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Abstract. — Let W;W 0 HR2 be bounded domains and let f : W ! W 0 be a bi-Sobolev mapping.

We provide regularity properties for the inverse map f �1 under suitable assumptions on q-distortion
function of f .
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1. Introduction

Let W;W 0 HR2 be bounded domains and let f : W ! W 0 ¼ f ðWÞ be a homeo-
morphism. In the last few years, the relations between regularity properties of f
and those of its inverse have attracted a great interest (see [1], [2], [24], [18], [31],
[32], [23]).

In the class of planar homeomorphisms an important role is played by bi-
Sobolev mappings, originally proposed in [27]. We recall that a homeomor-
phism f is called a bi-Sobolev mapping if f a W 1;1ðW;R2Þ and its inverse f �1 a
W 1;1ðW 0;R2Þ.

Our interest in this class of mappings is motivated by their close connection
with homeomorphisms of finite distortion. More precisely, if n ¼ 2, we recall
that bi-Sobolev mappings are exactly those that have finite distortion ([27]). On
the other hand, the inverse of a homeomorphism W 1;1 belongs to BV only (see
[26], [7], [9]).

The theory of mappings of finite distortion has received considerable attention
in recent years thanks to its connection with elliptic partial di¤erential equations
(see e.g. [1], [6], [3], [16]).

We say that a homeomorphism f a W 1;1ðW;R2Þ has finite distortion if its
Jacobian is strictly positive on a set where jDf j does not vanish, i.e.,

Jf ðxÞ ¼ 0 ) jDf ðxÞj ¼ 0 a:e: x a W;

where jDf j denotes the operator norm of the gradient and Jf is the Jacobian
determinant of f .



For q a ð1;þlÞ, we define the q-distortion function of f as

Kq; f ðxÞ ¼
jDf ðxÞjq

Jf ðxÞ
; if Jf ðxÞ > 0;

1; otherwise.

8<
:ð1Þ

In the case q ¼ 2, Kq; f coincides with the classical distortion function Kf .
If we further assume that Kq; f is bounded, we recover the class of

q-quasiconformal mappings recently introduced by Hencl and Kleprlı́k ([22]).
In [2] the authors studied the integrability condition on Kf which guarantees

better regularity for the inverse of f . In particular they showed that, if f a W 1;2

is a homeomorphism of finite distortion such that Kf a L1, then the inverse map
f �1 belongs to W 1;2. Later, in [24] was established the same result under the
relaxed assumption f a W 1;1.

In this direction, some interpolation-type results are given in the setting of
Orlicz-Zygmund classes (see [18], [31]) and in the setting of grand Lebesgue
spaces (see [27]).

Here, we are interested in establishing some regularity properties of the inverse
of a homeomorphism under suitable integrability conditions on the q-distortion
function. We state some results in this direction.

Theorem 1.1. Let 1 < qa 2 and let f be a bi-Sobolev mapping.
Then

Kq; f a L
1

q�1ðWÞ

if, and only if,

jDf �1j a L
q

q�1ðW 0Þ:

Moreover,

Z
W 0

jDf �1j
q

q�1 dy ¼
Z
W

ðKq; f Þ
1

q�1 dx:ð2Þ

For q ¼ 2 Theorem 1.1 reduces to the result due to [24] already mentioned.

Theorem 1.2. Let 1 < qa 2, 1a p < l and let f be a bi-Sobolev map, such
that

Kq; f a L
p

q�1ðWÞ:

Then

Jf �1 a L log p LðW 0Þ;ð3Þ
jDf �1j a L

q

q�1 log p�1 LðW 0Þ:ð4Þ
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Moreover, we examine the case in which Kq; f belongs to classes of functions
not too far from L

1
q�1; we refer to Zygmund class and grand Lebesgue space (see

Section 2 and Section 3 for definitions and results).
In [29] the author proved that if Kq; f a L

1
q�1ðWÞ then f �1 satisfies Lusin N

condition, i.e. f �1 maps every set of measure zero to a set of measure zero. It is
worth pointing out that this property is proved by assuming that Kq; f is zero on
the set where Jf vanishes. Nevertheless, one can easily see that it is also true in the
case of definition (1).

We prove that this condition can be relaxed into the following one

sup
0<e<1

�
e

Z
W

K
1

q�1
�e

q; f ðxÞ dx
� 1

1
q�1

�e
<l;

ð5Þ

when f a W 1;p, 1 < pa q < 2, is a homeomorphism of finite distortion (see
Corollary 3.6). When (5) occurs, we write Kq; f a L

1
q�1

ÞðWÞ.
Finally, in Section 4, an integrability property for the q-distortion of the com-

position map g � f of two bi-Sobolev mappings is given.
The following result is a particular case of the more general Theorem 4.3.

Theorem 1.3. Let 1 < qa 2, f : W ! W 0 and g : W 0 ! W 00 be bi-Sobolev maps.
If

Kq; f a L2ðWÞ and ðKq;gÞ
1

q�1 a EXPðW 0Þ

then the composition h ¼ g � f a W 1;1ðW;R2Þ is a bi-Sobolev map and

Kq;h a L1ðWÞ:

2. Preliminaries

2.1. Some function spaces

Let us recall the definitions of some function spaces, which will be useful in the
sequel.

Let P be an increasing function from Pð0Þ ¼ 0 to limt!l PðtÞ ¼ l and con-
tinuously di¤erentiable on ð0;lÞ. We denote by LPðWÞ the Orlicz space gener-
ated by the function PðtÞ. It consists of all functions h for which there exists a
constant l ¼ lðhÞ > 0 such that P

�jhj
l

�
a L1ðWÞ.

In particular, the Orlicz-Zygmund space Lp loga L, 1a pal, a a R is the
Orlicz space generated by the function PðtÞ ¼ t p logaðeþ tÞ.

For a > 0 the dual Orlicz space to L log
1
a LðWÞ is the space EXPaðWÞ, gener-

ated by the function PðtÞ ¼ expðtaÞ � 1, i.e. it consists of all measurable functions
f for which there exists l > 0 such that

Z
W

exp
n�j f ðxÞj

l

�ao
< l:ð6Þ
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It is well known that LlðWÞ is not dense into EXPaðWÞ. We denote by
expaðWÞ the closure of LlðWÞ in EXPaðWÞ and it consists of all measurable func-
tions f : W ! R such that (6) is fulfilled for any l > 0 ([5]).

Let p > 1, the grand Lebesgue space, denoted by LpÞðWÞ, is a space slightly
larger than LpðWÞ. It was introduced in [28] and consists of all functions f aT
0<eap�1

Lp�e such that

k f kpÞ ¼ sup
0<e<1

�
e

Z
W

j f ðxÞj p�e
dx

� 1
p�e

< l:ð7Þ

It is known that LlðWÞ is not dense in LpÞðWÞ and in [5] the following formula
for the distance to Ll in this space was established

distL pÞ ð f ;LlÞ ¼ lim sup
e!0

�
e

Z
W

j f ðxÞj p�e
dx

� 1
p�e

:

For a further generalization see also [14].
We shall denote by L

pÞ
b ðWÞ the closure of LlðWÞ into LpÞðWÞ which represents

the subclass of LpÞðWÞ of all functions f such that

lim
e!0

e

Z
W

j f ðxÞj p�e
dx ¼ 0:ð8Þ

In [19], Greco showed the following inclusions

LnðWÞH Ln

logL
ðWÞHL

nÞ
b ðWÞHLnÞðWÞH

\
p<n

L pðWÞ:

Recently a generalization of grand Lebesgue space has been given in [4].
In the sequel we shall deal with the grand Sobolev space, denoted by W 1;pÞðWÞ

which consists of all measurable functions f a
T

0<eap�1

W 1;p�eðWÞ such that
j‘f j a LpÞðWÞ. For some applications see [10].

2.2. Di¤erentiability and area formula

Let f : W ! W 0 be a homeomorphism. We denote by jDf j the operator norm of
the di¤erential matrix, that is

jDf j ¼ supfjðDf ÞðxÞj : x a Rn; jxj ¼ 1g:

The adjugate adjDf is the transpose of the cofactor matrix. We have the formula

Df ðadjDf Þ ¼ ðadjDf ÞDf ¼ IJf ;

where I denotes the identity matrix. Thus, if Df is nonsingular,

1

Jf
adjDf ¼ ðDf Þ�1:ð9Þ
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The well known Hadamard’s inequality implies

jJf ja jadjDf j
n

n�1 a jDf jn:

We say that f : W ! Rn verifies the Lusin N condition if

jEj ¼ 0 ) j f ðEÞj ¼ 0

for any measurable set EHW.
It is well known that if the homeomorphism f satisfies the natural assumption

f a W 1;nðW;RnÞ, then f verifies the Lusin N condition. This is due to Reshet-
nyak ([33]) and it is a sharp result in the scale of W 1;pðW;R2Þ-homeomorphisms.
In [30] an example of a homeomorphism f a

T
1ap<n W 1;pðW;RnÞ such that

jDf j a LnÞðWÞ and f does not satisfy Lusin N condition is provided. Moreover,
the authors show that the sharp regularity assumption to rule out the failure of
the condition N can be jDf j a L

nÞ
b ðWÞ under the condition that the Jacobian de-

terminant is non negative a.e..
We underline that if jDf j a L

nÞ
b ðWÞ then the weak Jacobian of the mapping f

coincides with the pointwise Jacobian by a result of L. Greco (see [19]).
We decompose the domain W of a given mapping f as follows

W ¼ Rf AZf AEf

where

Rf ¼ fx a W : f is di¤erentiable at x and Jf ðxÞA 0g;ð10Þ
Zf ¼ fx a W : f is di¤erentiable at x and Jf ðxÞ ¼ 0g;ð11Þ

Ef ¼ fx a W : f is not di¤erentiable at xg:ð12Þ

Di¤erentiability is understood in the classical sense. If f is a homeomorphism,
these are Borel sets. Moreover, f ðRf Þ ¼ Rf �1 and for all x a Rf ,

Df �1ð f ðxÞÞ ¼ ðDf ðxÞÞ�1; Jf �1ð f ðxÞÞ ¼ 1

Jf ðxÞ
:ð13Þ

Let us recall that if f a W 1;1ðW;R2Þ is a homeomorphism, then f is di¤eren-
tiable a.e. in W and either Jf b 0 or Jf a 0 a.e. (see [34, Lemma 4.11]). Without
loss of generality, we will assume Jf b 0.

For a study of the regularity and di¤erentiability points of bi-Sobolev maps
see [8] and for bi-ACL maps see [11].

The Lusin N condition is strongly connected with the validity of the area for-
mula which is crucial in the next developments.

Let BHW be a Borel measurable set and assume that f : W ! W 0 is a homeo-
morphism such that f is di¤erentiable at every point of B. From ([15, Theorem
3.2.3]) and from the fact that the set of di¤erentiability can be exhausted up
to a set of measure zero by sets the restriction to which of f is Lipschitz ([15,
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Theorem 3.1.8]), we can deduce the following weak area formula

Z
B

hð f ðxÞÞjJf ðxÞj dxa
Z
f ðBÞ

hðyÞ dyð14Þ

for any h : R2 ! ½0;þlÞ Borel measurable function.
The equality

Z
B

hð f ðxÞÞjJf ðxÞj dx ¼
Z
f ðBÞ

hðyÞ dyð15Þ

occurs if f satisfies Lusin N condition.
It is well known that the Lusin N condition holds on the set Rf AZf where f

is di¤erentiable. Hence, by the area formula (15) with B ¼ Rf AZf , we get the
following version of the Sard’s Lemma

j f ðZf Þj ¼ 0:ð16Þ

Therefore, if f �1 satisfies the Lusin N condition, then Jf ðxÞ > 0 for a.e. x a W
(see [8]).

2.3. Some elementary inequalities

We recall the following elementary inequalities.

Lemma 2.1. Let ab 0. Then

logðeþ aaÞa a logðeþ aÞ; ab 1;ð17Þ
logðeþ aaÞb a logðeþ aÞ; 0 < a < 1:ð18Þ

Lemma 2.2. Fix l > 0 and a > 0. Then for all ab 0, bb 0

aabaC½expðlaÞ þ b logaðeþ bÞ�;ð19Þ

where

C ¼
�eþ a

le

�a
:

As a consequence of Lemma 2.2, we obtain the following:

Proposition 2.3. Let 1a p < l and f be a bi-Sobolev mapping. The following
conditions are equivalent:

i) Jf �1 log pðeþ Jf �1Þ a L1ðW 0Þ
ii) Jf �1 log pðeþ jDf �1jÞ a L1ðW 0Þ:
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Proof. i) ) ii) follows by (19) choosing a ¼ p, a ¼ logðeþ jDf �1jÞ and
b ¼ Jf �1 . ii) ) i) is a consequence of Hadamard’s inequality and (17). r

3. Regularity of the inverse map

In this Section we deduce regularity of f �1 as a consequence of integrability as-
sumptions on the distortion Kq; f in Sobolev spaces, in Zygmund-type spaces and
finally in grand Sobolev spaces.

3.1. Regularity of the inverse map in Sobolev-Zygmund spaces

It is well known ([24]) that if f is a bi-Sobolev map such that Kf a L1ðWÞ, then
jDf �1j a L2ðW 0Þ.

Now we prove an analogous result concerning the integrability of the
q-distortion function.

Theorem 3.1. Let q > 1 and let f be a bi-Sobolev mapping such that

Kq; f a L
1

q�1ðWÞ:
Then

jDf �1j a L
q

q�1ðW 0Þ:

Proof. Applying basic linear algebra and weak area formula (14), we getZ
W 0

jDf �1ðyÞj
q

q�1 dyð20Þ

¼
Z
R

f �1

jDf �1ðyÞj
q

q�1 dy

¼
Z
R

f �1

jDf ð f �1ðyÞÞj
q

q�1ðJf �1ðyÞÞ
q

q�1 dy

¼
Z
R

f �1

jDf ð f �1ðyÞÞj
q

q�1ðJf �1ðyÞÞ
1

q�1Jf �1ðyÞ dy

¼
Z
R

f �1

jDf ð f �1ðyÞÞj
q

q�1

ðJf ð f �1ðyÞÞ
1

q�1

Jf �1ðyÞ dy

a

Z
Rf

jDf ðxÞj
q

q�1

ðJf ðxÞÞ
1

q�1

dx

a

Z
W

ðKq; f ðxÞÞ
1

q�1 dx;

which is finite thanks to the assumption. r
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In previous Theorem we deduced regularity of the inverse mapping under
some regularity assumption on the distortion. Now we proceed with the proof
of Theorem 1.1 which also goes in the opposite direction.

Proof of Theorem 1.1. From Theorem 3.1, we know that if Kq; f ðxÞ a
L

1
q�1ðWÞ then jDf �1j a L

q

q�1ðW 0Þ.
Conversely, if jDf �1j a L

q

q�1ðW 0Þ then f �1 verifies the Lusin N condition.
Therefore we deduce that f has positive Jacobian a.e. in W and (15) holds. Using
the same arguments of (20), we getZ

W 0
jDf �1ðyÞj

q

q�1 dy ¼
Z
Rf

ðKq; f ðxÞÞ
1

q�1 dx ¼
Z
W

ðKq; f ðxÞÞ
1

q�1 dx:ð21Þ r

When setting in the Orlicz-Zygmund classes Theorem 1.2 reveals higher inte-
grability property of the Jacobian determinant of the inverse mapping. For q ¼ 2
it reduces to Lemma 4.2 in [21].

Proof of Theorem 1.2. By Theorem 3.1 jDf �1j a L
q

q�1ðW 0Þ.

Since
q

q� 1
b 2, f �1 satisfies the Lusin N condition and hence Jf > 0 a.e..

Arguing as in the proof of [21, Lemma 4.2], we show that, for all pb 1,
(3) and (4) are equivalent to each other.

Firstly, (4) implies (3) with no conditions on the distortion. Indeed the as-
sumption on q yields jDf �1j a L2 log p�1 LðW 0Þ. By higher integrability of the
Jacobian determinant Jf �1 a L log p LðW 0Þ ([20]).

Now, we prove that (3) implies (4).
By Proposition 2.3, Jf �1 log pðeþ Jf �1Þ a L1ðW 0Þ i¤ Jf �1 log pðeþ jDf �1 jÞ a

L1ðW 0Þ.
Let us assume p > 1.
There is an interesting iterative argument which proves that

jDf �1j
q

q�1 loga�1ðeþ jDf �1jÞ a L1ðW 0Þð22Þ

for any a such that

1a a < p:ð23Þ

We describe quickly this argument now, and shall give more details later. Let
g ¼ 1� 1=p. Assume that

logb
�
eþ 1

Jf

�
a L1ðWÞ;ð24Þ

for some bb 0. Then, arguing as in the proof of [25, Lemma 6.2], essentially
using the area formula, we can show that

jDf �1j
q

q�1 loggbðeþ jDf �1jÞ a L1ðW 0Þ:ð25Þ

By higher integrability of Jacobian determinant, (25) implies

Jf �1 loggbþ1ðeþ Jf �1Þ a L1ðW 0Þ:ð26Þ
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By area formula again, as in the proof of [24, Theorem 6.1], we have

loggbþ1
�
eþ 1

Jf

�
a L1ðWÞ:ð27Þ

If b < gb þ 1, then (27) is stronger than condition (24) we have started with, and
we can iterate the above argument. Clearly, (24) holds with b ¼ 0, hence we find
in turn that

Jf �1 logðeþ Jf �1Þ; Jf �1 loggþ1ðeþ Jf �1Þ; Jf �1 loggðgþ1Þþ1ðeþ Jf �1Þ; . . .

are locally integrable. As

1þ gþ g2 þ � � � ¼ 1

1� g
¼ p;

obviously with a finite number of steps we get (22), for every fixed a satisfying
(23).

To prove (3) and (4) we need to make the above argument more precise. Let
m a Cl

0 ðW 0Þ, mb 0. We start with the following estimateZ
W 0

m2ðyÞJf �1ðyÞ logaðeþ mðyÞjDf �1ðyÞjÞ dyð28Þ

aC

Z
W 0

F ðyÞ dy

þ C

Z
W 0

m2ðyÞjDf �1ðyÞj2 loga�1ðeþ mðyÞjDf �1ðyÞjÞ dy;

with

F ¼ j f �1ðyÞn‘mðyÞjðj f �1ðyÞn‘mðyÞj þ mðyÞjDf �1ðyÞjÞ
� log pðeþ j f �1ðyÞn‘mðyÞj þ mðyÞjDf �1ðyÞjÞ:

Estimate (28) follows from Corollary 3.2 and Example 2.8 in [17]. Notice that the
constant C ¼ CðpÞ > 0 in (28) can be chosen independent on a satisfying (23)
and F a L1ðW 0Þ.

Moreover, (28) is equivalent toZ
W 0

m2ðyÞJf �1ðyÞ logaðeþ mðyÞjDf �1ðyÞjÞ dyð29Þ

aC

Z
W 0

F ðyÞ dy

þ C

Z
W 0BfjDf �1ja1g

m2ðyÞjDf �1ðyÞj2 loga�1ðeþ mðyÞjDf �1ðyÞjÞ dy

þ C

Z
W 0BfjDf �1j>1g

m2ðyÞjDf �1ðyÞj2 loga�1ðeþ mðyÞjDf �1ðyÞjÞ dy
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aC

Z
W 0

F ðyÞ dyþ Cða;WÞ

þ C

Z
W 0

m2ðyÞjDf �1ðyÞj
q

q�1 loga�1ðeþ mðyÞjDf �1ðyÞjÞ dy:

Now we consider last term in (29). Since f �1 has finite distortion, by Young’s
inequality with conjugate exponents a and a

a�1 and for e a �0; 1½, we can write

Z
W 0

m2ðyÞjDf �1ðyÞj
q

q�1 loga�1ðeþ mðyÞjDf �1ðyÞjÞ dyð30Þ

¼
Z
W 0

m2ðyÞ jDf �1ðyÞj
q

q�1

ðeJf �1ðyÞÞ
a�1
a

ðeJf �1ðyÞÞ
a�1
a

� loga�1ðeþ mðyÞjDf �1ðyÞjÞ dy

a e1�p

Z
W 0

m2ðyÞ
�jDf �1ðyÞj

q

q�1

Jf �1ðyÞ

�a
Jf �1ðyÞ dy

þ e

Z
W 0

m2ðyÞJf �1ðyÞ logaðeþ mðyÞjDf �1ðyÞjÞ dy:

Inserting (30) into (29) and choosing e such that Ce ¼ 1=2, we get

1

2

Z
W 0

m2ðyÞJf �1ðyÞ logaðeþ mðyÞjDf �1ðyÞjÞ dyð31Þ

aC

Z
W 0

FðyÞ dyþ Cða;WÞ

þ C

Z
W 0

m2ðyÞ
�jDf �1ðyÞj

q

q�1

Jf �1ðyÞ

�a
Jf �1ðyÞ dy:

Notice that we can absorb in the left hand side a term appearing in the right hand
side, since by our iterative argument we already know that it is converging. Now
we pass to the limit in (31) as a ! p, using monotone convergence theorem, and
obtain

Z
W 0

m2ðyÞJf �1ðyÞ log pðeþ mðyÞjDf �1ðyÞjÞ dyð32Þ

aC

Z
W 0

F ðyÞ dyþ Cða;WÞ

þ C

Z
W 0

m2ðyÞ
�jDf �1ðyÞj

q

q�1

Jf �1ðyÞ

�p
Jf �1ðyÞ dy:
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We conclude showing that the last integral in (32) is finite, under the assumption
Kq; f a L

p
q�1ðWÞ. As

jDf �1ð f ðxÞÞj
q

q�1

Jf �1ð f ðxÞÞ ¼ Jf ðxÞjðDf ðxÞÞ�1j
q

q�1 ¼ jDf ðxÞj
q

q�1

ðJf ðxÞÞ
q

q�1
�1

¼ ðKq; f ðxÞÞ
1

q�1;

using the weak area formula (15), we find

Z
W 0

m2ðyÞ
�jDf �1ðyÞj

q

q�1

Jf �1ðyÞ

�p
Jf �1ðyÞ dya

Z
W

m2ð f ðxÞÞðKq; f ðxÞÞ
p

q�1 dx

which conclude the proof. r

Now we examine how the regularity of the q-distortion function of a homeo-
morphism f reflects on the regularity of the inverse f �1 in the scale of Orlicz
spaces. We deal with the case of spaces smaller and larger than L

1
q�1.

Theorem 3.2. Let 1 < qa 2 and let f be a bi-Sobolev mapping such that

Kq; f a L
1

q�1 loga LðWÞ

for some ab 0. Then

jDf �1j a L
q

q�1 loga logLðW 0Þ:

Proof. From Theorem 3.1 we know that f �1 a W
1;

q

q�1ðW 0;R2Þ has finite distor-
tion, satisfies Lusin N condition and then Jf > 0 a.e. in W.

Z
W 0

jDf �1ðyÞj
q

q�1 logaðeþ logðeþ jDf �1ðyÞjÞÞ dyð33Þ

¼
Z
R

f �1

jDf �1ðyÞj
q

q�1 logaðeþ logðeþ jDf �1ðyÞjÞÞ dy

¼
Z
R

f �1

jDf �1ðyÞj
q

q�1

Jf �1ðyÞ Jf �1ðyÞ logaðeþ logðeþ jDf �1ðyÞjÞÞ dy

a

Z
R

f �1

jadjDf ðxÞj
q

q�1

ðJf ðxÞÞ
q

q�1

Jf ðxÞ loga
�
eþ log

�
eþ jadjDf ðxÞj

Jf ðxÞ

��
dx

¼
Z
Rf

jDf ðxÞj
q

q�1

ðJf ðxÞÞ
1

q�1

loga
�
eþ log

�
eþ jDf ðxÞj

Jf ðxÞ

��
dx
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¼
Z
RfBfjDf jb1g

jDf ðxÞj
q

q�1

ðJf ðxÞÞ
1

q�1

loga
�
eþ log

�
eþ jDf ðxÞj

Jf ðxÞ

��
dx

þ
Z
RfBfjDf j<1g

jDf ðxÞj
q

q�1

ðJf ðxÞÞ
1

q�1

loga
�
eþ log

�
eþ jDf ðxÞj

Jf ðxÞ

��
dx

¼ I þ II

Let us estimate I:

I a

Z
RfBfjDf jb1g

ðKq; f ðxÞÞ
1

q�1 loga
�
eþ log

�
eþ jDf ðxÞjq

Jf ðxÞ

��
dxð34Þ

a

Z
W

ðKq; f ðxÞÞ
1

q�1 logaðeþ logðeþ Kq; f ðxÞÞÞ dx < l

thanks to the assumption.
In order to estimate II, we recall that since Kq; f a L

1
q�1 loga LðWÞ, we may

apply Theorem 6.1 in [24] to find that log
�
eþ 1

Jf

�
a L1ðWÞ. In order to esti-

mate II, using inequalities (19) with a ¼ log
�
eþ log

�
eþ 1

Jf

��
, b ¼ K

1
q�1

q; f and (17),
we get

II a

Z
RfBfjDf j<1g

ðKq; f ðxÞÞ
1

q�1 loga
�
eþ log

�
eþ 1

Jf ðxÞ

��
dxð35Þ

aC

Z
RfBfjDf j<1g

ðKq; f ðxÞÞ
1

q�1 logaðeþ ðKq; f ðxÞÞ
1

q�1Þ dx

þ C

Z
RfBfjDf j<1g

exp
�
log

�
eþ log

�
eþ 1

Jf ðxÞ

���
dx

a cða; qÞ
Z
RfBfjDf j<1g

ðKq; f ðxÞÞ
1

q�1 logaðeþ Kq; f ðxÞÞ dx

þ cðaÞ
Z
RfBfjDf j<1g

�
eþ log

�
eþ 1

Jf ðxÞ

��
dx: r

Next result is obtained when Kq; f distortion enjoys a degree of integrability
weaker than L

1
q�1.

Theorem 3.3. Let 1 < qa 2, p > 1 and let f a W 1;pðW;R2Þ be a homeomor-
phism of finite distortion such that, for some ab 0,

Kq; f a
L

1
q�1

loga L
ðWÞ:
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Then

jDf �1j a L
q

q�1

loga L
ðW 0Þ:

Proof. Since f is a homeomorphism of finite distortion, then also f �1 has finite
distortion ([24]). By (13), (14) and (18) we get

Z
W 0

jDf �1ðyÞj
q

q�1

logðeþ jDf �1ðyÞjÞ dy

¼
Z
R

f �1AZ
f �1

jDf �1ðyÞj
q

q�1

logðeþ jDf �1ðyÞjÞ dy ¼
Z
R

f �1

jDf �1ðyÞj
q

q�1

logðeþ jDf �1ðyÞjÞ dy

¼
Z
R

f �1

jDf �1ðyÞj
q

q�1

logðeþ jDf �1ðyÞjÞ �
Jf �1ðyÞ
Jf �1ðyÞ dy

a

Z
Rf

jadjDf ðxÞj
q

q�1

ðJf ðxÞÞ
q

q�1 log
�
eþ jadjDf ðxÞj

Jf ðxÞ
� Jf ðxÞ dx

¼
Z
Rf

jadjDf ðxÞj
q

q�1

ðJf ðxÞÞ
1

q�1 log
�
eþ jadjDf ðxÞj

Jf ðxÞ
� dx ¼

Z
Rf

ðKq; f ðxÞÞ
1

q�1

log
�
eþ jadjDf ðxÞj

Jf ðxÞ
� dx

¼
Z
Rf

ðKq; f ðxÞÞ
1

q�1

log
�
eþ jDf ðxÞjq

Jf ðxÞ
� jadjDf ðxÞj

jDf ðxÞjq
� dxa

Z
W

ðKq; f ðxÞÞ
1

q�1

log
�
eþ Kq; f ðxÞ

jDf ðxÞjq�1

� dx

¼
Z
fK

1
q�1
q; f

ajDf j pg

ðKq; f ðxÞÞ
1

q�1

log
�
eþ Kq; f ðxÞ

jDf ðxÞjq�1

� dxþ
Z
fK

1
q�1
q; f

>jDf j pg

ðKq; f ðxÞÞ
1

q�1

log
�
eþ Kq; f ðxÞ

jDf ðxÞjq�1

� dx

a

Z
W

jDf ðxÞj p dxþ c

Z
W

ðKq; f ðxÞÞ
1

q�1

logðeþ Kq; f ðxÞÞ
dx < þl

and theorem is completely proved. r

For q ¼ 2 Theorems 3.2 and 3.3 have been established in [31].

3.2. Regularity of the inverse map and of the Kf distortion in grand Sobolev
spaces

Assuming Kq; f in grand Lebesgue spaces we are able to prove the following reg-
ularity results for the inverse map f �1. In case q ¼ 2 Theorem 3.4 and Corollary
3.5 have been proved in [27] and [18] respectively.
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Theorem 3.4. Let 1 < pa qa 2. If f a W 1;pðW;R2Þ is a homeomorphism of
finite distortion such that

Kq; f a L
1

q�1
ÞðWÞ;

then

jDf �1j a L
q

q�1
ÞðW 0Þ:

Proof. By standard linear algebra, we get

Z
W 0

jDf �1ðyÞj
q

q�1
�e

dy ¼
Z
R

f �1

jDf �1ðyÞj
q

q�1
�e

Jf �1ðyÞ Jf �1ðyÞ dy

a

Z
W

jðDf ðxÞÞ�1j
q

q�1
�e

Jf �1ð f ðxÞÞ dx

¼
Z
W

jadjDf ðxÞj
q

q�1
�eðJf �1ð f ðxÞÞÞ

q

q�1
�e�1

dx

¼
Z
W

jDf ðxÞjqð
1

q�1�eÞ

ðJf ðxÞÞ
1

q�1
�e

jDf ðxÞjeðq�1Þ
dx

¼
Z
W

ðKq; f ðxÞÞ
1

q�1
�ejDf ðxÞjeðq�1Þ

dx:

Multiplying both sides by e and using Hölder’s inequality of exponents
p

ðq� 1Þe
and

p

p� ðq� 1Þe , we get

�
e

Z
W 0

jDf �1ðyÞj
q

q�1
�e

dy
� 1

q

q�1
�e

a

�
e

Z
W

ðKq; f ðxÞÞ
1

q�1
�ejDf ðxÞjeðq�1Þ

dx
� 1

q

q�1
�e

a kDf k
ðq�1Þe

q=ðq�1Þ�e
p

�
�
e

p

p�ðq�1Þe

Z
W

ðKq; f ðxÞÞð
1

q�1
�eÞ p

p�ðq�1Þe dx
� 1

q

q�1
�e

p�ðq�1Þe
p

:

Let us consider d > 0 such that

� 1

q� 1
� e

� p

p� ðq� 1Þe ¼
1

q� 1
� dð36Þ
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or equivalently

e ¼ dp

dðq� 1Þ þ p� 1
a

dp

p� 1
:ð37Þ

Therefore we have

e
p

p�ðq�1Þe a d
� p

p� 1

� p

p�ðq�1Þe
for every 0 < d < 1

and

1
q

q�1 � e

p� ðq� 1Þe
p

¼ ðp� 1Þðq� 1Þ
dðq� 1Þðq� pÞ þ qðp� 1Þ <

q� 1

q
:

Then we can write

�
e

Z
W 0

jDf �1ðyÞj
q

q�1
�e

dy
� 1

1
q�1

�e

a kDf k
ðq�1Þe

q=ðq�1Þ�e
p

� p

p� 1

� 1
1

q�1
�e

�
�
d

Z
W

ðKq; f ðxÞÞ
1

q�1
�d

dx
� ð p�1Þðq�1Þ

dðq�1Þðq�pÞþqð p�1Þ

a kDf k
ðq�1Þe

q=ðq�1Þ�e

p sup
0<e<1

� p

p� 1

� 1
1

q�1
�e

�
�
d

Z
W

ðKq; f ðxÞÞ
1

q�1
�d

dx
� ð p�1Þðq�1Þ

dðq�1Þðq�pÞþqð p�1Þ

amaxf1; kDf kðq�1Þ2
p g

� p

p� 1

�q�1

� sup
0<d<1

h�
d

Z
W

ðKq; f ðxÞÞ
1

q�1
�d

dx
� 1

1
q�1

�d

i
�

1
q�1

�d

�
ð p�1Þðq�1Þ

dðq�1Þðq�pÞþqð p�1Þ

amaxf1; kDf kðq�1Þ2
p gcðp; qÞmaxf1; kKq; f k1=q1

q�1
Þg:

Taking the supremum for 0 < e < 1, we conclude the proof. r

Corollary 3.5. Let 1 < pa qa 2. Assume that f a W 1;pðW;R2Þ is a homeo-
morphism of finite distortion such that

Kq; f a L
1

q�1
Þ

b ðWÞ:
Then

jDf �1j a L
q

q�1
Þ

b ðW 0Þ

and hence f �1 satisfies Lusin N condition.
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Proof. Arguing as in the proof of Theorem 3.4, we get

�
e

Z
W 0

jDf �1ðyÞj
q

q�1
�e

dy
� 1

q

q�1
�e

a kDf k
ðq�1Þe

q=ðq�1Þ�e

p

� p

p� 1

� 1
q

q�1
�e

�
h�

d

Z
W

ðKq; f ðxÞÞ
1

q�1
�d

dx
� 1

1
q�1

�d

i
�

1
q�1

�d

�
ð p�1Þðq�1Þ

dðq�1Þðq�pÞþqð p�1Þ
:

From (37) letting e ! 0þ, it follows that d ! 0þ and therefore, thanks to the
assumption on the q-distortion function Kq; f , we get

lim
e!0

�
e

Z
W 0

jDf �1ðyÞj
q

q�1
�e

dy
� 1

q

q�1
�e ¼ 0;

that is jDf �1j a L
q

q�1
Þ

b ðW 0Þ. It follows that f �1 satisfies Lusin N condition ([30]).
r

The connection between the regularity properties of q-distortion of f and the
classical one is given by the following results.

Corollary 3.6. Let 1 < pa q < 2 and let f a W 1;pðW;R2Þ be a homeomor-
phism of finite distortion. If

Kq; f a L
1

q�1
ÞðWÞ;

then

Kf a L1ðWÞ

and f �1 satisfies Lusin N condition.

Proof. By Theorem 3.4 we have jDf �1j a L
q

q�1
ÞðW 0Þ. Since

q

q�1 > 2, then
L

q

q�1
ÞðW 0ÞHL2ðW 0Þ. From this inclusion we get f �1 satisfies Lusin N condition

([33]) and Kf a L1ðWÞ ([24]). r

In this subsection up to now we have deduced regularity of jDf �1j and of Kf

under some W 1;p-homeomorphic assumption on the mapping f . Next results
show that the regularity of Kf decreases if we only assume f a W 1;1.

Theorem 3.7. Let 1 < q < 2 and let f be a bi-Sobolev mapping such that

Kq; f a L
1

q�1
ÞðWÞ:

Then

sup
0<d<d0

�
d

Z
W

K 1�d
f ðxÞ dx

� 1
1�d

< l;

where 0 < d0 < 1.
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Proof.

Z
W

ðKf ðxÞÞ1�d
dxa jWj þ

Z
Rf

ðKf ðxÞÞ1�d
dx

¼ jWj þ
Z
Rf

�jDf ðxÞjq

Jf ðxÞ

�1�d

jDf ðxÞjð1�dÞð2�qÞ
dx

¼ jWj þ
Z
Rf

ðKq; f ðxÞÞ1�djDf ðxÞjð1�dÞð2�qÞ
dx

a jWj þ
Z
W

ðKq; f ðxÞÞ1�djDf ðxÞjð1�dÞð2�qÞ
dx:

Using Hölder inequality of exponents
1

ð1� dÞð2� qÞ and
1

1� ð1� dÞð2� qÞ , weget
Z
W

ðKf ðxÞÞ1�d
dx

a jWj þ
�Z

W

ðKq; f ðxÞÞ
1�d

1�ð1�dÞð2�qÞ dx
�1�ð1�dÞð2�qÞ

kDf kð1�dÞð2�qÞ
1 :

Let us choose e > 0 such that

1� d

1� ð1� dÞð2� qÞ ¼
1

q� 1
� e

or equivalently

d ¼ eðq� 1Þ2

1� eðq� 1Þð2� qÞ <
e

1� ðq� 1Þð2� qÞ for every 0 < e < 1:

Therefore we get

�
d

Z
W

ðKf ðxÞÞ1�d
dx

� 1
1�d

aCðdjWjÞ
1

1�d

þ C
�
d

Z
W

ðKq; f ðxÞÞ
1�d

1�ð1�dÞð2�qÞ dx
�1�ð1�dÞð2�qÞ

1�d kDf k2�q
1

aCðdjWjÞ
1

1�d

þ C
� e

1� ðq� 1Þð2� qÞ

Z
W

ðKq; f ðxÞÞ
1

q�1
�e

dx
� 1

1
q�1

�ekDf k2�q
1
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aCðdjWjÞ
1

1�d þ C
� 1

1� ðq� 1Þð2� qÞ

�q�1

2�q

� sup
0<e<1

�
e

Z
W

ðKq; f ðxÞÞ
1

q�1
�e

dx
� 1

1
q�1

�ekDf k2�q
1

aCðdjWjÞ
1

1�d þ cðqÞkKq; f k 1
q�1

ÞkDf k2�q
1 :

The claim is proved by taking the supremum for 0 < d < d0. r

Corollary 3.8. Let 1 < q < 2 and let f be a bi-Sobolev mapping such that

Kq; f a L
1

q�1
Þ

b ðWÞ;

then

lim
d!0

d

Z
W

K 1�d
f ðxÞ ¼ 0:

Proof. Arguing as in the proof of Theorem 3.7 we get

�
d

Z
W

ðKf ðxÞÞ1�d
dx

� 1
1�d

a

� 1

1� ðq� 1Þð2� qÞ

�q�1

2�q

�
�
e

Z
W

ðKq; f ðxÞÞ
1

q�1
�e

dx
� 1

1
q�1

�ekDf k2�q
1 :

The proof is over by observing that e ! 0 implies d ! 0. r

4. Integrability of the q-distortion of the composition map

In [24] and in [21] the authors study under which conditions the composition of
two bi-Sobolev mappings is a bi-Sobolev mapping. Moreover, they give some
integrability properties of the distortion of the composition map. Similarly the
integrability property of the composition of a scalar function with a bi-Sobolev
mapping has been considered e.g. in [24], [12], [13].

In this Section we present some results on this subject concerning q-distortion
function.

Proposition 4.1. Let 1 < qa 2 and ab 0. Assume that f : W ! W 0 and
g : W 0 ! W 00 are bi-Sobolev mappings. If

jDf �1j a L
q

q�1 loga LðW 0Þ and jDgj a Lq log�aðq�1Þ LðWÞ;

544 c. capone et al.



then the composition h ¼ g � f : W ! W 00 is a bi-Sobolev mapping and

Kq;hðxÞaKq;gð f ðxÞÞKq; f ðxÞ for a:e: x a Rh:ð38Þ

Proof. By Theorem 3.1 in [21], we know that h a W 1;1ðW;R2Þ. In particular h
is di¤erentiable a.e. in W and we have

DhðxÞ ¼ Dgð f ðxÞÞDf ðxÞ JhðxÞ ¼ Jgð f ðxÞÞJf ðxÞ a:e: in W:ð39Þ

From (39) and since g has finite distortion we deduce that h has finite distortion.
Moreover, as f �1 verifies Lusin N condition, we get

x a Rh , f ðxÞ a Rg:

The above arguments also give

Kq;hðxÞ ¼
jDhðxÞjq

JhðxÞ
a

jDgð f ðxÞÞjq

Jgð f ðxÞÞ
� jDf ðxÞjq

Jf ðxÞ
¼ Kq;gð f ðxÞÞKq; f ðxÞ

on a.e. x a Rh. r

Under the assumption of exponential integrability of Kq; f we get the following
regularity result for the map f .

Lemma 4.2. Let 1 < qa 2, a > 0 and f be a bi-Sobolev mapping such that

K a
q; f a ExpðWÞ:

Then

jDf j a Lq log�
1
a LðWÞ:

Proof. By Hadamard’s inequality, (17) and (19) with a ¼ K a
q; f ðxÞ and

b ¼ Jf ðxÞ, we getZ
W

jDf ðxÞjq

log
1
aðeþ jDf ðxÞjÞ

dxð40Þ

¼
Z
Rf

jDf ðxÞjq

log
1
aðeþ jDf ðxÞjÞ

dx

aC

Z
Rf

ðK a
q; f ðxÞÞ

1
aJf ðxÞ

log
1
aðeþ Jf ðxÞÞ

dx

a c1ðaÞ
Z
W

expðlK a
q; f ðxÞÞ þ Jf ðxÞ log

1
aðeþ Jf ðxÞÞ

log
1
aðeþ Jf ðxÞÞ

dx

a c1ðaÞ
Z
W

expðlK a
q; f ðxÞÞ dxþ

Z
W

Jf ðxÞ dx
� �

< þl: r
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Theorem 4.3. Let pb 1, 1 < qa 2, r ¼ apðq� 1Þ
aðq� 1Þ þ 1

and a > 0.

Let f : W ! W 0 and g : W 0 ! W 00 be bi-Sobolev maps. If

Kq; f a L
p

q�1ðWÞ and ðKq;gÞa a EXPðW 0Þ

and, for aa 1 and aðp� 1Þðq� 1Þ < 1 we also assume that

jDgj a Lq logð1�pÞðq�1Þ LðW 0Þ;

then the composition h ¼ g � f a W 1;1ðW;R2Þ is a bi-Sobolev map and

ðKq;hÞ
r

q�1 a L1ðWÞ:

Proof. By Theorem 1.2 we have

Jf �1ðyÞ log pðeþ Jf �1ðyÞÞ a L1ðW 0Þ
and

jDf �1ðyÞj
q

q�1 log p�1ðeþ jDf �1ðyÞjÞ a L1ðW 0Þ:

By Proposition 4.1, with a ¼ p� 1, we have that h ¼ g � f a W 1;1ðW;R2Þ has
finite distortion. By Hölder inequality, in order to prove theorem, we only have
to prove that

Kq;gð f ðxÞÞ a L
rp

ðq�1Þð p�rÞðWÞ:

To this aim, since jDf �1j a L
q

q�1 log p�1 LðW 0Þ, then f �1 verifies the Lusin N con-
dition. Hence, area formula (14) givesZ

W

Kq;gð f ðxÞÞ
rp

ðq�1Þð p�rÞ dx ¼
Z
W 0

Kq;gðyÞ
rp

ðq�1Þð p�rÞJf �1ðyÞ dy:

The assumption K a
q;gðxÞ a ExpðW 0Þ yields that there exists l > 0 such thatZ

W 0
expðlK a

q;gðyÞÞ dy < þl.

Moreover
rp

ðq� 1Þðp� rÞ �
1

a
¼ p, then, by the inequality (19), with a ¼ K a

q;g,

b ¼ Jf �1 and a ¼ p, we obtain

Kq;gðyÞ
rp

ðq�1Þð p�rÞ � Jf �1ðyÞ ¼ ðKq;gðyÞ
rp

ðq�1Þð p�rÞ�
1
aÞa � Jf �1ðyÞð41Þ

¼ ðK a
q;gðyÞÞ

p � Jf �1ðyÞ
a c½expðlK a

q;gðyÞÞ þ Jf �1ðyÞ log pðeþ Jf �1ðyÞÞ�:

The proof is over by integrating on W 0. r
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Università degli Studi di Napoli ‘‘Federico II’’

Complesso Monte S. Angelo

Via Cintia, 80126, Napoli, Italy

roberta.schiattarella@unina.it

548 c. capone et al.


	mk1
	mk10
	mk11
	mk12
	mk13
	mk14
	mk15
	mk16
	mk17
	mk18
	mk19
	mk2
	mk20
	mk21
	mk22
	mk23
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk24
	mk25
	mk26
	mk27
	mk28
	mk29
	mk30
	mk31
	mk32
	mk33
	mk34
	mkEnd-page

