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1. INTRODUCTION

Let Q Q' = R? be bounded domains and let f: Q — Q' = f(Q) be a homeo-
morphism. In the last few years, the relations between regularity properties of f
and those of its inverse have attracted a great interest (see [1], [2], [24], [18], [31],
[32], [23)).

In the class of planar homeomorphisms an important role is played by bi-
Sobolev mappings, originally proposed in [27]. We recall that a homeomor-
phism £ is called a bi-Sobolev mapping if ' € W1(Q, R?) and its inverse f ! €
whlQ R?).

Our interest in this class of mappings is motivated by their close connection
with homeomorphisms of finite distortion. More precisely, if n =2, we recall
that bi-Sobolev mappings are exactly those that have finite distortion ([27]). On
the other hand, the inverse of a homeomorphism W!! belongs to BV only (see
26], [7], [9].

The theory of mappings of finite distortion has received considerable attention
in recent years thanks to its connection with elliptic partial differential equations
(see e.g. [1], [6], [3], [16]).

We say that a homeomorphism f e W'!(Q, R?) has finite distortion if its
Jacobian is strictly positive on a set where |Df| does not vanish, i.e.,

Jr(x) =0 = |[Df(x)|=0 ae xeQ,

where |Df| denotes the operator norm of the gradient and J; is the Jacobian
determinant of f.
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For g € (1,+0), we define the ¢-distortion function of /" as

IDf (I .
(1) K =1 s TH0>0

1, otherwise.

In the case ¢ = 2, K,  coincides with the classical distortion function K.

If we further assume that K, , is bounded, we recover the class of
g-quasiconformal mappings recently introduced by Hencl and Kleprlik ([22]).

In [2] the authors studied the integrability condition on K, which guarantees
better regularity for the inverse of f. In particular they showed that, if f € W12
is a homeomorphism of finite distortion such that Ky € L', then the inverse map
f~! belongs to W2, Later, in [24] was established the same result under the
relaxed assumption /' € Wh!,

In this direction, some interpolation-type results are given in the setting of
Orlicz-Zygmund classes (see [18], [31]) and in the setting of grand Lebesgue
spaces (see [27]).

Here, we are interested in establishing some regularity properties of the inverse
of a homeomorphism under suitable integrability conditions on the g-distortion
function. We state some results in this direction.

THEOREM 1.1. Let 1 < g <2 and let | be a bi-Sobolev mapping.
Then

K, e Lil(Q)
if, and only if,
IDf | e L (QY).

Moreover,
a_ e
@ o = [ (k7
Q Q

For ¢ = 2 Theorem 1.1 reduces to the result due to [24] already mentioned.

THEOREM 1.2. Let 1 < ¢ <2, 1< p< o and let f be a bi-Sobolev map, such
that

K, ;e LT1(Q).

(3) Jr1 € Llog” L(Q),
(4) IDf Y| e LiTlog? " L(QY).
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Moreover, we examine the case in which K, ; belongs to classes of functions
not too far from L7 T; ; we refer to Zygmund class and grand Lebesgue space (see
Section 2 and Sectlon 3 for definitions and resullts)

In [29] the author proved that if K, ; € L#1(Q) then f~! satisfies Lusin A"
condition, i.e. /~! maps every set of measure zero to a set of measure zero. It is
worth pointing out that this property is proved by assuming that K, ; is zero on
the set where J; vanishes. Nevertheless, one can easily see that it is also true in the
case of definition (1).

We prove that this condition can be relaxed into the following one

E <o,
(5) sup /K" / dx .

O<e<1

when fe Whr 1<p<g<?2 isa homeomorphism of finite distortion (see
Corollary 3.6). When (5) occurs, we write K, s € LFI)(Q).

Finally, in Section 4, an integrability property for the g-distortion of the com-
position map g o f of two bi-Sobolev mappings is given.

The following result is a particular case of the more general Theorem 4.3.

THEOREM 1.3. Let 1< ¢ <2, f:Q— Q' and g: Q" — Q" be bi-Sobolev maps.
If

K,;eL2(Q) and (K,,)7T € EXP(QY)
then the composition h = go f € W41(Q; R?) is a bi-Sobolev map and

K, e L'(Q).

2. PRELIMINARIES
2.1. Some function spaces

Let us recall the definitions of some function spaces, which will be useful in the
sequel.

Let P be an increasing function from P(0) = 0 to lim,,, P(¢) = oo and con-
tinuously differentiable on (0, c0). We denote by Lf(Q) the Orlicz space gener-
ated by the function P(z). It consists of all functions / for which there exists a
constant 2 = A() > 0 such that P(W) e LY(Q).

In particular, the Orlicz-Zygmund space L”log* L, 1 < p < o0, o € R is the
Orlicz space generated by the function P(z) = t” log” (e +1).

For o > 0 the dual Orlicz space to Llogx (Q) is the space EXP,(Q), gener-
ated by the function P(z) = exp(¢*) — 1, i.e. it consists of all measurable functions
f for which there exists 4 > 0 such that

0 fioo{ (12} <
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It is well known that L*(Q) is not dense into EXP,(Q). We denote by
exp, (Q) the closure of L*(Q) in EXP,(Q) and it consists of all measurable func-
tions f : Q — R such that (6) is fulfilled for any 4 > 0 ([5]).

Let p > 1, the grand Lebesgue space, denoted by L?)/(Q), is a space slightly
larger than L?(Q). It was introduced in [28] and consists of all functions f €

(1 L?7¢such that
O<e<p—1

™) 1l = sup (o [ 1017 "an) < o

O<e<1

It is known that L*(Q) is not dense in L?)(Q) and in [5] the following formula
for the distance to L™ in this space was established

dist; »(f,L™) = lim sup /|f ke aaa’x = "
e—0

For a further generahzatlon see also [14].
We shall denote by Lp (Q) the closure of L (Q) into L?)(Q) which represents
the subclass of L?)(Q) of all functions f such that

(8) lim ¢ /Q SO dx =0

In [19], Greco showed the following inclusions

Ll’l
log L

L"(Q) < (Q) < L)(Q) = L"(Q) = (] L7(Q

p<n

Recently a generalization of grand Lebesgue space has been given in [4].

In the sequel we shall deal with the grand Sobolev space, denoted by W7)(Q)
which consists of all measurable functions fe () W"7#(Q) such that
|Vf| € L?/(Q). For some applications see [10]. O<e<p-1

2.2. Differentiability and area formula

Let /: Q — Q' be a homeomorphism. We denote by |Df| the operator norm of
the differential matrix, that is

|Df| = sup{[(Df)(&)| : & e R, [¢] = 1}.

The adjugate adj Df is the transpose of the cofactor matrix. We have the formula

Df (adj Df) = (adj Df ) Df = 1Jy,

where I denotes the identity matrix. Thus, if Df is nonsingular,

©) % adj Df = (Df) "
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The well known Hadamard’s inequality implies

7] < ladj DfFT < [Df|".
We say that f : Q — R” verifies the Lusin /" condition if

[E|=0 = [f(E)|=0

for any measurable set £ < Q.

It is well known that if the homeomorphism f satisfies the natural assumption
f e Whn(Q,R"), then f verifies the Lusin ./" condition. This is due to Reshet-
nyak ([33]) and it is a sharp result in the scale of W !7(Q; R?)-homeomorphisms.
In [30] an example of a homeomorphism f € (), _,, wlr(Q,R") such that
|Df| e L"(Q) and f does not satisfy Lusin .4" condition is provided. Moreover,
the authors show that the sharp regularity assumption to rule out the failure of
the condition ./ can be |Df| € LZ) (Q) under the condition that the Jacobian de-
terminant is non negative a.e..

We underline that if |Df| € LZ)(Q) then the weak Jacobian of the mapping f
coincides with the pointwise Jacobian by a result of L. Greco (see [19]).

We decompose the domain Q of a given mapping f as follows

Q=R wZrué

where

(10) Ry = {x € Q: fis differentiable at x and Jy(x) # 0},
(11) Zr = {x € Q: fis differentiable at x and Jy(x) = 0},
(12) 6 = {x € Q: f is not differentiable at x}.

Differentiability is understood in the classical sense. If f is a homeomorphism,
these are Borel sets. Moreover, f (%) = %1 and for all x € %y,

13 DF Y (f(x) = (Df (x)"", Jo(f(x) = .

(13) f T (f(x) = (Df(x) ", T (f(x)) 7o)

Let us recall that if £ € W!(Q, R?) is a homeomorphism, then f is differen-
tiable a.e. in Q and either J; > 0 or J; < 0 a.e. (see [34, Lemma 4.11]). Without
loss of generality, we will assume J; > 0.

For a study of the regularity and differentiability points of bi-Sobolev maps
see [8] and for bi-ACL maps see [11].

The Lusin ./ condition is strongly connected with the validity of the area for-
mula which is crucial in the next developments.

Let B = Q be a Borel measurable set and assume that f : Q — Q' is a homeo-
morphism such that f is differentiable at every point of B. From ([15, Theorem
3.2.3]) and from the fact that the set of differentiability can be exhausted up
to a set of measure zero by sets the restriction to which of f is Lipschitz ([15,
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Theorem 3.1.8]), we can deduce the following weak area formula

(14) / n(f () ()| dx < / n(y) dy

J(B)

for any 5 : R*> — [0, +o0) Borel measurable function.
The equality

(15) / n(f () ()] dx = /f RO

occurs if f satisfies Lusin /" condition.

It is well known that the Lusin ./ condition holds on the set Z, U Z; where f
is differentiable. Hence, by the area formula (15) with B = %, U Z, we get the
following version of the Sard’s Lemma

(16) £(2)] =o.

Therefore, if /! satisfies the Lusin 4" condition, then Jy(x) > 0 for a.e. x € Q
(see [8]).

2.3. Some elementary inequalities
We recall the following elementary inequalities.

LEMMA 2.1. Leta > 0. Then

(17) log(e + a*) < alogle + a), o=>1,
(18) log(e + a*) = alog(e +a), 0<oa< 1.

LEMMA 2.2. Fix A > 0and o > 0. Then for alla > 0,b >0

(19) a*b < Clexp(a) + blog*(e + b)],
where
e+ o\
Ci( Je ) ’

As a consequence of Lemma 2.2, we obtain the following:

PROPOSITION 2.3. Let 1 < p < o and f be a bi-Sobolev mapping. The following
conditions are equivalent:

i) Jy-ilog?(e+Jp) € LY(Q)
ii) J-ilog?(e+ [Df ') e LY(QY).
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PROOF. i) = ii) follows by (19) choosing o= p, a=log(e+ |Df~!|) and
b = Jy1.ii) = i) is a consequence of Hadamard’s inequality and (17). O

3. REGULARITY OF THE INVERSE MAP

In this Section we deduce regularity of /~! as a consequence of integrability as-
sumptions on the distortion K s in Sobolev spaces, in Zygmund-type spaces and
finally in grand Sobolev spaces.

3.1. Regularity of the inverse map in Sobolev-Zygmund spaces

It is well known ([24]) that if f is a bi-Sobolev map such that Ky € L'(Q), then
Df | e L2(Q).

Now we prove an analogous result concerning the integrability of the
g-distortion function.

THEOREM 3.1. Let g > 1 and let f be a bi-Sobolev mapping such that

K, ;e Lil(Q).
Then
IDf | e Li(Q).

PROOF. Applying basic linear algebra and weak area formula (14), we get

(20) | o ay

which is finite thanks to the assumption. O
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In previous Theorem we deduced regularity of the inverse mapping under
some regularity assumption on the distortion. Now we proceed with the proof
of Theorem 1.1 which also goes in the opposite direction.

PrROOF OF THEOREM 1.1. From Theorem 3.1, we know that if K, ((x) €
L71(Q) then [Df ~'| e Li1(Q),

Conversely, if |Df~!| e L+7(Q') then f~! verifies the Lusin ./ condition.
Therefore we deduce that f has positive Jacobian a.e. in Q and (15) holds. Using
the same arguments of (20), we get

(21) /Q/IDf—l(y)lq_qldyz/% (K%f(x))a;ldx:/Q(](q’f(x))ﬁdx_ o

When setting in the Orlicz-Zygmund classes Theorem 1.2 reveals higher inte-
grability property of the Jacobian determinant of the inverse mapping. For ¢ = 2
it reduces to Lemma 4.2 in [21].

PROOF OF THEOREM 1.2. By Theorem 3.1 |Df~!| e L7 1(Q).

Since

> 2, /! satisfies the Lusin /" condition and hence J; > 0 a.e..

Arguing as in the proof of [21, Lemma 4.2, we show that, for all p > 1,
(3) and (4) are equivalent to each other.

Firstly, (4) implies (3) with no conditions on the distortion. Indeed the as-
sumption on ¢ yields |[Df~!| € L2log?~' L(Q'). By higher integrability of the
Jacobian determinant J,-1 € Llog?” L(Q') ([20]).

Now, we prove that (3) implies (4).

By Proposition 2.3, Jy-ilog?(e+J,1) € LY(Q') iff Jy-ilog?(e+ |Dpil) €
LY(Q").

Let us assume p > 1.

There is an interesting iterative argument which proves that

(22) [Df |7 log" (e + |Df ) € L (@)
for any « such that
(23) I<a<p.

We describe quickly this argument now, and shall give more details later. Let
y =1—1/p. Assume that

(24) log” (e + Ji) e L'(Q),
A

for some f > 0. Then, arguing as in the proof of [25, Lemma 6.2], essentially
using the area formula, we can show that

(25) [Df [T log” (e + [Df 1) € L}(Q).

By higher integrability of Jacobian determinant, (25) implies

(26) Jrilog e+ J,0) e LN(Q)).
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By area formula again, as in the proof of [24, Theorem 6.1], we have
1
yp+1 - 1
(27) log (e+ Jf) e L'(Q).
If f <y + 1, then (27) is stronger than condition (24) we have started with, and

we can iterate the above argument. Clearly, (24) holds with = 0, hence we find
in turn that

Jrlog(e +Jp ), Jyilog ™ e+ Jp), Jpoilog? Wt e+ gp), .
are locally integrable. As

1

obviously with a finite number of steps we get (22), for every fixed o satisfying
(23).

To prove (3) and (4) we need to make the above argument more precise. Let
ue C(Q), = 0. We start with the following estimate

) [ 10 () og e+ u3)IDs T (1))
< C/,F(y) dy

+C [ IR0 tog™ e+ u()Df (1),
with
F=1/7'(5) @ Vu()|(1f~ () ® V()| + u()|Df~ ()
x log”(e + [/~ (») @ Vu(y)| + u(»)IDf ' (»)))-

Estimate (28) follows from Corollary 3.2 and Example 2.8 in [17]. Notice that the
constant C = C(p) > 0 in (28) can be chosen independent on « satisfying (23)
and F e L'(Q').

Moreover, (28) is equivalent to

(29) //ﬂz(J’)Jf‘(y) log”(e + u(»)|Df "' (»)]) dy
< C/’F(y) dy
e / 2()IDF ()P log™ (e + ()| Df 1 (3)]) dy
Q' n{IDf <1}

ve [ RN P g e+ unIDr ) dy
Q' n{|pf>1}
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<c [ PO+ Cln9)

+C [ @D (o e u(n)IDf () dy

Now we consider last term in (29). Since f~! has finite distortion, by Young’s
inequality with conjugate exponents o and _%; and for ¢ € ]0, 1], we can write

(30) /Q/ﬂz(y)lDf“(y)l/_/llog“‘l(e+ﬂ(y)|Df“(y)l)dy
DF DT e
A oy

v ,ﬂz<y>1f4<y> log’ (e +u(x)IDf () dy

Inserting (30) into (29) and choosing ¢ such that Ce = 1/2, we get
1 » _
(1) 3 [ 0 og* e+ w(IDF ™ () dy

<c [ Fo)dv+ Cla9)
[Df ()
+ C//;f(y) (W) Jr1(y)dy.

Notice that we can absorb in the left hand side a term appearing in the right hand
side, since by our iterative argument we already know that it is converging. Now
we pass to the limit in (31) as « — p, using monotone convergence theorem, and
obtain

(32) | #2010 () log e+ u(lDf " (3)

< C//F(y)dy—i—C(oc,Q)

v u ()(%)p#l@)dy
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We conclude showing that the last integral in (32) is finite, under the assumption
K,re€ Li1(Q). As

g—1

D (ST
Iy Ur ()7

= (Ky.r(x))7,

using the weak area formula (15), we find

e )(wj;f (< )>|q DN )y < [ 12060 Ky ()7 d

which conclude the proof. O

Now we examine how the regularity of the g-distortion function of a homeo-
morphism f reflects on the regularity of the inverse f~' in the scale of Orlicz
spaces. We deal with the case of spaces smaller and larger than La-T.

THEOREM 3.2. Let 1 < g <2 and let f be a bi-Sobolev mapping such that
K, re Lilog” L(Q)
for some o > 0. Then

|Df ! e L7 log*log L(QY).

PROOF. From Theorem 3.1 we know that /! e WI’WLI(Q' : R?) has finite distor-
tion, satisfies Lusin ./" condition and then Jy > 0 a.e. in Q.

) [ o)

- / 1D (3)[# log*(e + log(e + [Df ' (7)])) dy

q%llog“(e + log(e + |Df71(J’)|)) dy

—1 q%l
B L 1 LI, () 10g? (e + logte + D~ (1)) dy

a0 I (»)
[adi DF ()Tl oa (e BEDLNY
< /%/1 (Jf(x))T'l Jr(x)log ( +log< + ) ))d

|Df (x )I"1 |Df (%)
/%f (?f( )) log® (e+10g(e+ ?f(X) ))dx
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_ [Df (x)]7T |1Df (x)]
_/%’m{szl} (Jy(x))iT o (e+log(e+ Jf(;) ))dx

DT |Df (<)
+/%m{|uf<1} (Jr(x))7T oe <e+log<e+ Jf(;) ))dx

=I+1

Let us estimate I:

00 s [ K)ion(evlog(es D)) v

< /(Kq.f(x))ﬁlog“(e +log(e + Ky f(x))) dx < o
Q

thanks to the assumption.
In order to estimate II, we recall that since Kq e LiTlog” L(Q), we may
apply Theorem 6.1 in [24] to find that log(e + ) e L'(Q). In order to esti-

mate I1, using inequalities (19) with a = log(e + log(e +7 +)), b= K and (17),
we get

i 1
(35 IIS/ K, r(x))Tlog*(e+log(e+——) ) dx
) %fm{|Df\<1}( s () < ( Jf(.X)))

1 o L
Sc/ (K (x))TTlog" (e 4 (Kqp (x))77)
Ao {|Df <1}

+ C/’Z{,m{lDfd} exp(log(e + log<e + inx)))) dx

L o
Sclng) [ Ky (0)TTIoge + Koy () d
Ay O{|Df <1}

+ c(a) /%m{w'd}(e—klog(e—i—#ix))) dx. O

Next result is obtained when K, , distortion enjoys a degree of integrability
weaker than LT,

THEOREM 3.3. Let 1 < ¢ <2, p>1andlet f € W'P(Q,R?) be a homeomor-
phism of finite distortion such that, for some o. > 0,

1
LT

——(Q).
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Then
q
Lit

|Df71| € log(xL<Q,>'

PROOF. Since f is a homeomorphism of finite distortion, then also /! has finite
distortion ([24]). By (13), (14) and (18) we get

4
g—1

\Df '(y)
o Togle + D710 ¥

) DI D)
‘z;N4J%@+uylumd”‘ﬂﬂbaaﬂafwwn”

-/ DI W )
R, logle + 1D~ (»)) I (y)

D =
= / L ) s
&y (U ()7 loge + E2TET)
q 1
Iadef( )T (Kq.s(x))7T
:/R (Jr(x )), 1o (e+|deDf< )\) dx = R lo (e+\adJDf( )I) dx
A 5 () 8 5
_/ (K, f(x))"] v < (Kq.r(x ))"1
- [Df (x)|?  |adj Df (x)| - (%)
# log(e + 567 Tortor ) log(e + 5)
1 1
K, a1 K, a1
:/ ] Sarly ))u dx*/ 1 Cel )1)/<> dx
t/ P q P y
{K! ' <|Df| }log(e+|Df( s ) (K] "> |pf] }log(e+|Df( s )
1
Ky.r (%))
< D xpdx+c/(qf—dx<+oo
J,tereo) tog(e + Ky /(1))
and theorem is completely proved. O

For ¢ = 2 Theorems 3.2 and 3.3 have been established in [31].

3.2. Regularity of the inverse map and of the Ky distortion in grand Sobolev
spaces

Assuming K, s in grand Lebesgue spaces we are able to prove the following reg-
ularity results for the inverse map f~'. In case ¢ = 2 Theorem 3.4 and Corollary
3.5 have been proved in [27] and [18] respectively.
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THEOREM 3.4. Let 1 < p<q <2 If f € W'P(Q;R?) is a homeomorphism of
finite distortion such that

then
IDf | e Li(Q).

PrOOF. By standard linear algebra, we get

-1 ”‘%l—z: o |Df71( )|q - .
[y = [ _71—#1() Ty () dy

/ ® ‘dx
WACL] <x>lﬁ*8<-ff4 (f))FT " dx

_ [ Iprire
o (J(x)

— [ (Ko ) s (o)
Q

|Df( )17V dx

Multiplying both sides by ¢ and using Hoélder’s inequality of exponents ( P D
qg— 1)
and #, we get
p—I(q—1e

1

ql de>f—x

(o [ 1or'0)

< (o [ Ky P 0 )

(g—1)e

< DA

_ 1 p=lg=De

x (wﬁ/(](q’f(x))(ﬁ@m dx)%ﬁ !
K.

Let us consider 6 > 0 such that

1 P 1
(36) (q—1_8>p—(q—1)e:q—l_5




ON THE REGULARITY THEORY OF BI-SOBOLEV MAPPINGS 541

or equivalently

op op
37 = < .
(37) olg—1H)+p—-1"p-1
Therefore we have

_r
e < 5(%) 7 forevery 0 < 6 < 1
and

1 p—(q—1De _ (rp—1D(g-1) ca-l
e p og=1lg-p)+alp=1)  q

Then we can write

(o [ 1ot F )

(q—1)e

1
1(,7/(4,71)%( P )4%1"‘
p—1
(p=1(g=1)

s by -
X( /( 5 ( ))(/l )
qf

(a-1) 1

)= P L
T sup (p— I)H

O<e<1

< |Df]

< [lf]

(p=(g=1)

L og=D)g—p)+a(p—1)
X ((5/(1(, (x))7T odx)
0 9./

X )2 P q—1
< max{l, ||Df||1<;q g }(F>

1 (ﬁ*f’)@fl)(q—l)
- sup [(5/(Kq_f(x))ﬁfﬁdx>ﬁ}m
L

0<o<l1
12 1
< max{1, | D [~ ye(p, q) max{1, 1K, 5}
Taking the supremum for 0 < ¢ < 1, we conclude the proof. O

COROLLARY 3.5. Let 1 < p < q <?2. Assume that f € W'P(Q; R?) is a homeo-
morphism of finite distortion such that

1
Kyr e L[l)

Q).
Then ,
DY e L7 (@)

and hence =" satisfies Lusin A" condition.
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PROOF. Arguing as in the proof of Theorem 3.4, we get

(E/Q/ |Df*1(y)|q%1*3 dy)?

(g1 l)é 1

q/(q—T)—¢ ( 14 )Fql*ﬁ
p—1
(q i 0)( D(g-1)

. [(5/§2(va/’( )) dx>_*"}ml

From (37) letting ¢ — 07, it follows that 6 — 0" and therefore, thanks to the
assumption on the g-distortion function K, s, we get

< |IDf 17

hm /|Df )| fdy)qw“:o,

that is |[Df ~!| € LZ" (Q'). Tt follows that f~! satisfies Lusin ./" condition ([30]).
O

The connection between the regularity properties of g-distortion of /" and the
classical one is given by the following results.

COROLLARY 3.6. Let 1 < p<q<2andlet { € Wh?(Q;R?) be a homeomor-
phism of finite distortion. If
K. e Li(Q),
then
Kr e LY(Q)
and =" satisfies Lusin N condition.
PROOF. By Theorem 3.4 we have |Df'|e Lq (Q'). Since o7 > 2, then

LT 1>(Q ) < LZ(Q’ ). From this inclusion we get f~! satisfies Lusin .4" condition
([33]) and K e L'(Q) ([24]). o

In this subsection up to now we have deduced regularity of |Df ~!| and of K
under some W!”-homeomorphic assumption on the mapping f. Next results
show that the regularity of K, decreases if we only assume /€ W1,

THEOREM 3.7. Let 1 < g < 2 and let [ be a bi-Sobolev mapping such that

K, ;e LiD(Q).
Then

L
sup 5/ K!7(x)dx)" < o0,
O<(5<z3o( Q s )

where 0 < dg < 1.
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PRrROOF.

[ &) ar<ial+ [ @) s
Q y

— |Q|+/j (|Df(x)|q)17§|Df(x)|(l—(5)(2—q) dx
Ay

Jr(x)

_lol+ / (K, ()11 Df ()] 19 gy
Ay

< 10| + / (K, ()| DF ()] 17 g,
Q

1
o9

Using Holder inequality of exponents

get (1-9)2-4q) "

ﬂmm”w
Q

- 1-(1-9)(2—9) 52—
gmﬂﬁ&mwww@ lpf; e,

Let us choose ¢ > 0 such that

1-9 1
= —¢

I-(1-9)2-9) q-1

or equivalently

e(qg—1)* €
0= < forevery 0 < ¢ < 1.
—elq-D2—q) 1-(¢-D2—q) Y

Therefore we get

(0 [ o' )
< COQ))™

1-(1-0)(2—q)

1-0 T—o _
+C(6 [ (RyyCopmmiTax) T s

e}

< CO|Q)T

&

l—(¢g-1)(2~-9q)

el [ Kas o) )P o7
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—1

L 1 =
Co|Q)™ + C(1 —= 1)(2_q))

FATC

L —_
< cElQ)T <q>||1<q,f||ﬁ|wf||%‘f

The claim is proved by taking the supremum for 0 < 6 < Jy.

C. CAPONE ET AL.

COROLLARY 3.8. Let 1 < g < 2 and let f be a bi-Sobolev mapping such that

)

then

limo K1 “(x) =0.
0—0  Jo

PROOF. Arguing as in the proof of Theorem 3.7 we get

1

(6 [ (it~ ax)

= (1 —(¢— 1)(2—61))

(o [ Rar e ax) 1o

The proof is over by observing that ¢ — 0 implies 6 — 0.

4. INTEGRABILITY OF THE ¢-DISTORTION OF THE COMPOSITION MAP

In [24] and in [21] the authors study under which conditions the composition of
two bi-Sobolev mappings is a bi-Sobolev mapping. Moreover, they give some
integrability properties of the distortion of the composition map. Similarly the
integrability property of the composition of a scalar function with a bi-Sobolev

mapping has been considered e.g. in [24], [12], [13].

In this Section we present some results on this subject concerning g-distortion

function.

PROPOSITION 4.1. Let 1 <q<2 and o> 0. Assume that f:Q — Q' and

g: Q" — Q" are bi-Sobolev mappings. If

IDf ' e LiTlog” L(Q) and |Dg| € Llog "

VL(Q),
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then the composition h = go f : Q — Q" is a bi-Sobolev mapping and
(38) Ky n(x) < Ky o(f(x)Ky r(x)  forae. x € Ry.

PROOF. By Theorem 3.1 in [21], we know that 4 € W!!(Q; R?). In particular /
1s differentiable a.e. in Q and we have

(39)  Dh(x) = Dg(f(x)Df(x) Ju(x) = Jy(f())Jy(x) ae.inQ.

From (39) and since g has finite distortion we deduce that / has finite distortion.
Moreover, as f~! verifies Lusin ./ condition, we get

XeAy, & [f(x)eHR,.
The above arguments also give

_ DRI _ [Dg(f ()| [DF ()"
=0 S LU e K@K

ona.e. x € %. O

Kq,h(x)

Under the assumption of exponential integrability of K,  we get the following
regularity result for the map f.

LEMMA 4.2, Let 1 < g <2, 0>0and f be abi-Sobolev mapping such that

K, ; € Exp(Q).
Then
IDf| € Lilog ™ L(Q).

PrOOF. By Hadamard’s inequality, (17) and (19) with a=K7(x) and
b = Js(x), we get '

|Df ()|
40 /mog%(e +[Df (x)])

_[ o,
A logi(e + [Df (x)])

By / GG
2 log#(e + Jr(x))

dx

<o) / XD () + Jy(x) ogh(e + Jy ()
= (] Q IOg%(e+Jf(x))

<ci(a) {/Q exp(iK;f~(x))dx+/£2Jf(x) dx] < 400. O
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ap(q —1)

alg—1)+1
Let f:Q — Q' and g : Q" — Q" be bi-Sobolev maps. If

K, ;e Lii(Q) and (K,,)* e EXP(Q)

THEOREM 4.3. Letp>1,1<¢qg<2,r= and o > 0.

and, for o < 1 and o(p — 1)(q — 1) < 1 we also assume that
|Dg| € quog(l—p)(q—l) L(Q),
then the composition h = go f € WH1(Q; R?) is a bi-Sobolev map and
(Kgn)7T € LY(Q).
PrOOF. By Theorem 1.2 we have

Jr-1 () log? (e + Jp-1(y)) € LY(Q)
and

IDf ' (»)|Tlog” " (e + |Df 1 (p)]) € LN(Q).

By Proposition 4.1, with o = p — 1, we have that 1 =go f € W"!(Q; R?) has
finite distortion. By Holder inequality, in order to prove theorem, we only have
to prove that

K, o(f(x)) € LF7(Q).

To this aim, since |[Df ~!| e Lt log?! L(Q'), then f~! verifies the Lusin /" con-
dition. Hence, area formula (14) gives

| Kastr oy = [ K 077 )y

Q Q

The assumption K (x) € Exp(Q') yields that there exists >0 such that
/Q/ exp(AK; ,(¥)) dy < +o0.

p 1
(g—D(p—1) =
b=J;1 and o = p, we obtain
(A1) Ky ()T - Jp () = (Kyog (0T Iy ()

= (K7 ()" Tp(y)

< clexp(AK ,(¥)) + Jp1 () log" (e + -1 (y))]-

The proof is over by integrating on Q' O

Moreover = p, then, by the inequality (19), with ¢ = K*

4,9’
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