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Functional Analysis — Spectral analysis and long-time behaviour of a Fokker-
Planck equation with a non-local perturbation, by DOMINIK STURZER and ANTON
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ABSTRACT. — In this article we consider a Fokker-Planck equation on R? with a non-local, mass
preserving perturbation. We first give a spectral analysis of the unperturbed Fokker-Planck operator
in an exponentially weighted L?-space. In this space the perturbed Fokker-Planck operator is an
isospectral deformation of the Fokker-Planck operator, i.e. the spectrum of the Fokker-Planck
operator is not changed by the perturbation. In particular, there still exists a unique (normalized)
stationary solution of the perturbed evolution equation. Moreover, the perturbed Fokker-Planck
operator generates a strongly continuous semigroup of bounded operators. Any solution of the
perturbed equation converges towards the stationary state with exponential rate —1, the same
rate as for the unperturbed Fokker-Planck equation. Moreover, for any k € N there exists an
invariant subspace with codimension & (if ¢ = 1) in which the exponential decay rate of the semi-
group equals —k.
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1. INTRODUCTION

This work deals with the analysis of the following class of perturbed Fokker-
Planck equations:

(1.1a) 0f =V - (Vf+xf)+Of = Lf + Of
(1.1b) S0 = 9(x),

where 1 > 0, x € R? with d € N, and f = f(t,x). Here, d,f denotes the time de-
rivative. The linear, non-local operator ® is given by a convolution ®f = 9 x f
with respect to x, where its kernel 4 is assumed to be time-independent and with

Zero mean, i.e. / 3(x)dx = 0. Also, it is assumed to satisfy certain regularity
Rd

conditions, which will be specified in the Sections 3 and 4.

The above equation is mainly motivated by the quantum-kinetic Wigner-
Fokker-Planck equation, describing so-called open quantum systems, see [3, 4].
It is of the form
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Ot = Vyy - (Vi + (VavA + Fu) + E[V]u

“|z=0 = Uo,

where u = u(t,x,v) is the phase-space quasi-density, with x,v € R¢ denoting
position and momentum. The given coefficient function Vx4 + F is affine in
(x,v) and models the confinement and friction of the system. E[F] is a non-local
operator (convolution in v) determined by an external potential V' (x). One ques-
tion of interest in this problem is to show the existence of a unique normalized
stationary state, and to prove uniform exponential convergence of the solution
to the stationary state. In the case of a quadratic confinement potential with a
small perturbation these questions have been answered positively in [3], see also
[2] for an operator-theoretic approach. However, from the physical point of view,
the restriction to nearly quadratic potentials seems quite artificial. This raises the
question if the results can be extended to a more general family of (confining)
potentials. In order to gain insight into what can be expected and what mecha-
nisms are responsible for the actual behaviour, we shall consider here (1.1) as
a similar, yet simplified model, which still preserves the essential structure. The
non-local operator Z[V], which is a convolution in v, is replaced by a convolution
with kernel 3. This represents a first step towards the full analysis.

Other examples of non-local perturbations in Fokker-Planck equations appear
e.g. in the linearized vorticity formulation of the 2D Navier-Stokes equations (cf.
(12)—(14) in [12]) or in electronic transport models (cf. the linearization of equa-
tions (1), (6), (7) in [20]).

For the unperturbed equation (1.1), i.e. the case 3 =0, the natural func-
tional setting is the space L2(x '), with the weight function x(x) = exp(—|x|*/2).
Here, u/(27) 92 is the unique steady state with normalized mass, i.e.

u/ (Zn)d/z dx =1, and all solutions to initial conditions with mass one
Rd

decay towards this state with exponential rate of at least —1, see e.g. [5]. How-
ever, if ® is added, the situation often becomes more complicated. One reason
is that many non-local (convolution) operators are unbounded in the space
L*(u~"). This can be illustrated for the simple example with the convolution
kernel 3 =0_, —J,, « € R, in one dimension. It corresponds to the operator
(Of)(x) = f(x+a) — f(x —a), x € R, which is unbounded in L*(x"). In this
case one can show (with an eigenfunction expansion) that every (non-trivial) sta-
tionary state of (1.1) is not even an element of L?(x~!). Thus, this space is not
suitable for our intended large-time analysis, since it is “too small”’. This moti-
vates to consider (1.1) in some larger space L*(w), with a weight @ growing
slower than x~!. Due to the previous discussion we shall choose ® such that
a large class of non-local operators becomes bounded. But the new space
should not be “too large” either, since we would risk to loose many convenient
properties (like the spectral gap) of the unperturbed Fokker-Planck operator. In
L*(R%), e.g., the spectrum of L is the left half plane {4 € C : Re A < d/2}, cf. [21].
It will turn out that w(x) := cosh f|x|, # > 0, is a convenient choice. Moreover,
there is a useful characterization of the functions of L?(w) in terms of their
Fourier transform, see Lemma 2.2.



SPECTRAL ANALYSIS AND LONG-TIME BEHAVIOUR OF A FOKKER-PLANCK EQUATION 55

Here we focus on the Fokker-Planck operator in exponentially weighted
spaces. For L?-spaces with polynomial weights, the spectrum of L was studied
in [11]. Furthermore, our results complement the analysis of Metafune [21],
where a larger class of Ornstein-Uhlenbeck operators is investigated in un-
weighted L”-spaces with p > 1.

This paper is organized as follows. Since the analysis in the d-dimensional case
is very similar to the one-dimensional case, we first discuss (in Sections 2 and 3)
the one-dimensional problem in great detail, to keep the notation and arguments
more concise. In Section 4, we generalize the proofs to higher dimensions.

In Section 2 we investigate the one-dimensional Fokker-Planck operator in
L*(w) (denoted by £), and show that its spectrum is —Ny, and consists entirely
of eigenvalues. All eigenspaces are one-dimensional, in particular the stationary
state is unique up to normalization. Moreover, the operator £ generates a Cp-
semigroup of uniformly bounded operators on L?(w), and any solution of (1.1)
for ® = 0 converges towards the (appropriately scaled) stationary solution with
exponential rate of at least —1. More generally, for any k € Ny there exists
an L-invariant subspace of L?(w) with codimension k in which the associated
semigroup has an exponential decay rate of —k. Section 3 is dedicated to the per-
turbed Fokker-Planck operator £ + ® in one dimension. Using the compactness
of the resolvent of £ and ladder operators we show that £ + ® is an isospectral
deformation of the unperturbed operator £, i.e. o(L+ ®) = (L) = —Njy. The
spectrum still consists only of eigenvalues with one-dimensional eigenspaces,
which ensures the existence of a unique normalized steady state of (1.1) in
L?*(w). On a formal level this isospectral property of £+ @ can be understood
as follows: In the eigenbasis of £, ® corresponds to a strictly lower triangular
(infinite) matrix. Finally we show that the semigroup generated by £+ © still
has the same decay properties as the one generated by L. In particular the solu-
tions of (1.1) with normalized mass decay to the stationary state with exponential
rate of at least —1. In Section 5 we present simulation results, which illustrate the
decay rates obtained before.

2. THE FOKKER-PLANCK OPERATOR IN WEIGHTED L2-SPACES

Here and in Section 3 we shall consider the one-dimensional Fokker-Planck
equation, i.e. d = 1. For the Fourier transform we use the convention

Feef = f(&) = /[R{f(X)e‘ix‘f dx.

With this scaling we may identify £(0) with the mass of f.
For an analytic function f on a simply connected domain Q we denote the
line integral of f along a path from « to b inside of Q by

S(Qde

a—b
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In order to properly define complex powers, we specify a branch of the logarithm.
For ¢ e C\{0} we set In¢ := log|¢| +iargé, with argé € [—%,3F), and log(-) is
the natural logarithm on R*. For { € C we may then define & := exp({In(&)).

On a domain Q < R we call a real-valued function w e L} _(Q) a weight
function if it is bounded from below by a positive constant a.e. on every compact
subset of Q. We denote the corresponding weighted L”-space by L?(Q;w) =
L?(Q;w(x)dx), where 1 < p < oo. The space L*(Q; w) is equipped with the inner
product

<f7g>Q,w = /Qfngxv

and the norm || - ||

Also, we introduce weighted Sobolev spaces. For two weight functions wy
and w; and 1 < p < oo, the space W!'P(Q;wp,wi) consists of all functions
f € LP(Q;wy), whose distributional derivative satisfies /' € L?(Q;w). We equip
the space W12(Q; wy, w;) with the norm

2 2 1
||f||Q,\v0,11f1 = (”f”Q,wO + ”f/HQ,wl)27

see [18]. If Q = R we shall omit the symbol Q in these notations.

Furthermore, we present some definitions and properties concerning un-
bounded operators and their spectrum. Let X, X be Hilbert spaces. If X is
continuously and densely embedded in X, we write X — X, and X —<— X indi-
cates that the embedding is compact. €(X) denotes the set of all closed operators
A in X with dense domain D(A). The set of all bounded operators 4 : X — X
is #(X,X); if X =X we just write Z(X). A closed, linear subspace ¥ < X is
said to be invariant under A € €(X) (or A-invariant) iff D(A) N'Y is dense in Y
and ranA|, < Y, see e.g. [1]. For an operator 4 € ¢(X) its range is ran A4,
its null space is ker 4, and its algebraic null space is M(4) :=J,., ker 4*.
For any { e C lying in the resolvent set p(4), we denote the resolvent by
R4(() :== ({ — A)~". The complement of p(A4) is the spectrum a(4), and 7,(4) is
the point spectrum. For an isolated subset ¢’ = g(A4) the corresponding spectral
projection P, is defined via the line integral

1
(2.1) Pyo = z_m]ér R4(0)d¢,

where I is a closed Jordan curve with counter-clockwise orientation, strictly
separating ¢’ from a(A)\o’, with ¢’ in the inside of I" and o(4)\o¢’ on the outside.
The following results can be found in [17, Section II1.6.4] and [29, Section V.9]:
The spectral projection is a bounded projection operator, decomposing X into
two A-invariant subspaces, namely ranP, , and kerP, ,.. This property is re-
ferred to as the reduction of A by P4 ,. A remarkable property of this decompo-
sition is the fact that o(A| =0’ and o(A|i.,p, ,) = 0(4)\a’. Most of the

ranPA_ﬂ/)
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time we will be concerned with the situation where ¢’ = {1}, i.e. an isolated point
of the spectrum. For further results see the Appendix A.

A final remark concerns constants occurring in estimates: Throughout this
article, C denotes some positive constant, not necessarily always the same.
Dependence on certain parameters will be indicated in brackets, e.g. C(¢) for
dependence on 7.

We begin our analysis by investigating the unperturbed one-dimensional
Fokker-Planck operator Lf := f” + xf’ + f in various weighted spaces. The nat-
ural space to consider L in is E := L*(1/u) with u(x) := exp(—x?/2). We use the
notation || - ||z for the norm and <-, - ) for the inner product. Writing the opera-

tor in the form
v=((5)w)

shows that L| cr is symmetric and dissipative in E. Then, the proper definition
of L is obtained by the closure of Lj oo and this procedure yields its domain
D(L) c E. In the subsequent theorem we summarize some important properties
of L in E, see [21, 5, 16]. Since L in E is isometrically equivalent to the (dimen-
sionless) quantum harmonic oscillator Hamiltonian H = —A — 1/2+ x%/4 in
L?*(R), we transfer many results of H (see [23] and [26, Theorem XII1.67]) to L.
For the properties of the spectral projections, see also [17, Section V.3.5].

THEOREM 2.1. The Fokker-Planck operator L in E has the following properties:

i wit =felE:f"+xf"+f¢€ is self-adjoint and has a compact

(i) L with D(L) = {f € E: "+ xf'+ f € E} is self-adjoint and h p
resolvent.

il e spectrum is (L) = —Ny, and it consists only of eigenvalues.

ii) The sp is a(L N di ] ly ] [

(ili) For each eigenvalue —k € a(L) the corresponding eigenspace is one-
dimensional, spanned by ;. := \/Lz—nHk,u, where

k
HL(x) = 1) S )

is the k-th Hermite polynomial.
(iv) The eigenvectors (1y.) <, Jorm an orthogonal basis of E.
(v) There holds the spectral representation

V2n
L= Z —kIlp i, where Il j := T:uk<'nuk>E

kENo

is the spectral projection onto the k-th eigenspace.

(vi) The operator L generates a Cy-semigroup of contractions on Ey, for all k € N,
where Ei :=ker(Ilp o+ -+ 1), k =1, and Ey:= E are L-invariant
subspaces of E. The semigroup satisfies the estimate

||etL|Ek||;%(Ek) <e M VkeN.
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Hence, the Fokker-Planck equation d,f = Lf has a unique stationary solution
with normalized mass, given by y,. Its orthogonal complement E; consists of all
elements of E with zero mass. And according to Result (vi) for kK = 1, any solu-
tion of 0,f = Lf with unit mass converges towards g, with exponential rate of at
least —1 in the E-norm.

In order to analyze the perturbed equation (1.1), we quickly find that E is
not appropriate. For example, for the simple (unbounded) perturbation Of (x) :=
f(x+0a)— f(x—a), « € R, we can explicitly compute the stationary solution f
of (1.1) and expand it with respect to the orthogonal basis (u;); . of E. The
obtained Fourier coefficients form a divergent sequence, and so fy ¢ E. Therefore
we consider some larger space L*(w) instead of E, with a weight function
growing more slowly than x~!. Thereby we choose ® such that ® becomes a
bounded operator in L?(w) for a large family of convolution kernels. E.g., one
can easily verify that ©f (x) = f(x + a) — f(x — a) is bounded in L?(exp(f|x|”))
iff y €[0,1] (for f > 0). At the same time, w should grow fast enough such
that L still has a spectral gap in L?(w), i.e. there exists some a < 0 such that
{{eC:Rel>a}na(L)={0}. These requirements suggest that exponentially
growing weights would be good candidates, growing as fast as permissible while
still admitting a large class of non-local operators. So, for the rest of this paper,
we choose the weight function w(x) = cosh fix for some fixed £ > 0, and use the
corresponding space & := L?(cosh fx). As we will see in the following, the space
£ is very convenient also for technical purposes, since it can easily be character-
ized using the Fourier transform.

LeEMMA 2.2. For f € &£ we have the following properties:

(i) There holds f € & iff its Fourier transform f possesses an analytic continu-
ation (still denoted by f) to the open strip Q) := {z € C: [Imz| < /2},
which satisfies

(2.2) sup || (- +16)|| 12y < 0.
\b}|7</[i<2

(ii) For & € Rand |b| < B/2, [ is explicitly given by f(& + ib) = Foee(€Pf(x)).
(iii) The following function lies in L*(R):

23) e f(exi

N

) = ]—}Hé(eigxf(x)), forae. ¢ eR.

Moreover, b — f(- + ib) lies in C([—f/2,8/2]; L*(R)). In particular (2.3) is
a natural continuation of f from Qg to the closure Qg).

The proof is deferred to the Appendix C. In the following, f always de-
notes the extension of the Fourier transform of f" € £ according to Lemma 2.2
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(i1)—(iii). Using this convention, we introduce an alternative norm on the space
&

(2:4) 0 = 1 C+B/2) 172w + 17 C =B/ 7).

which is equal to 4n||f||fu.
Furthermore, we notice that there holds a Poincaré-type inequality in &:

LemMmA 2.3 (Poincaré inequality). The inequality
(2.5) 1/l < Coll SNl
holds for all f € W'2(w,w), where Cg > 0 is a constant only depending on p.

PrROOF. Use |f/(¢)| = [E£(&)], and |€] > /2 on |[Im¢&| = B/2. Then apply the
norm || - [f,- O

Our next step is to properly define the Fokker-Planck operator in £. To this
end we first define the distributional Fokker-Planck operator £f := f” + xf' + f
for f e 9.

LEMMA 2.4. Let{ e C withRel > 1 + /2, and consider the resolvent equation

((—=2Q)f =g for f,g €& Then there exists a constant C > 0 independent of f, g,
such that

(2.6) 1/ 1l + 1/, < Cllglleys
where w(x) = (1 + |x|)w(x).

PROOF. Let us fix { € C with Re( > 1 + f2 /2. Now we consider the resolvent
equation ({ — Q)f =g for f,g € £ = &'. Applying (-, />, to both sides yields:

[ Faoax= [ arfo- '+ ) Foax
R R
= / 1 'Po+ |f]?(xo' + (o) + f'fo’ + ff'xodx.
R
Next we take the real part:
7 12 2 / 1 LN
27) Re [ fgodv= [ I+ 7P’ + Re(@w) + 312 (' + xo) dx
R R
= [ 1P+ 31/ P
R

with @ := —®” + x0’ + (2Re{ — 1)w. For our choice w(x) = cosh fx we ob-
tain @(x) = (2Re{ — 1 — *)w(x) + xBsinh fx. For Re{ > 1 + /2, @ is strictly
positive. Thus, @ is a weight function, and it has the asymptotic behaviour
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@(x) ~ f|x|o(x) as x — +oo. Applying the Cauchy-Schwarz inequality to the left
hand side of (2.7) yields

I . ,
SIA1E + 17116 < 11w llglo

For the left hand side we use w(x) < @(x) and the Poincaré¢ inequality (2.5) to
obtain

1 r, .,
- 4 — < .
5 1Nl + G 1/ e < llgll,
The result follows, since the weight functions @ and w define equivalent norms.
O

COROLLARY 2.5. The operator (L — 1 — ﬂ2/2)|cg»<R) is dissipative in &.

PrROOF. We use the result (2.7) for { =1 + /2. We then estimate the right
hand side for /" e Cj°(R):

Re [ F(L-0rdv< (ot 3)IfI2 <o

where we used the Poincaré inequality and @ > w. O

The above results can be used to establish the proper definition of the Fokker-
Planck operator in &:

LeEMMA 2.6. The operator L|cg(R) is closable in E. Its closure L := clg L|cgc(R)
has the domain of definition D(L) ={f € &:8f € £}. For f € D(L) we have
Lf = 2f.

The proof is deferred to the Appendix C. It also yields the following result:

COROLLARY 2.7. The resolvent set p(L) is non-empty. It contains the half-plane
{{eC:Rel>1+p%/2}.

As it turns out, the resolvent estimate (2.6) is strong enough to prove compact-
ness of the resolvent. To this end we shall use the following simplified version of
[22, Theorem 2.4]:

LEMMA 2.8. Let w,wo, w; be weight functions, and (£,), . a monotonically in-
creasing sequence of subsets of R that converges to R. Assume that for all n € N
there holds the compact embedding W'2(Q,; wo, wy) << L*(Qu;w). Then

W2(wg,wy) = L*(w) < lim sup 1/ I\, = 0-
P gy <1 ’
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From this we deduce immediately the following lemma:

LEMMA 2.9. Let w, wo, wi be weight functions. If lim .., w(x)/wo(x) = 0, then
the compact embedding holds:

W2 (wo, wi) s L2 (w).
This compact embedding allows to prove that R;({) is compact:

THEOREM 2.10. For any (€ p(L) the resolvent operator Rp(():E& — & is
compact. In particular (L) = a,(L), i.e. the spectrum of L consists entirely of
eigenvalues.

PROOF. To begin with, we fix some { € C with Re( > 1+ f* /2. According to
Lemma 2.4 we have the estimate (2.6), which we can reformulate: There exists a
constant C > 0 such that

1ROl w0 < Cllglly Vg € €.

Hence R;({) € #(E, W' ?(w,w)). Now there holds the asymptotic behaviour
o(x)/w(x) ~1/|x| — 0 as x — +oo. Therefore we may apply Lemma 2.9
for w=w; =w and wy=w, which yields the compact embedding
W12(w, ) << &. Thus, the resolvent R;({) € B(E) is compact for Re! >
1+ $%/2. But this already implies the compactness of R.({) for all { € p(L),
cf. [17, Theorem II1.6.29]. The same reference confirms that (L) = g,(L). 0

With these preparations we can now characterize the spectrum of £:

ProPOSITION 2.11. We have a(L) = —Ny. Each eigenspace is one-dimensional,
and for k € Ny we have ker(k + L) = span{ x, }.

ProOOF. We consider the Fourier transform of the eigenvalue equation
((—2)f =0 for f e & The general solution of the Fourier-transformed equa-
tion on the real line reads:

(2.8) f&)=Cop(O)E*, EeRE

For details see the computation in the beglnmng of the Appendix B for
g=39=0. Since f € ¢, f has to be analytic in /5, see Lemma 2.2. With the
specification of the complex logarithm in Section 2 we may extend both parts of
f from (2.8) analytically to the complex half-planes {Re¢ > 0} and {Re & < 0}
respectively. However, if { € C\Z, the two extensions do not meet continuously
at the imaginary axis, thus f is not analytic in Qg (except for the trivial case
Cy =0). If { e Z, we obtain continuity of / at the imaginary axis (Wlthout
E=0)iff C_ = C+ But for { e N, f still has a pole at =0, thus it is not
analytic. In the remaining case { € —Nj the function f from (2.8) has an ana-
lytic extension to C, when we choose C_ = C,. So f € £ solves the eigenvalue
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equation for { iff { € —Njy. And according to (2.8) the eigenspaces are still
spanned by the 1, k € N, since i, (&) = (ié)k,u(é). a

The main difference to L in E is that the eigenfunctions do not form an
orthogonal basis any more. However, we are still able to transfer the concept of
the L-invariant subspaces E; < E to £.

PROPOSITION 2.12. For every k € N we have the following facts:

(i) The subspace & := clg Ey is L-invariant, and o(L|, ) = {—k,—k —1,...}
(i) The spectral projection I . of L associated to the eigenvalue —k satisfies

kerIg x = Erp1 @ span{yy_y,..., 4y}, ranlly, = span{zpy}.

Moreover, ker Iz o = & and ranTl; o = span{y}.
(iti) There holds € = & @ span{y_y, .-, 1o}

Proor. Since o(L) =a(L), and R.({) = R({) for all { € C\(—Ny), we con-
clude from (2.1) that for any ¢’ < ¢(£) there holds Il; ,, < Il ,, and they
are bounded projections in E and &, respectively. For ¢’ :={0,...,—k + 1},
ke N, we apply Lemma C.1 from the appendix: ranIl; , = clgranIl; ,» =
clespan{yg, ..., 1} =span{yy, ..., } and kerIl; , =clgkerIl; , =
clg Ej =: &. This shows (i). Since the projection Il , is bounded, the range
and kernel indeed represent a decomposition of &, thus we also obtain Result (iii).
For (ii) we use the same arguments as before, with ¢’ = {—k} instead. O
Next we characterize the subspaces &.

PROPOSITION 2.13. For k € —N the subspace & is explicitly given by

(2.9) 8k:{fe8:/[Rf(x)x-/dx:0,0£j£k—l}.
Furthermore, there holds

(2.10) Se={fe&: fV0)=0,0<j<k—1},
where fU) denotes the j-th derivative of the Fourier transform of f.

ProoF. The functionals i; : f — / f(x)x/dx, j e N, are continuous in €. We
R

define lﬁj =Yg Let fe By = {tos - 11} The orthogonality condition
then reads

0= Lude = [ S0 dx == [ rmar v << k-1,
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which is equivalent to y,(f) = --- =¥, _,(f) = 0. Applying Lemma C.2 from
the appendix with X = £ and X = E yieldscle Ex = {f € £: (/) = 0,0 < j <
k — 1}, which is equal to & by definition. This proves (2.9).

The second equality (2.10) immediately follows from

/R F(0)x) dx = Fe_ o[£ (x)x7](0) = 179(0), ¥/ € No. -

REMARK 2.14. The representation (2.9) of the & also holds in polynomially
weighted spaces, which is shown in [11, Appendix A].

The final result of this section deals with the analysis of the semigroup (e’*),.,
generated by £ in £. We already know that L generates a Co-semigroup (e’f),_,
of bounded operators in E, and from [11, Appendix A] we get its representation
(for f € E):

2
(2.11) Foclef] = exp(—%(l - e’2I)> f(ee™), t>o.

This formula can be extended to f € &, yielding a family (S()),., of operators
in .

LEmMMA 2.15. The family of operators (S(t)),», given by (2.11) is a family of
bounded operators in E.

PROOF. In order to show that the operators S(¢) are bounded, we use the norm
Il -1l So we estimate || F[S(¢)f](¢+1f/2)]|, the estimate for the other term in
Il ll, is analogous:

(2.12)  |IFISOSC+i8/2)I2)

g : g )
< exp ("7 + ) 1 asnie- iy < exp( 5+ 1) A1

So (S(7)),5¢ is a family of bounded operators in &, and there exists a constant
M > 0 with

IS(0)] ) < M2, 1>0. O
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LEMMA 2.16. The operator L is the infinitesimal generator of the Cy-semigroup
(S(2)),59 in &

PROOF According to [24, Theorem 1.4. 5] Corollary 2.5 implies that £ —1—
B2 = Clg(L|C¢ —1—4%/2) is dlss1patlve in £. From Proposition 2.11 we also
know that any ¢ € C with Re{ > 0 lies in p(L). So we can apply the Lumer-
Phillips Theorem [24, Theorem 1.4.3] and find that £ generates a Cy-semigroup
(e'%),- of bounded operators. Since ¢’* and S(7) are both bounded in £ and
coincide on the dense subspace D(L) = &, we get e’“ = S() in € for all > 0.

O

As a consequence we write e’* := S(¢) for the semigroup generated by £, and
the representation (2.11) holds for all f € €£.

PROPOSITION 2.17. For every k € Ny we have:

(i) The space & is invariant under the family (e“), .
(ii) There exists some Ci > 0 such that

||em|£k||.%(gk) < Cke_kt, t>0.

PrROOF. The closed subspaces & are L-invariant, so they are also invariant
under (e%4),. .

In order to show (ii), we use the first line of (2.12) and make the additional
assumption ¢ > 1:

(2.13) |1F[e™f1(- +iB/2) 72w,
* (e +ille)|

< [ erig)er (¢ +i8]e)*

Here we used the inequality § < 1—e % <1 for 7 > 1. In the following we use
the Poincaré inequality (2.5):

d¢

([¢ +iLle) ‘ ( ; . _f(é)D
=||Fc|exp(ze'x ]-'HY —
H [&+i4] L"«([Ri) f (2 ) & L% (R;)
< exp(ge"x) ]-"glx lff(f)]
LI(R,)
S@Oﬂ;F§1
<cm<@ﬁagk§4 = I/
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Thereby, the constant C(7) is given by

=\ [ exp(fex)
c= [ o o

which is uniformly bounded for # > 1. Inserting this result in (2.13) yields for
t>1

2k
Etib

2dé

. ﬁ K 7£
IFA1+38/2) ey = CFe 113 [ o
= Ce | ]2

Thus there exists a constant C > 0 such that [|e’“f ||, < Ce ¥ f||,, for all z > 1.
From Lemma 2.15 we also know that the semigroup is uniformly bounded for
t € 0,1], so altogether we get the desired decay estimate for the semigroup in
gk- a

Before we turn to the perturbed Fokker-Planck equation, we summarize our
results so far:

THEOREM 2.18. Let w(x) := cosh fx for some f > 0. Then the Fokker-Planck
operator L| ¢ is closable in & = L*(w), and its closure L = clg L| ¢ g has the
following properties: ’

(i) The spectrum satisfies o(L) = —No, and ker(L+ k) = span{u,} for any
k € No. The eigenfunctions satisfy the relation y, = ", the k-th derivative
of Ho.

(i) The resolvent R;({) is compact in & for all { ¢ —N.

(i) For any k € Ny the closed subspace & := clespan{y, w y,...} is an L-
invariant subspace of £, and span{ w, . . ., t,_, } is a complement. In particular
Ey=¢E.

(iv) The spectral projection Il j to the eigenvalue —k € —Ng fulfills ranIl; ; =
span{uy, } and ker I = Ep1 @ span{yy_y, ..., 1y} for k € Ny.

(V) For any k € Ny the operator L generates a Cy-semigroup on &, and there
exists a constant Cy > 1 such that we have the estimate

lele [l se,) < Cee™, V0.

B(
REMARK 2.19. More generally, the results of Theorem 2.18 hold for all weight
functions w(x) = exp(f|x|’) with either y € (0,2) and >0 or y=2 and
pe (O,%] This can be shown by using the results from [13], where an operator
decomposition method is used to transfer spectral properties of operators from a

Banach space to a larger Banach space. For a detailed discussion of the applica-
tion of [13], see [27].
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REMARK 2.20. The sequence of eigenfunctions (4 ); .y, is an orthogonal basis
of E. In the larger space &, the linear hull span{y, : k € Ny} is still dense, due
to the continuous embedding £ — &.

Also, each f € & can (formally) uniquely be decomposed according to the
sequence of spectral projections (Ilg k), .y, see the proof of Proposition 3.9.
But the obtained series may diverge in £. As an example we consider f(x) :=
exp(—|x|) € L*(coshx). Since f is symmetric, we have Il f = 0 if k is odd.
For k = 2n, n € Ny, one can show the asymptotic behaviour for n — co:

2n)!
M2, = o LY,

where we use the explicit representation for the Hermite polynomials H», from
(5.5.4) in [28], and the asymptotic expansions for Hy, given in [28, Theorem
8.22.9]. Therefore, the formal series ), Ilz 2,/ is divergent in €. So the se-
quence (44 );cp, is neither a Schauder basis nor a representation system of £.
However, the sequence (1 /||t lg)ien, 1 still a Bessel system, see [7, 6] for the
definitions.

3. ANALYSIS OF THE PERTURBED OPERATOR

So far we have discussed the one-dimensional Fokker-Planck operator £ in
£ = L*(w), with w(x) = cosh ffx. In this section we investigate the properties of
the perturbed (one-dimensional) operator £+ @ in &, and we shall summarize
the results in Theorem 3.19. We begin by specifying the assumptions we make
on the perturbation ®.

(C) Conditions on @: We assume that @f = 9« f, for f € £, where 9 is a tem-
pered distribution that fulfills the following properties in Qg/, for some f > 0:

(i) The Fourier transform g can be extended to an analytic function in g/,
(also denoted by 9) and § e L*(Qg)5).
(i) It holds 9(0) = 0, i.e. has zero mean.

(i) The mapping ¢ — Re / 3 (&s)/sds is essentially bounded in Q5.

REIMARK 3.1. If the conditions (C)(i)—(ii) hold for 9, then the mapping & —
/ 9(&s)/sds is analytic in Qgp/». This becomes clear when writing 9(&s) /s =
é‘%(és) /(&s), which is analytic for all s € (0, 1] alnd can be continuously extended
to Sl/(O)é for s = 0. The analyticity of & — 9(&s)/sds on Qg then follows
from [9, Theorem 4.9.1]. 0

LEMMA 3.2. There holds ©f € € for all f € & iff the condition (C)(i) holds.
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ProoOF. Clearly, (:)7 = 9f is analytic in Qg for f € £. According to Lemma 2.2
there holds ®f € & iff

(3.1) sup [[(97)(- + D)l 2y < 0,
Ipl<p/2

where we use @/)7 = @f . Now we apply Holder’s inequality and find that (3.1)
holds for all f e & iff 3 satisfies (C)(i). O

As a consequence of the above lemma and (3.1), the product 9f itself is the
Fourier transform of an element of £. So we may define (3f)(- +i8/2) € L(R)

for f e & according to (2.3) whenever  satisfies (C)(i). With this we obtain ac-
cording to Lemma 2.2 (iii):

(3.2) b (9)(- +ib) € C([-B/2,B/2); LA(R)).

COROLLARY 3.3. The convolution ® is bounded in £ if the condition (C)(i)
holds.

PrOOF. We apply the norm (2.4) to ®f. The Fourier transform turns the convo-
lution into a multiplication, so we get according to (3.2) and (C)(i)

s / 97— ip/2)Pde + / B +ip/2) de

= tim | [ 137 - )P o+ [ 197+ iv)ag

b/ B2

< 19017 l'm/A—'b2d+/A+'b2d}
1900, Jim, | [ 1766 = tPac+ [ 17 +in)Pas

= 1312+ 0y /1. .

LeMMA 3.4. Under the assumption (C) there holds ® : £ — Er1 < Ek for every
k e N.

PROOF. According to Proposition 2.13, f" € & iff £ = 0 is a zero of f (&) of order
greater or equal to k. Because of the assumption 9( ) = 0 the Fourier transform
@f 9f has a zero at least of order k + 1 for f € &, s0 Of € Esy. |

COROLLARY 3.5. Let (C) hold, and k € Ny. Then the space & is an (L + O)-
invariant subspace of E.

Since the conditions (C) are not very handy for direct applications, the fol-
lowing lemma gives some criteria that are simpler to verify and sufficient for

(©).
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LEMMA 3.6. Let 8> 0 and w(x) = cosh fx, and assume that $ € &' fulfills

(i) 90) =0, o
(i) 9= 9w + Ip with Sy € W' (w>,w?) and 9p € D := {31140y a5 € C,
x; € R,n € N}, where 6,, denotes the delta distribution located at X;j.

Then Of = 9 x f satisfies (C) for this > 0.

PROOF. In general 9y,(0) and 9p(0) are not zero, so it is convenient to define

= 39w + My and 95 := 9p — My, where M := -90(0)/\/2_71’ Then 9* and
9 have zero mass, and we still have 9j, € W' (w?, w?). Since F_:d,, = Leiey
and aé) = \/ﬂ,u( &), it is immediate that 9y, satisfies (C)(i). In order to see
(C)(iii) for 37, we note that the integral occurring in this condition can be re-
written as the line integral from 0 to ¢:

/ 95(2) 4.
0—¢ Z

which is path-independent in C (and thus in Qg),), since :§l*) is an entire function
and has a zero at 0. Therefore the integral itself is analytic, and thus uniformly
bounded on every compact subset of C. Because of this, it is sufficient to show
uniform boundedness of this integral as || — oo in Qg/,. We outline this for
the map ¢ +— e % for any fixed x; € R and Re > 1, the case Rel < —1 is
analogous. Thereby we choose the following integration path (note that we may
start from z = 1, since the integral from 0 to 1 is a constant)

Re(¢) e—isz
/ dz| +
1 z
Re(&)x; efiz
/ dz
x; z

/)

e—lxj'Z e—lXjZ

<

dz

dz

1—¢ 2 /Re(f)ﬂRe(f)Jri Im(¢) 2

<

n gelx,-\ﬂ/;

The first integral is known to remain uniformly bounded as Re(¢) — +oo. For
estimating the second integral we used ¢ € €3, and Re¢ > 1. Since = V2mu
decays sufﬁmently fast in €p)», it is clear that the integral of /i(z)/z from 1 to &
also remains uniformly bounded as ¢ — +o0. Altogether, we conclude that .9*
satisfies (C)(iii).
Now we verify the same propertles for 9. Since 95, € L! (a)v) we may extend
j_to an analytic function in Qg)>, and there holds (2.3), cf. [8, Proposition
XVI 1.3]. The Fourier transform is a continuous map from L! (R) to By(R), i.e.
the continuous functlons decaying at infinity, equipped with the uniform norm.
Therefore, 95, € L' (w?) implies

195, [ (@) = SUp sup |9, (¢ +1b)| < sup ||8};/(x)ebx\|L1(R>
bl<§ €€ Ibl<

% Bx
<195 (x)e” ‘HL‘(R) < 0.
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So (C)(i) is satisfied. For (C)(iii) it is sufficient to show that for some ¢ > 0
and all ¢ e Qg), with [ > 1 there holds |97,(&)| < ¢/|&|, which is fulfilled if

F(9;,) € L7 (Qp)2). Analogously to the previous part of the proof we obtain
that this is satisfied if S*W elL! (wZ) We conclude that 9y, fulfills (C)(i) and
(C)ii) if 85, € W (w?, w?).

Finally, 19 satisfies the condition (C)(ii) due to the assumption (i). O

For the rest of the article, we shall always assume that @ satisfies the condition
(C) for some fixed f > 0, and we choose the weight function w(x) = cosh fx with
this particular f. The first result about the perturbed Fokker-Planck operator is
the following lemma:

LemMA 3.7. The operator L+ © has compact resolvent in E.

PrROOF. A bounded perturbation of an infinitesimal generator with compact
resolvent has compact resolvent again, see [10, Proposition III1.1.12]. Then the
result follows by combining the results of Theorems 2.10 and 2.18 for £, and
Corollary 3.3 for ©. O

As a consequence, the spectrum of £ + ® in £ is non-empty and consists only
of eigenvalues. In order to characterize the entire spectrum, we introduce the
following ladder operators', namely the annihilation operator

oc:51—>5:fH/xf(y)dy,

and its formal inverse o™ : f +— [, the creation operator.

LEMMA 3.8. The annihilation operator o~ has the following properties:

(i) For any k € N there holds o~ € B(Ek, Er—1).
(i) In & the operators ® and o~ commute.

(iii) Let f € &, ( € C such that (L+ ®)f = (f. Then

(L+0)(@f) = [+ D f)

ProOOF. First we show (i). The property o~ : & — &£x—; can be verified by using
the explicit representation (2.9) of the &, and integration by parts (first for
f € Cy(R)). The boundedness of o~ follows immediately from the Poincaré
inequality (2.5). Property (ii) holds true since ® is a convolution. For Result (iii)
one applies o~ to the equation (£L+ ®)f = (f, and uses the identity o~ (Lf) =
L(o"f) — o~ f and the Property (ii). O

1One of the best-known applications of ladder operators occurs in the spectral analysis of the
quantum harmonic oscillator, see e.g. [15].
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By using the annihilation operator, we are able to prove:
PROPOSITION 3.9. We have the following spectral properties of L+ ® in &:

(i) (L +©) = —N.
(i) For each k € Ny, the eigenspace ker(L + O + k) is one-dimensional.
(i) The eigenfunction fi to the eigenvalue —k € Ny is explicitly given by (up to a
normalization constant)

) 2 1
63 A=V h=hY wd o =ew(-5+ [ T, ceays

In particular, fy is the unique stationary solution with unit mass of the perturbed
Fokker-Planck equation (1.1) in one dimension.

PrOOF. In order to show (i) we first prove that (), .y &k = {0}. According to
(2.10) there holds

(N é={fe&:fN0)=0keNp}.

keN

But for f € £, f is analytic, and the only analytic function with a zero of infinite
order is the zero function, which proves the statement.

Thus, for any eigenfunction f, there exists a unique k € Ny such that
f € Ex\Ek41, which is the minimal k € Ny with the property I« f # 0. Apply-
ing this projection to the eigenvalue equation yields

M (L4 0)f = =k f =i f,

where we used Of € £, (cf. Lemma 3.4). Hence, the eigenvalue corresponding
to f satisfies { = —k. Thus o(L + @) = —N. If now f; is an eigenfunction with
eigenvalue —k, we can apply k times the continuous operator o~ to f, and create
eigenfunctions to all eigenvalues {—k + 1,...,0}. So either (L + ®) = —Nj or
a(L+ @) = {—ko,...,0}, i.e. there exists some minimal eigenvalue —ky. But the
latter scenario is actually not possible, because then the operator (£ + O)[g, |
would have empty spectrum in &y, 1, which contradicts the fact that it still has a
compact resolvent in x4 1.

In order to verify (ii) we recall from the first part of the proof that if f is
an eigenfunction of £+ @ to the eigenvalue —k, then k = argmin{Il; ;f # 0 :
j € Ng}. In particular,

(3.4) g if #0

for such an eigenfunction. Assume that dim ker(£ + ® + k) > 1 for some k € Nj.
Thus we may choose two linearly independent eigenfunctions to the eigenvalue
—k. Since dimranIl; ; = 1, we can find a linear combination of these two eigen-
functions, yielding an eigenfunction f which satisfies 1, f = 0. But this contra-
dicts (3.4) and hence dimker(£ + ©® + k) = 1.
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For the third result (iii) we consider the Fourier transform of the eigenvalue
equation (£ + O®)fr = —kfi for k € Ny. This yields the following differential
equation for f:

L) = (8(8) + k= ENil&).

Its general solution reads

. 5 -
fi(&) = Ckékq(é)’ with ¢(&) = exp(—%+/0 @ds),

-k

for all k € Ny, with ¢; € C. We may now fix ¢; := 1", which completes the proof.

d

REMARK 3.10. According to the results of Proposition 2.12 (ii) we may formally
write ® and £ as infinite-dimensional matrices with respect to the eigenfunctions
e, k € Ny. Due to the property © : & — &y shown in Lemma 3.4 this repre-
sentation of @ is strictly lower triangular. Furthermore, due to Theorem 2.18 (iii),
L is formally diagonal. And according to Proposition A.2 (L) = o(L£ + ©). This
situation resembles the finite-dimensional case, in which adding a strictly triangu-
lar matrix does not change the spectrum of a diagonal matrix.

LeMMA 3.11. The spectral projection Py of L+ ® corresponding to the eigen-
value —k € —Ny fulfills

ran Py = span{ fy}, ker Px = Ery1 @ span{ fi—1,..., fo},

with the eigenfunctions fi, ..., fo given in (3.3). Therefore, all singularities of
the resolvent are of order one, and for all k € Ny there holds M(L+ ® + k) =
ker(£L+ O + k).

PROOF. The set Ky := &1 @ span{ fx_1,..., fo} is invariant under £+ @, cf.
Corollary 3.5. Therefore the algebraic eigenspace satisfies M(L+ 0 +k) =
ker(L£ + ©® + k) = span{ f;.}, being the complement of K. In particular we
obtain the (£+ ®)-invariant decomposition & =Ky ® M(L+ O + k), and
a((L+0)|g,) = —No\{—k}. So we can apply Lemma A.3 from the appendix,
which yields the properties of the spectral projections.

Since dim P, =1 and M(L+ O + k) =ker(£+ ©® + k), the singularity of
R 0(0) at { = —k is a pole of order one, see Proposition A.2 (iv)—(V). O

Having explicitly determined the spectrum of the perturbed Fokker-Planck
operator, we now turn to the generated semigroup and the corresponding decay
rates. We start with the fact that £ + ® generates a Cy-semigroup:

PROPOSITION 3.12. For each k € Ny the operator (L + ©)|¢, is the infinitesimal
generator of a Cy-semigroup on Ex. The semigroup on & preserves mass, i.e.

/f dx—/ [eEHOf](x)dx, Vi>0.
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PROOF. According to Theorem 2.18 the operator £ generates a Cy-semigroup
on & for every k € Ny, and due to Lemma 3.4 and Corollary 3.3 we have
O, € #(Ek). Now a bounded perturbation of the infinitesimal generator of a
Co-semigroup is again infinitesimal generator, see [10, Theorem I11.1.3], and so
the first result follows.

To show the conservation of mass we use the decomposition of (e/“*9)) _ by
Py corresponding to £ = & @ span{ fo}. The space &; consists of all magsless
functions, so the part P, f alone determines the mass of any f e &. Since &) and
span{ fo} are both invariant under the semigroup, Pg and (¢'“*®)),_, commute.
Furthermore we have Pyf € ker(£ + ©), and hence e'“*®) Py f = Py f for all
t > 0. Altogether we obtain Poe’“+O)f = Pyf for all f € &, ¢t >0, i.e. the semi-
group preserves mass. O

Next we investigate the decay rate of (e/“*®)) _  on the subspaces &. To this
end we define:

(33) 10 = ool [*a), ceqy,

which is analytic in €/, according to Remark 3.1.

LEMMA 3.13. The map ¥ : [ — [« has the properties:

(1) For each keNy, W:& — & is a bijection, with inverse vl:fe

ll/lﬁl
(ii) ‘P q' e B(8).

PROOF. We define ¥ : [+ f+ F [l / 1}] Due to the condition (C)(iii) there
holds W/, ¥f € € for all f € &, which is shown analogously to Lemma 3.2. Let
now f € & for some k € Ny. Then f (¢) has a zero of order greater or equal to
k at £ = 0, cf. Proposition 2.13. Since 1// and 1/ l// are analytic in g5, the zero at
E=0of ]-}_,ékl‘f f( )1//( ¢) and of F,_:Pf = f( )/W( ) is of the same order as
off SoW,¥: & — & forall k e Ny.

By applymg the Fourier transform, we see that ¥ o ¥f = ¥ o Wf = f for all

feé ie. cand P, 97 & — & are bijections for all k € Nj.
Finally, as in Corollary 3.3 one proves the boundedness of ¥ and ¥~! by
using the assumption (C)(iii). O

The map ¥ plays a crucial role in the analysis of the perturbed Fokker-Planck
operator £+ ©®, because it relates the eigenspaces of L to the eigenspaces of
L + ©: According to Proposition 3.9 we have:

(36) fk = ‘P,uk, ke No.

By using this property of ¥ we obtain the following result:
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ProOPOSITION 3.14. Let k € Ng and { € C\{—k,—k — 1,...}. Then there holds

(3.7) Reio(Qlg, =¥ o Re(0) O‘P71|gk-
In particular there exists a constant Cy > 0 such that

, ¢
B8)  IReo©ls) ey < mepym ReC> kneN.

Proor. We fix k € Ny. Then for all j >k and { € C\{—k,—k —1,...} there
holds due to (3.6):

_ K
(+J

Re(O)ny =¥ ' oRe(0)f; =¥ "o Rer0(l) o Yy

So we have R;({) =¥ 'oRe(() oW in the space span{y; : j > k} < Ey,
which is dense in &. Then this identity extends to & due to the continuity of
the occurring operators.

In order to prove the resolvent estimate (3.8) we use

(Rero(0)lg)" = Rero(0)"|e, =¥ o Re(0)" 0¥,

which follows from (3.7) and Lemma 3.13 (i). Because of ¥, ¥~! € %(&;) we
conclude

39  [(Revo(Dle)"|

Due to the semigroup estimate in Theorem 2.18 (v) there holds

BE) = H‘PH.@(&)H(RE(C)|5,()”||@(5,C>||T71||.u;3(£k)-

C
[(ReOle e = fRegygr R —Homels

according to the Hille-Yosida theorem. Inserting this estimate in (3.9) shows
(3.8). O

REMARK 3.15. According to (3.7) the operators £ and £ + @ are similar:
L+©=YoLo¥

Now we consider the family of operators (£(7)), g := (£ + 10), . Clearly, for
every 7 € R the operators £(7) and £(0) = £ are similar with the transformation
operator W(7) defined according to Lemma 3.13 (where we replace 4 by 4 in
(3.5)). Therefore, according to [19] there exists a family of operators (B(7))
such that (£(7), B(z)) form a Lax pair, i.e. they obey

TeR

d
a[’(f) = [B(T),E(T)]a
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where the right hand side denotes the commutator. Since we explicitly know the
transformation operator W(z) we can compute B(7):

T -1 1q < .
Bf .= —¥(1) o—d[q}((h_)] f=F"" l/o @dsf],

which is independent of .

COROLLARY 3.16. Let k € Ng. Then there exists a constant Cy. > 0 such that
(3.10) 6", Nl ey < Cre ™, 120,

PRrOOF. The result immediately follows from (3.8) by application of the Hille-
Yosida theorem. m|

REMARK 3.17. The above result implies the exponential convergence of any
solution of (1.1) towards the (approprlately scaled) stationary state: Choose
any f € £. Then there exists a unique constant m € C (the “mass” of f) such
that Pof = mfy. So f—mfy = (1 — Py)f € &, cf. Lemma 3.11, which implies
e'CHOf _mfy = e EHON(f — mfy) € & for all +>0, due to Proposition 3.12.
With (3.10) and & = 1 this implies

||e £+® - mﬁ)Hw < Cl”f _mﬁ)Hweit? 1>0.

REMARK 3.18. In the one dimensional case we can explicitly compute the
Fourier transform of R, ¢({)g, see Proposition B.1: For any k € Ny, Re{ > —k,
and g € &, the unique solution f € & of ({ — L — O®)f = g satisfies

' g(s)
0 folsE)

where s¢ = e¢!°2% and log is the natural logarithm on R™. One can use this repre-
sentation for an alternative proof of the resolvent estimate (3.8). However, this
becomes less convenient in higher dimensions, since it is then not clear how to
properly compute the explicit Fourier transform of R.,¢({).

f(&) = Fee[Revo(O)g] = fo(6) shds, e Qyp,

Now we summarize our results in the final theorem:

THEOREM 3.19. Let €& = L*(w), where w(x) = cosh fx, for some > 0, and let ©
fulfill the condition (C) for this f > 0. Then the perturbed operator L + ® has the
following properties in &:

(i) It has compact resolvent, and (L + ©) = g,(L + ©) = —N,.
(ii) There holds M (L + ® + k) = ker(L + © + k) = span{ f; }, where f; is the ei-
genfumnon to the eigenvalue —k given by (3.3). The eigenfunctions are related

by fi = £,V
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(iii) The spectral projection Py corresponding to the eigenvalue —k € —N fulfills

ranPx = span{fi}, ker Pr = &1 @ span{ fi—1,..., fo},

where the (L + ©)-invariant spaces & are explicitly given in (2.9). Moreover,
ran Py = span{ fo} and ker Py = &).
(iv) For every k € Ny, the operator (L + ©)|, generates a Co-semigroup in Ey,
denoted by (e'“+9)| & )r=0, Which satisfies the estimate

[ \5k||.az(£k) <Ce ™, 120,

where the constant Cy, > 0 is independent of t.

REMARK 3.20. Apparently, the particular choice of f > 0 has no influence on
the above results, except possibly for the constants Cy. In practice, the constant
S may therefore be chosen arbitrarily small, such that ® satisfies (C) for this f.

4. THE HIGHER-DIMENSIONAL CASE

As already mentioned in the introduction, the preceding results can be gener-
alized to higher dimensions without much additional effort. Most proofs are
analogous to the ones in the one-dimensional case. Therefore we give here only
an outline of the steps leading to the extension of Theorem 3.19 to higher
dimensions.

In this section we consider the perturbed Fokker-Planck equation (1.1) on R,
where d € N is the spatial dimension. Elements of R? resp. C? are represented

by bold letters, e.g. x € R?, & € C¥, and we write X = (x1,...,X4). For a multi-
index k € N¢ we define |k| := ky + - - + kg, X := xf‘ . .x;‘” and k! := k!, . k4l
Furthermore
K
Dk ol
' a ki A kg ”
Xy 0xy,

We adopt the notation for weighted Sobolev spaces on R¢ from Section 2, as well
as the normalization of the Fourier transform.
We consider the Fokker-Planck operator on R? given by

Lf=V- (w(%)) — A +x-Vf+df,

where u(x) := exp(—x - x/2). The natural space to consider L in is £ := L*(1/p).
Slnce it is 1sometrlcally equivalent to the harmonic oscillator H := —A —d/2 +
x|?/4 in L*(RY), we transfer many results of H (see [23] and [26, Theorem
XIII1.67]) to L. In the following we summarize some properties of L in E (see
also [21, 5, 16]):
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THEOREM 4.1. The Fokker-Planck operator L in E has the following properties:

(i) L with D(L) ={f € E : Lf € E} is self-adjoint and has a compact resolvent.
(i) The spectrum is o(L) = —Ny, and it consists only of eigenvalues.
(iii) For each eigenvalue —k € a(L) the corresponding eigenspace has the dimen-
. k4-d—1 . . i
sion ( i ), and it is spanned by the eigenfunctions

d
)=, (x0), K=k
/=1

where the y; are defined in Theorem 2.1.
(iv) The eigenfunctions (), eng form an orthogonal basis of E.
(v) The spectral projection HL x onto the k-th eigenspace is given by

(27) />

HLk— ZHL k> where HLk K

[k |=Fk

— 14 D

There holds the spectral representation L = ; ., —kTIL k.

(vi) The operator L generates a Co-semlgroup of contractions on Ej. for all k € N,
where Ei :=ker(Ilp o+ -+ 1l 1), k =1, and Ey := E. The semigroup
satisfies the estimate

||etL|Ek||?Z(Ek) <e ™  VkeN,.

The next step is to properly define L in £ := L*(w) with a weight w(x) =
cosh B|x| with > 0. As in the one-dimensional case we have a characterization
of £ by the Fourier transform. Due to (a small variant of) [25, Theorem IX.13]
we have: There holds f € £ iff f has an analytic extension (denoted by f as well)
to the set Qp/» := {z € CY:|Imz| < /2} and

4.1) sup ||f( +1b)HLz ) < 0.
[b|<p/2
beR?

For any be RY with b < /2 we have f(&+ib) = ]—'X_@( eP*f(x)). The
right hand side still makes sense for |b| = /2 as an L*(RY) -function, And ac-
cording to this identity and Plancherel’s formula there holds b — f (-+1b) €
C(B(f/2,0); L*(R?)), where B(f3/2,0) :={b e R : |b| < #/2}. We can use this
fact to define the norm

d

(4.2) A0 ="

/=1

2

’
LZ(Rd)

) B 2
f( : ‘HEé/) L@

-t

where 0, € R is the vector whose /-th component is one, and all others are zero.
The norm ||| - |||, is equivalent to || - ||,,-
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In & there hold Poincaré-type inequalities:

LeMMA 4.2. For every k € Ng there exists a constant Cx > 0 such that for all
f e Cr(RY):

(4.3) 1/l < GelIDXS -

For the proof see Appendix C. A similar statement is given in [14, Theorem
14.5]. By using this Poincaré inequality we can generalize Lemma 2.4: Let again
L=A+x-V+d be the distributional Fokker-Planck operator. For f g€
& = " with ({ — Q)f = g we have the estimate

(4.4) 1 Nl + VSNl < Cligll,

where w(x) = (2Re{ — d)w(x) + x - Voo(x) — Aw(x), which is a weight function
for Re( sufficiently large. Now we may proceed analogously to the proof of
Lemma 2.6 and show that Q|C(;,,~(Rd) is closable in &, and its closure £ has the
domain D(L) ={f € £: &f € £}. From [22, Theorem 2.4] we get the compact
embedding W!2(w, w) —— &, and together with the estimate (4.4) this implies
the compactness of the resolvent of £, analogously to Theorem 2.10. Hence, the
spectrum of L consists only of eigenvalues, and there holds:

LEMMA 4.3. In & we have a(L) = —Ny. The eigenspaces are still spanned by the
Hog-

PROOF (Sketch). We consider the Fourier transform of the eigenvalue equation
2f = {f, and by setting f(&) := f(&)/a(&) we get analogously to the calculation
in the Appendix B the equation

(4.5) E-VF(E) = =Lf(é).

For each j e {1,...,d} the function f(0,...,0,¢;,0,...,0) needs to be analytic
in Qg/», and satisfies (B.1) for g = 0. So, as in the Appendix B we find that it is
necessary that { € —Nj.

For k := —{ € Ny and & € R? we obtain by differentiating (4.5) with respect
to ¢;:

T - - n(%2).

”(a—@

Thus, for any k € N with [k| = k we get
£- V(DY (&) =0,

and all characteristics meet at & = 0. £ is analytic on R?. Hence, the continuity
of DXf(&) at & =0 implies D¥f (&) = C for some constant C € C. This holds
for any |k| = k, so the general solution of (4.5) is a linear combination of all &
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with [k| = —( = k. Therefore, the Fourier transform of an eigenfunction f with
(L+k)f =0 is a linear combination of the & (&) with [k| = k (and, equiva-
lently, f(x) is a linear combination of the D*¥x(x)). Then, according to Theorem
4.1 (iii) and Theorem 2.1 (iii), the eigenspace for { = —k is spanned by the .

O

As in Proposition 2.12 we can define the L-invariant subspaces & := clg Ex =
cle span{yy : |k| > k} for all k € No, and o(L[ ) = {—k,—k —1,...}. By apply-
ing Lemma C.2 we get by induction

(4.6) Ek—{feé’:/Rdf(x)xkdx—O,k|£k—1}
={fe&:D0)=0,k|l <k—1}.

Analogously to Proposition A.2 (ii) we can also characterize the spectral projec-
tions corresponding to the eigenvalues —k € —N, see the result of Theorem 4.4
(iii) below. Finally, as in the one-dimensional case, one shows that £ generates
a Cy-semigroup of bounded operators (e“),.,, which is given by the formula
(cf. [11, Appendix A])

Fyele™f] = exp(—# (1— e’z’))f(fe”), t>0.

The corresponding decay estimates on the subspaces £ can be shown as in the
proof of Proposition 2.17. Thereby one uses the norm (4.2) and the Poincaré
inequality (4.3).

THEOREM 4.4. In £ := L*(w), with w(x) = cosh f|x| and > 0, the operator L is
closable, and L .= cl¢ L has the following properties:

(1) The spectrum satisfies a(L) = —No, and M (L + k) = ker(L + k) = span{ z4, :
k| = k} for any k € Ny. The eigenfunctions satisfy w, = D* 1.

(i) For any k € Ny the closed subspace &y := clgspan{yy : |k| > k} is an L-
invariant subspace of £, and span{yy : |k| < k — 1} is a complement. In par-
ticular £y = €.

(iif) The spectral projection Il i to the eigenvalue —k € —N fulfills ranTl; , =
span{zy : |k| =k} and ker I, , = Epy @ span{yy : k| <k — 1}

(iv) For any k € Ny the operator L generates a Cy-semigroup on &, and there
exists a constant Cy > 1 such that we have the estimate

£ —k
le™lg e, < Cke™, Vi=0.
Next we specify the conditions on the perturbation ©.

(Cy) Conditions on @: We assume that ®f = 3« f, for f € £, where 3 is a tem-
pered distribution that fulfills the following properties in Qg/, for some f > 0:
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(i) The Fourier transform gAcan be extended to an analytic function in Qg
(also denoted by ), and 3 € L™ (Qp)3).
(ii) It holds $(0) =0, i.e. I has zero mean.

1
(iii) The mapping & — Re / 3(&s)/sds is essentially bounded in €p)5.
0
Condition (Cqy)(i) ensures that ® € #(&), which is seen by using the norm

Il lll,- And due to (Cqg)(ii) we have @ : £, — & for all k € Ny. In the following
we always assume that (Cq) holds.

PROPOSITION 4.5. We have the following spectral properties of L+ © in E:

(i) o(£L+0) = —N,.
(1) For each k € Ny, the eigenspace ker(L + © + k) has the dimension (k+‘kl_1).
(iti) Under appropriate scaling, the eigenfunctions fx to the eigenvalue —k € N

are explicitly given by

where

A . 1 q
(4.8) fi(é) = exp(_¥+/0 9(&s) ds), EeQyy

S

Thereby fy is the unique stationary solution of the perturbed Fokker-Planck equa-
tion (1.1) with unit mass.

PrOOF (Sketch). Since the resolvent is compact (see the discussion above),
the spectrum consists only of eigenvalues. As in the one-dimensional case one
shows a(L + ©®) = —N by applying I, to the eigenvalue equation. This also
implies dimker(k + £ + ®) < dimranTI; , = (“"¢""). Then one verifies that the
functions f given in (4.7) are eigenfunctions, and lie in &, according to the con-
dition (4.1). Since dimspan{ fi : |k| =k} = (k+g_1), there are no further eigen-
functions, due to the previous estimate on the dimension of the eigenspaces. So
ker(k + £ + ©) = span{ fi : [k| = k} for all k£ € N. O

Now we introduce

b0 = ool ["a) ccay,

N

and the mapping ¥ : f — f * . The results of Lemma 3.13 for WV still hold, and
due to (4.8) we have for all k € Nj:

Je = Wiy

As in Proposition 3.14 we obtain Rpie({)|g, =¥ o Re(() o p-! lg,, for all k € Ny
and { € C\{—k,—k —1,...}. The estimates (3.8) and (3.10) also hold here, and
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for the convergence of f(f) = e “*®)f to the stationary solution see Remark
3.17. As in Section 3 we finally have:

THEOREM 4.6. Let £ = L*(w(x)), where w(x) = cosh f|x|, for some p >0 and
x € R, and let © fulfill the condition (Cq) for this > 0. Then the perturbed
operator L + ® has the following properties in E:

(i) 1t has compact resolvent, and o(L + ©®) = ,(L + ©) = —N.
(ii) There holds M(L+ ® + k) =ker(L + © + k) = span{ fx : |k| =k}, where
the fi are the eigenfunctions given by (4.7). They are related by fi, = Dfy.
(i) The spectral projection Py to the eigenvalue —k € —Ng fulfills ranP;
= span{ fx : [k| = k} and ker Py = Ery1 @ span{ fx : |k| < k — 1}, where the
(L + O)-invariant spaces &y are explicitly given in (4.6).
(iv) For every k € Ny, the operator (L+ ©)|, generates a Co-semigroup in &,
denoted by (e'£9)] €. )i>0> Which satisfies the estimate

||e 1G+8) |£k||.@(6k) = Cke_ktv 1= 0>

where the constant Cy, > 0 is independent of t.

5. SIMULATION RESULTS

In this section we shall illustrate numerically the exponential convergence for the
one-dimensional perturbed Fokker-Planck equation (1.1), with 9 := ¢(d_, — d,),
ie. Of (x) =e(f(x+a) — f(x —a)), for some ¢ o € R. The eigenfunctions f; of
the evolution operator L + ® can be obtained by an inverse Fourier transform,
with £, explicitly given in (3.3). If the initial condition ¢ is a (finite) linear Combl—
nation of the f;, the solution to (1.1) reads explicitly

f(t,x) = e'+©) lz ajfkj] = Zaje’kf’f;g, Vi > 0.
J=1

J=1

In the simulation we use a mass conserving Crank-Nicolson finite difference
scheme for (1.1). It is employed on the spatial interval [—25,25] (with 1500
gridpoints) along with zero-flux boundary conditions. Moreover, we choose
v=¢=2and f=1,1ie. = L*(coshx).

The following numerical results verify the decaying behaviour of solutions to
(1.1), and yield an estimate to the constants Cj from Theorem 3.19. First we con-
sider the initial condition ¢; = (fi — 1.32f2) /|| /i — 1.32f3]|,,- For the correspond-
ing solution we plot || f(¢,-)||,, in Figure 1(a). Since the sequence (fi); .y 1s not
orthogonal in &, the initial decay rate is here smaller than the individual decay
rate of fi (i.e. —1). But after some time, the fi-term becomes dominant, and the
decay rate approaches —1. For large times, the norm behaves approximately like
1.73 e, so we have the lower bound C; > 1.73.
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Figure 1: Evolution of the norm || - ||, of solutions of the perturbed equation for different
initial conditions ¢. (a) Initial condition ¢, = (f; — 1.32/2)/||./i — 1.32£2]|,,- (b) Initial con-

dition ¢, = (x(_4,0 — Xj0,4))/ I X-4.00 — X094l € €1

As a second example we choose the initial condition ¢, = (y[_4 0] = X[0,4])/
%1=4,0 — X0, 4ll0,- It lies in &) since it is massless. The evolution of ||/ (z,-)]|,, is
displayed in Figure 1(b). Here, the norm even increases initially. Only after some
time, the norm begins to decay with a rate tending to —1. For large times ¢, the
norm behaves approximately like 22.53 ¢/, which shows C; > 22.53.

A. Spectral Projections

In this section we review some properties of spectral projections and resolvents,
cf. [29, Chapters V.9-10], [30, Chapter VIII.8] and [17, Sections I11.6.4-5].

Here, X is a Hilbert space, 4 € ¥(X), and we assume 4 € g(A4) to be an iso-
lated point of the spectrum. Then the corresponding spectral projection Py ; is
defined by (2.1), and 4 is an isolated singularity of the resolvent R,({).

PROPOSITION A.1. For every n € N we have

ran(4 — A)" 2 kerP ;,
ker(1— A)" = ranPy ;.

There exists some n € N such that both inclusion relations become equalities iff A
is a pole of R4((). In this case ). € c,(A), i.e. an eigenvalue.

PROPOSITION A.2. For the reduction of A by a fixed spectral projection P4 ; we
have:

(i) There holds P4 ;D(A) = D(A), and kerP, ; and ranP4 , are A-invariant sub-
spaces of X.
(1) A| € G(ranPy ;) and Alyp, € C(kerPy ;).

ranP, ;
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(iii) There holds o(Al.,p, ) = {4} and o(Alyep, ) = a(A)\{4}. Furthermore

AlranPA,/; € ,%’(ranPA’,{).

(iv) If dimranP, ; < oo, then i — Al p, , is nilpotent, /. is a pole of R4({), and
/€ ap(A). .

(V) If 2 is a pole of R4((), then M (% — A) = ker(Z — A) iff the pole has order
one.

For a finite number of isolated points of the spectrum we have:

LEMMA A.3. For N € Ny, let A have isolated points of the spectrum (), ..., y_1,
which are eigenvalues with dim M ({;, — A) < oo for all 0 <k < N — 1. Assume
there exists a closed subspace Y < X, such that

(1) Y is A-invariant, and o(A|y) 0 {Co, ..., {n_1} = 0.
(i) X can be decomposed as X =Y @ M({y— A) @D - - ® M({{y_1 — A).

Then Y = kerIly, where 114 :=1Tl 0+ -+ Iy y_1 is the sum of the spectral
projections Il i corresponding to the (i, and M({, — A) =ranlly ; for all
0<k<N-1L

PRrROOF. According to the assumptions there holds o(A4|y) = a(4)\{l, .-,
{y_1}, and therefore the map { — R,({)|y is analytic in p(A4) U {{p,...,{y 1}
Due to the definition (2.1) of spectral projections this implies that IT, ;Y =0
for every Il j, and therefore Y < kerIl . On the other hand we have
M({ —A) cranIl; for all 0 <k <N —1, according to Proposition A.l.
From (ii) we conclude that the inclusions have to be equalities, otherwise
kerIT, nranIl, # {0}, which is impossible. O

B. Fourier Transform of the Resolvent

This section deals with the explicit computation of the Fourier transform of the
resolvent R ({) of the (one-dimensional) perturbed Fokker-Planck operator
L+ 0O in £ where O fulfills the condition (C). We begin by considering the re-
solvent equation

(-L-0)f=g

on R, where we assume Re{ > —k and f,g € & for some k € Ny. We apply the
Fourier transform, which yields the following differential equation:

~l C_g(é) » N
¢ [f @+ (e+7—3 )f(é)] = §(0).

By defining f := f / fo and g := g/ fb we obtain the equivalent equation

(B.1) EF1(E) + (&) = 4(&).
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The general solution for & € R* reads

1
(B.2) &) = /O G(Es)s T ds + Cal ¥ = I(8) + Cat ™,

where the C € C are integration constants to be determined.

First we shall show that the integral /(<) is an analytic function on Qp/»: If
g € &, then g is analytic in €z, and has a zero at £ = 0 of order not less than
k, see (2.10). Therefore, for any fixed { € C with Re{ > —k,

g(és)st = @SW{_I, se (0,1],

is locally integrable at s = 0, and 1(¢) is welll defined for all £ € Q). To see that
it is actually analytic, we define I,(&) := / Gi(&,5)s" 1 ds for ¢ € [0, 1), where

g9(&s)

s € (0,1],
Gk(é,s) =

for & € Qg),. The function G (-, s) is analytic in Qg/, for all (fixed) s € [0, 1], and
Gy, is continuous in Qg x [0, 1]. According to [9, Theorem 4.9.1], the functions
I,(¢) are analytic in Qg for all ¢ € (0,1). Now we show that (1), ;) converges
normally to 7 in Qg as ¢ — 0: Let K = g/, be compact. Then we have

i(Es
(B.3) sup |Gi(&,s)| < sup |Gi(&,s)| = sup LZE"
ek ceko ceKo\{0}|(E5)
s€(0,1] se0,1] s€(0,1]
< sup @ - sup || =: Ck < oo,
cek\[0}] & ceky

since §(&)/E is analytic in Qyg), (the singularity at ¢ = 0 is removable). Thereby,
Ky is an appropriate convex, compact set with {0} U K = Ky = €g/», and Cx > 0
is a constant. With (B.3) we obtain the following estimate for ¢ e K and
0<e<l:

SRe (+k

< CkRer ik

1(6) — L&) = ‘ / " G, s)s 1 ds

Since Re{ + k > 0, this shows the normal convergence of the analytic functions
I, towards /. According to [9, Theorem 4.2.3] this implies that /(¢) is analytic
in Q/}/g.
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Now it remains to determine the constants Cy in (B.2). If we require f € &, it
is necessary that f is analytic in Qg/, and has a zero of order not less than k
at ¢ = 0. As already shown, /(&) is analytic in Qg),. Furthermore, for g € &
and all (fixed) s € |0, l1], & — Gi(&,s) has a zero of order not less than k at & = 0.

Therefore 7(¢) :/ Gi(¢,5)s" 1 ds has the same property, so F'I € &.
0
Thus, it is sufficient to consider the term C+f_é If { ¢ —Ny, then ¢~ is not

analytlc 1n Qg anyway, hence C, = C, =0. If {e{-k+1,...,—1} for
g € &, £* is analytic, and we obtain C, = C_ because we require contmulty of
the solution. But the order of the zero of f i1s at most k — 1. Since we need a
zero of at least order k, we again obtain C; = C_ = 0. The conclusion of the
above analysis is summarized in the following proposition:

PRrROPOSITION B.1. Let g € & for some k € Ny, and Re{ > —k. Then the unique
f € & with [ = Reye(({)g satisfies

~ ~ 1/\
7 = /@) /0 J“i((‘i?)s“ds, £e Q.
0

C. Deferred Proofs and Lemmata

PROOF OF LEMMA 2.2. For f €& there holds f(x)e" e L*(R) for all b e
[—£.,2]. Therefore f is analytic in Q/, according to [25, Theorem IX.13]. Due to
part (b) of the proof of that theorem (see page 132 in [25]), Result (ii) follows. We

proceed to the proof of (i). If f € £and b € [— we clearly have

35
1/ )™ 2y < 1F 9 2y < V2I£

On the left hand side we insert the identity from (ii) and use Plancherel’s identity,
which shows (2.2). Conversely, let us now assume that £ is analytic in Qﬂ/z and
that (2.2) holds. We shall now show that f € £. Due to these assumptions we
conclude from [25, Theorem IX.13] that f(x)e’* e L*(R) for all b € (—g,g)
For these values of b we may therefore use the representation from (ii). We insert
it in (2.2) and after applying Plancherel’s identity we get

(C.1) sup || £ (x)e’ M| gy < oo.

[b|<p/2
beR

But this is only possible if f* € £, otherwise the supremum in (C.1) would not be
finite.

Finally we show (iii). For f e & there holds f(x)eigx e L*(R), and there-
fore ¢+ f(& +1B/2), as defined in (2.3), is again an element of L*(R). With
this definition we now show b+ f(-+1b) € C([-f/2,5/2]; Lz([RE)). Due to
Plancherel’s identity we may show equivalently that b — f(x)e?* is continuous
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in L*(R). To this end we fix b, by € [-f/2,8/2], and we split the integral for any
R>0:

(CY) )™ — fe 2 = / ()2 — &) dx

R\[-R.R]
b e - eyas

Now, for any ¢ > 0 we can find some R = R(¢) > 0 so that / |/ ()2’ dx
< ¢&. So we get for the first integral (independent of b, by) /R\[-R.R]

x/ )P —e™)?dx < /] |f () Pe2max{lelll} g

R\[-R, R] R\[-R, R]

< 1/ (x)) e dx < e.
R\[-R,R|

The second integral in (C.2) converges to zero, for any fixed R > 0, as b — by.
Altogether

lim | /(x)e™ — £(x)e"[|} 2 < & O

b—by

PROOF OF LEMMA 2.6. According to Corollary 2.5 the operator (L —1—
s /2)|C% is dissipative, so it is closable (cf. [24, Theorem 1.4.5 (c)]), and so is
Lj co(R We define £ :=cl¢ L] o () and the domain D(L) consists of all f € &

= G (R)

such that there exists some /i € € such that (for some (),

{limn*}m ||fn _f”w = 0’
limy, o0 [|Lfy = A, =

For such f we have Lf :=h = £f. Therefore D(L) = {f € £: £f € £}. Since
|| - || g is stronger than || - ||, we also have D(L) < D(L).

Finally we need to show that the above inclusion for the domain indeed is an
equality. We take { € C with Re{ > 1 + ,b’ /2. From Theorem 2.1 and the dissi-
pativity of { — £ we know that ({ — £)'|, = (C L)' is a well-defined operator
on E. And from (2.6) we conclude that this is even a bounded operator 1n 5
with dense domain E. Therefore, also its closure clg(({ — £) ' g) = (- L)
bounded in &, and therefore { € p( ). Now assume that there is some ' € E\D(L )
such that £f € £. Because { € p(£), { — L : D(L) — £ is a bijection, and therefore
there exists a unique { € D(L£) with ({ — £)f = ({ — ) f, which is equivalent to
the existence of {* € & with {* # 0 such that ({ — £)j* = 0. But according to
(2.6) this is impossible. O
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Lemma C.1. Consider two Hilbert spaces X — X, and a projection Py € B(X),
such that Py := Py|, € #(X). Then ranPy = clyran Py and ker Py = cly ker Py.

ProoOF. We give here the proof of the equality of the ranges, the other identity
can be shown analogously, using the complementary projections instead. On the
one hand we have ranPy = ranPy, and so clyranPy = ranPy, since ranPy is
closed in X due to the boundedness of Py. On the other hand Py = cly Py, which
implies ran Py < cly ran Py. O

LemMMA C.2. Let X — X be Hilbert spaces, and \, ...,y € B(X,C), k € N,
be linearly independent functionals. Then ; := |y € B(X,C) for all 0 < j <
k —1, and ' '

k=1 k=1 ~
m kery; = cly ﬂ kery;.
J=0 J=0

PROOF. The boundedness of the y; is an immediate consequence of X — X.
In order to show the second statement we notice that according to the Riesz
representation theorem there exists a unique x; € X such that (- ) (-, xjyy for
every 0 < j<k—1, where {-,->y denotes the inner product in X. The set
{X0y ..y Xk_1} 18 linearly independent, because the corresponding functionals
are. We now apply the Gram-Schmidt process to {xo,...,Xx_1} to obtain the
orthonormal family {Xy, ..., X;x—;} with same linear hull. As a consequence, there
exists a regular matrix A= (2));; € C*** such that %, = E/ o Alx;. With this
we get

k—1 . k—1
Xk =Y Mhxio Xy = Y A A/x,zp/( ), 0</<k-—1.
i,j=0 i,j=0

We may now define the orthogonal projection

b
|
=~

—1 ) ~
(C.3) Py = %%y = A7 xili ().
/=0 i,j,/=0

~
~
Il

It can naturally be extended to a projection Py in & by replacing the ; by ;.
Since y; € #(X,C) for all 0 < j <k — 1, there follows Py € #(X) from (C.3).
Now we apply Lemma C.1 to Py = Py to obtain ker Py = cly ker Py.

Now it remains to characterize the kernels of the projections. Due to (C.3)
we have Pyf = 0 in X iff

(C.4) Zlﬁ(f) Ail=0, 0<i<k-—1,
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since the vectors x; are linearly independent. We note that the sums >+ 217/
for 0 <i,j <k — 1 are the elements of the matrix A, := AA™, where A is the
Hermitian conjugate of A. Since A, is regular, it follows that (C.4) holds iff
Y;(f) =0 for all 0 <j<k—1. The proof of Pyf =0 iff y;(f)=0 for all
0 < j <k —1is analogous. |

PrOOF OF LEMMA 4.2. We only consider the situation |k| = 1, the estimate
for higher derivatives follows by repeated application of that result. Without

loss of generality we assume k = (1,0,...,0) for the proof. For the norm we
use the equivalent weight w,(x) = cosh ffx; cosh fx; .. .cosh ix,;. In this context
we write X; := (x2,...,xy) and w,(X;) := w.(x)/cosh fx;. By applying the one-

dimensional Poincaré inequality (2.5) we obtain for f € C°(R):

©5) W12 = [ 1709 on(x)dx
172
:/[(/1 |f(x)|2a)*(f(1)df(1)'] cosh fix; dxy
R R4
0 i°
< cﬂ/ [(M(/ |f(x)|2co*(fq)df(1) } cosh fx; dxi.
R R4

For the inner integral we compute

o
(’3x1

([ VP& dx)
Rd—]

e 1) e, (%1)d
(Juor L )P ou(%1) dx

(fRd 1 |f( ) Wy X1 Xm)
(frar |/ (x) a)*(xl)dxl)%

2
Inserting this in (C.5) we conclude

112 <G [ ( L.
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l\)I'—‘

o=

o=

L
(‘61

)
()
|

2w

NN
o o, (X1) dxl) :

2

2 fx)

(3)61

O

w*(fq) df(]) coshﬁxl dx1 = Cﬁ‘ ;;
1
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