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Abstract. — Let C be a projective curve either reduced with planar singularities or contained in a

smooth algebraic surface.
We show that the canonical ring RðC;oCÞ ¼0

kb0
H 0ðC;oC

nkÞ is generated in degree 1 if C is

3-connected and not (honestly) hyperelliptic; we show moreover that RðC;LÞ ¼0
kb0

H 0ðC;LnkÞ
is generated in degree 1 if C is reduced with planar singularities and L is an invertible sheaf such that

degLjB b 2paðBÞ þ 1 for every BJC †.
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1. Introduction

Let C be a projective curve either reduced with planar singularities or contained
in a smooth algebraic surface, oC be its dualizing sheaf of C and L be an inver-
tible sheaf on C.

The main result of this paper is Theorem 3.3 stating that the canonical ring

RðC;oCÞ ¼ 0
kb0

H 0ðC;oC
nkÞ

is generated in degree 1 if C is a 3-connected and not honestly hyperelliptic
curve (see Definition 2.1 and Definition 2.2). This is a generalization to singular
curves of the classical theorem of Noether for smooth curves (see [1, §III.2]) and
can be regarded as a first step in a more general analysis of the Koszul groups
Kp;qðC;oCÞ of 3-connected curves (see [11] for the definition and the statement
of the so called ‘‘Green’s conjecture’’). A detailed explanation of the role that the
Koszul groups of smooth and singular curves play in the geometry of various
moduli spaces can be found in [2].

Additional motivation for the present work comes from the theory of surface
fibrations, as shown by Catanese and Ciliberto in [4] and Reid in [16]. Indeed,
given a surface fibration f : S ! B over a smooth curve B, the relative canonical
algebra Rð f Þ ¼0

nb0
f�ðonn

S=BÞ gives important information on the geometry of
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the surface. It is clear that the behaviour of Rð f Þ depends on the canonical ring
of every fibre.

The main result on the canonical ring for singular curves in the literature is
the 1-2-3 conjecture, stated by Reid in [16] and proved in [8] and [14], which
says that the canonical ring RðC;oCÞ of a connected Gorenstein curve of arith-
metic genus paðCÞb 3 is generated in degree 1, 2, 3, with the exception of a small
number of cases. More recently in [9] the first author proved that the canonical
ring is generated in degree 1 under the strong assumption that C is even (i.e.,
degB KC is even on every subcurve BJC).

We remark that our result implies in particular that the canonical ring of a
regular surface of general type is generated in degreea 3 if there exists a curve
C a jKSj 3-connected and not honestly hyperelliptic (see [9, Theorem 1.2]). More-
over one can apply the same argument of Konno (see [14, Theorem III]) and
see that the relative canonical algebra of a relatively minimal surface fibration is
generated in degree 1 if every fibre is 3-connected and not honestly hyperelliptic.

Our second result is Theorem 4.2 stating that the ring

RðC;LÞ ¼ 0
kb0

H 0ðC;LnkÞ

considered as an algebra over H 0ðC;OCÞ, is generated in degree 1 if C is reduced
with planar singularities and L is an invertible sheaf such that degLjB b
2paðBÞ þ 1 for every BJC. This is a generalization of a theorem of Castelnuovo
(see [15]) on the projective normality of smooth projective curves. This result can
be useful when dealing with properties (for instance Brill-Noether properties) of a
family of smooth curves which degenerates to C.

In [8], [9], [14] the analysis of the canonical ring is based on the study of the
Koszul groups Kp;qðC;oCÞ (with p, q small) and their vanishing properties, to-
gether with some vanishing results for invertible sheaves of low degree.

In this paper we use a completely di¤erent approach. Our method is inspired
by the arguments developed in a series of papers by Green and Lazarsfeld which
appeared in the late ’80s (see [11], [12]) and it is based on the generalization to
singular curves of Cli¤ord’s theorem given by the authors in [10].

Given an invertible sheaf L such that the map H 0ðC;LÞnH 0ðC;LÞ !
H 0ðC;Ln2Þ fails to be surjective, we exhibit a zero-dimensional scheme SHC
such that the map H 0ðC;LÞnH 0ðC;LÞ ! H 0ðS;OSÞ induced by the restriction
also fails to be surjective. Thus its dual map

j : Ext1ðOS;oC nL�1Þ ! HomðH 0ðC;LÞ;H 1ðC;oC nL�1ÞÞ

is not injective. From the analysis of an extension in the Kernel of j we conclude
that the cohomology of IS � L must satisfy some numerical conditions. This in
turn contradicts Cli¤ord’s theorem when L ¼ oC , or degLjB b 2paðBÞ þ 1 on
every BJC.

Finally, we wish to stress the role of numerical connectedness in generalizing
Noether’s theorem. By the results of [6] (see [6, §2, §3] or Theorem 2.3) and our
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main result Theorem 3.3 we have the following implications for a connected
curve C

C 3-connected; not honestly hyperelliptic

) RðC;oCÞ is generated in degree 1 and oC is ample

) oC is very ample:

If C is reduced it is known that the three properties are equivalent (see [5]). How-
ever this is false when C is not reduced. To see that the converse of the first
implication fails one can take C ¼ 2F , where F is a non-hyperelliptic fibre of a
surface fibration. In Examples 3.5 and 3.6 we construct 3-disconnected curves
with very ample canonical sheaves which fail Noether’s Theorem, thus proving
that the converse of the second implication is false too. These examples support
our belief that 3-connected curves are the most natural generalization of smooth
curves when dealing with the properties of the canonical embedding.

Acknowledgments. The second author wishes to thank the Department of Mathematic of the

University of Pisa, especially Rita Pardini, for providing an excellent research environment.

2. Notation and preliminary results

We work over an algebraically closed field K of characteristicb 0.
Throughout this paper a curve C will be a Cohen-Macaulay scheme of pure

dimension 1. It will be projective, either reduced with planar singularities (i.e.
such that for every point P a C it is dimK M=M2

a 2 where M is the maximal
ideal of OC;P) or contained in a smooth algebraic surface X , in which case we
allow C to be reducible and non-reduced. Notice that C is Gorenstein.

In both cases we will use the standard notation for curves lying on smooth
algebraic surface, writing C ¼

Ps
i¼1 niGi, where Gi are the irreducible compo-

nents of C and ni are their multiplicities.
A subcurve BJC is a Cohen-Macaulay subscheme of pure dimension 1; it will

be written as
P

miGi, with 0ami a ni for every i.
Notice that under these assumptions every subcurve BHC is Gorenstein too.
oC denotes the dualizing sheaf of C (see [13], Chap. III, §7), and paðCÞ the

arithmetic genus of C, paðCÞ ¼ 1� wðOCÞ. KC denotes a canonical divisor.

Definition 2.1. A curve C is honestly hyperelliptic if there exists a finite mor-
phism c : C ! P1 of degree 2 (see [6, §3] for a detailed treatment).

If A, B are subcurves of C such that Aþ B ¼ C, then their product A � B is

A � B ¼ degBðKCÞ � ð2paðBÞ � 2Þ ¼ degAðKCÞ � ð2paðAÞ � 2Þ:

If C is contained in a smooth algebraic surface X this corresponds to the intersec-
tion product of curves as divisors on X .
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Definition 2.2. C is m-connected if for every decomposition C ¼ Aþ B in
e¤ective, both non-zero curves, one has A � Bbm. C is numerically connected if
it is 1-connected.

First we recall some useful results proved in [5] and [6].

Theorem 2.3 ([6], §2, §3). Let C be a Gorenstein curve. Then

(i) If C is 1-connected then H 1ðC;oCÞGK.
(ii) If C is 2-connected and CZP1 then joC j is base point free.
(iii) If C is 3-connected and C is not honestly hyperelliptic then oC is very ample.

Proposition 2.4 ([6], Lemma 2.4). Let C be a projective scheme of pure dimen-
sion 1, let F be a coherent sheaf on C, and j : F! oC a non-vanishing map
of OC-modules. Set J ¼ Ann jHOC, and write BHC for the subscheme defined
by J. Then B is Cohen–Macaulay and j has a canonical factorization of the
form

F!!FjB ,! oB ¼HomOC
ðOB;oCÞHoC ;

where FjB ,! oB is generically onto.

Proposition 2.5 [5]. Let C be a projective scheme of pure dimension 1, let F be
a rank 1 torsion-free sheaf on C.

(i) If degðFjBÞb 2paðBÞ � 1 for every subcurve BJC then H 1ðC;FÞ ¼ 0.
(ii) If F is invertible and degðFjBÞb 2paðBÞ for every subcurve BJC then jFj is

base point free.
(iii) If F is invertible and degðFjBÞb 2paðBÞ þ 1 for every subcurve BJC then

F is very ample on C.

As we mentioned in the introduction, our approach to the analysis of the ring
RðC;LÞ ¼0

kb0
H 0ðC;LnkÞ for a line bundle L builds on the generalization of

Cli¤ord’s theorem proved by the authors in [10]. In the rest of this section we
recall the main results we need from [10], namely, the notion of subcanonical
cluster and Cli¤ord’s theorem, and we prove some technical lemmas on the coho-
mology of rank 1 torsion-free sheaves.

Definition 2.6. A cluster S of degree r is a zero-dimensional subscheme of
C with lengthOS ¼ dimk OS ¼ r. A cluster SHC is subcanonical if the space
H 0ðC;ISoCÞ contains a generically invertible section, i.e., a section s0 which does
not vanish on any subcurve of C.

Theorem 2.7 ([10], Theorem A). Let C be a projective 2-connected curve either
reduced with planar singularities or contained in a smooth algebraic surface, and let
SHC be a subcanonical cluster.

Assume that S is a Cartier divisor or alternatively that there exists a generically
invertible section H a H 0ðC;ISKCÞ such that divðHÞBSingðCredÞ ¼ j.
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Then

h0ðC;ISKCÞa paðCÞ �
1

2
degðSÞ:

Moreover if equality holds then the pair ðS;CÞ satisfies one of the following as-
sumptions:

(i) S is trivial, i.e., it is either empty or it is a canonical divisor KC;
(ii) C is honestly hyperelliptic and S is a multiple of the honest g12;
(iii) C is 3-disconnected (i.e., there is a decomposition C ¼ Aþ B with A � B ¼ 2).

Remark 2.8. Let C and S be as in Theorem 2.7. Then Riemann-Roch Theorem
implies that

h0ðC;ISKCÞ þ h1ðC;ISKCÞa paðCÞ þ 1

and equality holds if one of the three cases listed in Theorem 2.7 is satisfied.

Remark 2.9. If Z0 HZ are clusters, then the natural restriction map OZ !! OZ0

induces an inclusion Ext1ðOZ0
;OCÞ ,! Ext1ðOZ;OCÞ.

Lemma 2.10. Let C be a Gorenstein curve and Z a cluster. Assume that there
exists an extension x a Ext1ðOZ;OCÞ such that x B Ext1ðOZ0

;OCÞ for every proper
subcluster Z0 WZ. Then the corresponding extension of sheaves can be written as

0! OC !HomðIZ;OCÞ ! OZ ! 0:

Proof. Consider an extension corresponding to x

0! OC ! Ex ! OZ ! 0:ð1Þ

We prove first that Ex is torsion free. Indeed, if TorðExÞA 0 then there exists
a subcluster Z0 HZ and a sheaf E0 GEx=TorðExÞ which fits in the following
commutative diagram:

TorðExÞ ���!G TorðExÞ

 
��

��

 
��

��

0 ���! OC Ex OZ 0

 
��

��

 
��

��

 
��

��

0 ���! OC E0 OZ0
0

 
��

��

 
��

��

 
��

��

0 0 0

�����! �������! �����!

�����! �������! �����!
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In particular there exists a proper subcluster Z0 such that the extension corre-
sponding to E0 in Ext1ðOZ0

;OCÞ corresponds to x, which is impossible.
Since Ex is a rank 1 torsion-free sheaf it is reflexive, i.e., there is a natural

isomorphism HomðHomðEx;OCÞ;OCÞGEx. Dualizing sequence (1) we see that

HomðEx;OCÞGIZ since Ext1ðOZ;OCÞGOZ and Ext1ðEx;OCÞ ¼ 0, hence
Ex GHomðIZ;OCÞ. r

Remark 2.11. For every cluster SHC and every invertible sheaf L on C, con-
sidering the embedding i : S ,! C, with abuse of notation, we will write L instead
of i�ðLÞ. Moreover, throughout the paper we will repeatedly use the isomorphisms
OS GOS � L and H 0ðS;OSÞ�GExt1ðOS;oC nL�1ÞGExt1ðOS � L;oC nL�1Þ.

A useful tool in the analysis of the multiplication map H 0ðC;LÞn2 !
H 0ðC;Ln2Þ is the restriction to a suitable cluster S. Indeed the composition
of the multiplication map H 0ðC;LÞn2 ! H 0ðC;Ln2Þ with the evaluation map
H 0ðC;Ln2Þ ! H 0ðS;OSÞ yields a map H 0ðC;LÞnH 0ðC;LÞ ! H 0ðS;OSÞ:

Lemma 2.12. Let C be a Gorenstein curve and L an e¤ective line bundle on C.
Let S be a cluster such that the restriction map

H 0ðC;LÞnH 0ðC;LÞ ! H 0ðS;OSÞ

is not surjective. Then there exists a nonempty subcluster S0 JS such that

h0ðC;LÞ þ h1ðC;LÞa h0ðC;IS0
LÞ þ h1ðC;IS0

LÞ:

Proof. Let S be a cluster such that the restriction map

H 0ðC;LÞnH 0ðC;LÞ ! H 0ðS;OSÞ

is not surjective. By Serre duality the dual map

j : Ext1ðOS;oC nL�1Þ ! HomðH 0ðC;LÞ;H 1ðC;oC nL�1ÞÞ

is not injective. The dual map j is given as follows: consider an element
x a Ext1ðOS;oC nL�1Þ and its corresponding extension

0! oC nL�1 ! Ex ! OS ! 0:

Let cx : H
0ðS;OSÞ ! H 1ðC;oC nL�1Þ be the connecting homomorphism in-

duced by the extension. Then the restriction map r : H 0ðC;LÞ ! H 0ðS;OSÞ in-
duces a map jx ¼ cx � r : H 0ðC;LÞ ! H 1ðC;oC nL�1ÞÞ given as follows

H 0ðC;LÞ

 
��

��

r

0 �! H 0ðC;oC nL�1Þ �! H 0ðC;ExÞ �!
fx

H 0ðS;OSÞ �!
cx

H 1ðC;oC nL�1Þ

 �
���

���

jx
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The map jx is precisely jðxÞ a HomðH 0ðC;LÞ;H 1ðC;oC nL�1ÞÞ. By definition
jðxÞ ¼ 0 if and only if ImðrÞH Imð fxÞ. In particular if jðxÞ ¼ 0 then we have
dim ImðrÞa dim Imð fxÞ which implies that

h0ðC;LÞ þ h1ðC;LÞa h0ðC;ExÞ þ h0ðC;ISLÞ:ð2Þ

In order to prove the lemma let S0 be minimal (with respect to the inclu-
sion) among the subclusters of S for which the restriction Sym2 H 0ðC;LÞ !
H 0ðS0;OS0

Þ fails to be surjective. This implies that if ZWS0 is any proper sub-
cluster then the map

j0 : Ext
1ðOZ;oC nL�1Þ ! HomðH 0ðC;LÞ;H 1ðC;oC nL�1ÞÞ

is injective. Note that j0 factors through j:

Ext1ðOZ;oC nL�1Þ

 
��

��

Ext1ðOS0
;oC nL�1Þ ���!j HomðH 0ðC;LÞ;H 1ðC;oC nL�1ÞÞ

 ��
���

���

j0

By the minimality of S0 if x a Ext1ðOS0
;oC nL�1Þ is in the kernel of j, then

x must not belong to the image of Ext1ðOZ;oC nL�1Þ for every ZWS0.
The corresponding extension Ex is isomorphic to HomðIS0

;OCÞnoC nL�1 G
HomðIS0

L;oCÞ thanks to Lemma 2.10. Thus h0ðC;ExÞ ¼ h1ðC;IS0
LÞ by Serre

duality. Inequality (2) becomes

h0ðC;LÞ þ h1ðC;LÞa h0ðC;IS0
LÞ þ h1ðC;IS0

LÞ: r

3. Noether’s theorem for singular curves

The aim of this section is to prove Noether’s theorem for singular curves. For
the proof we use two main ingredients: a generalization of the free pencil trick
(see Lemma 3.2), and the surjectivity of the restriction map H 0ðC;oCÞn2 !
H 0ðS;OSÞ for a suitable cluster S.

Lemma 3.1. Let C be a projective curve which is either reduced with planar singu-
larities or contained in a smooth algebraic surface. Assume that C is 2-connected
and paðCÞb 2. Let H a H 0ðC;oCÞ be a generic section.

Then there exists a cluster S contained in divH such that the following hold:

1. h0ðC;ISoCÞ ¼ 2
2. the evaluation map H 0ðC;ISKCÞnOC ! ISoC is surjective.

Proof. Since jKC j is base point free thanks to Theorem 2.3 we may assume
that H is generically invertible and divH is a length 2paðCÞ � 2 cluster. Thus
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for every integer n a f1; . . . ; paðCÞg there exists at least one cluster Sn J divH
such that h0ðC;ISn

oCÞ ¼ n. In particular we may take a cluster S such that
h0ðC;ISoCÞ ¼ 2 and S is maximal up to inclusion among the clusters contained
in divH with this property. S is the desired cluster. Indeed, if it were S0 XS
such that the image of the evaluation map H 0ðC;ISKCÞnOC ! ISoC was
IS0

oC WISoC then we would have h0ðC;IS0
KCÞ ¼ 2, contradicting the maxi-

mality of S. r

Even though the sheaf ISoC defined in the above lemma is not usually a line
bundle by abuse of notation we will call it a free pencil.

Lemma 3.2. Let the pair ðC;SÞ be as in the previous lemma. Then the map

H 0ðC;ISoCÞnH 0ðC;oCÞ !
m

H 0ðC;ISo
n2
C Þð3Þ

is surjective.

Proof. Consider the evaluation map H 0ðC;ISoCÞnoC !
ev

ISo
n2
C and its

kernel K:

0!K! H 0ðC;ISoCÞnoC ! ISo
n2
C ! 0:ð4Þ

The map (3) is surjective if and only if h1ðC;KÞ ¼ 2 since h1ðC;ISo
n2
C Þ ¼ 0 by

Proposition 2.5. In the rest of the proof we establish h1ðC;KÞ ¼ 2.
We have

KGHomðISoC ;oCÞ:

Indeed consider a basis fx0; x1g for H 0ðC;ISoCÞ and define the map

i : HomðISoC ;oCÞ ! H 0ðC;ISoCÞnoC

j 7! x0 n jðx1Þ � x1 n jðx0Þ:

Our aim is to check that i is injective and iðHomðISoC ;oCÞÞ is precisely K. It
is clear that ImðiÞHK. Moreover i is injective since the sheaf ISoC is generated
by its sections x0 and x1. It is straightforward to check that over the points
P a C not belonging to S (where both the sheaves HomðISoC ;oCÞ and K are
invertible), i induces an isomorphism. Moreover computing the Euler character-
istic we have

wðHomðISoC ;oCÞÞ ¼ wðKÞ ¼ degS � ðpaðCÞ � 1Þ

hence the map i induces an isomorphism between HomðISoC ;oCÞ and K.
We know that

H 1ðC;KÞ� ¼ HomðK;oCÞ ¼ H 0ðC;HomðK;oCÞÞ
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It is easy to check that ISoC is reflexive, i.e.,

HomðHomðISoC ;oCÞ;oCÞGISoC

thus h1ðC;KÞ ¼ h0ðC;ISoCÞ ¼ 2. r

We may now prove our main theorem.

Theorem 3.3. Let C be a projective curve either reduced with planar singularities
or contained in a smooth algebraic surface. Assume that C is 3-connected, not hon-
estly hyperelliptic and paðCÞb 3. Then the map

Symn H 0ðC;oCÞ ! H 0ðC;onn
C Þ

is surjective for every nb 0.

Proof. It is already known that the canonical ring RðC;oCÞ ¼
0

nb0
H 0ðC;onn

C Þ is generated in degree at most 2: see Konno [14, Proposition
1.3.3] or Franciosi [8, Theorem C]. Notice that, even though both papers deal
with the case of divisors on smooth surfaces, their proofs go through without
changes to reduced curves with planar singularities. Thus to prove the theorem
it is su‰cient to show that the map in degree 2 is surjective:

H 0ðC;oCÞnH 0ðC;oCÞ ! H 0ðC;on2
C Þ:

We consider a free pencil ISoC (as in Lemma 3.1) and study the following
commutative diagram:

H 0ðC;ISoCÞnH 0ðC;oCÞ K��! H 0ðC;oCÞn2 ���! H 0ðS;OSÞnH 0ðC;oCÞ

 
��

��

m

 
��

��

r

 
��

��

H 0ðC;ISo
n2
C Þ H 0ðC;on2

C Þ H 0ðS;OSÞK�������! ��������!

 ��
����

����
�

p

A simple diagram chase shows that if both the maps m and p are surjective, then
the product map r is surjective too, proving the theorem.

Lemma 3.2 states precisely that the map m is surjective.
The map p must be surjective too: if not, we could apply Lemma 2.12 and

conclude that there exists a nonempty subcanonical cluster S0 JS, contained in
a generic section in H 0ðC;oCÞ, such that

h0ðC;IS0
oCÞ þ h1ðC;IS0

oCÞb paðCÞ þ 1:ð5Þ

By Theorem 2.7 and Remark 2.8 we know that this cannot happen if C is 3-
connected and not honestly hyperelliptic, and S0A j, KC . r

45the canonical ring of a 3-connected curve



Remark 3.4. The assumptions of Theorem 3.3 are sharp. One can find exam-
ples of 3-disconnected curves, with very ample canonical sheaf, such that the map
Sym2 H 0ðC;oCÞ ! H 0ðC;on2

C Þ is not surjective, see Examples 3.5 and 3.6.
Moreover, one expects the surjectivity of the map to fail for 3-disconnected

curves thanks to a simple observation on reduced curves. Indeed, consider a
connected reduced curve, 2-connected but 3-disconnected (hence with at least
two components). In this case there exists a subcurve BHC such that oC jB G
oBnOBðSÞ, where S is a length 2 cluster and by [6, §3] we conclude that its
canonical sheaf oC is not very ample. In particular if C does not contain rational
curves then oC turns out to be ample but not very ample. Therefore RðC;oCÞ
cannot be generated in degree 1.

Example 3.5. Let B be a smooth genus b curve with bb 4 and let D be a gen-
eral e¤ective divisor on B of degree bþ 3. The linear system jDj is very ample and
induces an embedding of B in P3 (see [1, Ex. V.B.1]).

Define the ruled surface X ¼ PBðOBaOBðD� KBÞÞ: the map f : X ! B has
a section G with selfintersection ð�bþ 5Þ (see [13, §V.2] for the main numerical
properties). Consider the curve C ¼ 2G: we have that paðCÞ ¼ bþ 4 and C is
2-disconnected (numerically disconnected if bb 5). By adjunction we have

KC ¼ ðKX þ CÞjC ¼ f �ðDÞ

and it is easy to check that it is very ample on C by analyzing the standard de-
composition

0! oG ! oC ! oCjG ! 0:

Since G is a section of f : X ! B, f induces an isomorphism ðB;OBðDÞÞG
ðG;oCjGÞ. Therefore it is immediately seen that joC j separates length 2 clusters.

The map

Sym2 H 0ðC;oCÞ !
q0

H 0ðC;on2
C Þ

is not surjective, as one could see from the following diagram:

H 0ðG;oGÞnH 0ðC;oCÞ ���! H 0ðC;oCÞn2 ���! H 0ðG;oCjGÞnH 0ðG;oCjGÞ

 
��

��

 
��

��

q

 
��

��

p

H 0ðG;oG noCÞ H 0ðC;on2
C Þ H 0ðG;on2

CjGÞ������! ��������!!

Indeed if the map q0 were surjective (hence q), then the map p would be surjective
as well. Since oCjG GOBðDÞ the image of the map p is the same as the image of
the map

p0 : Sym
2 H 0ðB;OBðDÞÞ ! H 0ðB;OBð2DÞÞ

46 m. franciosi and e. tenni



which is not surjective, as one can easily check by computing the dimension of the
two spaces.

Example 3.6. We now show an example of a 2-connected but 3-disconnected
curve with very ample canonical sheaf which does not satisfy Theorem 3.3.

Let B be a smooth hyperelliptic curve of genus bb 3 contained in a smooth
algebraic surface. Assume B2 ¼ 2 and consider the curve C ¼ 2B. For example,
run the construction of the previous example with b ¼ 3.

If the degree 2 line bundle oC jB no�1B is not e¤ective then oC turns out to be
very ample. Furthermore, consider the commutative diagram

H 0ðB;oBÞnH 0ðC;oCÞ ���! H 0ðC;oCÞn2 ���! H 0ðB;oCjBÞnH 0ðG;oCjBÞ:

 
��

��

 
��

��
q

 
��

��

p

H 0ðB;oB noCÞ H 0ðC;on2
C Þ H 0ðB;on2

CjBÞ������! ���������!!

As in the previous example, we know that if the map q is surjective, then the map
p is surjective as well, but this contradicts the assumption of B being hyperelliptic
by [12, Corollary 1.4].

4. Castelnuovo’s theorem for reduced curves

In this section we prove a generalization of Castelnuovo’s theorem for reduced
curves.

In the proof we will apply Lemma 2.12 and the following Proposition, which
is a Cli¤ord-type result for line bundles of high degree.

Proposition 4.1. Let C be a projective reduced curve with planar singularities
and L a line bundle on C such that

degLjB b 2paðBÞ þ 1 for every BHC:

If S is a cluster contained in a generic section H a H 0ðC;LÞ then

h0ðC;ISLÞ þ h1ðC;ISLÞ < h0ðC;LÞ:

Proof. Notice at first that H 1ðC;LÞ ¼ 0 and jLj is very ample by Proposition
2.5. Therefore a generic hyperplane section consists of degL smooth points.
Moreover by Riemann-Roch theorem we have

h0ðC;ISLÞ þ h1ðC;ISLÞ < h0ðC;LÞ , h0ðC;ISLÞ < h0ðC;LÞ � 1

2
degS

, h1ðC;ISLÞ <
1

2
degS
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We argue by induction on the number of irreducible components of C. Sup-
pose that C is irreducible or that the statement holds for every reduced curve with
fewer components of C. If C is disconnected the statement is trivial, hence we
may assume that C is connected. If h0ðC;ISLÞ ¼ 0 or h1ðC;ISLÞ ¼ 0 the result
is trivial too, thus we may assume h0ðC;ISLÞ > 0 and h1ðC;ISLÞ > 0.

Suppose at first that there exists a proper subcurve BHC such that

H 1ðC;ISLÞGH 1ðB;ISLjBÞ:

By induction we have that h1ðC;ISLÞ < 1
2 degSjBa

1
2 degS and we may con-

clude.
If there is no subcurve BHC as above (e.g. when C is irreducible) we can

easily deduce from Proposition 2.4 that there exists a generically surjective map
ISL ,! oC , hence we may assume that there exists a subcanonical cluster Z such
that

ISLGIZoC :

Since S is contained in a generic section of H 0ðC;LÞ it is a Cartier divisor, hence
Z is a Cartier divisor too.

If C is 2-connected we apply Theorem 2.7 and we conclude since

h0ðC;ISLÞ ¼ h0ðC;IZoCÞa paðCÞ �
1

2
degZ

¼ 1

2
degLþ 1� 1

2
degS < h0ðC;LÞ � 1

2
degS:

If C is 2-disconnected, we can find a decomposition C ¼ C1 þ C2, such that
C1 � C2 ¼ 1 and C1 is 2-connected (see [7, Lemma A.4]). Thus we consider the
following exact sequence:

0! IZ jC1
oC1
! IZoC ! ðIZoCÞjC2

! 0:

We know by induction that

h0ðC2; ðIZoCÞjC2
Þ ¼ h0ðC; ðISLÞjC2

Þ < h0ðC2;LjC2
Þ � 1

2
degSjC2

¼ �paðC2Þ þ 1þ degLjC2
� 1

2
degSjC2

:

We apply Theorem 2.7 to IZ jC1
oC1

since the single point C1BC2 is a base point
for joC j, hence the space H 0ðC1;IZ jC1

oC1
ÞGH 0ðC1;IZ jC1

oCjC1
Þ contains an

invertible section, that is ZjC1
is a subcanonical cluster. Thus

h0ðC1;IZ jC1
oC1
Þa paðC1Þ �

1

2
degZjC1

¼ 1

2
degLjC1

� 1

2
degSjC1

þ 1

2
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and we conclude since

h0ðC;ISLÞ ¼ h0ðC;IZoCÞa h0ðC2; ðIZoCÞjC2
Þ þ h0ðC1;IZ jC1

oC1
Þ

< �paðC2Þ þ 1þ degLjC2
� 1

2
degSjC2

þ 1

2
degLjC1

� 1

2
degSjC1

þ 1

2

a h0ðC;LÞ � 1

2
degS: r

Theorem 4.2. Let C be a projective reduced curve with planar singularities and
let L be a line bundle on C such that

degLjB b 2paðBÞ þ 1 for every BHC:

Then the product map

Symn H 0ðC;LÞ ! H 0ðC;LnnÞ

is surjective for every nb 1.

Proof. Notice at first thatH 1ðC;LÞ ¼ 0 and L is very ample by Proposition 2.5.
If nb 2 the map

H 0ðC;LnnÞnH 0ðC;LÞ ! H 0ðC;Lnðnþ1ÞÞ

is surjective by [8, Proposition 1.5] since H 1ðC;Lnn nL�1Þ ¼ 0. In order to
prove the theorem we check that the map in degree 2 is surjective:

Sym2 H 0ðC;LÞ ! H 0ðC;Ln2Þ:

To this aim we consider a generic hyperplane section S ¼ divL and the following
commutative diagram

H 0ðC;ISLÞnH 0ðC;LÞK�! H 0ðC;LÞnH 0ðC;LÞ �! H 0ðS;OSÞnH 0ðC;LÞ???y
???y  

��
��

r

 
��

��

H 0ðC;ISL
n2Þ H 0ðC;Ln2Þ H 0ðS;OSÞK���������! ���������!!

 ��
����

����
�

p

Notice that the first column is surjective since ISLGOC while the second row is
exact since H 1ðC;ISL

n2ÞGH 1ðC;LÞ ¼ 0. A simple diagram chase shows that
the map r is surjective if and only if the map p is surjective.

It is h0ðC;IS0
LÞ þ h1ðC;IS0

LÞ < h0ðC;LÞ for every subcluster S0 JS by
Proposition 4.1, hence the map p must be surjective by Lemma 2.12. r
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Remark 4.3. If C is numerically connected our result implies that the em-
bedded curve jLðCÞHPH 0ðC;LÞ� is arithmetically Cohen-Macaulay.

Remark 4.4. At present, we do not know if the result holds for non-reduced
curves with similar assumptions on the multidegree of the line bundle L. We
have partial results under some assumptions on the connectedness of the curve
and the self-intersection of its components. Notice that in [8] it has been shown
to be true for adjoint divisor.

Since one of the main applications of this result concerns the analysis of mod-
uli space of curves (see [3]) we have preferred to keep a simple statement under
this strong assumption.
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