ qR

ð1Þ
i

qt
¼ �ðC ð0Þ � dÞþ ¼ dR

ð0Þ
i

dt
;ð3:14Þ

implying

qR
ð0Þ
i

qt
¼ �ðC ð0Þ � dÞþ:

We notice that (3.13) and (3.14) yield
qR

ð1Þ
i

qt
¼ 0. In conclusion we get

fð0Þ qC
ð0Þ

qt
þ 1

ŷy

qC ð0Þ

qx
¼ �

�Xn
i¼1

Nir
ð0Þ2
i

�
ðC ð0Þ � dÞþ;

qr
ð0Þ
i

qt
¼ �ðC ð0Þ � dÞþ:

8>>>><
>>>>:

ð3:15Þ

Remark 7. System (3.15) puts in evidence an important property of the spheres

radii: they may depend on the location x. Indeed, since C ð0Þ depends on x, (3.15)2
entails that spheres belonging to the same family (i.e. whose initial radius is the
same) at the same time t may have di¤erent radii according to their location. We
conclude therefore that ri ¼ riðx; tÞ, while rijt¼0, i ¼ 1; 2; . . . ; n, are uniform in x.

Now, if we neglect the term 1=ŷy (recall 1=ŷyP 4 � 10�2), the solution of (3.15),
when to is an ‘‘initial’’ time, is3

C ð0Þðx; to; tÞ ¼ dþ ½Cðx; to; 0Þ � d�ð3:16Þ

� exp �
Xn
i¼1

Niðrð0Þi ðx; toÞÞ2
" #

t

fð0Þðx; toÞ

( )
; t > 0:

3We remark that (3.16) holds true up to t ¼ Oð1Þ.
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Example 1. In Fig. 2 we have shown the space-time behavior of pH obtained
considering n ¼ 1, to ¼ 0 (so that Cðx; to; 0Þ ¼ coðxÞ, and fðx; 0Þ ¼ foðxÞ), with

coðxÞ ¼ �log10 2þ 1

2
sinð2pxÞ

� �
; and foðxÞ ¼

1

20
þ 1

10
x:ð3:17Þ

Since n ¼ 1 (3.16) has the form

C ð0Þðx; to; tÞ ¼ dþ ½Cðx; to; 0Þ � d�ð3:18Þ

� exp �ð1� fð0Þðx; toÞÞ2=3
t

fð0Þðx; toÞ

( )
;

or, in terms of pH,

pH ¼ pHA � log10 dþ ½Cðx; to; 0Þ � d� � exp �ð1� fð0Þðx; toÞÞ2=3
t

fð0Þðx; toÞ

" #( )
:

Actually, (3.16) gives the Hþ concentration (within an OðyÞ accuracy) in the fast-
est time scale, i.e. the reaction time scale. Accordingly, in such a time scale, the
Hþ convection is neglected. Hence, in such approximation, the system is treated
as a ‘‘closed system’’, not considering the continuous supply of Hþ ions through

Figure 2. 3D—Plot of the function pHðx�; t�Þ in the fast time scale.
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the inlet x ¼ 0. The dynamics of an isolated (namely closed) system in the long
time scale (the CaCO3 consumption time scale) is analyzed in Appendix A.

To take into account the Hþ influx (a fundamental feature of the system), we
have to keep the 1=ŷy term in equation (3.15)1, stretching the t time scale, i.e. con-
sidering, for the time variable t, intervals whose amplitude is OðŷyÞ. In such a case
(3.15)1 becomes a first order semilinear PDE

ŷyfð0Þðx; tÞ qC
ð0Þ

qt
þ qC ð0Þ

qx
¼ �ŷy

�Xn
i¼1

Nir
ð0Þ2
i

�
ðC ð0Þ � dÞ;ð3:19Þ

which can be integrated exploiting the method of the characteristics. So we we
consider the characteristics originating from the boundary x ¼ 0, namely

tðxÞ ¼ zþ ŷy

Z x

0

fð0Þðs; tÞ ds;ð3:20Þ

and integrate (3.19) along it. Since cin does not vary in the t scale (recall assump-
tion A2), we have

C ð0Þðx; tÞ ¼ dþ ðcinðtÞ � dÞ � exp �ŷy

Z x

0

Xn
i¼1

Niðrð0Þi ðs; tÞÞ2
" #

ds

( )
:ð3:21Þ

The above formula shows an interesting feature: C ð0Þ does not depend on t. The
reason is due to the fact that cin does not present significative fluctuations in the
short time scale (assumption A2). Therefore we replace C ð0Þ with cð0Þ, and remark
that cð0Þ is essentially the solution of the following Cauchy problem

qcð0Þ

qx
¼ �ŷy

Xn
i¼1

Niðrð0Þi ðx; tÞÞ2
" #

ðcð0Þ � dÞ; 0 < x < 1;

cð0Þjx¼0 ¼ cinðtÞ:

8>><
>>:ð3:22Þ

Of course, in case cin ¼ cinðt; t=eÞ, then C ð0Þ would present an explicit dependence
on t, and (3.22) would not hold true.

Exploiting (3.20), we can estimate the ‘‘transit time’’ Ttr, i.e. the time needed
for the water to reach the outlet, namely

Ttr ¼ ŷy

Z 1

0

fð0Þðs; tÞ ds:

As expected Ttr ¼ OðŷyÞ and depends on the spatial average (evaluated at time t)
of the medium porosity.

Actually, referring to Fig. 3, we realize that (3.21) gives the evolution of Hþ

concentration in the Din domain, but we have to consider also the domain Do,
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where the characteristics ‘‘originate’’ form the x axis. Therefore, considering
t ¼ 0, we have

t ¼ ŷy

Z x

x

foðsÞ ds;

cð0Þ ¼ dþ ðcoðxÞ � dÞ exp �ŷy

Z x

x

Xn
i¼1

Nir
2
i;oðsÞ ds

( )
;

ð3:23Þ

for

0 < x < 1; x < x < 1;

where x denotes the abscissa of the starting point of the characteristic line, fo
is the initial porosity, and rio ¼ rijt¼0, i ¼ 1; 2; . . . ; n. Of course, (3.23) gives the
evolution in the initial transient (whose length is OðŷyÞ), which will be disregarded
when considering the overall dynamics.

Example 2. We consider the initial transient, with t ranging between 0 and
OðŷyÞ, i.e. 0 < t < ŷye, and, as in Example 1, n ¼ 1. Next we assume foðxÞ ¼ fo ¼
const: a ð0; 1Þ. Since r and f are linked by (2.3), we obtain

cð0Þ ¼

dþ ðcin � dÞ expf�ŷyð1� foÞ
2=3

xg for 0 < x < 1

ŷyfox < t < ŷyð1þ foxÞ for 0 < x < 1; ŷyfox < t < ŷyð1þ foxÞ
dþ ðcoðxÞ � dÞ expf�ŷyð1� foÞ

2=3ðx� xÞg
for 0 < z < 1; x < x < 1

0 < t < ŷyfox for 0 < z < 1; x < x < 1; 0 < t < ŷyfox;

8>>>>>><
>>>>>>:

ð3:24Þ

Figure 4 shows a plot of pH (within an OðeÞ tolerance) derived from (3.24), when co
is given by (3.17)1, cin ¼ �log10 2 (constant in time), and fo ¼ 0:7.

Figure 3. Domains Din and Do.
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We now focus on the CaCO3 consumption time scale (slow). We can solve
(formally) equation (3.15)2, getting

r
ð0Þ
i ðx; tÞ ¼ rijt¼0 �

Z t

0

ðcð0Þðx; zÞ � dÞþ dz

� �
þ
; i ¼ 1; 2; . . . ; n:ð3:25Þ

where we take the positive part ½ � �þ, since 0a ri; always. At this point we can
plug (3.25) into (3.21) (or vice-versa) to obtain a nonlinear integral equation for
c (or for f), i.e.

cð0Þðx; tÞ ¼ dþ ðcinðtÞ � dÞð3:26Þ

� exp �ŷy

Z x

0

Xn
i¼1

N2
i

�
rioðsÞ �

Z t

0

ðcð0Þðs; zÞ � dÞþ dz
�2
þ

" #
ds

( )
:

Remark 8. In case n ¼ 1, in place of (3.26) we obtain the following integral
equation

cð0Þðx; tÞ ¼ dþ ðcinðtÞ � dÞð3:27Þ

� exp �ŷy

Z x

0

ð1� foðyÞÞ
1=3 � 1

3

Z t

0

½cð0Þðy; zÞ � d� dz
� �2

dy

( )
:

Figure 4. 3D—Plot of the function pHðx�; t�Þ in the intermediate time scale.
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3.3. Well posedeness of the mathematical problem

Here and in the sequel we omit the ‘‘ð0Þ’’ to have a lighter notation. Next, we
study the case n ¼ 1, i.e. equation (3.27). Minor changes allow to extend the
results we are going to show to the case n > 1. We consider the following system
(easily derivable from (3.15)1 when n ¼ 1)

qc

qx
¼ �ŷyð1� fðx; tÞÞ2=3ðc� dÞ; 0 < x < 1; 0 < t;

qf

qt
¼ ð1� fÞ2=3ðc� dÞ; 0 < x < 1; 0 < t;

cjx¼0 ¼ cinðtÞ; fjt¼0 ¼ foðxÞ;

8>>>>><
>>>>>:

ð3:28Þ

from which equation (3.27) derives.

Remark 9. Equations (3.28)1 and (3.28)2 admit a traveling wave solution. Indeed,
setting u ¼ c� d, c ¼ 1� f, and looking for a solution of the form

u ¼ uðxÞ and c ¼ cðxÞ; with x ¼ x� ut;

where u is the wave speed, we obtain

u 0 ¼ �ŷyc2=3u;

uc 0 ¼ c2=3u;

�
) ðuþ ŷyucÞ0 ¼ 0; ) uþ ŷyuc ¼ const:ð3:29Þ

which allows to find u, imposing proper ‘‘boundary conditions’’ for x !el. Indeed
considering: cð�lÞ ¼ 0, (absence of solid), uð�lÞ ¼ 1, (strongly acid solution),
and uðþlÞ ¼ 0, (negligible Hþ concentration) and cðþlÞ ¼ c, 0 < c < 1, with,

e.g., c ¼
Z 1

0

ð1� foðxÞÞ dx, we have

1 ¼ ŷyuc; ) u ¼ 1

ŷyc
:

We thus retrieve that the transit time is OðŷyÞ.
The equation for c can be found di¤erentiating ð3:29Þ2, that is

c 00 ¼ �ŷyc2=3c 0 þ 2

3

ðc 0Þ2

c
:

Definition 1. Given a smooth set of data foðxÞ, cinðtÞ with 0 < foðxÞ < 1 and
d < cinðtÞa 1, a pair of functions ðcðx; tÞ; fðx; tÞÞ is called a solution to problem
(3.28) in the domain WT ¼ ½0; 1� � ½0;T �, for some T > 0, if the following condi-
tions hold true:
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1. cðx; tÞ; fðx; tÞ a C1ðWTÞ.
2. d < cðx; tÞa 1, and 0 < fðx; tÞa 1 for all ðx; tÞ a WT .
3. fðx; 0Þ ¼ foðxÞ, and cð0; tÞ ¼ cinðtÞ, with suptb0jcinðtÞja 1.

4. cðx; tÞ and fðx; tÞ fulfill (3.28) for all ðx; tÞ a WT .

Introducing

u ¼ c� d; and c ¼ ð1� fÞ1=3;

system (3.28) can be rewritten as

qu

qx
¼ �ŷyc2u; 0 < x < 1; 0 < t;

qc

qt
¼ �u; 0 < x < 1; 0 < t;

ujx¼0 ¼ uinðtÞ; cjt¼0 ¼ coðxÞ;

8>>>>><
>>>>>:

ð3:30Þ

where uin ¼ cin � d, and co ¼ ð1� foÞ
1=3. We state the following result.

Theorem 1. Suppose that foðxÞ and cinðtÞ satisfy the hypotheses of definition 1,
and

T <
1

2ŷyBkcok
;ð3:31Þ

where B ¼ suptb0juinðtÞj. Then, for 0 < taT, there exists one and only one solu-
tion ðu;cÞ in the sense of definition 1.

Proof. Let us define the set ST , whose elements are continuous functions vðx; tÞ
such that 0a va 1� d, and vð0; tÞ ¼ uinðtÞ. Next, we take v a ST , and, exploit-
ing (3.30)2, we set

cðx; tÞ ¼ coðxÞ �
Z t

0

vðx; sÞ ds
� �

þ
:ð3:32Þ

Clearly c is C1ðWTÞ and fulfills properties 2 and 3 of definition 1. Then, consid-
ering (3.30)1, we define

uðx; tÞ ¼ uinðtÞ exp �ŷy

Z x

0

coðxÞ �
Z t

0

vðx; sÞ ds
� �2

dx

( )
:

Clearly u a C1ðWTÞ, and u a ST . We thus have a mapping, u ¼ Lv, from ST

into ST .
We now show that L is a contraction. Banach’s theorem (see [16]) entails the

existence of one and only fixed point v ¼ Lv. So the pair ðv;cÞ, with c is given
by (3.32), is the unique solution to (3.30).
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So, if v1, v2 both belong to ST , and u1 ¼ Lv1, u2 ¼ Lv2, we get

ju1 � u2ja uinðtÞŷy
����
Z x

0

��
coðxÞ �

Z t

0

v1ðx; sÞ ds
�2

�
�
coðxÞ �

Z t

0

v2ðx; sÞ ds
�2�

dx

����
a uinðtÞŷy

Z x

0

2co �
Z t

0

ðv1ðx; sÞ þ v2ðx; sÞÞ ds
����

����dxtkv1 � v2k:

Hence, if T fulfills (3.31) the theorem is proved. r

So far we have proved the local existence and uniqueness. Actually we can show
that this solution exists and is unique for all T > 0. Indeed, take a sequence
fTngn AN such that

To ¼
1

1þ e

1

2kcokBŷy
;

T1 ¼
1

1þ e

1

2kcðx;ToÞkBŷy
;

up to

Tj ¼
1

1þ e

1

2kcðx;Tj�1ÞkBŷy
:

Then in each time interval ½Tj�1;Tj�, by virtue of Theorem 1, there exists a unique
solution. Considering now

P
jb0 Tj, we have

X
jb0

Tj ¼
1

2ŷyð1þ eÞB

�X
jb0

1

kcðx;Tj�1Þk

�
:

But 1=kcðx;Tj�1Þkb 1, for all j. Hence
P

jb0 Tj ¼ l, and so the solution can
be extended for all times. We thus have proved the following results.

Theorem 2. Suppose that foðxÞ and cinðtÞ satisfy the hypotheses of definition 1.
Then for every T > 0, there exist, in the sense of definition 1, a unique solution
ðc; fÞ to problem (3.28).

3.4. Numerical solution of (3.28)

In this section we present some numerical results for problem (3.28). We write the
system in terms of pH,
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qpH

qx
¼ ŷy

ln 10
ð1� fÞ2=3ð1� 10pH�pHoÞ;

qf

qt
¼ 10pHAð1� fÞ2=3ð10�pH � 10�pHoÞ:

8>>><
>>>:

ð3:33Þ

To solve numerically (3.33) we have used the forward (in space) explicit method,
namely

pH iþ1; j � pH i; j

Dx
¼ ŷy

ln 10
ð1� f i; jÞ2=3ð1� 10pH i; j�pHoÞ

ð1� f i; jÞ2=3 ¼ ð1� f i
oÞ

1=3 � 10pHA

3

Z t j

0

½10ðxi ; zÞ � 10pHo � dz
" #2

þ

:

In Fig. 5 and Fig. 6 we have plotted the behavior of pH and f considering

pHinðtÞ ¼ 2; foðxÞ ¼ 0:3þ 0:1x; pHo ¼ 7:

A. Appendix

If convection is absent (i.e. the system is closed), we drop the term 1=ŷy in equa-
tion (3.15)1. In such a case, to find the solution in the t�CaCO3

time scale, we pro-

Figure 5. 3D—Plot of the function pHðx�; t�Þ in the slow time scale.
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ceed as follows: we divide ½0; 1� in N ¼ 1=e, intervals whose amplitude is e, setting
to ¼ 0, t1 ¼ 1=e, t2 ¼ 2=e; . . . . Starting form to ¼ 0, we apply formula (3.18)
since, for the sake of simplicity, we consider n ¼ 1. We thus get

C ð0Þðx; 0; 1=eÞ ¼ dþ ½coðxÞ � d� exp �ð1� fð0Þðx; 0ÞÞ2=3

fð0Þðx; 0Þ
1

e

( )
;

C ð0Þðx; 1=e; 2=eÞ ¼ dþ ½C ð0Þðx; 0; 1=eÞ � d� exp �ð1� fð0Þðx; 1=eÞÞ2=3

fð0Þðx; 1=eÞ
1

e

( )

¼ dþ ½coðxÞ � d� exp
(
�ð1� fð0Þðx; 0ÞÞ2=3

fð0Þðx; 0Þ
1

e

� ð1� fð0Þðx; 1=eÞÞ2=3

fð0Þðx; 1=eÞ
1

e

)
;

so that

C ð0Þðx; ðN � 1Þ=e;N=eÞ ¼ þ½coðxÞ � d� exp �
XN
n¼0

ð1� fð0Þðx; tnÞÞ2=3

fð0Þðx; tnÞ
1

e

( )
;

Figure 6. 3D—Plot of the function fðx�; t�Þ in the slow time scale.
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which we approximate as follows

cð0Þðx; tÞ ¼ dþ ½coðxÞ � d� exp �
Z t

0

ð1� fð0Þðx; hÞÞ2=3

fð0Þðx; hÞ
dh

( )
:ðA:1Þ

Plugging (A.1) into (3.25) we obtain an nonlinear integral for fð0Þ, i.e.

fð0Þðx; tÞ ¼ 1�
"
ð1� foðxÞÞ

1=3 � 1

3
ðcoðxÞ � dÞðA:2Þ

�
Z t

0

exp �
Z z

0

ð1� fð0Þðx; hÞÞ2=3

fð0Þðx; hÞ
dh

( )
dz

#1=3

þ

:

Clearly this equation can be solved only numerically.
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