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Abstract. — A deep conjecture on torsion anomalous varieties states that if V is a weak-transverse

variety in an abelian variety, then the complement V ta of all V -torsion anomalous varieties is open
and dense in V . We prove some cases of this conjecture. We show that the V -torsion anomalous

varieties of relative codimension one are non-dense in any weak-transverse variety V embedded in
a product of elliptic curves with CM. We give explicit uniform bounds in the dependence on V . As

an immediate consequence we prove the conjecture for V of codimension two in a product of CM
elliptic curves. We also point out some implications on the e¤ective Mordell-Lang Conjecture*.

Una importante congettura sulle varietà torsione-anomale a¤erma che se V è una varietà

debolmente-trasversa in una varietà abeliana, allora il complementare V ta di tutte le varietà
V -torsione-anomale è aperto e denso in V . In questo articolo dimostriamo alcuni casi della con-

gettura. In particolare, mostriamo che le varietà V -torsione-anomale di codimensione relativa uno
non sono dense in ogni varietà V debolmente trasversa, immersa in un prodotto di curve ellittiche

con CM. Inoltre diamo stime esplicite e uniformi nella dipendenza da V . Come immediata conse-
guenza otteniamo la suddetta congettura per V di codimensione due in un prodotto di curve ellit-

tiche CM. Infine, evidenziamo alcune implicazioni sulla Congettura di Mordell-Lang E¤ettiva.
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1. Introduction

In this article, by variety we mean an algebraic variety defined over the algebraic
numbers. We denote by G a semi-abelian variety defined over a number field k
and by ktor the field of definition of the torsion points of G. Let V be a proper
subvariety of G. The variety V is a translate, respectively a torsion variety, if it
is a finite union of translates of proper algebraic subgroups by points, respectively
by torsion points.

An irreducible variety V is transverse, respectively weak-transverse, if it is not
contained in any translate, respectively in any torsion variety.

Of course a torsion variety is in particular a translate, and a transverse va-
riety is weak-transverse. In addition transverse implies non-translate, and weak-
transverse implies non-torsion.
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Foundation).
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It is a natural problem to investigate when a geometric assumption on V is
equivalent to the non-density of some special subsets of V . Several classical
conjectures, nowadays theorems, are of this nature. For instance, the Manin-
Mumford Conjecture, stating that the torsion points are non-dense in non-torsion
subvarieties; the Mordell-Lang Conjecture, saying that the points in a subgroup
of finite rank are non-dense in a transverse subvariety; and the Bogomolov
Conjecture, asserting that points of su‰ciently small height are non-dense in
non-torsion subvarieties.

More recently, new questions of similar type have been raised. The ‘‘Conjec-
ture on the Intersection with Torsion Varieties’’ (in short CIT) formulated in the
semi-abelian case by Zilber and in Shimura varieties by Pink, predicts that, for a
weak-transverse variety V , the intersection of V with the union of all algebraic
subgroups of codimension at least dimV þ 1 is non-dense in V , thereby general-
ising the former Manin-Mumford Conjecture. In this context one defines

SrðVÞ ¼ V B
[

codimHbr

H;

where r is a natural number, and H runs over all algebraic subgroups of codimen-
sion at least r; with this definition the conjecture states:

Conjecture 1.1 (CIT, Conjecture on the Intersection with Torsion Varieties).
Let V be a weak-transverse variety in a (semi-)abelian variety. Then SdimVþ1ðVÞ
is non-dense in V.

One of the remarkable features of the CIT is that it also implies another deep
result of modern diophantine geometry: the former Mordell-Lang Conjecture. In-
deed, it turns out to be equivalent to the assertion that, for a transverse variety V ,
the intersection of V with the union of all algebraic subgroups of codimension at
least dimV þ 1, translated by points in a subgroup G of finite rank, is non-dense
in V . Mirroring the above definition, one sets

SrðV ;GÞ ¼ V B
[

codimHbr

H þ G;

where r is a natural number, H runs over all algebraic subgroups of codimension
at least r and H þ G ¼ fxþ g j x a H; g a Gg. Then, we have the following refor-
mulation also known as Zilber-Pink Conjecture.

Conjecture 1.1 0 (CIT, second version). If V is transverse and G has finite rank
then SdimVþ1ðV ;GÞ is non-dense in V.

This conjecture has been tackled from several points of view, but it has only
been partially answered. For instance it is known for curves in some semi-abelian
varieties. A first approach, introduced in 1999 by E. Bombieri, D. Masser and
U. Zannier [BMZ99] in the multiplicative case for a transverse curve C and
trivial G, consists in a two-step argument where one proves that:
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(1) The height of S2ðCÞ is bounded from above;
(2) Bounded height implies bounded degree, hence finiteness by Northcott’s

theorem.

This kind of approach extends to abelian varieties with CM, as recalled later.
In higher dimension, several deep problems arise. Bombieri, Masser and

Zannier [BMZ07] give a new approach to treat this general case. They introduce
the notions of anomalous and torsion anomalous subvarieties. In their definitions
they always avoid points. For us points can be torsion anomalous, but not anom-
alous; in particular, V -torsion anomalous points are contained in SdimVþ1ðVÞ.
Our di¤erent definition is justified by the fact that we obtain a perfect match
with the CIT conjecture, as clarified below.

We have the following definitions.

Definition 1.2. An irreducible subvariety Y of V is a V -torsion anomalous
variety if

– Y is an irreducible component of V B ðBþ zÞ with Bþ z an irreducible torsion
variety;

– the dimension of Y is larger than expected, i.e.

codimY < codimV þ codimB:

The variety Bþ z is minimal for Y if it satisfies the above conditions and has
minimal dimension. The relative codimension of Y is the codimension of Y in its
minimal Bþ z.

We say that Y is a maximal V -torsion anomalous variety if it is V-torsion
anomalous and it is not contained in any V-torsion anomalous variety of strictly
larger dimension.

The complement in V of the union of all V-torsion anomalous varieties is
denoted by V ta. Clearly V ta is obtained removing from V all maximal V-torsion
anomalous varieties.

Again, Bombieri, Masser and Zannier use the same notation to indicate
the complement of the union of all V -torsion anomalous varieties of positive
dimension.

Furthermore, an irreducible variety Y of positive dimension is V-anomalous
if it is a component of V B ðBþ pÞ with Bþ p an irreducible translate and in
addition Y has dimension larger than expected. The complement in V of the
union of all V -anomalous varieties is denoted by V oa.

Clearly points should be excluded from the definition of V -anomalous vari-
eties because otherwise all points would be anomalous, making the notion
uninteresting. On the other hand, as previously remarked, we allow points to be
torsion anomalous varieties: they are exactly the torsion anomalous varieties
which are not anomalous.
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It may be possible that only some components of V B ðBþ zÞ are anomalous,
so each component has to be treated separately. This justifies the assumption of
Y being irreducible.

In the Torsion Openness Conjecture [BMZ07], Bombieri, Masser and Zannier
conjecture that the complement of the set of the torsion anomalous varieties of
positive dimension is open. In addition, in the Torsion Finiteness Conjecture,
they claim that there are only finitely many maximal torsion anomalous points.
Here we state a slightly stronger conjecture, which includes both their conjec-
tures. In addition, it specifies that V ta is empty exactly when V is not weak-
transverse.

Conjecture 1.3 (Bombieri-Masser-Zannier). Let V be a weak-transverse vari-
ety in a (semi-)abelian variety. Then V ta is a dense open subset of V.

This is equivalent to saying that there are only finitely many maximal V -
torsion anomalous varieties of any dimension (see Proposition 3.3 for a proof
of this equivalence), which immediately shows that Conjecture 1.3 implies the
Torsion Openness and the Torsion Finiteness Conjectures.

For a hypersurface, Conjecture 1.3 is clearly true. Indeed, the intersection
of an irreducible torsion variety Bþ z with a hypersurface is either the variety
Bþ z itself or it has the right dimension dimB� 1. So the only V -torsion
anomalous varieties are torsion varieties contained in V ; but we know by the
Manin-Mumford Conjecture that the maximal torsion varieties contained in V
are finitely many.

Among other results, Bombieri, Masser and Zannier in [BMZ07], Theorem
1.7, prove the openness of V ta for an irreducible variety V of codimension 2 in
Gn

m. One of the main ingredients in their proof is a result of Ax consisting in the
analogue of Schanuel’s Conjecture in fields of complex power series in several
variables.

The conjecture is easily proven for weak-transverse translates in abelian vari-
eties. In this case there are no torsion anomalous varieties, see Proposition 3.7.

In this article we split the set of all maximal V -torsion anomalous subvarieties
Y of V according to their relative codimension. We study in particular those of
relative codimension one: these are indeed the most anomalous non-torsion sub-
varieties of V , hence the most likely to be non-dense in V . From this point of
view, the article is a natural starting point in the study of torsion anomalous
subvarieties. We emphasize that, for any relative codimension, an e¤ective gen-
eralisation of our main theorem seems to be completely out of reach at the
moment. Indeed, this would imply the e¤ective Mordell-Lang Conjecture, which
is well known to be a very hard problem. For higher relative codimension, the
method generalises only to weaker results, due to the use of a weaker, but essen-
tially optimal, lower bound for the height in the context of the Bogomolov and
Lehmer problems. Thus, a generalisation of our method requires stronger condi-
tions on the dimension of the minimal abelian variety for Y and it leads, there-
fore, only to partial results which we are going to study in a work in progress
[CV13].
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The main result of this paper is the following e¤ective theorem:

Theorem 1.4. Let V be a weak-transverse variety in a product EN of elliptic
curves with CM defined over a number field k. Then the maximal V-torsion anom-
alous varieties Y of relative codimension one are finitely many. In addition the de-
grees and normalized heights are bounded as follows. For any positive real h, there
exist constants depending only on EN and h such that:

(1) if Y is not a translate then

hðY Þfh ðhðVÞ þ degVÞ
N�1

N�dimV�1
þh;

degY fh degVðhðVÞ þ degVÞ
dimV

N�dimV�1
þh;

(2) if Y is a translate of positive dimension then

hðY Þfh ðhðVÞ þ degVÞ
N�2

N�dimV�1
þh½ktorðVÞ : ktor�

dimV�1
N�dimV�1

þh;

degY fh ðdegVÞððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
dimV�1

N�dimV�1
þh:

(3) if Y is a point then its Néron-Tate height and its degree are bounded as

ĥhðYÞfh ðhðVÞ þ degVÞ
N�1

N�dimV�1
þh½ktorðVÞ : ktor�

dimV
N�dimV�1

þh;

½QðYÞ : Q�fh ðdegV ½kðVÞ : k�Þ
N�1

N�dimV�1
þh

� ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
dimVðN�1Þ

ðN�dimV�1Þ2
þh
:

The notations will be made precise in the next sections. The proof of Theorem
1.4 is split in 3 sections: part (1) is proved in Section 5, part (2) in Section 7, part
(3) in Section 6.

An interesting aspect of the bounds in our result is that the dependence on V
is completely explicit and the constants depend only on the dimension, degree
and height of the ambient variety and on h; this kind of uniformity was also
implicit but not explicitly stated in [BMZ08].

Those in Theorem 1.4 are only some of the bounds we obtain. In addition
we bound the degree of the torsion varieties Bþ z minimal for the maximal V -
torsion anomalous that we consider; also in these bounds the implied constants
are uniform in the variety V .

Our method is completely e¤ective. As mentioned above, it is well known
that an e¤ective proof of Theorem 1.4 for any relative codimension implies the
e¤ective Mordell-Lang Conjecture, a problem outside the reach of the current
methods and theories; so the restriction to relative codimension one is strong,
but natural. In Section 2 we give some implications of our theorem on the e¤ec-
tive and quantitative Mordell-Lang Conjecture.
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Unlike in [BMZ07], the proof of our main theorem avoids the use of Ax’s
result and is based on the following main ingredients: the deep Zhang inequality;
the strong explicit Arithmetic Bézout Theorem by Philippon; a sharper variant of
an e¤ective result by Galateau on the Bogomolov Conjecture for non-translates;
the relative Lehmer bound in CM abelian varieties by Carrizosa for points; an
inductive method for translates of positive dimension. The use of a Lehmer-type
bound forces the assumption of CM. In Section 4 we recall these mentioned
results.

We now present some consequences and applications of our main theorem.
An immediate corollary is Conjecture 1.3 for weak-transverse varieties of codi-
mension 2, proving the analogue of Theorem 1.7 of [BMZ07] in a product of
CM elliptic curves.

Corollary 1.5. Let V be a weak-transverse variety of codimension 2 in a
product of elliptic curves with CM. Then V ta is a dense open subset of V.

Proof. It is su‰cient to consider maximal V -torsion anomalous varieties. Let
Y be a maximal V -torsion anomalous component of V B ðBþ zÞ.

Then, by definition of V -torsion anomalous variety,

codimY < codimV þ codimB:

Equivalently

dimB� dimY < codimV ¼ 2:

If Y has relative codimension zero, then Y ¼ Bþ z and Y is a component of the
closure of the torsion contained in V , which is a proper closed subset by the
Manin-Mumford Conjecture. If Y has relative codimension one, we apply our
main theorem. r

Note that, in this particular case, Theorem 1.4 provides a bound for the nor-
malized height and degree of the components of VnV ta which are not torsion va-
rieties. Bounds for the torsion components were already known in the literature.

Conjecture 1.3 is well known to be related to the CIT (Conjecture 1.1). We
now discuss the implication of our result on the CIT. By definition, for any
torsion variety Bþ z, the intersection V taB ðBþ zÞ has the right dimension. In
particular, if a point of V lies in some algebraic subgroup of codimensionb
dimV þ 1, then that point is contained in a V -torsion anomalous variety (we
would expect empty intersection), and so it does not belong to V ta. Then, as
a further consequence of our theorem, we obtain an e¤ective version of the
following:

Corollary 1.6. Let V be a weak-transverse variety of codimension 2 or a weak-
transverse translate in a product of elliptic curves with CM. Then SdimVþ1ðVÞ is
non-dense in V and its closure is VnV ta.
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Proof. If codimðBþ zÞb dimV þ 1, then all components of V B ðBþ zÞ are
torsion anomalous so they do not intersect V ta. Therefore

V taB
[

codimHbdimVþ1

H ¼ j

and SdimVþ1ðVÞJVnV ta: By Proposition 3.7, for weak-transverse translates
V ta ¼ V and by Corollary 1.5, V ta is an open dense set for V of codimension 2.
That the closure of SdimVþ1ðVÞ is VnV ta is proven exactly as in [BMZ07], page
25, for tori. Recall that, with their definition, points are not torsion anomalous
varieties. r

Clearly the bounds for the normalized height and the degree of the compo-
nents of VnV ta are the same as in Theorem 1.4. As an immediate corollary we
obtain:

Corollary 1.7. Let C be a weak-transverse curve in E3 where E is an elliptic
curve with CM defined over a number field k. Then

S2ðCÞ ¼ CnCta

is a finite set of cardinality and Néron-Tate height e¤ectively bounded. In particular
every non-torsion point Y0 a S2ðCÞ satisfies

ĥhðY0Þfh ðhðCÞ þ degCÞ2þh½ktorðCÞ : ktor�1þh;

½kðY0Þ : Q�fh ðdegCðhðCÞ þ degCÞ½ktorðCÞ : ktor�½kðCÞ : k�Þ2þh:

This result points out the novelty of our main theorem. It is known since 2003
that S2ðCÞ is a finite set for weak-transverse curves in powers of CM elliptic
curves (see Theorem 1.7 in [RV03]). Later on, it was shown that the CM as-
sumption can be removed through the use of a Bogomolov-type bound instead
of a Lehmer-type bound (see [Via08]). However, these results are non-e¤ective
as both rely on a non-e¤ective use of the Vojta height inequality to show
that the height is bounded from above. This approach was also adapted to
the case of weak-transverse curves in multiplicative tori to prove similar re-
sults (see [Mau08]). With an independent argument, based on the use of an ef-
fective Mordell-Lang Theorem in tori, Bombieri, Habegger, Masser and Zannier
[BHMZ10] give an e¤ective bound for the height of S2ðCÞ and consequently for
its cardinality, for weak-transverse curves in tori. The first e¤ective bound for the
height of S2ðCÞ is given for transverse curves in a product of elliptic curves in
[Via03]. So this corollary is a first example of an e¤ective bound for the height
for a weak-transverse curve in abelian varieties.

In higher dimensions, the Bounded Height Conjecture proved by Habegger
([Hab09], theorem on page 407), together with the E¤ective Bogomolov Bound
by Galateau ([Gal10], Theorem 1.1) and the Non-density Theorem by Viada
([Via10], Theorem 1.6) imply the CIT for varieties with V oa non-empty em-
bedded in certain abelian varieties which include all CM abelian varieties.
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An even stronger result involving a subgroup of finite rank G of AðQÞ was
proved by Rémond in his series of articles [Rém05], [Rém07] and [Rém09], us-
ing a di¤erent approach based on the theory of Vojta height inequalities (see
Theorem 1.3 of the last article for the non-density statement).

The original formulation of the Bounded Height Theorem in [Hab08] did not
contain an explicit height bound and the author did not discuss the e¤ectivity
of the result (however, in a forthcoming paper, Habegger provides an explicit
version of the Bounded Height Theorem for tori). Even if the method is made
e¤ective, his assumption V oaA j is stronger than transversality. In this respect,
ours is a new e¤ective method in the context of the CIT for weak-transverse
varieties.

Many are the contributions on the CIT of several authors. For a more exten-
sive list, we refer to the references given in the papers mentioned above.

2. Applications to the Mordell-Lang Conjecture

The CIT is well known to have implications on the Mordell-Lang Conjecture.
The toric case of this last conjecture has been extensively studied, also in its e¤ec-
tive form, by many authors. An e¤ective version for the toric case can be found
in [BG06], Theorem 5.4.5, and generalisations in [BGEP09]. However a general
e¤ective result in abelian varieties is not known.

From our Theorem 1.4, we obtain a bound for the height of the set of points
belonging to a curve C and a group G of rank one as EndðEÞ-module. In addition
we bound the cardinality of CBG, improving in some cases the completely
general bound by Rémond ([Rém00], Theorem 1.2). Our bounds are explicit in
the dependence on C and G. Our method is di¤erent from the two classical e¤ec-
tive methods known in abelian varieties: the method by Chabauty and Coleman,
surveyed, for example, in [PM10] and the method by Manin and Demjanenko,
described in Chapter 5.2 of [Ser89], which are more general but of di‰cult
application.

Let E be an elliptic curve defined over the algebraic numbers.
We let ĥh be the standard Néron-Tate height on EN ; if V is a subvariety of EN ,

we shall denote by hðVÞ the normalized height of V , as defined in [Phi91]. The
height of a set is as usual the supremum of the heights of its points. If E is defined
over a field k, we denote by ktor the field of definition of all torsion points of E.
All the constants in the following theorems become explicit if the constant for the
Lehmer type bound of Carrizosa in [Car09] is made explicit.

Corollary 2.1. Let C be a weak-transverse curve in EN, with E a CM elliptic
curve and N > 2. Let k be a field of definition for E. Let G be a subgroup of EN

such that the group generated by its coordinates is an EndðEÞ-module of rank one.
Then, for any positive h, there exist constants c1, c2, depending only on EN and h,
such that the Néron-Tate height of CBG is bounded by

c1ðhðCÞ þ degCÞ
N�1
N�2

þh½ktorðCÞ : ktor�
1

N�2
þh
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and the number of non-torsion points in CBG is bounded by

c2ððhðCÞ þ degCÞ½ktorðCÞ : ktor�Þ
ðN�1Þð4N 2�N�4Þ

2ðN�2Þ2
þh

� ðdegCÞ
2N 3�N 2þN�4

2ðN�2Þ þh½kðCÞ : k�
NðN�1Þð2Nþ1Þ

2ðN�2Þ þh
:

We also recall that by a result of Rémond in [Rém00], the number of torsion
points in

CBG

is bounded by

c3ðdegCÞ2N
2

;

where c3 is a constant depending only on EN and the fixed embedding.

Proof. Let g be an element of infinite order in G, the group generated by all
coordinates of any element in G. Because G has rank 1, if a point x ¼ ðx1; . . . ; xNÞ
is in G then there exist 0A ai, bi a EndðEÞ and torsion points zi a E such that

aixi ¼ bigþ zi; i ¼ 1; . . . ;N:

If all bi ¼ 0 then x is a torsion point, thus it has height zero. Otherwise, we can
eliminate g from the N equations above, leaving us with N � 1 equations in the xi
which define a torsion variety H of codimension N � 1 in EN . Thus,

ðCBGÞJ
�
CB

[
dimH¼1

H
�
A ðCBTorEN Þ ¼ SN�1ðCÞ

for H ranging over all algebraic subgroup of dimension one. However, if N > 2
and C is weak-transverse, any point x in the intersection CBH is a maximal
C-torsion anomalous point and, if x is not torsion it has relative codimension
one in H. Applying Theorem 1.4 we deduce the estimate on the height. The
estimate on the cardinality for the points which are not torsion now follows
from the bounds in Theorem 6.2, while the number of torsion points is bounded
by Theorem 2.1 in [Rém00]. r

If N ¼ 2, the intersection CBH is not torsion anomalous, so we must follow
another line. For this reason, we need the assumption of C being transverse.

Corollary 2.2. Let C be a transverse curve in E2 with E a CM elliptic curve
defined over a number field k. Let G be a subgroup of E2 such that the group G of
its coordinates is an EndðEÞ-module of rank one, and let g a G be an element of
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infinite order. Then, for any positive h there exist constants c4, c5, depending only
on EN and h, such that the Néron-Tate height and the cardinality of the set

CBG

are bounded as

ĥhðCBGÞa c4½ktorðC � gÞ : ktor�1þhðhðCÞ þ ðĥhðgÞ þ 1Þ degCÞ2þh

aðCBGÞa c5ð½ktorðC � gÞ : ktor�ðhðCÞ þ ðĥhðgÞ þ 1Þ degCÞÞ29þhðdegCÞ22þh

� ½kðC � gÞ : k�21þh:

Proof. Consider the curve C 0 ¼ C � g in E3. Then C 0 is weak-transverse and
CBG is embedded in C 0B

S
dimH¼1 H with ĥhðCBGÞa ĥhðC 0B

S
dimH¼1 HÞ,

just as in the proof of Corollary 2.1. However any point x in the intersection
C 0BH is a maximal C 0-torsion anomalous point of relative codimension one in
H. The bound on the height is obtained by Theorem 1.4 applied to C 0JE3, with
degC 0 ¼ degC and

hðC 0Þa 2mðC 0Þ degC 0 ¼ 2mðCÞ degC þ 2ĥhðgÞ degCa 2ðhðCÞ þ ĥhðgÞ degCÞ;

which follows applying both sides of Zhang’s inequality, recalled in Section 4.3
below. The bound on the cardinality follows from the bounds in Theorem 6.2.

r

The assumptions on the curve are necessary in both corollaries. Indeed for a
weak-transverse curve C in E2 the above theorem is not true. Consider the weak-
transverse curve C ¼ E � g with g non-torsion; for any positive integer m, let Gm

be generated by the point gm ¼ ðmg; gÞ. For any m, the point gm belongs to C
and, for m which goes to infinity, the height of gm tends to infinity. Thus there
cannot be general bounds independent of G. This does not happen in higher
codimension. The analogue would be C ¼ E � g� g 0 where g and g 0 are linearly
independent to ensure the weak-transversality. But CBG is empty if G has rank
one.

We also remark that for C weak-transverse, C � g is not necessarily weak-
transverse: let C ¼ E � g with g non-torsion, then E � g� g is contained in the
abelian subvariety x2 ¼ x3.

3. Torsion anomalous varieties: preliminary results

In this section we denote by G an abelian variety or a torus and by TorG the set of
all torsion points in G. In the next statements we consider subvarieties V of G.

3.1. Maximality and minimality. To show that the union of all V -torsion anom-
alous varieties is non-dense, we only need to consider maximal ones. We recall
from the introduction the following definition.
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Definition 3.1. We say that a V-torsion anomalous variety Y is maximal if it is
not contained in any V-torsion anomalous variety of strictly larger dimension.

On the other hand, a variety Y can be a component of the intersection of V
with di¤erent torsion varieties. We want to choose a minimal torsion variety
which makes Y anomalous.

Definition 3.2. Let Y be a V-torsion anomalous variety. We say that the irre-
ducible torsion variety Bþ z is minimal for Y if Y is an irreducible component of
V B ðBþ zÞ,

codimY < codimV þ codimB;

and Bþ z has minimal dimension among the irreducible torsion varieties with such
properties.

Note that there is a unique minimal torsion variety for Y , and it is contained
in every torsion variety containing Y . Indeed if Bþ z is minimal for Y , and
B 0 þ z 0 is any other torsion variety containing Y , then also B 00 þ z 00 ¼ ðBþ zÞB
ðB 0 þ z 0Þ is a torsion variety such that Y is a component of V B ðB 00 þ z 00Þ,
and codimY < codimV þ codimB 00. Therefore by minimality dimðBþ zÞ ¼
dimðB 00 þ z 00Þ. But ðBþ zÞ is irreducible, thus Bþ z ¼ B 00 þ z 00, and therefore
Bþ zJB 0 þ z 0.

3.2. Conjecture 1.3 implies the Torsion Openness Conjecture and the Torsion
Finiteness Conjecture. Here we prove, as stated in the introduction, that Con-
jecture 1.3 implies the Torsion Openness Conjecture and the Torsion Finiteness
Conjecture, by showing that it is equivalent to the finiteness of the maximal
V -torsion anomalous varieties.

Proposition 3.3. Conjecture 1.3 implies that there are finitely many maximal
V-torsion anomalous varieties of any dimension.

Proof. Clearly, it is su‰cient to prove that every component of VnV ta is
V -torsion anomalous.

We remark that if Y JV is a V -torsion anomalous subvariety, and
Y JX JV for some subvariety X of V , then Y is X -torsion anomalous, be-
cause codX b codV .

Let now X be a component of VnV ta, and let Yi be the family of maximal
V -torsion anomalous subvarieties contained in X ; let us write Bi þ zi for the
torsion variety which is minimal for Yi. We shall prove that X is V -torsion
anomalous.

Let X1; . . . ;Xr be the other components of VnV ta. Because the Yi cover
Xnð

Sr
j¼1 XjÞ, it follows that X ta is not dense, and therefore Conjecture 1.3

implies that X is contained in a torsion variety; let H þ x be the minimal
such variety. Notice that all Bi þ zi are contained inside H þ x, otherwise
ðBi þ ziÞB ðH þ xÞJBi þ zi would be minimal for Yi.
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Consider now the abelian variety H, and the weak transverse subvariety
X � x. By Conjecture 1.3 applied to this new setting, not all the Yi � x can be
ðX � xÞ-torsion anomalous in H. This means that for a certain index i0,

codHðX � xÞ ¼ dimðBi0 þ zi0 � xÞ � dimðYi0 � xÞ:ð1Þ

But Yi0 is V -torsion anomalous, so

dimðBi0 þ zi0Þ � dimYi0 < codVð2Þ

Combining (1) and (2) we easily obtain

dimðH þ xÞ � dimX < codV :

Let now Z be a component of V B ðH þ xÞ containing X . Clearly

dimðH þ xÞ � dimZa dimðH þ xÞ � dimX < codV ;

therefore Z is V -torsion anomalous and thus contained in VnV ta. This implies
that X ¼ Z, completing the proof. r

3.3. Relative position of the torsion anomalous varieties. Without loss of general-
ity we can work with a maximal V -torsion anomalous Y and its minimal torsion
variety Bþ z. The maximality for Y avoids redundancy and the minimality
assures the weak-transversality of Y in Bþ z, as defined below. The relative
position of a V -torsion anomalous variety Y in Bþ z is determinant and leads
to the following natural definition.

Definition 3.4. An irreducible variety Y is weak-transverse in a torsion variety
Bþ z if Y J ðBþ zÞ and Y is not contained in any proper torsion subvariety
of Bþ z. Similarly Y is transverse in a translate Bþ p if Y J ðBþ pÞ is not
contained in any translate strictly contained in Bþ p. The codimension of Y in
Bþ z is called the relative codimension of Y in Bþ z; we simply say the relative
codimension of Y if Y is V-torsion anomalous and Bþ z is minimal for Y.

Then, we have the following lemma.

Lemma 3.5. Let Y be a maximal V-torsion anomalous variety and let Bþ z be
minimal for Y. Then Y is weak-transverse in Bþ z.

Proof. Assume that Y is not weak-transverse in Bþ z, then it is contained
in an irreducible torsion subvariety B 0 þ z 0 of Bþ z with codimðB 0 þ z 0Þ >
codimðBþ zÞ. So Y is a component of V B ðB 0 þ z 0Þ. In addition

codimY < codimV þ codimðBþ zÞ < codimV þ codimðB 0 þ z 0Þ;

which contradicts the minimality of ðBþ zÞ. r
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3.4. Torsion anomalous varieties as components of di¤erent intersections. In the
next lemma we prove that every V -torsion anomalous variety which is a compo-
nent of V B ðBþ zÞ, is also a component of any intersection V B ðAþ z 0Þ with
Bþ zJAþ z 0 and dimA not too big. We remark that we can choose z ¼ z 0.

Lemma 3.6. Let Y be a maximal V-torsion anomalous variety, and let Bþ z be
minimal for Y. Then Y is a component of V B ðAþ zÞ for every algebraic subgroup
AKB, with codimAb dimV � dimY.

Proof. Clearly Y JV B ðAþ zÞ. Let X be an irreducible component of
V B ðAþ zÞ which contains Y , then

codimX a codimV þ codimA:

If the inequality is strict then X is anomalous and by the maximality of Y we
get Y ¼ X .

Otherwise, since by assumption codimAb dimV � dimY , we have

codimX ¼ codimV þ codimAb codimV þ dimV � dimY ¼ codimY ;

but Y JX , so the opposite inequality also holds. This implies codimX ¼
codimY , so Y ¼ X and Y is a component of V B ðAþ zÞ. r

3.5. No torsion anomalous varieties on a weak-transverse translate. The simple
choice of maximal and minimal varieties and the group structure allow us to
prove Conjecture 1.3 for weak-transverse translates.

Proposition 3.7. Let H þ p be a weak-transverse translate in an abelian
variety. Then the set of ðH þ pÞ-torsion anomalous varieties is empty.

Proof. Let Y be an ðH þ pÞ-torsion anomalous variety and let Bþ z be
minimal for Y . Then Y is a component of ðH þ pÞB ðBþ zÞ and

dimH þ dimB� dimY < N:

Remark that whenever ðH þ pÞB ðBþ zÞA j, then p ¼ hþ bþ z for some
h a H and b a B. Thus

ðH þ pÞB ðBþ zÞ ¼ ðH þ bþ zÞB ðBþ zÞ ¼ ðH þ bþ zÞB ðBþ bþ zÞ
¼ ðHBBÞ þ bþ z

and

dimðHBBÞ ¼ dimððH þ pÞB ðBþ zÞÞ:

In our case Y J ðH þ pÞB ðBþ zÞ, then

dimðHBBÞb dimY :
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Thus

dimðH þ BÞ ¼ dimH þ dimB� dimðHBBÞa dimH þ dimB� dimY < N;

where the last inequality is obtained from the fact that Y is V -torsion anoma-
lous. Therefore H þ B is a proper algebraic subgroup of the ambient variety.
Since p a H þ Bþ z, then H þ pJH þ Bþ z, against the weak-transversality
of H þ p. r

3.6. Finitely many maximal V-torsion anomalous varieties in Bþ TorG. Let V be
a weak-transverse variety in G. Let us fix an irreducible torsion subvariety B of G;
we end this section by showing the finiteness of the maximal V -torsion anoma-
lous varieties in V B ðBþ TorGÞ for which Bþ z is minimal, for some torsion
point z. This result implies the finiteness of the maximal V -torsion anomalous
varieties, if one can uniformly bound the degree of the corresponding minimal
torsion variety Bþ z.

We first prove that the maximal V -torsion anomalous components of intersec-
tions of the form Bþ z, for z a TorG, are non-dense in V .

Lemma 3.8. Let V be a weak-transverse variety in G. Let B be an abelian sub-
variety of G. Then the union of all V-torsion anomalous varieties which are compo-
nents of an intersection of the form V B ðBþ zÞ, for z a TorG, is non-dense in V.

Proof. Suppose that there exists a dense union of maximal V -torsion anoma-
lous varieties which are components of V B ðBþ zÞ, for z ranging over all torsion
points of G. By the box principle, there exists a dense subunion of d-dimensional
V -torsion anomalous varieties Yi JV B ðBþ ziÞ, for zi torsion points, where d is
the maximal integer having this property.

Consider the natural projection pB : G ! G=B. As the Yi are dense and proj-
ect to points, the fibre dimension theorem tells us that

dimV ¼ dimYi þ dim pBðVÞ:

Note that V is not V -torsion anomalous, because V is weak-transverse, thus
dimYi < dimV and dim pBðVÞ is at least one. However the Yi are anomalous
therefore

codimYi < codimV þ codimB:

We deduce that

dim pBðVÞ < codimB ¼ dimG=B:

This shows that pBjV is not surjective on G=B. Since V is weak-transverse, also
pBðVÞ is weak-transverse in G=B. Notice that the image via p of any Yi is a
torsion point. By the Manin-Mumford Conjecture the closure of the torsion of
pBðVÞ is non-dense, thus also its preimage is non-dense in V . This contradicts
the density of the Yi. r
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An application of this result actually shows the finiteness of the maximal
V -torsion anomalous varieties in V B ðBþ TorGÞ for which Bþ z is minimal,
for some torsion point z.

Lemma 3.9. Let V be weak-transverse in G. Let B be an abelian subvariety of G.
Then there exist only finitely many torsion points z such that V B ðBþ zÞ has a
maximal V-torsion anomalous component for which Bþ z is minimal.

Proof. Let dimG ¼ N. From Lemma 3.8 the closure of all maximal V -torsion
anomalous Yi which are components of an intersection of the form V B ðBþ zÞ,
for z a TorG, is a proper closed subset of V . In particular, if we consider only
those for which Bþ z is minimal, their closure is still a proper closed subset. We
write it as the finite union of its irreducible components X1 A � � �AXR. We now
show that the Xj are exactly the maximal V -torsion anomalous varieties such that
Bþ z is minimal, for some z a TorG. Suppose that X1 is not a maximal V -torsion
anomalous component for which Bþ z is minimal, with z a TorG. Then the Yi

contained in X1 are dense in X1, dimX1 > dimYi and X1 is not V -torsion anom-
alous due to the maximality of the Yi.

By assumption, Bþ zi is minimal for Yi for some zi a TorG. Then X1 is not
contained in any Bþ z, otherwise Yi JX1 JV B ðBþ zÞ and X1 would be a
V -torsion anomalous variety; this gives a contradiction.

Let H þ z be the torsion variety (not necessarily proper) of smallest dimen-
sion containing X1. Then X1 is weak-transverse in H þ z, and since X1 is not
V -torsion anomalous

N � dimX1 ¼ N � dimV þN � dimH:ð3Þ

Recall that, the Yi are V -torsion anomalous varieties and use (3) to obtain

N � dimYi < N � dimV þN � dimB ¼ dimH � dimX1 þN � dimB:

whence

dimH � dimYi < dimH � dimX1 þ dimH � dimB:

We now claim that ðBþ ziÞJ ðH þ zÞ. Indeed if it were not so, the intersection
ðBþ ziÞB ðH þ zÞ would contradict the minimality of Bþ zi for Yi. Therefore
ðBþ zi � zÞJH; translating every variety by z, we obtain that X1 � z is weak-
transverse in H and the Yi � z are dense in X1 � z and ðX1 � zÞ-torsion anoma-
lous. This contradicts Lemma 3.8 applied to X1 � z in H. r

4. Main ingredients

4.1. Notation. Recall that all varieties are assumed to be defined over the field
of algebraic numbers. Let A be an abelian variety; to a symmetric ample line
bundle L on A we attach an embedding iL : A ,! Pm defined by the minimal
power of L which is very ample. Heights and degrees corresponding to L are
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computed via such an embedding. More precisely, the degree of a subvariety of A
is the degree of its image under iL; ĥh ¼ ĥhL is the L-canonical Néron-Tate height
of a point in A, and h is the normalized height of a subvariety of A as defined, for
instance, in [Phi91].

Most often we consider products of an elliptic curve E. Then, we denote by O1

the line bundle on E defined by the neutral element, and by ON the bundle on
EN obtained as the tensor product of the pull-backs of O1 through the N natural
projections.

Unless otherwise specified, we compute degrees and heights on EN with
respect to ON .

We note that by a result of Masser and Wüstholz in [MW93] Lemma 2.2,
every abelian subvariety of EN is defined over a finite extension of k of degree
bounded by 316N

4
. For this reason we always assume that all abelian subvarieties

are defined over k. Up to a field extension of degree two, we also assume that
every endomorphism of E is defined over k.

Byf we always denote an inequality up to a multiplicative constant depend-
ing only on E and N.

4.2. Subgroups and torsion varieties. Let Bþ z be an irreducible torsion variety
of EN with codimB ¼ r. We associate B with a morphism jB : EN ! Er such
that ker jB ¼ Bþ t with t a torsion set of absolutely bounded cardinality (by
[MW93] Lemma 1.3). In turn jB is identified with a matrix in Matr�NðEndðEÞÞ
of rank r such that the degree of B is essentially (up to constants depending
only on N) the sum of the squares of the determinants of the minors of jB. By
Minkowski’s theorem, such a sum is essentially the product of the squares di
of the norms of the rows of the matrix representing jB (see for instance [CVV12]
for more details).

In short Bþ z is a component of the torsion variety given as the zero set of
forms h1; . . . ; hr, which are the rows of jB, of degree di. In addition

d1 . . . dr f degðBþ zÞf d1 . . . dr:

We assume to have ordered the hi by increasing degree.
We also recall that, as is well known, we can use Siegel’s lemma to complete

the matrix defining B to a square invertible matrix; this gives a construction for
the orthogonal complement B? and shows thataðBBB?Þf ðdegBÞ2.

As remarked in [Via08], in a product of di¤erent elliptic curves an algebraic
subgroup is associated with a matrix where the entries corresponding to the
non-isogenous factors are all zero.

For this reason our theorems, which we prove in EN for simplicity, hold in
products of di¤erent elliptic curves as well.

4.3. The Zhang Estimate. We recall the following definition.

Definition 4.1. For a variety V JA, the essential minimum mðVÞ is the su-
premum of the reals y such that the set fx a VðQÞ j ĥhðxÞa yg is non-dense in V.
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The Bogomolov Conjecture, proved by Ullmo and Zhang in 1998, asserts that
the essential minimum mðY Þ is strictly positive if and only if Y is non-torsion.

From the crucial result in Zhang’s proof of the Bogomolov Conjecture (see
[Zha98]) and from the definition of normalized height, we have that for an irre-
ducible subvariety X of an abelian variety:

mðX Þa hðX Þ
degX

a ð1þ dimX ÞmðX Þ:ð4Þ

4.4. The Arithmetic Bézout theorem. The following version of the Arithmetic
Bézout theorem is due to Philippon [Phi95].

Theorem 4.2 (Philippon). Let X and Y be irreducible subvarieties of the pro-
jective space Pn defined over Q. Let Z1; . . . ;Zg be the irreducible components of
X BY. Then

Xg

i¼1

hðZiÞa degXhðY Þ þ degYhðX Þ þ cðnÞ degX degY ;

where cðnÞ is a constant depending only on n.

4.5. An e¤ective Bogomolov Estimate for relative transverse varieties. The fol-
lowing theorem is a sharp e¤ective version of the Bogomolov Conjecture for
weak-transverse varieties. It is an elliptic analogue, up to a lower order term, of
a toric conjecture of Amoroso and David in [AD03].

Theorem 4.3 (Checcoli-Veneziano-Viada [CVV12]). Let EN be a product of
elliptic curves, and let Y be an irreducible subvariety of EN transverse in a translate
Bþ p. Then, for any h > 0, there exists a positive constant c6 depending on EN and
h, such that

mðYÞb c6
ðdegBÞ

1
dimB�dimY

�h

ðdegY Þ
1

dimB�dimY
þh

:

The dependence on the degree of B is crucial in our applications. This theorem
holds for E with or without CM and it is a special case of the main theorem of
[CVV12]. Its proof is based on an equivalence between line bundles, and on the
lower bound for the essential minimum of a transverse variety with respect to
the standard bundle ON . Such a bound is given by Galateau in [Gal10]. The
constant c6 is e¤ective and becomes explicit if the constants in [Gal10] are made
explicit1.

1 In a personal communication Galateau provided us explicit computations.
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4.6. A relative Lehmer Estimate for points. In [Car09], Theorem 1.15, Carrizosa
proves the so called relative Lehmer problem for CM abelian varieties. Her theo-
rem generalises to CM abelian varieties a result of Ratazzi in [Rat04] for one CM
elliptic curve. The proof of Ratazzi is inspired to the theorem of Amoroso and
Zannier in [AZ00] for algebraic numbers. As a straightforward corollary of her
theorem we have the following:

Theorem 4.4 (Carrizzosa). Let E be an elliptic curve with CM defined over a
field k. Let P be a point of infinite order in EN, and let Bþ z be the torsion variety
of minimal dimension containing P, with B an abelian subvariety and z a torsion
point. Then for every h > 0 there exists a positive constant c7 depending on EN

and h, such that

ĥhðPÞb c7
ðdegBÞ

1
dimB

�h

½ktorðPÞ : ktor�
1

dimB
þh

:

The e¤ectivity in the relative Lehmer is not explicitly stated in the theorem of
Carrizosa.2 Using also the e¤ectivity of other results, as for instance the result of
Amoroso and Zannier in [AZ00]3 and of David and Hindry [DH00], one may
check that Carrizosa’s constant can be made e¤ective. In addition, the compli-
cated descent in her article can be replaced by the simple induction argument pre-
sented for tori in [AV12]. An analogous e¤ective method for the relative Lehmer
in tori is given by Delsinne, see [Del09].

5. Torsion anomalous varieties which are not translates

Let V be a weak-transverse variety in a power of elliptic curves. In this section
we prove the finiteness of the maximal V -torsion anomalous varieties which are
not translates and have relative codimension one, thus establishing part (1) of
Theorem 1.4. Note that this part of our theorem holds in any power of elliptic
curves, independently if it has or not CM.

Theorem 5.1. Let V JEN be a weak-transverse variety. Then the maximal V-
torsion anomalous varieties of relative codimension one which are not translates are
finitely many. More precisely, let Y be a maximal V-torsion anomalous variety
which is not a translate. Assume that Y has relative codimension one in its minimal
Bþ z. Then for any h > 0 there exist constants depending only on EN and h such
that:

degBfh ðhðVÞ þ degVÞ
codimB

codimV�1þh;

hðY Þfh ðhðVÞ þ degVÞ
codimB

codimV�1þh

2 In a short personal communication she claims that her constants are e¤ective.
3Though in [AZ00] the authors are not concerned with e¤ectivity, their result can be made e¤ec-

tive (see [AD07]).
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and

degY fh degVðhðVÞ þ degVÞ
codimB

codimV�1�1þh:

In addition the torsion points z belong to a finite set.

Proof. Let Y be a maximal V -torsion anomalous variety which is not a trans-
late. Let Bþ z be minimal for Y . Then Y is a component of V B ðBþ zÞ with
B an abelian variety and z a torsion point. In addition codimY < codimV þ
codimB.

We prove that degB is bounded only in terms of V and EN ; we then deduce
the bounds for hðY Þ and degY . By assumption Y is not a translate, and it has
codimension one in Bþ z; therefore Y is transverse in Bþ z. As points are trans-
lates and V is not contained in a torsion variety, we have 1a dimY < dimV :
Applying the Bogomolov estimate Theorem 4.3 to Y in Bþ z we get

ðdegBÞ1�h

ðdegY Þ1þh
fh mðYÞ:ð5Þ

We set r ¼ codimB. Let h1; . . . ; hr be the forms of increasing degrees di such
that Bþ z is a component of their zero set, as recalled in Section 4.2. Then

d1 . . . dr f degðBþ zÞ ¼ degBf d1 . . . dr:ð6Þ

We denote

r1 ¼ dimV � dimY :

Note that r1 < r, because Y is V -torsion anomalous. Let A be the algebraic
subgroup given by the first h1 . . . hr1 forms. Then degAf d1 . . . dr1 : Let A0 be an
irreducible component of A containing Bþ z. We remind that we have ordered
the hi in such a way that the sequence d1; . . . ; dr is increasing, thus the successive
geometric means are increasing too, which gives, together with (6), the bound

degA0 f d1 . . . dr1 f ðd1 . . . drÞ
r1
r f ðdegBÞ

r1
r :

We also have codimA0 ¼ r1 ¼ dimV � dimY . By Lemma 3.6, Y is a compo-
nent of V BA0. We apply the Arithmetic Bézout theorem to V BA0 and recall
that hðA0Þ ¼ 0, because A0 is a torsion variety. Then

hðY Þf ðhðVÞ þ degVÞ degA0 f ðhðVÞ þ degVÞðdegBÞ
r1
r :ð7Þ

For the irreducible variety Y of positive dimension, Zhang’s inequality (4) says

mðYÞa hðYÞ
degY

:
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Combining this with (7) and (5) we obtain

ðdegBÞ1�h

ðdegYÞ1þh
fh mðY Þf ðhðVÞ þ degVÞ ðdegBÞ

r1
r

degY
:

Recall that Y is a component of V B ðBþ zÞ. By Bézout’s theorem
degY a degB degV . Thus

ðdegBÞ1�h fh ðhðVÞ þ degVÞðdegBÞ
r1
r ðdegB degVÞh

and therefore

ðdegBÞ
r�r1
r
�2h fh ðhðVÞ þ degVÞðdegVÞh:

Since r� r1 ¼ codimV � 1, for h small enough we get

degBfh ðhðVÞ þ degVÞ
r

codimV�1
þhðdegVÞh:ð8Þ

So we have proved that the degree of B is bounded only in terms of V and EN .
Since the abelian subvarieties of bounded degree are finitely many, applying
Lemma 3.9 we conclude that z belongs to a finite set.

Finally, the bound on the height of Y is given by (7) and (8)

hðY Þfh ðhðVÞ þ degVÞ
r

codimV�1
þhðdegVÞh:

The bound on the degree is given by Bézout’s theorem for the component Y of
V BA0 and (8)

degY fh ðhðVÞ þ degVÞ
r

codimV�1
�1þhðdegVÞ1þh: r

6. Torsion anomalous points

In this and the following section we prove that, if V is a weak-transverse variety
in a power of elliptic curves with CM, then the maximal V -torsion anomalous
varieties of relative codimension one which are translates are non-dense in V .
We now prove this statement in the case of V -torsion anomalous varieties of
dimension zero, thus establishing part (3) of Theorem 1.4. The proof relies on
the Arithmetic Bézout theorem, the Zhang’s inequality and on the relative
Lehmer, Theorem 4.4. Recall that, as the last bound is proved only for CM ellip-
tic curves we need this assumption.

Theorem 6.1. Let V JEN be a weak-transverse variety, where E has CM.
Then, the set of maximal V-torsion anomalous points of relative codimension one
is a finite set of explicitly bounded Néron-Tate height and relative degree.

More precisely, let k be a field of definition for E and let ktor be the field
of definition of all torsion points of EN. Let d be the dimension of V. Let Y0 be
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a maximal V-torsion anomalous point and let Bþ z be minimal for Y0, with
dimB ¼ 1. Then

degBfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
N�1

N�1�d
þh;

ĥhðY0Þfh ðhðVÞ þ degVÞ
N�1

N�1�d
þh½ktorðVÞ : ktor�

d
N�1�d

þh;

½ktorðY0Þ : ktor�fh degV ½ktorðVÞ : ktor�
N�1

N�1�d
þhðhðVÞ þ degVÞ

d
N�1�d

þh:

In addition the torsion points z have order e¤ectively bounded in Theorem 6.2.

Proof. Let Y0 be a maximal V -torsion anomalous point, with Bþ z minimal
for Y0.

By assumption dimB ¼ codimBþz Y0 ¼ 1. We proceed to bound degB and, in
turn, the height of Y0 and its degree over ktor. To this aim we shall use Theorem
4.4 and the Arithmetic Bézout theorem.

By Section 4.2, the variety Bþ z is a component of the torsion variety defined
as the zero set of forms h1; . . . ; hN�1 of increasing degrees di and

d1 . . . dN�1 f degB ¼ degðBþ zÞf d1 . . . dN�1:

Consider the torsion variety defined as the zero set of the first d forms h1; . . . ; hd ,
and take a connected component A0 containing Bþ z. Then

degA0 f d1 . . . dd f ðdegBÞ
d

N�1ð9Þ

and

codimA0 ¼ d ¼ dimV � dimY0:

By Lemma 3.6, each component of V B ðBþ zÞ is a component of V BA0. All
conjugates of Y0 over ktorðVÞ are in V B ðBþ zÞ, so the number of components
of V BA0 of height ĥhðY0Þ is at least

½ktorðV ;Y0Þ : ktorðVÞ�b ½ktorðY0Þ : ktor�
½ktorðVÞ : ktor�

:

We then apply the Arithmetic Bézout theorem to V BA0 obtaining

½ktorðY0Þ : ktor�ĥhðY0Þf ðhðVÞ þ degVÞ½ktorðVÞ : ktor�ðdegBÞ
d

N�1:ð10Þ

Applying Theorem 4.4 to Y0 in Bþ z, we obtain that for every positive
real h

ĥhðY0Þgh
ðdegBÞ1�h

½ktorðY0Þ : ktor�1þh
:ð11Þ
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Combining (11) and (10) we have

ðdegBÞ1�h

½ktorðY0Þ : ktor�h
fh ½ktorðY0Þ : ktor�ĥhðY0Þ

f ðhðVÞ þ degVÞ½ktorðVÞ : ktor�ðdegBÞ
d

N�1:

For h small enough we obtain

degBfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
N�1

N�1�d
þh½ktorðY0Þ : ktor�h:ð12Þ

Apply now Bézout’s theorem to V BA0. All the conjugates of Y0 over ktorðVÞ are
components of the intersection, so

½ktorðY0Þ : ktor�
½ktorðVÞ : ktor�

fh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
d

N�1�d
þhðdegVÞ1þh;ð13Þ

which gives the last bound in the statement. Substituting (13) back into (12) we
have the bound on degB.

Finally apply the Arithmetic Bézout theorem to V BA0 to get

ĥhðY0Þf ðhðVÞ þ degVÞðdegBÞ
d

N�1ð14Þ

fh ðhðVÞ þ degVÞ
N�1

N�1�d
þh½ktorðVÞ : ktor�

d
N�1�d

þh:

Having bounded degB, in view of Lemma 3.9, the points z belong to a finite
set. r

Notice that in Theorem 6.1 we have e¤ectively bounded the degree of the abe-
lian variety B, and we applied Lemma 3.9 to prove the finiteness of the points Y0

in a non e¤ective way. In the following theorem we explicitly bound the degree
½kðY0Þ : Q� for Y0 not a torsion point. This, together with the bound for ĥhðY0Þ
in Theorem 6.1, allows to e¤ectively find all V -torsion anomalous points of rela-
tive codimension one.

Theorem 6.2. Let V be a weak-transverse variety in EN, where E has CM. Let
k be a field of definition for E. Let d be the dimension of V. Let Y0 be a maximal
V-torsion anomalous point and let Bþ z be minimal for Y0 with dimB ¼ 1. Then

½kðY0Þ : Q�fh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
dðN�1Þ

ðN�1�dÞ2
þhðdegV ½kðVÞ : k�Þ

N�1
N�1�d

þh:

In addition the torsion points z can be chosen with

½kðzÞ : Q�f ½kðY0Þ : Q�

and order bounded by

ordðzÞfh ½kðY0Þ : Q�
N
2
þh:
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Finally let S be the number of maximal V-torsion anomalous points of relative
codimension one. Then

Sfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�ÞA1þhðdegVÞA2þ1þh½kðVÞ : k�A2þh

where

A1 ¼
ðN � 1Þð2ðN þ 1ÞðN � d � 1Þ þ dNð2N þ 1ÞÞ

2ðN � d � 1Þ2
a ðN þ 1Þ4;

A2 ¼
NðN � 1Þð2N þ 1Þ

2ðN � d � 1Þ aN 3:

Proof. In view of Theorem 6.1, we know that degB and ĥhðY0Þ are bounded.
We now proceed to bound ½kðY0Þ : k�.

To this aim we need to construct an algebraic subgroup F of codimension d
defined over k, containing Y0 and of controlled degree. In order to do this we use
Siegel’s lemma in a similar way as in [Via03], Proposition 3, which in turn follows
the work [BMZ99] of Bombieri, Masser and Zannier in tori. Here we use Siegel’s
lemma directly on equations with coe‰cients in the endomorphism ring of E.

We notice that EndðEÞ is an order in an imaginary quadratic field L with ring
of integers O. The coordinates of Y0 ¼ ðx1; . . . ; xNÞ generate an O-module G of
rank one. The torsion submodule of G is well known; for instance in [Via03],
Proposition 2 we find a description for it. Such a torsion module is clearly O
invariant. As a Z-module it is generated by two points T , tT of exact orders R,
R 0 respectively, where R ¼ cðtÞR 0 and cðtÞ is essentially the real part of t2, so a
constant of the problem.

Therefore we can write

xi ¼ aigþ biT

for a fixed point of infinite order g in E, with coe‰cients ai; bi a O such that

ĥhðxiÞ ¼ jNLðaiÞjĥhðgÞð15Þ

and

NLðbiÞfR2:

We want to find coe‰cients ai a O such that
PN

i aixi ¼ 0. This gives a linear
system of 2 equations, obtained equating to zero the coe‰cients of g and T . The
system has coe‰cients in O and N þ 1 unknowns: the ai’s and one more unknown
for the congruence relation arising from the torsion point.

We use a version of Siegel’s lemma over O as stated in [BG06], Section 2.9, to
get d equations with coe‰cients in O; multiplying them by a constant depending
only on E, we may assume that they have coe‰cients in EndðEÞ. Thus they define
the sought-for algebraic subgroup F of degree

degF f
��

max
i

NLðaiÞ
��

max
i

NLðbiÞ
�� d

N�1
:
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Let F0 be a k-irreducible component of F passing through Y0. Then

degF0 f
��

max
i

NLðaiÞ
�
R2

� d
N�1

:

By the maximality of Y0, the point Y0 is a component of V BF0 and by
Bézout’s theorem we get

½kðY0Þ : k�
½kðVÞ : k� a degV degF0:

Using also (15), we obtain

½kðY0Þ : k�
½kðVÞ : k� f degV

��
max

i
NLðaiÞ

�
R2

� d
N�1ð16Þ

a degV
�
R2 maxi ĥhðxiÞ

ĥhðgÞ

� d
N�1

:

Notice that ĥhðxiÞa ĥhðY0Þ for all i.
We can now apply Theorem 4.4 to g in E, obtaining for every h > 0

1

ĥhðgÞ
fh ½ktorðgÞ : ktor�1þh

a ½ktorðY0Þ : ktor�1þhð17Þ

because g is defined over kðY0Þ.
The product ½ktorðY0Þ : ktor�ĥhðY0Þ was bounded in (10), so using also the

bounds in Theorem 6.1 we obtain

½kðY0Þ : k�fh degV ½kðVÞ : k�ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
d

N�1�d
þh
R2 d

N�1:ð18Þ

By a result of Serre in [Ser72], recalled also in [Via03], Corollary 3, for R
larger than a constant and j the Euler function, we have

jðRÞjðR 0Þf ½kðY0Þ : k�:

In addition

R2�h fh jðRÞjðR 0Þ

since in general jðxÞgh x
1�h and R and R 0 are related by a constant. From this

and (18), for h small enough we obtain

½kðY0Þ : k�fh degV ½kðVÞ : k�ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
d

N�d�1
þhð19Þ

� ½kðY0Þ : k�
d

N�1
þh:

Since Y0 is V -torsion anomalous of relative codimension one, we have d < N � 1
and we deduce
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½kðY0Þ : Q�f ½kðY0Þ : k�ð20Þ

fh ðdegV ½kðVÞ : k�Þ
N�1

N�d�1
þh

� ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
dðN�1Þ

ðN�d�1Þ2
þh
:

We now want to bound the degree of z over k and the order of z. Let K be the
field of definition of Bþ z. Notice that K J kðzÞ: in fact if s a Galðk=kðzÞÞ, then
sðBþ zÞ ¼ Bþ z. We are going to prove that ½kðzÞ : K � is absolutely bounded
and that ½K : k�a ½kðY0Þ : k�.

From [Ber87], we can choose z in a complement B 0 of B such that BBB 0 has
cardinality bounded only in terms of N. Now let s a Galðk=KÞ and suppose that
sðzÞA z. Then sðBþ zÞ ¼ Bþ sðzÞ ¼ Bþ z, because B is defined over k. Since
z; sðzÞ a B 0 we have sðzÞ � z a BBB 0. So ½kðzÞ : K �f 1.

We also notice that K J kðY0Þ, otherwise we would have a s a Galðk=kÞ
such that sðY0Þ ¼ Y0, but sðBþ zÞABþ z. If this were the case, Y0 would be a
component of V B ðBþ zÞBsðBþ zÞ, against the minimality of Bþ z.

Thus

½kðzÞ : k� ¼ ½kðzÞ : K �½K : k�f ½K : k�a ½kðY0Þ : k�:

In view of (20), z generates an extension of k of bounded degree. By Serre’s result
mentioned above

ordðzÞfh ½kðY0Þ : Q�
N
2þh:ð21Þ

We are left to give an explicit bound for the number of maximal V -torsion
anomalous points Y0 of relative codimension one. This is obtained in the follow-
ing way: we first bound the number of possible subgroups B and possible torsion
points z such that Bþ z is minimal for some Y0. Then we apply Bézout’s theorem
to every intersection V B ðBþ zÞ.

We already proved in Theorem 6.1 and (21) that if Bþ z is minimal for Y0,
then degB and ordðzÞ are bounded.

By Section 4.2, the number of abelian subvarieties B in EN of dimension one
and degree at most degB isfh ðdegBÞNþh, for every h > 0. In fact, if B is such a
abelian subvariety, consider its associated matrix, as recalled in Section 4.2; it is
an ðN � 1Þ �N matrix and we call di the square of the norm of its i-th row. Then
the number of possible choices for the elements di is bounded by dðdegBÞN�1,
where, for a positive integer n, dðnÞ counts the number of divisors of n. We notice
that, for every h > 0 we have

dðdegBÞfh ðdegBÞh:

Now, for every choice of the di, the number D of ðN � 1Þ �N matrices in which
the square of the norm of the i-th row is at most di is bounded in the following
way

Df
� YN�1

i¼1

di

�N

f ðdegBÞN :
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So for every h > 0, the number of possible subgroups B isfh ðdegBÞNþh:
As for the point z, it is well known that the number of torsion points in EN of

order bounded by a constant M is at most M 2Nþ1. In fact the number of points
of order dividing a positive integer i is i2N ; so a bound for the number of torsion
points of order at most M is given by

XM

i¼1

i2N fM 2Nþ1:

Applying Bézout’s theorem to every intersection V B ðBþ zÞ, we obtain that
for every h > 0 the number S of V -torsion anomalous points of relative codimen-
sion one is bounded by

Sfh degVðdegBÞNþ1þh ordðzÞ2Nþ1:

This, combined with Theorem 6.1, (21) and (20), gives the required explicit
bounds. r

7. Torsion anomalous translates of positive dimension

We let V be a weak-transverse variety in a power of elliptic curves with CM.
In this section we study V -torsion anomalous varieties which are translates of
positive dimension. We reduce this case to the zero dimensional case.

First we compare the V -torsion anomalous translates with translates con-
tained in V .

Lemma 7.1. Let V be a weak-transverse subvariety of an abelian variety of
dimension N. Let Y be a maximal V-torsion anomalous translate, then Y is a
maximal translate contained in V (i.e. Y is not strictly contained in any translate
contained in V ).

Proof. Let Y be a maximal V -torsion anomalous translate and suppose that Y
is contained in a maximal translate ðH þ pÞJV with dimðH þ pÞ > dimY . Let
Bþ z be minimal for Y . Then Y is a component of V B ðBþ zÞ and

codimY < codimV þ codimB:ð22Þ

Since ðH þ pÞB ðBþ zÞKY then p ¼ hþ bþ z for some h a H and b a B.
Therefore

ðH þ pÞB ðBþ zÞ ¼ ðH þ bþ zÞB ðBþ zÞ
¼ ðH þ bþ zÞB ðBþ bþ zÞ ¼ ðHBBÞ þ bþ z

and

dimðHBBÞ ¼ dimððH þ pÞB ðBþ zÞÞb dimY :
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By (22), we deduce

dimðH þ BÞ ¼ dimH þ dimB� dimðHBBÞð23Þ
a dimH þ dimB� dimY < N:

So H þ Bþ z is a proper torsion subvariety of the ambient variety. Moreover

H þ p ¼ H þ hþ bþ zJH þ Bþ z:

Thus

H þ pJV B ðH þ Bþ zÞ:

By (22) and (23), we deduce

N � dimH < N � dimV þN � dimH � dimBþ dimY

aN � dimV þN � dimH � dimBþ dimðBBHÞ
¼ N � dimV þN � dimðH þ BÞ:

This implies that H þ p is a V -torsion anomalous translate, against the maxi-
mality of Y . r

The following lemma is due to Patrice Philippon and it relates the essential
minimum of a translate to the height of the point of translation. More in general,
for abelian varieties properties of orthogonality in the Mordell-Weil groups have
been studied by D. Bertrand [Ber86].

Lemma 7.2 (Philippon). Let H þ Y0 be a weak-transverse translate in EN, with
Y0 a point in the orthogonal complement H? of H. Then

mðY0Þ ¼ mðH þ Y0Þ:

Proof. The points Y0 þ z, for z a TorH , are dense in H þ Y0 and they have
height equal to ĥhðY0Þ. So we get mðH þ Y0Þa mðY0Þ:

To obtain the other inequality, consider a set of points of the form xi þ Y0

with xi a H, which is dense in H þ Y0.
Let

3p; q4NT ¼
XN

i¼1

1

2
ðĥhðpi þ qiÞ � ĥhðpiÞ � ĥhðqiÞÞ a R

be the Néron-Tate pairing on EðQÞN , with p ¼ ðp1; . . . ; pNÞ and q ¼ ðq1; . . . ; qNÞ
in EðQÞN . In [Phi12], P. Philippon proves that, given two connected algebraic
subgroups H 0 and H 00 of EN , then H 0ðQÞ and H 00ðQÞ are orthogonal, with re-
spect to the Néron-Tate pairing, if and only if their tangent spaces at the origin
are orthogonal in CN , with respect to the standard hermitian product.

Using this result we get ĥhðxi þ Y0Þ ¼ ĥhðxiÞ þ ĥhðY0Þa ĥhðY0Þ. r
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We now state our main theorem for V -torsion anomalous translates, which
proves part (2) of Theorem 1.4. Let H þ Y0 be a maximal V -torsion anomalous
translate of relative codimension one. The idea of the proof is to apply the func-
torial Lehmer-type bound by Carrizosa to the point Y0 in the complement H?

of H, so that the problem becomes zero dimensional. We then apply the Arith-
metic Bézout theorem to H þ Y0 in the usual way. The link between mðY0Þ and
mðH þ Y0Þ is then given by Lemma 7.2. Notice that when the translate is a point,
the first two bounds in the statement reduce to the ones in Theorem 6.1, while
the third is trivial. For this reason the theorem, as stated, partially generalises
Theorem 6.1; its interest, however, lies in the case of translates of positive dimen-
sion, and the proof only deals with those, as the case of points is already proved
by Theorem 6.1.

Theorem 7.3. Let V be a weak-transverse subvariety of EN, where E has CM.
Then the set of maximal V-torsion anomalous translates of relative codimension
one is a finite set of explicitly bounded normalized height and degree.

More precisely, let k be a field of definition for E and let ktor be the field of
definition of all torsion points of EN. Let H be an abelian subvariety of EN and
let p be a point such that H þ p is a maximal V-torsion anomalous translate of
relative codimension one. Let Bþ z be minimal for H þ p. Then, for every real
positive h there exist constants depending only on EN and h, such that

degBfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
codimB

codimV�1
þh;

hðH þ pÞfh ðhðVÞ þ degVÞ
codimB

codimV�1
þh½ktorðVÞ : ktor�

dimV�dimBþ1
codimV�1

þh;

degðH þ pÞfh ðdegVÞððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
dimV�dimBþ1

codimV�1
þh:

In addition the points z belong to a finite set (of cardinality absolutely bounded
in Theorem 7.5).

Proof. If dimðH þ pÞ ¼ 0, then the theorem follows from Theorem 6.1; from
now on we assume that dimH > 0.

As we remarked in Section 4.6, we can assume all abelian subvarieties of EN

to be defined over k.
Let Y0 be a point in the orthogonal complement H? of H, such that

H þ p ¼ H þ Y0. By Lemma 7.2,

mðY0Þ ¼ mðH þ Y0Þ:ð24Þ

We are going to use the Arithmetic Bézout theorem to find an upper bound
for mðH þ Y0Þ and Theorem 4.4 to find a lower bound.

Let Bþ z be minimal forH þ Y0. ThenH þ Y0 is a component of V B ðBþ zÞ
and by assumption codimBþzðH þ Y0Þ ¼ 1. By Lemma 3.5 H þ Y0 is weak-
transverse in Bþ z, thus Y0 is not a torsion point and the coordinates of Y0

generate a module of rank dimðH?B ðBþ zÞÞ ¼ codimBþzðH þ Y0Þ ¼ 1.

28 s. checcoli, f. veneziano and e. viada



Let r be the codimension of B. The variety Bþ z is a component of the torsion
variety given by the zero set of the forms h1; . . . ; hr of increasing degrees di and

d1 . . . dr f degB ¼ degðBþ zÞf d1 . . . dr:

Note that H þ Y0 is contained in V and, by assumption, it has relative codimen-
sion one. Thus codimV < codimH ¼ rþ 1. Denote

r1 ¼ rþ 1� codimV ¼ dimV � dimH:

Consider the torsion variety defined as the zero set of the first r1 forms
h1; . . . ; hr1 , and take one of its irreducible component A0 passing through H þ Y0.
Then

degA0 f ðdegBÞ
r1
rð25Þ

and

codimA0 ¼ r1:

Recall that ktor is the field of definition of all torsion points in EN . By Lemma
3.6, H þ Y0 is a component of V BA0. Since the intersection V BA0 is defined
over ktorðVÞ, every conjugate of H þ Y0 over ktorðVÞ is a component of V BA0

and all such components have the same normalized height.
So the number of components of V BA0 of height hðH þ Y0Þ is at least

½ktorðH þ Y0Þ : ktor�
½ktorðVÞ : ktor�

:

We apply the Arithmetic Bézout theorem to V BA0 and we obtain

hðH þ Y0Þ
½ktorðH þ Y0Þ : ktor�

½ktorðVÞ : ktor�
f ðhðVÞ þ degVÞðdegBÞ

r1
r :ð26Þ

By the Zhang’s inequality, (24) and (26), we deduce

mðY0Þf
ðhðVÞ þ degVÞ½ktorðVÞ : ktor�ðdegBÞ

r1
r

½ktorðH þ Y0Þ : ktor� degH
:ð27Þ

Consider the minimal torsion subvariety H0 of B containing Y0 � z, so Y0 is
not contained in any torsion subvariety of H0 þ z. The dimension of H0 is then
the rank of the subgroup generated by the coordinates of Y0 � z, which is the
same as the rank of the subgroup generated by Y0, because z is a torsion point;
as we have seen, this rank is 1.

Consider the irreducible component H1 of the intersection H?B ðBþ zÞ con-
taining Y0: since Y0 is not torsion, then H1 has dimension one. So H0 þ z ¼ H1,
because both varieties are irreducible, contain Y0 and are one dimensional. Let
now H2 be the translate of H0 passing through 0. Then, as H0 þ z ¼ H1 is the
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component of H?B ðBþ zÞ passing through Y0, we see that H2 is the component
of H?BB passing through 0, i.e. the orthogonal abelian subvariety of H in B.
Hence H þH2 ¼ B.

We also notice that

½ktorðY0Þ : ktor�a ½ktorðH þ Y0Þ : ktor� �aðHBH2Þ:ð28Þ

In fact if s a Galðktor=ktorðH þ Y0ÞÞ then sðY0Þ � Y0 a H. Since H2 þ Y0 ¼
H0 þ z is defined over ktor, we have that sðY0Þ � Y0 a H2 as well. Hence the
number of conjugates of Y0 over ktorðH þ Y0Þ is at mostaðHBH2Þ.

For the lower bound for mðY0Þ, the proof follows the case of dimension zero.
In particular applying Theorem 4.4 to Y0 in H0 þ z we get that, for every positive
real h

mðY0Þ ¼ ĥhðY0Þgh
ðdegH0Þ1�h

½ktorðY0Þ : ktor�1þh
:ð29Þ

Combining (27), (28) and (29) we get

ðdegH0Þ1�h fh ðhðVÞ þ degVÞ½ktorðVÞ : ktor�
ðdegBÞ

r1
r

degH
ð30Þ

�aðHBH2Þ1þh½ktorðH þ Y0Þ : ktor�h:

Recall now that H2 is the orthogonal of H in B; therefore, applying Theorem
3 of [Ber97] to the decomposition B ¼ H þH2 we get

degH degH2 faðHBH2Þ degBf degH degH2;

H0 and H2 have, of course, the same degree, and therefore

degH degH0 faðHBH2Þ degBf degH degH0:ð31Þ

Thus, possibly changing h, we have

degBfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
r

codimV�1
þhð32Þ

� ðaðHBH2Þ½ktorðH þ Y0Þ : ktor�Þh:

We now want to remove the dependence on aðHBH2Þ and
½ktorðH þ Y0Þ : ktor� and bound the degree of the translate H þ Y0.

We first apply Bézout’s theorem to the intersection V BA0, obtaining:

degHa degV degA0 f degVðdegBÞ
r1
rð33Þ

and estimating the components we obtain

degH
½ktorðH þ Y0Þ : ktor�

½ktorðVÞ : ktor�
a degV degA0 f degVðdegBÞ

r1
r :ð34Þ
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By definition H2 JH?BB, therefore HBH2 JHBH? and,

aðHBH2ÞaaðHBH?Þf ðdegHÞ2:

This and (34) give

aðHBH2Þ½ktorðH þ Y0Þ : ktor�f ð½ktorðVÞ : ktor� degVÞ2ðdegBÞ
2r1
r :

Substituting in (32) we get

degBfh ððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
r

codimV�1
þh:ð35Þ

Then, using (33) and replacing (35) we have

degðH þ Y0Þf ðdegVÞðdegBÞ
r1
r

fh ðdegVÞððhðVÞ þ degVÞ½ktorðVÞ : ktor�Þ
r1

codimV�1
þh:

Finally, from (26) and (35) we obtain

hðH þ Y0Þfh ðhðVÞ þ degVÞ
r

codimV�1
þh½ktorðVÞ : ktor�

r1
codimV�1

þh:

Since we have bounded degB, we can conclude from Lemma 3.9 that the
points z belong to a finite set. r

In the proof we bounded the degree of H þ Y0 using Bézout’s theorem, and
we obtained a bound depending on degV and hðVÞ. The dependence on hðVÞ
may be removed with a di¤erent argument.

Let H þ pJV be a translate which is maximal with respect to the inclusion
among all such translates. Bombieri and Zannier in [BZ96], Lemma 2, proved
that only finitely many such abelian subvarieties H can occur. More precisely
the maximal translates contained in V have degree bounded only in terms of
the degree and the dimension of V . As a corollary of their proof we obtain the
following lemma.

Lemma 7.4 (Bombieri-Zannier). Let V be a weak-transverse variety. Then the
maximal translates contained in V are of the form H þ p for finitely many abelian
subvarieties H with

degHa ðdegVÞ2
dimV

:

Using this lemma we obtain a bound which is more uniform, though the
dependence on degV shows a bigger exponent.

As remarked for the zero dimensional case, in Theorem 7.3 we proved finite-
ness using the non e¤ective Lemma 3.9. We now give a completely e¤ective result
which is the analogous of Theorem 6.2 in positive dimension. We bound the
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degrees of the fields of definition of the translates H þ p and of the torsion
points z.

Theorem 7.5. Let V be a weak-transverse subvariety of EN, where E has CM.
Let k be a field of definition for E. Let H be an abelian subvariety of EN, and let p
be a point such that H þ p is a maximal V-torsion anomalous translate of relative
codimension one; let Bþ z be minimal for H þ p. Set r ¼ codimB; then the field
kðH þ pÞ of definition of H þ p has degree bounded by

½kðH þ pÞ : Q�fh ½kðVÞ : k�rþhðdegVÞ3r�1

� ðhðVÞ þ degVÞ
ð2r�1Þðr�codimVþ1Þþrðr�1Þ

codimV�1
þh½ktorðVÞ : ktor�

ð3r�2Þðr�codimVþ1Þ
codimV�1 :

Moreover the torsion points z can be chosen so that

½kðzÞ : Q�fh ½kðH þ pÞ : Q�

and

ordðzÞfh ½kðH þ pÞ : Q�
N
2þh:

Proof. We keep all the notations and definitions used in Theorem 7.3.
Of course

½kðH þ pÞ : k� ¼ ½kðH þ Y0Þ : k�a ½kðY0Þ : k�;

because we are assuming all abelian subvarieties of EN to be defined over k.
The bound on the degree ½kðY0Þ : k� is obtained following the same idea of

Theorem 6.2: since H0 has dimension one, the group generated by the coordi-
nates of Y0 is an EndðEÞ-module of rank one. We can apply Siegel’s lemma in a
similar way to the zero-dimensional case, where we use the estimate (27) for the
height of Y0. In this case, however, we want to find an algebraic subgroup F of
dimension 2, containing Y0, and contained in H?.

We know that EndðEÞ is an order in an imaginary quadratic field L. Let
l1; . . . ; lN�r�1 be linear forms which give equations for H?, and define

di ¼ max
j

jNLðlijÞj;

where ðlijÞj is the vector of coe‰cients of the form li. We now follow the steps of
the proof of Theorem 6.2 and apply Siegel’s lemma to obtain r� 1 independent
solutions which are also orthogonal to the vectors of coe‰cients of l1; . . . ; lN�r�1;
this time, in addition to the two equations of Theorem 6.1, we have also one
equation for each of the li, for a total of N � rþ 1 equations in N þ 1 unknowns
(N coe‰cients and one for the torsion point).

These r� 1 vectors give r� 1 linear forms which, together with the
l1; . . . ; lN�r�1, provide the N � 2 equations needed to define F .
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The bounds provided by Siegel’s lemma give

degF fh

� YN�r�1

i¼1

di

��
ĥhðY0Þ½kðY0Þ : k�1þh

YN�r�1

i¼1

di

�r�1
rð36Þ

fh ðdegHÞ2�
1
r ĥhðY0Þ

r�1
r ½kðY0Þ : k�

r�1
r
þh:

Now that we have found F , we first show that H þ Y0 is a component of
V B ðH þ FÞ: indeed dimðH þ FÞ ¼ dimBþ 1, because F JH? has dimen-
sion 2; therefore any component of the intersection V B ðH þ FÞ with dimen-
sion greater than dimH is anomalous. But H þ Y0 is clearly contained in
V B ðH þ FÞ and, by the maximality of H þ Y0, it is not contained in any V -
anomalous subvariety of greater dimension; hence it is itself a component of
V B ðH þ FÞ and so are all its conjugates over kðVÞ.

Applying Bézout’s theorem to V B ðH þ FÞ we get

½kðY0Þ : k�
½kðVÞ : k� degHa degV degðH þ FÞf degV degH degF ;ð37Þ

½kðY0Þ : k�f ½kðVÞ : k� degV degF ;

and this gives the desired bound.
Substituting (36) and (37), and using all the bounds from Theorem 7.3 we

obtain

½kðY0Þ : Q�fh ½kðVÞ : k�rþhðdegVÞ3r�1ðhðVÞ þ degVÞ
ð2r�1Þr1þrðr�1Þ

codimV�1
þh

� ½ktorðVÞ : ktor�
ð3r�2Þr1
codimV�1:

Finally, as in the proof of Theorem 6.1, z can be chosen so that ½kðzÞ : Q�f
½kðY0Þ : Q�; again by Serre’s theorem, the points z have order bounded by

ordðzÞfh ½kðY0Þ : Q�
N
2þh and therefore belong to an explicit finite set.

Finally, the set of all possible translates H þ p has cardinality S bounded by

Sfh ½kðVÞ : k�D1þhðdegVÞD2ðhðVÞ þ degVÞD3þh½ktorðVÞ : ktor�D4ð38Þ

where

D1 ¼
rNð2N þ 1Þ

2

D2 ¼
ð3r� 1ÞNð2N þ 1Þ

2
þ 1

D3 ¼
ðN þ 1Þr

codimV � 1
þNð2N þ 1Þ

2

ð2r� 1Þðr� codimV þ 1Þ þ rðr� 1Þ
codimV � 1

D4 ¼
ðN þ 1Þr

codimV � 1
þNð2N þ 1Þ

2

ð3r� 2Þðr� codimV þ 1Þ
codimV � 1

: r
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