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Functional Analysis — Spectral analysis and long-time behaviour of a Fokker-
Planck equation with a non-local perturbation, by Dominik Stürzer and Anton
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Abstract. — In this article we consider a Fokker-Planck equation on Rd with a non-local, mass

preserving perturbation. We first give a spectral analysis of the unperturbed Fokker-Planck operator
in an exponentially weighted L2-space. In this space the perturbed Fokker-Planck operator is an

isospectral deformation of the Fokker-Planck operator, i.e. the spectrum of the Fokker-Planck
operator is not changed by the perturbation. In particular, there still exists a unique (normalized)

stationary solution of the perturbed evolution equation. Moreover, the perturbed Fokker-Planck
operator generates a strongly continuous semigroup of bounded operators. Any solution of the

perturbed equation converges towards the stationary state with exponential rate �1, the same
rate as for the unperturbed Fokker-Planck equation. Moreover, for any k a N there exists an

invariant subspace with codimension k (if d ¼ 1) in which the exponential decay rate of the semi-
group equals �k.
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1. Introduction

This work deals with the analysis of the following class of perturbed Fokker-
Planck equations:

qt f ¼ ‘ � ð‘f þ xf Þ þYf ¼: Lf þYfð1:1 aÞ
f jt¼0 ¼ jðxÞ;ð1:1 bÞ

where tb 0, x a Rd with d a N, and f ¼ f ðt; xÞ. Here, qt f denotes the time de-
rivative. The linear, non-local operator Y is given by a convolution Yf ¼ Q � f
with respect to x, where its kernel Q is assumed to be time-independent and with

zero mean, i.e.

Z
Rd

QðxÞ dx ¼ 0. Also, it is assumed to satisfy certain regularity

conditions, which will be specified in the Sections 3 and 4.
The above equation is mainly motivated by the quantum-kinetic Wigner-

Fokker-Planck equation, describing so-called open quantum systems, see [3, 4].
It is of the form
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qtu ¼ ‘x; v � ð‘x; vuþ ð‘x; vAþ FÞuÞ þ X½V �u
ujt¼0 ¼ u0;

where u ¼ uðt; x; vÞ is the phase-space quasi-density, with x; v a Rd denoting
position and momentum. The given coe‰cient function ‘x; vAþ F is a‰ne in
ðx; vÞ and models the confinement and friction of the system. X½V � is a non-local
operator (convolution in v) determined by an external potential VðxÞ. One ques-
tion of interest in this problem is to show the existence of a unique normalized
stationary state, and to prove uniform exponential convergence of the solution
to the stationary state. In the case of a quadratic confinement potential with a
small perturbation these questions have been answered positively in [3], see also
[2] for an operator-theoretic approach. However, from the physical point of view,
the restriction to nearly quadratic potentials seems quite artificial. This raises the
question if the results can be extended to a more general family of (confining)
potentials. In order to gain insight into what can be expected and what mecha-
nisms are responsible for the actual behaviour, we shall consider here (1.1) as
a similar, yet simplified model, which still preserves the essential structure. The
non-local operator X½V �, which is a convolution in v, is replaced by a convolution
with kernel Q. This represents a first step towards the full analysis.

Other examples of non-local perturbations in Fokker-Planck equations appear
e.g. in the linearized vorticity formulation of the 2D Navier-Stokes equations (cf.
(12)–(14) in [12]) or in electronic transport models (cf. the linearization of equa-
tions (1), (6), (7) in [20]).

For the unperturbed equation (1.1), i.e. the case Q ¼ 0, the natural func-
tional setting is the space L2ðm�1Þ, with the weight function mðxÞ ¼ expð�jxj2=2Þ.
Here, m=ð2pÞd=2 is the unique steady state with normalized mass, i.e.Z
Rd

m=ð2pÞd=2 dx ¼ 1, and all solutions to initial conditions with mass one

decay towards this state with exponential rate of at least �1, see e.g. [5]. How-
ever, if Y is added, the situation often becomes more complicated. One reason
is that many non-local (convolution) operators are unbounded in the space
L2ðm�1Þ. This can be illustrated for the simple example with the convolution
kernel Q ¼ d�a � da, a a R, in one dimension. It corresponds to the operator
ðYf ÞðxÞ ¼ f ðxþ aÞ � f ðx� aÞ, x a R, which is unbounded in L2ðm�1Þ. In this
case one can show (with an eigenfunction expansion) that every (non-trivial) sta-
tionary state of (1.1) is not even an element of L2ðm�1Þ. Thus, this space is not
suitable for our intended large-time analysis, since it is ‘‘too small’’. This moti-
vates to consider (1.1) in some larger space L2ðoÞ, with a weight o growing
slower than m�1. Due to the previous discussion we shall choose o such that
a large class of non-local operators becomes bounded. But the new space
should not be ‘‘too large’’ either, since we would risk to loose many convenient
properties (like the spectral gap) of the unperturbed Fokker-Planck operator. In
L2ðRdÞ, e.g., the spectrum of L is the left half plane fl a C : Re la d=2g, cf. [21].
It will turn out that oðxÞ :¼ cosh bjxj, b > 0, is a convenient choice. Moreover,
there is a useful characterization of the functions of L2ðoÞ in terms of their
Fourier transform, see Lemma 2.2.
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Here we focus on the Fokker-Planck operator in exponentially weighted
spaces. For L2-spaces with polynomial weights, the spectrum of L was studied
in [11]. Furthermore, our results complement the analysis of Metafune [21],
where a larger class of Ornstein-Uhlenbeck operators is investigated in un-
weighted Lp-spaces with pb 1.

This paper is organized as follows. Since the analysis in the d-dimensional case
is very similar to the one-dimensional case, we first discuss (in Sections 2 and 3)
the one-dimensional problem in great detail, to keep the notation and arguments
more concise. In Section 4, we generalize the proofs to higher dimensions.

In Section 2 we investigate the one-dimensional Fokker-Planck operator in
L2ðoÞ (denoted by L), and show that its spectrum is �N0, and consists entirely
of eigenvalues. All eigenspaces are one-dimensional, in particular the stationary
state is unique up to normalization. Moreover, the operator L generates a C0-
semigroup of uniformly bounded operators on L2ðoÞ, and any solution of (1.1)
for Y ¼ 0 converges towards the (appropriately scaled) stationary solution with
exponential rate of at least �1. More generally, for any k a N0 there exists
an L-invariant subspace of L2ðoÞ with codimension k in which the associated
semigroup has an exponential decay rate of �k. Section 3 is dedicated to the per-
turbed Fokker-Planck operator L þY in one dimension. Using the compactness
of the resolvent of L and ladder operators we show that L þY is an isospectral
deformation of the unperturbed operator L, i.e. sðL þYÞ ¼ sðLÞ ¼ �N0. The
spectrum still consists only of eigenvalues with one-dimensional eigenspaces,
which ensures the existence of a unique normalized steady state of (1.1) in
L2ðoÞ. On a formal level this isospectral property of L þY can be understood
as follows: In the eigenbasis of L, Y corresponds to a strictly lower triangular
(infinite) matrix. Finally we show that the semigroup generated by L þY still
has the same decay properties as the one generated by L. In particular the solu-
tions of (1.1) with normalized mass decay to the stationary state with exponential
rate of at least �1. In Section 5 we present simulation results, which illustrate the
decay rates obtained before.

2. The Fokker-Planck operator in weighted L2
-spaces

Here and in Section 3 we shall consider the one-dimensional Fokker-Planck
equation, i.e. d ¼ 1. For the Fourier transform we use the convention

Fx!x f C f̂f ðxÞ :¼
Z
R

f ðxÞe�ixx dx:

With this scaling we may identify f̂f ð0Þ with the mass of f .
For an analytic function f on a simply connected domain W we denote the

line integral of f along a path from a to b inside of W byZ
a!b

f ðzÞ dz:
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In order to properly define complex powers, we specify a branch of the logarithm.
For x a Cnf0g we set ln x :¼ logjxj þ i arg x, with arg x a

�
� p

2 ;
3p
2

�
, and logð�Þ is

the natural logarithm on Rþ. For z a C we may then define xz :¼ expðz lnðxÞÞ.
On a domain WJR we call a real-valued function w a L1

locðWÞ a weight
function if it is bounded from below by a positive constant a.e. on every compact
subset of W. We denote the corresponding weighted Lp-space by LpðW;wÞC
LpðW;wðxÞ dxÞ, where 1a pal. The space L2ðW;wÞ is equipped with the inner
product

3 f ; g4W;w ¼
Z
W

f gw dx;

and the norm k � kW;w.
Also, we introduce weighted Sobolev spaces. For two weight functions w0

and w1 and 1a pal, the space W 1;pðW;w0;w1Þ consists of all functions
f a LpðW;w0Þ, whose distributional derivative satisfies f 0 a LpðW;w1Þ. We equip
the space W 1;2ðW;w0;w1Þ with the norm

k f kW;w0;w1
:¼ ðk f k2W;w0

þ k f 0k2W;w1
Þ
1
2;

see [18]. If W ¼ R we shall omit the symbol W in these notations.
Furthermore, we present some definitions and properties concerning un-

bounded operators and their spectrum. Let X , X be Hilbert spaces. If X is
continuously and densely embedded in X , we write X ,! X , and X ,!,! X indi-
cates that the embedding is compact. CðXÞ denotes the set of all closed operators
A in X with dense domain DðAÞ. The set of all bounded operators A : X ! X
is BðX ;X Þ; if X ¼ X we just write BðXÞ. A closed, linear subspace Y HX is
said to be invariant under A a CðX Þ (or A-invariant) i¤ DðAÞBY is dense in Y
and ranAjY HY , see e.g. [1]. For an operator A a CðX Þ its range is ranA,
its null space is kerA, and its algebraic null space is MðAÞ :¼

S
kb0 kerAk.

For any z a C lying in the resolvent set rðAÞ, we denote the resolvent by
RAðzÞ :¼ ðz� AÞ�1. The complement of rðAÞ is the spectrum sðAÞ, and spðAÞ is
the point spectrum. For an isolated subset s 0 H sðAÞ the corresponding spectral
projection PA;s 0 is defined via the line integral

PA;s 0 :¼ 1

2pi

I
G

RAðzÞ dz;ð2:1Þ

where G is a closed Jordan curve with counter-clockwise orientation, strictly
separating s 0 from sðAÞns 0, with s 0 in the inside of G and sðAÞns 0 on the outside.
The following results can be found in [17, Section III.6.4] and [29, Section V.9]:
The spectral projection is a bounded projection operator, decomposing X into
two A-invariant subspaces, namely ran PA;s 0 and ker PA;s 0 . This property is re-
ferred to as the reduction of A by PA;s 0 . A remarkable property of this decompo-
sition is the fact that sðAjran PA; s 0

Þ ¼ s 0 and sðAjker PA; s 0
Þ ¼ sðAÞns 0. Most of the
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time we will be concerned with the situation where s 0 ¼ flg, i.e. an isolated point
of the spectrum. For further results see the Appendix A.

A final remark concerns constants occurring in estimates: Throughout this
article, C denotes some positive constant, not necessarily always the same.
Dependence on certain parameters will be indicated in brackets, e.g. CðtÞ for
dependence on t.

We begin our analysis by investigating the unperturbed one-dimensional
Fokker-Planck operator Lf :¼ f 00 þ xf 0 þ f in various weighted spaces. The nat-
ural space to consider L in is E :¼ L2ð1=mÞ with mðxÞ :¼ expð�x2=2Þ. We use the
notation k � kE for the norm and 3� ; �4E for the inner product. Writing the opera-
tor in the form

Lf ¼
�� f

m

�0
m
�0

shows that LjCl
0

is symmetric and dissipative in E. Then, the proper definition
of L is obtained by the closure of LjCl

0
, and this procedure yields its domain

DðLÞHE. In the subsequent theorem we summarize some important properties
of L in E, see [21, 5, 16]. Since L in E is isometrically equivalent to the (dimen-
sionless) quantum harmonic oscillator Hamiltonian H ¼ �D� 1=2þ x2=4 in
L2ðRÞ, we transfer many results of H (see [23] and [26, Theorem XIII.67]) to L.
For the properties of the spectral projections, see also [17, Section V.3.5].

Theorem 2.1. The Fokker-Planck operator L in E has the following properties:

(i) L with DðLÞ ¼ f f a E : f 00 þ xf 0 þ f a Eg is self-adjoint and has a compact
resolvent.

(ii) The spectrum is sðLÞ ¼ �N0, and it consists only of eigenvalues.
(iii) For each eigenvalue �k a sðLÞ the corresponding eigenspace is one-

dimensional, spanned by mk :¼ 1ffiffiffiffi
2p

p Hkm, where

HkðxÞ ¼ mðxÞ�1 dk

dxk
mðxÞ

is the k-th Hermite polynomial.
(iv) The eigenvectors ðmkÞk AN0

form an orthogonal basis of E.
(v) There holds the spectral representation

L ¼
X
k AN0

�kPL;k; where PL;k :¼
ffiffiffiffiffi
2p

p

k!
mk3�; mk4E

is the spectral projection onto the k-th eigenspace.
(vi) The operator L generates a C0-semigroup of contractions on Ek for all k a N0,

where Ek :¼ kerðPL;0 þ � � � þPL;k�1Þ, kb 1, and E0 :¼ E are L-invariant
subspaces of E. The semigroup satisfies the estimate

ke tLjEk
kBðEkÞ a e�kt; Ek a N0:
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Hence, the Fokker-Planck equation qt f ¼ Lf has a unique stationary solution
with normalized mass, given by m0. Its orthogonal complement E1 consists of all
elements of E with zero mass. And according to Result (vi) for k ¼ 1, any solu-
tion of qt f ¼ Lf with unit mass converges towards m0 with exponential rate of at
least �1 in the E-norm.

In order to analyze the perturbed equation (1.1), we quickly find that E is
not appropriate. For example, for the simple (unbounded) perturbation Yf ðxÞ :¼
f ðxþ aÞ � f ðx� aÞ, a a R, we can explicitly compute the stationary solution f0
of (1.1) and expand it with respect to the orthogonal basis ðmkÞk AN of E. The
obtained Fourier coe‰cients form a divergent sequence, and so f0 B E. Therefore
we consider some larger space L2ðoÞ instead of E, with a weight function o
growing more slowly than m�1. Thereby we choose o such that Y becomes a
bounded operator in L2ðoÞ for a large family of convolution kernels. E.g., one
can easily verify that Yf ðxÞ ¼ f ðxþ aÞ � f ðx� aÞ is bounded in L2ðexpðbjxjgÞÞ
i¤ g a ½0; 1� (for b > 0). At the same time, o should grow fast enough such
that L still has a spectral gap in L2ðoÞ, i.e. there exists some a < 0 such that
fz a C : Re z > agBsðLÞ ¼ f0g. These requirements suggest that exponentially
growing weights would be good candidates, growing as fast as permissible while
still admitting a large class of non-local operators. So, for the rest of this paper,
we choose the weight function oðxÞ ¼ cosh bx for some fixed b > 0, and use the
corresponding space E :¼ L2ðcosh bxÞ. As we will see in the following, the space
E is very convenient also for technical purposes, since it can easily be character-
ized using the Fourier transform.

Lemma 2.2. For f a E we have the following properties:

(i) There holds f a E i¤ its Fourier transform f̂f possesses an analytic continu-
ation (still denoted by f̂f ) to the open strip Wb=2 :¼ fz a C : jIm zj < b=2g,
which satisfies

sup
jbj<b=2
b AR

k f̂f ð� þ ibÞkL2ðRÞ < l:ð2:2Þ

(ii) For x a R and jbj < b=2, f̂f is explicitly given by f̂f ðxþ ibÞ ¼ Fx!xðebxf ðxÞÞ.
(iii) The following function lies in L2ðRÞ:

x 7! f̂f
�
xe i

b

2

�
:¼ Fx!xðee

b
2xf ðxÞÞ; for a:e: x a R:ð2:3Þ

Moreover, b 7! f̂f ð� þ ibÞ lies in Cð½�b=2; b=2�;L2ðRÞÞ. In particular (2.3) is
a natural continuation of f̂f from Wb=2 to the closure Wb=2.

The proof is deferred to the Appendix C. In the following, f̂f always de-
notes the extension of the Fourier transform of f a E according to Lemma 2.2
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(ii)–(iii). Using this convention, we introduce an alternative norm on the space
E :

jjj f jjj2o :¼ k f̂f ð� þ ib=2Þk2L2ðRÞ þ k f̂f ð� � ib=2Þk2L2ðRÞ;ð2:4Þ

which is equal to 4pk f k2o.
Furthermore, we notice that there holds a Poincaré-type inequality in E :

Lemma 2.3 (Poincaré inequality). The inequality

k f ko aCbk f 0koð2:5Þ

holds for all f a W 1;2ðo;oÞ, where Cb > 0 is a constant only depending on b.

Proof. Use j bf 0f 0ðxÞj ¼ jx f̂f ðxÞj, and jxjb b=2 on jIm xj ¼ b=2. Then apply the
norm jjj � jjjo. r

Our next step is to properly define the Fokker-Planck operator in E . To this
end we first define the distributional Fokker-Planck operator Lf :¼ f 00 þ xf 0 þ f
for f a S 0.

Lemma 2.4. Let z a C with Re zb 1þ b2=2, and consider the resolvent equation
ðz� LÞ f ¼ g for f ; g a E . Then there exists a constant C > 0 independent of f , g,
such that

k f k$ þ k f 0ko aCkgko;ð2:6Þ

where $ðxÞ ¼ ð1þ jxjÞoðxÞ.

Proof. Let us fix z a C with Re zb 1þ b2=2. Now we consider the resolvent
equation ðz� LÞ f ¼ g for f ; g a E HS 0. Applying 3�; f 4o to both sides yields:Z

R

f go dx ¼
Z
R

zj f j2o� ð f 0 þ xf Þ0fo dx

¼
Z
R

j f 0j2oþ j f j2ðxo 0 þ zoÞ þ f 0fo 0 þ f f 0xo dx:

Next we take the real part:

Re

Z
R

f go dx ¼
Z
R

j f 0j2oþ j f j2ðxo 0 þReðzÞoÞ þ 1

2
j f 2j 0ðo 0 þ xoÞ dxð2:7Þ

¼
Z
R

j f 0j2oþ 1

2
j f j2 ~oo dx;

with ~oo :¼ �o 00 þ xo 0 þ ð2Re z� 1Þo. For our choice oðxÞ ¼ cosh bx we ob-
tain ~ooðxÞ ¼ ð2Re z� 1� b2ÞoðxÞ þ xb sinh bx. For Re zb 1þ b2=2, ~oo is strictly
positive. Thus, ~oo is a weight function, and it has the asymptotic behaviour
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~ooðxÞP bjxjoðxÞ as x !el. Applying the Cauchy-Schwarz inequality to the left
hand side of (2.7) yields

1

2
k f k2~oo þ k f 0k2o a k f kokgko:

For the left hand side we use oðxÞa ~ooðxÞ and the Poincaré inequality (2.5) to
obtain

1

2
k f k ~oo þ 1

Cb
k f 0ko a kgko:

The result follows, since the weight functions ~oo and $ define equivalent norms.
r

Corollary 2.5. The operator ðL� 1� b2=2ÞjCl
0
ðRÞ is dissipative in E .

Proof. We use the result (2.7) for z ¼ 1þ b2=2. We then estimate the right
hand side for f a Cl

0 ðRÞ:

Re

Z
R

f ðL� zÞ f dxa�
�
Cb þ

1

2

�
k f k2o a 0;

where we used the Poincaré inequality and ~oobo. r

The above results can be used to establish the proper definition of the Fokker-
Planck operator in E :

Lemma 2.6. The operator LjCl
0
ðRÞ is closable in E . Its closure L :¼ clE LjCl

0
ðRÞ

has the domain of definition DðLÞ ¼ f f a E : Lf a Eg. For f a DðLÞ we have
Lf ¼ Lf .

The proof is deferred to the Appendix C. It also yields the following result:

Corollary 2.7. The resolvent set rðLÞ is non-empty. It contains the half-plane
fz a C : Re zb 1þ b2=2g.

As it turns out, the resolvent estimate (2.6) is strong enough to prove compact-
ness of the resolvent. To this end we shall use the following simplified version of
[22, Theorem 2.4]:

Lemma 2.8. Let w;w0;w1 be weight functions, and ðWnÞn AN a monotonically in-
creasing sequence of subsets of R that converges to R. Assume that for all n a N
there holds the compact embedding W 1;2ðWn;w0;w1Þ ,!,! L2ðWn;wÞ. Then

W 1;2ðw0;w1Þ ,!,! L2ðwÞ , lim
n!l

sup
k f kw0 ;w1a1

k f kRnWn;w
¼ 0:
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From this we deduce immediately the following lemma:

Lemma 2.9. Let w, w0, w1 be weight functions. If limjxj!l wðxÞ=w0ðxÞ ¼ 0, then
the compact embedding holds:

W 1;2ðw0;w1Þ ,!,! L2ðwÞ:

This compact embedding allows to prove that RLðzÞ is compact:

Theorem 2.10. For any z a rðLÞ the resolvent operator RLðzÞ : E ! E is
compact. In particular sðLÞ ¼ spðLÞ, i.e. the spectrum of L consists entirely of
eigenvalues.

Proof. To begin with, we fix some z a C with Re zb 1þ b2=2. According to
Lemma 2.4 we have the estimate (2.6), which we can reformulate: There exists a
constant C > 0 such that

kRLðzÞgk$;o aCkgko; Eg a E :

Hence RLðzÞ a BðE ;W 1;2ð$;oÞÞ. Now there holds the asymptotic behaviour
oðxÞ=$ðxÞP 1=jxj ! 0 as x !el: Therefore we may apply Lemma 2.9
for w ¼ w1 ¼ o and w0 ¼ $, which yields the compact embedding
W 1;2ð$;oÞ ,!,! E . Thus, the resolvent RLðzÞ a BðEÞ is compact for Re zb
1þ b2=2. But this already implies the compactness of RLðzÞ for all z a rðLÞ,
cf. [17, Theorem III.6.29]. The same reference confirms that sðLÞ ¼ spðLÞ. r

With these preparations we can now characterize the spectrum of L:

Proposition 2.11. We have sðLÞ ¼ �N0. Each eigenspace is one-dimensional,
and for k a N0 we have kerðk þ LÞ ¼ spanfmkg.

Proof. We consider the Fourier transform of the eigenvalue equation
ðz� LÞ f ¼ 0 for f a E . The general solution of the Fourier-transformed equa-
tion on the real line reads:

f̂f ðxÞ ¼ CemðxÞx�z; x a Re:ð2:8Þ

For details see the computation in the beginning of the Appendix B for
g ¼ Q ¼ 0. Since f a E , f̂f has to be analytic in Wb=2, see Lemma 2.2. With the
specification of the complex logarithm in Section 2 we may extend both parts of

f̂f from (2.8) analytically to the complex half-planes fRe x > 0g and fRe x < 0g
respectively. However, if z a CnZ, the two extensions do not meet continuously
at the imaginary axis, thus f̂f is not analytic in Wb=2 (except for the trivial case
Ce ¼ 0). If z a Z, we obtain continuity of f̂f at the imaginary axis (without
x ¼ 0) i¤ C� ¼ Cþ. But for z a N, f̂f still has a pole at x ¼ 0, thus it is not
analytic. In the remaining case z a �N0 the function f̂f from (2.8) has an ana-
lytic extension to C, when we choose C� ¼ Cþ. So f a E solves the eigenvalue
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equation for z i¤ z a �N0. And according to (2.8) the eigenspaces are still
spanned by the mk, k a N0, since m̂mkðxÞ ¼ ðixÞkmðxÞ. r

The main di¤erence to L in E is that the eigenfunctions do not form an
orthogonal basis any more. However, we are still able to transfer the concept of
the L-invariant subspaces Ek HE to E .

Proposition 2.12. For every k a N we have the following facts:

(i) The subspace Ek :¼ clE Ek is L-invariant, and sðLjEk
Þ ¼ f�k;�k � 1; . . .g

(ii) The spectral projection PL;k of L associated to the eigenvalue �k satisfies

kerPL;k ¼ Ekþ1 a spanfmk�1; . . . ; m0g; ranPL;k ¼ spanfmkg:

Moreover, kerPL;0 ¼ E1 and ranPL;0 ¼ spanfm0g.
(iii) There holds E ¼ Ek a spanfmk�1; . . . ; m0g.

Proof. Since sðLÞ ¼ sðLÞ, and RLðzÞHRLðzÞ for all z a Cnð�N0Þ, we con-
clude from (2.1) that for any s 0 H sðLÞ there holds PL;s 0 HPL;s 0 , and they
are bounded projections in E and E , respectively. For s 0 :¼ f0; . . . ;�k þ 1g,
k a N; we apply Lemma C.1 from the appendix: ranPL;s 0 ¼ clE ranPL;s 0 ¼
clE spanfm0; . . . ; mk�1g ¼ spanfm0; . . . ; mk�1g and kerPL;s 0 ¼ clE kerPL;s 0 ¼
clE Ek ¼: Ek. This shows (i). Since the projection PL;s 0 is bounded, the range
and kernel indeed represent a decomposition of E , thus we also obtain Result (iii).

For (ii) we use the same arguments as before, with s 0 ¼ f�kg instead. r

Next we characterize the subspaces Ek.

Proposition 2.13. For k a �N the subspace Ek is explicitly given by

Ek ¼ f a E :

Z
R

f ðxÞx j dx ¼ 0; 0a ja k � 1

� �
:ð2:9Þ

Furthermore, there holds

Ek ¼ f f a E : f̂f ð jÞð0Þ ¼ 0; 0a ja k � 1g;ð2:10Þ

where f̂f ð jÞ denotes the j-th derivative of the Fourier transform of f .

Proof. The functionals cj : f 7!
Z
R

f ðxÞx j dx, j a N, are continuous in E . We

define ~ccj :¼ cjjE . Let f a Ek ¼ fm0; . . . ; mk�1g
?E . The orthogonality condition

then reads

0 ¼ 3 f ; mj4E ¼
Z
R

f ðxÞmjðxÞmðxÞ
�1 dx ¼ 1ffiffiffiffiffi

2p
p

Z
R

f ðxÞHjðxÞ dx; E0a ja k � 1;
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which is equivalent to ~cc0ð f Þ ¼ � � � ¼ ~cck�1ð f Þ ¼ 0. Applying Lemma C.2 from
the appendix with X ¼ E and X ¼ E yields clE Ek ¼ f f a E : cjð f Þ ¼ 0; 0a ja
k � 1g, which is equal to Ek by definition. This proves (2.9).

The second equality (2.10) immediately follows fromZ
R

f ðxÞx j dx ¼ Fx!x½ f ðxÞx j�ð0Þ ¼ i j f̂f ð jÞð0Þ; Ej a N0: r

Remark 2.14. The representation (2.9) of the Ek also holds in polynomially
weighted spaces, which is shown in [11, Appendix A].

The final result of this section deals with the analysis of the semigroup ðe tLÞtb0
generated by L in E . We already know that L generates a C0-semigroup ðe tLÞtb0
of bounded operators in E, and from [11, Appendix A] we get its representation
(for f a E):

Fx!x½e tLf � ¼ exp
�
� x2

2
ð1� e�2tÞ

�
f̂f ðxe�tÞ; tb 0:ð2:11Þ

This formula can be extended to f a E , yielding a family ðSðtÞÞtb0 of operators
in E .

Lemma 2.15. The family of operators ðSðtÞÞtb0 given by (2.11) is a family of
bounded operators in E .

Proof. In order to show that the operators SðtÞ are bounded, we use the norm
jjj � jjjo. So we estimate kF ½SðtÞ f �ðxþ ib=2Þk, the estimate for the other term in
jjj � jjjo is analogous:

kF ½SðtÞ f �ð� þ ib=2Þk2L2ðRÞð2:12Þ

¼
Z
R

exp �x2 þ b2

4

" #
ð1� e�2tÞ

 !
f̂f xþ i

b

2

� 	
e�t


 ����� ����2 dx
a exp

� b2

4

�Z
R

f̂f xþ i
b

2

� 	
e�t


 ����� ����2 dx
¼ exp

� b2

4
þ t
�Z

R

f̂f
�
xþ ie�t b

2

����� ����2 dx
a exp

� b2

4
þ t
�
jjj f jjj2coshðe�tbxÞ a exp

� b2

4
þ t
�
jjj f jjj2o

So ðSðtÞÞtb0 is a family of bounded operators in E , and there exists a constant
M > 0 with

kSðtÞkBðEÞ aMe t=2; tb 0: r
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Lemma 2.16. The operator L is the infinitesimal generator of the C0-semigroup
ðSðtÞÞtb0 in E .

Proof. According to [24, Theorem 1.4.5], Corollary 2.5 implies that L � 1�
b2=2 ¼ clEðLjCl

0
� 1� b2=2Þ is dissipative in E . From Proposition 2.11 we also

know that any z a C with Re z > 0 lies in rðLÞ. So we can apply the Lumer-
Phillips Theorem [24, Theorem 1.4.3] and find that L generates a C0-semigroup
ðe tLÞtb0 of bounded operators. Since e tL and SðtÞ are both bounded in E and
coincide on the dense subspace DðLÞH E , we get e tL ¼ SðtÞ in E for all tb 0.

r

As a consequence we write e tL :¼ SðtÞ for the semigroup generated by L, and
the representation (2.11) holds for all f a E .

Proposition 2.17. For every k a N0 we have:

(i) The space Ek is invariant under the family ðe tLÞtb0.
(ii) There exists some Ck > 0 such that

ke tLjEkkBðEkÞ aCke
�kt; tb 0:

Proof. The closed subspaces Ek are L-invariant, so they are also invariant
under ðe tLÞtb0.

In order to show (ii), we use the first line of (2.12) and make the additional
assumption tb 1:

kF ½etLf �ð� þ ib=2Þk2L2ðRxÞð2:13Þ

a e
b2

4

Z
R

e�
x2

2 xþ i
b

2

� 	
e�t

���� ����2k f̂f
�
xþ i b2

�
e�t
��

xþ i b2
�
e�t
�k

�����
�����
2

dx

Here we used the inequality 1
2 < 1� e�2t < 1 for tb 1. In the following we use

the Poincaré inequality (2.5):

f̂f
�
xþ i b2

�
e�t
��

xþ i b2
�
e�t
�k

�����
�����
LlðRxÞ

¼ Fx!x exp
� b
2
e�tx

�
F �1

x!x

f̂f ðxÞ
xk

" # !�����
�����
LlðRxÞ

a exp
� b
2
e�tx

�
F �1

x!x

f̂f ðxÞ
xk

" #�����
�����
L1ðRxÞ

a ~CCðtÞ F �1
x!x

f̂f ðxÞ
xk

" #�����
�����
o

aCðtÞ ðiqxÞkF �1
x!x

f̂f ðxÞ
xk

" #�����
�����
o

¼ CðtÞk f ko:
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Thereby, the constant ~CCðtÞ is given by

~CCðtÞ ¼
Z
R

expðbe�txÞ
cosh bx

dx;

which is uniformly bounded for tb 1. Inserting this result in (2.13) yields for
tb 1

kF ½e tLf �ð� þ ib=2Þk2L2ðRxÞ aCe
b2

4 e�2ktk f k2o
Z
R

e�
x2

2 xþ i
b

2

���� ����2k dx
¼ Ce�2ktk f k2o:

Thus there exists a constant C > 0 such that jjje tLf jjjo aCe�ktjjj f jjjo for all tb 1.
From Lemma 2.15 we also know that the semigroup is uniformly bounded for
t a ½0; 1�, so altogether we get the desired decay estimate for the semigroup in
Ek. r

Before we turn to the perturbed Fokker-Planck equation, we summarize our
results so far:

Theorem 2.18. Let oðxÞ :¼ cosh bx for some b > 0. Then the Fokker-Planck
operator LjCl

0
ðRÞ is closable in E ¼ L2ðoÞ, and its closure L ¼ clE LjCl

0
ðRÞ has the

following properties:

(i) The spectrum satisfies sðLÞ ¼ �N0, and kerðL þ kÞ ¼ spanfmkg for any
k a N0. The eigenfunctions satisfy the relation mk ¼ m

ðkÞ
0 , the k-th derivative

of m0.
(ii) The resolvent RLðzÞ is compact in E for all z B �N0.
(iii) For any k a N0 the closed subspace Ek :¼ clE spanfmk; mkþ1; . . .g is an L-

invariant subspace of E , and spanfm0; . . . ; mk�1g is a complement. In particular
E0 ¼ E .

(iv) The spectral projection PL;k to the eigenvalue �k a �N0 fulfills ranPL;k ¼
spanfmkg and kerPL;k ¼ Ekþ1 a spanfmk�1; . . . ; m0g for k a N0.

(v) For any k a N0 the operator L generates a C0-semigroup on Ek, and there
exists a constant Ck b 1 such that we have the estimate

e tLjEk

�� ��
BðEkÞ

aCke
�kt; Etb 0:

Remark 2.19. More generally, the results of Theorem 2.18 hold for all weight
functions oðxÞ ¼ expðbjxjgÞ with either g a ð0; 2Þ and b > 0 or g ¼ 2 and
b a


0; 12
�
. This can be shown by using the results from [13], where an operator

decomposition method is used to transfer spectral properties of operators from a
Banach space to a larger Banach space. For a detailed discussion of the applica-
tion of [13], see [27].
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Remark 2.20. The sequence of eigenfunctions ðmkÞk AN0
is an orthogonal basis

of E. In the larger space E , the linear hull spanfmk : k a N0g is still dense, due
to the continuous embedding E ,! E .

Also, each f a E can (formally) uniquely be decomposed according to the
sequence of spectral projections ðPL;kÞk AN0

, see the proof of Proposition 3.9.
But the obtained series may diverge in E . As an example we consider f ðxÞ :¼
expð�jxjÞ a L2ðcosh xÞ. Since f is symmetric, we have PL;k f ¼ 0 if k is odd.
For k ¼ 2n, n a N0, one can show the asymptotic behaviour for n ! l:

kPL;2n f ko ¼ O
� ffiffiffiffiffiffiffiffiffiffi

ð2nÞ!
p
n1=4

�
;

where we use the explicit representation for the Hermite polynomials H2n from
(5.5.4) in [28], and the asymptotic expansions for H2n given in [28, Theorem
8.22.9]. Therefore, the formal series

P
n AN0

PL;2n f is divergent in E . So the se-
quence ðmkÞk AN0

is neither a Schauder basis nor a representation system of E .
However, the sequence ðmk=kmkkEÞk AN0

is still a Bessel system, see [7, 6] for the
definitions.

3. Analysis of the perturbed operator

So far we have discussed the one-dimensional Fokker-Planck operator L in
E ¼ L2ðoÞ, with oðxÞ ¼ cosh bx. In this section we investigate the properties of
the perturbed (one-dimensional) operator L þY in E , and we shall summarize
the results in Theorem 3.19. We begin by specifying the assumptions we make
on the perturbation Y.

(C) Conditions on Y: We assume that Yf ¼ Q � f , for f a E , where Q is a tem-
pered distribution that fulfills the following properties in Wb=2 for some b > 0:

(i) The Fourier transform Q̂Q can be extended to an analytic function in Wb=2

(also denoted by Q̂Q), and Q̂Q a LlðWb=2Þ.
(ii) It holds Q̂Qð0Þ ¼ 0, i.e. Q has zero mean.

(iii) The mapping x 7! Re

Z 1

0

Q̂QðxsÞ=s ds is essentially bounded in Wb=2.

Remark 3.1. If the conditions (C)(i)–(ii) hold for Q, then the mapping x 7!Z 1

0

Q̂QðxsÞ=s ds is analytic in Wb=2. This becomes clear when writing Q̂QðxsÞ=s ¼

xQ̂QðxsÞ=ðxsÞ, which is analytic for all s a ð0; 1� and can be continuously extended

to Q̂Q
0ð0Þx for s ¼ 0. The analyticity of x 7!

Z 1

0

Q̂QðxsÞ=s ds on Wb=2 then follows
from [9, Theorem 4.9.1].

Lemma 3.2. There holds Yf a E for all f a E i¤ the condition (C)(i) holds.
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Proof. Clearly, cYfYf ¼ Q̂Qf̂f is analytic in Wb=2 for f a E . According to Lemma 2.2
there holds Yf a E i¤

sup
jbj<b=2

kðQ̂Qf̂f Þð� þ ibÞkL2ðRÞ < l;ð3:1Þ

where we use cYfYf ¼ Q̂Qf̂f . Now we apply Hölder’s inequality and find that (3.1)
holds for all f a E i¤ Q satisfies (C)(i). r

As a consequence of the above lemma and (3.1), the product Q̂Qf̂f itself is the
Fourier transform of an element of E . So we may define ðQ̂Qf̂f Þð�e ib=2Þ a L2ðRÞ
for f a E according to (2.3) whenever Q satisfies (C)(i). With this we obtain ac-
cording to Lemma 2.2 (iii):

b 7! ðQ̂Qf̂f Þð� þ ibÞ a Cð½�b=2; b=2�;L2ðRÞÞ:ð3:2Þ

Corollary 3.3. The convolution Y is bounded in E if the condition (C)(i)
holds.

Proof. We apply the norm (2.4) to Yf . The Fourier transform turns the convo-
lution into a multiplication, so we get according to (3.2) and (C)(i)

jjjYf jjj2o ¼
Z
R

jQ̂Qf̂f ðx� ib=2Þj2 dxþ
Z
R

jQ̂Qf̂f ðxþ ib=2Þj2 dx

¼ lim
b%b=2

Z
R

jQ̂Qf̂f ðx� ibÞj2 dxþ
Z
R

jQ̂Qf̂f ðxþ ibÞj2 dx
� 	

a kQ̂Qk2LlðWb=2Þ lim
b%b=2

Z
R

j f̂f ðx� ibÞj2 dxþ
Z
R

j f̂f ðxþ ibÞj2 dx
� 	

¼ kQ̂Qk2LlðWb=2Þjjj f jjj
2
o: r

Lemma 3.4. Under the assumption (C) there holds Y : Ek ! Ekþ1 H Ek for every
k a N.

Proof. According to Proposition 2.13, f a Ek i¤ x ¼ 0 is a zero of f̂f ðxÞ of order
greater or equal to k. Because of the assumption Q̂Qð0Þ ¼ 0 the Fourier transformcYfYf ¼ Q̂Qf̂f has a zero at least of order k þ 1 for f a Ek, so Yf a Ekþ1. r

Corollary 3.5. Let (C) hold, and k a N0. Then the space Ek is an ðL þYÞ-
invariant subspace of E .

Since the conditions (C) are not very handy for direct applications, the fol-
lowing lemma gives some criteria that are simpler to verify and su‰cient for
(C).
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Lemma 3.6. Let b > 0 and oðxÞ ¼ cosh bx, and assume that Q a S 0 fulfills

(i) Q̂Qð0Þ ¼ 0,
(ii) Q ¼ QW þ QD with QW a W 1;1ðo1

2;o
1
2Þ and QD a D :¼ f

Pn
j¼1 ajdxj : aj a C;

xj a R; n a Ng, where dxj denotes the delta distribution located at xj.

Then Yf ¼ Q � f satisfies (C) for this b > 0.

Proof. In general Q̂QW ð0Þ and Q̂QDð0Þ are not zero, so it is convenient to define
Q�
W :¼ QW þMm and Q�

D :¼ QD �Mm, where M :¼ Q̂QDð0Þ=
ffiffiffiffiffi
2p

p
. Then Q̂Q�

W and
Q�
D have zero mass, and we still have Q̂Q�

W a W 1;1ðo1
2;o

1
2Þ: Since Fx!xdxj ¼ e�ixxj

and m̂mðxÞ ¼
ffiffiffiffiffi
2p

p
mðxÞ, it is immediate that Q�

D satisfies (C)(i). In order to see
(C)(iii) for Q�

D, we note that the integral occurring in this condition can be re-
written as the line integral from 0 to x:Z

0!x

Q̂Q�
DðzÞ
z

dz

which is path-independent in C (and thus in Wb=2), since Q̂Q�
D is an entire function

and has a zero at 0. Therefore the integral itself is analytic, and thus uniformly
bounded on every compact subset of C. Because of this, it is su‰cient to show
uniform boundedness of this integral as jxj ! l in Wb=2. We outline this for
the map x 7! e�ixjx for any fixed xj a R and Re x > 1, the case Re x < �1 is
analogous. Thereby we choose the following integration path (note that we may
start from z ¼ 1, since the integral from 0 to 1 is a constant)Z

1!x

e�ixjz

z
dz

���� ����a Z ReðxÞ

1

e�ixjz

z
dz

�����
�����þ

Z
ReðxÞ!ReðxÞþi ImðxÞ

e�ixjz

z
dz

�����
�����

a

Z ReðxÞxj

xj

e�iz

z
dz

�����
�����þ b

2
ejxj jb=2:

The first integral is known to remain uniformly bounded as ReðxÞ ! þl. For
estimating the second integral we used x a Wb=2 and Re xb 1. Since m̂m ¼

ffiffiffiffiffi
2p

p
m

decays su‰ciently fast in Wb=2, it is clear that the integral of m̂mðzÞ=z from 1 to x
also remains uniformly bounded as x ! þl. Altogether, we conclude that Q̂Q�

D

satisfies (C)(iii).
Now we verify the same properties for Q�

W . Since Q�
W a L1ðo1

2Þ, we may extend
Q̂Q�
W to an analytic function in Wb=2, and there holds (2.3), cf. [8, Proposition

XVI.1.3]. The Fourier transform is a continuous map from L1ðRÞ to B0ðRÞ, i.e.
the continuous functions decaying at infinity, equipped with the uniform norm.
Therefore, Q�

W a L1ðo1
2Þ implies

kQ̂Q�
WkLlðWb=2Þ ¼ sup

jbj< b
2

sup
x AR

jQ̂Q�
W ðxþ ibÞja sup

jbj< b
2

kQ�
W ðxÞebxkL1ðRÞ

a kQ�
W ðxÞe

b
2jxjkL1ðRÞ < l:
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So (C)(i) is satisfied. For (C)(iii) it is su‰cient to show that for some c > 0
and all x a Wb=2 with jxjb 1 there holds jQ̂Q�

W ðxÞja c=jxj, which is fulfilled if
F ðQ�

W
0Þ a LlðWb=2Þ. Analogously to the previous part of the proof we obtain

that this is satisfied if Q�
W

0 a L1ðo1
2Þ. We conclude that Q�

W fulfills (C)(i) and
(C)(iii) if Q�

W a W 1;1ðo1
2;o

1
2Þ.

Finally, Q satisfies the condition (C)(ii) due to the assumption (i). r

For the rest of the article, we shall always assume that Y satisfies the condition
(C) for some fixed b > 0, and we choose the weight function oðxÞ ¼ cosh bx with
this particular b. The first result about the perturbed Fokker-Planck operator is
the following lemma:

Lemma 3.7. The operator L þY has compact resolvent in E .

Proof. A bounded perturbation of an infinitesimal generator with compact
resolvent has compact resolvent again, see [10, Proposition III.1.12]. Then the
result follows by combining the results of Theorems 2.10 and 2.18 for L, and
Corollary 3.3 for Y. r

As a consequence, the spectrum of L þY in E is non-empty and consists only
of eigenvalues. In order to characterize the entire spectrum, we introduce the
following ladder operators1, namely the annihilation operator

a� : E1 ! E : f 7!
Z x

�l
f ðyÞ dy;

and its formal inverse aþ : f 7! f 0, the creation operator.

Lemma 3.8. The annihilation operator a� has the following properties:

(i) For any k a N there holds a� a BðEk; Ek�1Þ.
(ii) In E1 the operators Y and a� commute.
(iii) Let f a E1, z a C such that ðL þYÞ f ¼ z f . Then

ðL þYÞða�f Þ ¼ ðzþ 1Þða�f Þ:

Proof. First we show (i). The property a� : Ek ! Ek�1 can be verified by using
the explicit representation (2.9) of the Ek, and integration by parts (first for
f a Cl

0 ðRÞ). The boundedness of a� follows immediately from the Poincaré
inequality (2.5). Property (ii) holds true since Y is a convolution. For Result (iii)
one applies a� to the equation ðL þYÞ f ¼ z f , and uses the identity a�ðLf Þ ¼
Lða�f Þ � a�f and the Property (ii). r

1One of the best-known applications of ladder operators occurs in the spectral analysis of the

quantum harmonic oscillator, see e.g. [15].
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By using the annihilation operator, we are able to prove:

Proposition 3.9. We have the following spectral properties of L þY in E:

(i) sðL þYÞ ¼ �N0.
(ii) For each k a N0, the eigenspace kerðL þYþ kÞ is one-dimensional.
(iii) The eigenfunction fk to the eigenvalue �k a N0 is explicitly given by (up to a

normalization constant)

fk ¼ ðaþÞkf0 ¼ f
ðkÞ
0 ; and f̂f0ðxÞ ¼ exp

�
� x2

2
þ
Z 1

0

Q̂QðxsÞ
s

ds
�
; x a Wb=2:ð3:3Þ

In particular, f0 is the unique stationary solution with unit mass of the perturbed
Fokker-Planck equation (1.1) in one dimension.

Proof. In order to show (i) we first prove that
T

k AN Ek ¼ f0g. According to
(2.10) there holds \

k AN

Ek ¼ f f a E : f̂f ðkÞð0Þ ¼ 0; k a N0g:

But for f a E , f̂f is analytic, and the only analytic function with a zero of infinite
order is the zero function, which proves the statement.

Thus, for any eigenfunction f , there exists a unique k a N0 such that
f a EknEkþ1, which is the minimal k a N0 with the property PL;k f A 0. Apply-
ing this projection to the eigenvalue equation yields

PL;kðL þYÞ f ¼ �kPL;k f ¼ zPL;k f ;

where we used Yf a Ekþ1 (cf. Lemma 3.4). Hence, the eigenvalue corresponding
to f satisfies z ¼ �k. Thus sðL þYÞJ�N0. If now fk is an eigenfunction with
eigenvalue �k, we can apply k times the continuous operator a� to fk, and create
eigenfunctions to all eigenvalues f�k þ 1; . . . ; 0g. So either sðL þYÞ ¼ �N0 or
sðL þYÞ ¼ f�k0; . . . ; 0g, i.e. there exists some minimal eigenvalue �k0. But the
latter scenario is actually not possible, because then the operator ðL þYÞjEk0þ1

would have empty spectrum in Ek0þ1, which contradicts the fact that it still has a
compact resolvent in Ek0þ1.

In order to verify (ii) we recall from the first part of the proof that if f is
an eigenfunction of L þY to the eigenvalue �k, then k ¼ argminfPL; j f A 0 :
j a N0g. In particular,

PL;k f A 0ð3:4Þ

for such an eigenfunction. Assume that dimkerðL þYþ kÞ > 1 for some k a N0:
Thus we may choose two linearly independent eigenfunctions to the eigenvalue
�k. Since dim ranPL;k ¼ 1, we can find a linear combination of these two eigen-
functions, yielding an eigenfunction f which satisfies PL;k f ¼ 0. But this contra-
dicts (3.4) and hence dimkerðL þYþ kÞ ¼ 1.
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For the third result (iii) we consider the Fourier transform of the eigenvalue
equation ðL þYÞ fk ¼ �kfk for k a N0. This yields the following di¤erential
equation for f̂fk:

x f̂f 0
k ðxÞ ¼ ðQ̂QðxÞ þ k � x2Þ f̂fkðxÞ:

Its general solution reads

f̂fkðxÞ ¼ ckx
kqðxÞ; with qðxÞ :¼ exp

�
� x2

2
þ
Z 1

0

Q̂QðxsÞ
s

ds
�
;

for all k a N0, with ck a C. We may now fix ck :¼ ik, which completes the proof.
r

Remark 3.10. According to the results of Proposition 2.12 (ii) we may formally
write Y and L as infinite-dimensional matrices with respect to the eigenfunctions
mk, k a N0. Due to the property Y : Ek ! Ekþ1 shown in Lemma 3.4 this repre-
sentation of Y is strictly lower triangular. Furthermore, due to Theorem 2.18 (iii),
L is formally diagonal. And according to Proposition A.2 sðLÞ ¼ sðL þYÞ. This
situation resembles the finite-dimensional case, in which adding a strictly triangu-
lar matrix does not change the spectrum of a diagonal matrix.

Lemma 3.11. The spectral projection Pk of L þY corresponding to the eigen-
value �k a �N0 fulfills

ranPk ¼ spanf fkg; kerPk ¼ Ekþ1 a spanf fk�1; . . . ; f0g;

with the eigenfunctions fk; . . . ; f0 given in (3.3). Therefore, all singularities of
the resolvent are of order one, and for all k a N0 there holds MðL þYþ kÞ ¼
kerðL þYþ kÞ.

Proof. The set Kk :¼ Ekþ1 a spanf fk�1; . . . ; f0g is invariant under L þY, cf.
Corollary 3.5. Therefore the algebraic eigenspace satisfies MðL þYþ kÞ ¼
kerðL þYþ kÞ ¼ spanf fkg, being the complement of Kk. In particular we
obtain the ðL þYÞ-invariant decomposition E ¼ Kk aMðL þYþ kÞ, and
sððL þYÞjKk

Þ ¼ �N0nf�kg. So we can apply Lemma A.3 from the appendix,
which yields the properties of the spectral projections.

Since dimPk ¼ 1 and MðL þYþ kÞ ¼ kerðL þYþ kÞ, the singularity of
RLþYðzÞ at z ¼ �k is a pole of order one, see Proposition A.2 (iv)–(v). r

Having explicitly determined the spectrum of the perturbed Fokker-Planck
operator, we now turn to the generated semigroup and the corresponding decay
rates. We start with the fact that L þY generates a C0-semigroup:

Proposition 3.12. For each k a N0 the operator ðL þYÞjEk
is the infinitesimal

generator of a C0-semigroup on Ek. The semigroup on E preserves mass, i.e.Z
R

f ðxÞ dx ¼
Z
R

½e tðLþYÞf �ðxÞ dx; Etb 0:
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Proof. According to Theorem 2.18 the operator L generates a C0-semigroup
on Ek for every k a N0, and due to Lemma 3.4 and Corollary 3.3 we have
YjEk

a BðEkÞ. Now a bounded perturbation of the infinitesimal generator of a
C0-semigroup is again infinitesimal generator, see [10, Theorem III.1.3], and so
the first result follows.

To show the conservation of mass we use the decomposition of ðe tðLþYÞÞtb0 by
P0 corresponding to E ¼ E1 a spanf f0g. The space E1 consists of all massless
functions, so the part P0 f alone determines the mass of any f a E . Since E1 and
spanf f0g are both invariant under the semigroup, P0 and ðe tðLþYÞÞtb0 commute.
Furthermore we have P0 f a kerðL þYÞ, and hence etðLþYÞP0 f ¼ P0 f for all
tb 0. Altogether we obtain P0e

tðLþYÞf ¼ P0 f for all f a E , tb 0, i.e. the semi-
group preserves mass. r

Next we investigate the decay rate of ðe tðLþYÞÞtb0 on the subspaces Ek. To this
end we define:

ĉcðxÞ :¼ exp
�Z 1

0

Q̂QðxsÞ
s

ds
�
; x a Wb=2;ð3:5Þ

which is analytic in Wb=2 according to Remark 3.1.

Lemma 3.13. The map C : f 7! f � c has the properties:

(i) For each k a N0, C : Ek ! Ek is a bijection, with inverse C�1 : f 7!
f � F �1½1=ĉc�.

(ii) C;C�1 a BðEÞ.

Proof. We define C : f 7! f � F �1½1=ĉc�. Due to the condition (C)(iii) there
holds Cf ;Cf a E for all f a E , which is shown analogously to Lemma 3.2. Let
now f a Ek for some k a N0. Then f̂f ðxÞ has a zero of order greater or equal to

k at x ¼ 0, cf. Proposition 2.13. Since ĉc and 1=ĉc are analytic in Wb=2, the zero at
x ¼ 0 of Fx!xCf ¼ f̂f ðxÞĉcðxÞ and of Fx!xCf ¼ f̂f ðxÞ=ĉcðxÞ is of the same order as
of f̂f . So C;C : Ek ! Ek for all k a N0.

By applying the Fourier transform, we see that C �Cf ¼ C �Cf ¼ f for all
f a E , i.e. C ¼ C�1, and C;C�1 : Ek ! Ek are bijections for all k a N0.

Finally, as in Corollary 3.3 one proves the boundedness of C and C�1 by
using the assumption (C)(iii). r

The map C plays a crucial role in the analysis of the perturbed Fokker-Planck
operator L þY, because it relates the eigenspaces of L to the eigenspaces of
L þY: According to Proposition 3.9 we have:

fk ¼ Cmk; k a N0:ð3:6Þ

By using this property of C we obtain the following result:
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Proposition 3.14. Let k a N0 and z a Cnf�k;�k � 1; . . .g. Then there holds

RLþYðzÞjEk
¼ C � RLðzÞ �C�1jEk

:ð3:7Þ

In particular there exists a constant ~CCk > 0 such that

kðRLþYðzÞjEkÞ
nkBðEkÞ a

~CCk

ðRe zþ kÞn ; Re z > �k; n a N:ð3:8Þ

Proof. We fix k a N0. Then for all jb k and z a Cnf�k;�k � 1; . . .g there
holds due to (3.6):

RLðzÞmj ¼
mj

zþ j
¼ C�1 � RLþYðzÞ fj ¼ C�1 � RLþYðzÞ �Cmj:

So we have RLðzÞ ¼ C�1 � RLþYðzÞ �C in the space spanfmj : jb kgHEk,
which is dense in Ek. Then this identity extends to Ek due to the continuity of
the occurring operators.

In order to prove the resolvent estimate (3.8) we use

ðRLþYðzÞjEk
Þn ¼ RLþYðzÞnjEk

¼ C � RLðzÞn �C�1jEk
;

which follows from (3.7) and Lemma 3.13 (i). Because of C;C�1 a BðEkÞ we
conclude

kðRLþYðzÞjEk
ÞnkBðEkÞ a kCkBðEkÞkðRLðzÞjEk

ÞnkBðEkÞkC
�1kBðEkÞ:ð3:9Þ

Due to the semigroup estimate in Theorem 2.18 (v) there holds

kðRLðzÞjEk
ÞnkBðEkÞ a

Ck

ðRe zþ kÞn ; Re z > �k; n a N;

according to the Hille-Yosida theorem. Inserting this estimate in (3.9) shows
(3.8). r

Remark 3.15. According to (3.7) the operators L and L þY are similar:

L þY ¼ C � L �C�1:

Now we consider the family of operators ðLðtÞÞt AR :¼ ðL þ tYÞt AR. Clearly, for
every t a R the operators LðtÞ and Lð0Þ ¼ L are similar with the transformation
operator CðtÞ defined according to Lemma 3.13 (where we replace Q by tQ in
(3.5)). Therefore, according to [19] there exists a family of operators ðBðtÞÞt AR
such that ðLðtÞ;BðtÞÞ form a Lax pair, i.e. they obey

d

dt
LðtÞ ¼ ½BðtÞ;LðtÞ�;
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where the right hand side denotes the commutator. Since we explicitly know the
transformation operator CðtÞ we can compute BðtÞ:

Bf :¼ �CðtÞ � d½CðtÞ��1

dt
f ¼ F �1

Z 1

0

Q̂QðxsÞ
s

dsf̂f

" #
;

which is independent of t.

Corollary 3.16. Let k a N0. Then there exists a constant ~CCk > 0 such that

ke tðLþYÞjEk
kBðEkÞ a

~CCke
�kt; tb 0:ð3:10Þ

Proof. The result immediately follows from (3.8) by application of the Hille-
Yosida theorem. r

Remark 3.17. The above result implies the exponential convergence of any
solution of (1.1) towards the (appropriately scaled) stationary state: Choose
any f a E . Then there exists a unique constant m a C (the ‘‘mass’’ of f ) such
that P 0 f ¼ mf0. So f �mf0 ¼ ð1� P0Þ f a E1, cf. Lemma 3.11, which implies
e tðLþYÞf �mf0 ¼ etðLþYÞð f �mf0Þ a E1 for all tb 0, due to Proposition 3.12.
With (3.10) and k ¼ 1 this implies

ketðLþYÞf �mf0ko a ~CC1k f �mf0koe�t; tb 0:

Remark 3.18. In the one dimensional case we can explicitly compute the
Fourier transform of RLþYðzÞg, see Proposition B.1: For any k a N0, Re z > �k,
and g a Ek, the unique solution f a Ek of ðz� L �YÞ f ¼ g satisfies

f̂f ðxÞ ¼ Fx!x½RLþYðzÞg� ¼ f̂f0ðxÞ
Z 1

0

ĝgðsxÞ
f̂f0ðsxÞ

sz�1 ds; x a Wb=2;

where sz ¼ ez log s and log is the natural logarithm on Rþ: One can use this repre-
sentation for an alternative proof of the resolvent estimate (3.8). However, this
becomes less convenient in higher dimensions, since it is then not clear how to
properly compute the explicit Fourier transform of RLþYðzÞ.

Now we summarize our results in the final theorem:

Theorem 3.19. Let E ¼ L2ðoÞ, where oðxÞ ¼ cosh bx, for some b > 0, and let Y
fulfill the condition (C) for this b > 0. Then the perturbed operator L þY has the
following properties in E:

(i) It has compact resolvent, and sðL þYÞ ¼ spðL þYÞ ¼ �N0.
(ii) There holds MðL þYþ kÞ ¼ kerðL þYþ kÞ ¼ spanf fkg, where fk is the ei-

genfunction to the eigenvalue �k given by (3.3). The eigenfunctions are related
by fk ¼ f

ðkÞ
0 .
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(iii) The spectral projection Pk corresponding to the eigenvalue �k a �N fulfills

ranPk ¼ spanf fkg; kerPk ¼ Ekþ1 a spanf fk�1; . . . ; f0g;

where the ðL þYÞ-invariant spaces Ek are explicitly given in (2.9). Moreover,
ranP0 ¼ spanf f0g and kerP0 ¼ E1.

(iv) For every k a N0, the operator ðL þYÞjEk
generates a C0-semigroup in Ek,

denoted by ðetðLþYÞjEk
Þtb0, which satisfies the estimate

ketðLþYÞjEk
kBðEkÞ a

~CCke
�kt; tb 0;

where the constant ~CCk > 0 is independent of t.

Remark 3.20. Apparently, the particular choice of b > 0 has no influence on
the above results, except possibly for the constants ~CCk. In practice, the constant
b may therefore be chosen arbitrarily small, such that Y satisfies (C) for this b.

4. The higher-dimensional case

As already mentioned in the introduction, the preceding results can be gener-
alized to higher dimensions without much additional e¤ort. Most proofs are
analogous to the ones in the one-dimensional case. Therefore we give here only
an outline of the steps leading to the extension of Theorem 3.19 to higher
dimensions.

In this section we consider the perturbed Fokker-Planck equation (1.1) on Rd ,
where d a N is the spatial dimension. Elements of Rd resp. Cd are represented
by bold letters, e.g. x a Rd , x a Cd , and we write x ¼ ðx1; . . . ; xdÞ. For a multi-

index k a Nd
0 we define jkj :¼ k1 þ � � � þ kd , x

k :¼ xk1
1 . . . xkd

d and k! :¼ k1! . . . kd !.
Furthermore

Dk :¼ qjkj

qxk1
1 . . . qxkd

d

:

We adopt the notation for weighted Sobolev spaces on Rd from Section 2, as well
as the normalization of the Fourier transform.

We consider the Fokker-Planck operator on Rd given by

Lf :¼ ‘ �
�
m‘
� f

m

��
¼ Df þ x � ‘f þ df ;

where mðxÞ :¼ expð�x � x=2Þ. The natural space to consider L in is E :¼ L2ð1=mÞ.
Since it is isometrically equivalent to the harmonic oscillator H :¼ �D� d=2þ
jxj2=4 in L2ðRdÞ, we transfer many results of H (see [23] and [26, Theorem
XIII.67]) to L. In the following we summarize some properties of L in E (see
also [21, 5, 16]):
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Theorem 4.1. The Fokker-Planck operator L in E has the following properties:

(i) L with DðLÞ ¼ f f a E : Lf a Eg is self-adjoint and has a compact resolvent.
(ii) The spectrum is sðLÞ ¼ �N0, and it consists only of eigenvalues.
(iii) For each eigenvalue �k a sðLÞ the corresponding eigenspace has the dimen-

sion kþd�1
k

 �
, and it is spanned by the eigenfunctions

mkðxÞ :¼
Yd
l¼1

mklðxlÞ; jkj ¼ k;

where the mj are defined in Theorem 2.1.
(iv) The eigenfunctions ðmkÞk ANd

0
form an orthogonal basis of E.

(v) The spectral projection PL;k onto the k-th eigenspace is given by

PL;k ¼
X
jkj¼k

PL;k; where PL;k :¼
ð2pÞd=2

k!
mk3�; mk4E :

There holds the spectral representation L ¼
P

k AN0
�kPL;k:

(vi) The operator L generates a C0-semigroup of contractions on Ek for all k a N0,
where Ek :¼ kerðPL;0 þ � � � þPL;k�1Þ, kb 1, and E0 :¼ E. The semigroup
satisfies the estimate

ke tLjEk
kBðEkÞ a e�kt; Ek a N0:

The next step is to properly define L in E :¼ L2ðoÞ with a weight oðxÞ ¼
cosh bjxj with b > 0. As in the one-dimensional case we have a characterization
of E by the Fourier transform. Due to (a small variant of ) [25, Theorem IX.13]
we have: There holds f a E i¤ f̂f has an analytic extension (denoted by f̂f as well)
to the set Wb=2 :¼ fz a Cd : jIm zj < b=2g and

sup
jbj<b=2

b ARd

k f̂f ð� þ ibÞkL2ðRd Þ < l:ð4:1Þ

For any b a Rd with jbj < b=2 we have f̂f ðxþ ibÞ ¼ F x!xðeb�xf ðxÞÞ: The
right hand side still makes sense for jbj ¼ b=2 as an L2ðRdÞ-function. And ac-
cording to this identity and Plancherel’s formula there holds b 7! f̂f ð� þ ibÞ a
CðBðb=2; 0Þ;L2ðRdÞÞ, where Bðb=2; 0Þ :¼ fb a Rd : jbj < b=2g. We can use this
fact to define the norm

jjj f jjj2o :¼
Xd
l¼1

f̂f
�
� þi

b

2
dl

����� ����2
L2ðRd Þ

þ f̂f
�
� �i

b

2
dl

����� ����2
L2ðRdÞ

;ð4:2Þ

where dl a Rd is the vector whose l-th component is one, and all others are zero.
The norm jjj � jjjo is equivalent to k � ko.
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In E there hold Poincaré-type inequalities:

Lemma 4.2. For every k a Nd
0 there exists a constant Ck > 0 such that for all

f a Cl
0 ðRdÞ:

k f ko aCkkDkf ko:ð4:3Þ

For the proof see Appendix C. A similar statement is given in [14, Theorem
14.5]. By using this Poincaré inequality we can generalize Lemma 2.4: Let again
L ¼ Dþ x � ‘þ d be the distributional Fokker-Planck operator. For f ; g a
E HS 0 with ðz� LÞ f ¼ g we have the estimate

k f k$ þ k‘f ko aCkgko;ð4:4Þ

where $ðxÞ ¼ ð2Re z� dÞoðxÞ þ x � ‘oðxÞ � DoðxÞ, which is a weight function
for Re z su‰ciently large. Now we may proceed analogously to the proof of
Lemma 2.6 and show that LjCl

0
ðRd Þ is closable in E , and its closure L has the

domain DðLÞ ¼ f f a E : Lf a Eg. From [22, Theorem 2.4] we get the compact
embedding W 1;2ð$;oÞ ,!,! E , and together with the estimate (4.4) this implies
the compactness of the resolvent of L, analogously to Theorem 2.10. Hence, the
spectrum of L consists only of eigenvalues, and there holds:

Lemma 4.3. In E we have sðLÞ ¼ �N0. The eigenspaces are still spanned by the
mk.

Proof (Sketch). We consider the Fourier transform of the eigenvalue equation
Lf ¼ z f , and by setting ~ff ðxÞ :¼ f̂f ðxÞ=m̂mðxÞ we get analogously to the calculation
in the Appendix B the equation

x � ‘~ff ðxÞ ¼ �z ~ff ðxÞ:ð4:5Þ

For each j a f1; . . . ; dg the function ~ff ð0; . . . ; 0; xj; 0; . . . ; 0Þ needs to be analytic
in Wb=2, and satisfies (B.1) for ~gg ¼ 0. So, as in the Appendix B we find that it is
necessary that z a �N0.

For k :¼ �z a N0 and x a Rd we obtain by di¤erentiating (4.5) with respect
to xj:

x � ‘
� q~ff ðxÞ

qxj

�
¼ ðk � 1Þ

� q~ff ðxÞ
qxj

�
:

Thus, for any k a Nd
0 with jkj ¼ k we get

x � ‘ðDk~ff ðxÞÞ ¼ 0;

and all characteristics meet at x ¼ 0. f̂f is analytic on Rd . Hence, the continuity
of Dk ~ff ðxÞ at x ¼ 0 implies Dk~ff ðxÞ ¼ C for some constant C a C. This holds
for any jkj ¼ k, so the general solution of (4.5) is a linear combination of all xk
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with jkj ¼ �z ¼ k. Therefore, the Fourier transform of an eigenfunction f with
ðL þ kÞ f ¼ 0 is a linear combination of the xkmðxÞ with jkj ¼ k (and, equiva-
lently, f ðxÞ is a linear combination of the DkmðxÞ). Then, according to Theorem
4.1 (iii) and Theorem 2.1 (iii), the eigenspace for z ¼ �k is spanned by the mk.

r

As in Proposition 2.12 we can define the L-invariant subspaces Ek :¼ clE Ek ¼
clE spanfmk : jkjb kg for all k a N0, and sðLjEk

Þ ¼ f�k;�k � 1; . . .g. By apply-
ing Lemma C.2 we get by induction

Ek ¼ f a E :

Z
Rd

f ðxÞxk dx ¼ 0; jkja k � 1

� �
ð4:6Þ

¼ f f a E : Dk f̂f ð0Þ ¼ 0; jkja k � 1g:

Analogously to Proposition A.2 (ii) we can also characterize the spectral projec-
tions corresponding to the eigenvalues �k a �N0, see the result of Theorem 4.4
(iii) below. Finally, as in the one-dimensional case, one shows that L generates
a C0-semigroup of bounded operators ðetLÞtb0, which is given by the formula
(cf. [11, Appendix A])

F x!x½e tLf � ¼ exp
�
� x � x

2
ð1� e�2tÞ

�
f̂f ðxe�tÞ; tb 0:

The corresponding decay estimates on the subspaces Ek can be shown as in the
proof of Proposition 2.17. Thereby one uses the norm (4.2) and the Poincaré
inequality (4.3).

Theorem 4.4. In E :¼ L2ðoÞ, with oðxÞ ¼ cosh bjxj and b > 0, the operator L is
closable, and L :¼ clE L has the following properties:

(i) The spectrum satisfies sðLÞ ¼ �N0, and MðL þ kÞ ¼ kerðL þ kÞ ¼ spanfmk :
jkj ¼ kg for any k a N0. The eigenfunctions satisfy mk ¼ Dkm0.

(ii) For any k a N0 the closed subspace Ek :¼ clE spanfmk : jkjb kg is an L-
invariant subspace of E , and spanfmk : jkja k � 1g is a complement. In par-
ticular E0 ¼ E .

(iii) The spectral projection PL;k to the eigenvalue �k a �N0 fulfills ranPL;k ¼
spanfmk : jkj ¼ kg and kerPL;k ¼ Ekþ1 a spanfmk : jkja k � 1g.

(iv) For any k a N0 the operator L generates a C0-semigroup on Ek, and there
exists a constant Ck b 1 such that we have the estimate

ke tLjEkkBðEkÞ aCke
�kt; Etb 0:

Next we specify the conditions on the perturbation Y.

(Cd) Conditions on Y: We assume that Yf ¼ Q � f , for f a E , where Q is a tem-
pered distribution that fulfills the following properties in Wb=2 for some b > 0:
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(i) The Fourier transform Q̂Q can be extended to an analytic function in Wb=2

(also denoted by Q̂Q), and Q̂Q a LlðWb=2Þ.
(ii) It holds Q̂Qð0Þ ¼ 0, i.e. Q has zero mean.

(iii) The mapping x 7! Re

Z 1

0

Q̂QðxsÞ=s ds is essentially bounded in Wb=2.

Condition (Cd)(i) ensures that Y a BðEÞ, which is seen by using the norm
jjj � jjjo. And due to (Cd)(ii) we have Y : Ek ! Ekþ1 for all k a N0. In the following
we always assume that (Cd) holds.

Proposition 4.5. We have the following spectral properties of L þY in E:

(i) sðL þYÞ ¼ �N0.
(ii) For each k a N0, the eigenspace kerðL þYþ kÞ has the dimension kþd�1

k

 �
.

(iii) Under appropriate scaling, the eigenfunctions fk to the eigenvalue �k a N0

are explicitly given by

fk ¼ Dkf0; jkj ¼ k;ð4:7Þ

where

f̂f0ðxÞ :¼ exp
�
� x � x

2
þ
Z 1

0

Q̂QðxsÞ
s

ds
�
; x a Wb=2 HCd :ð4:8Þ

Thereby f0 is the unique stationary solution of the perturbed Fokker-Planck equa-
tion (1.1) with unit mass.

Proof (Sketch). Since the resolvent is compact (see the discussion above),
the spectrum consists only of eigenvalues. As in the one-dimensional case one
shows sðL þYÞJ�N0 by applying PL;k to the eigenvalue equation. This also
implies dimkerðk þ L þYÞa dim ranPL;k ¼ kþd�1

k

 �
. Then one verifies that the

functions fk given in (4.7) are eigenfunctions, and lie in E , according to the con-
dition (4.1). Since dim spanf fk : jkj ¼ kg ¼ kþd�1

k

 �
, there are no further eigen-

functions, due to the previous estimate on the dimension of the eigenspaces. So
kerðk þ L þYÞ ¼ spanf fk : jkj ¼ kg for all k a N0. r

Now we introduce

ĉcðxÞ :¼ exp
�Z 1

0

Q̂QðxsÞ
s

ds
�
; x a Wb=2;

and the mapping C : f 7! f � c. The results of Lemma 3.13 for C still hold, and
due to (4.8) we have for all k a N0:

fk ¼ Cmk:

As in Proposition 3.14 we obtain RLþYðzÞjEk
¼ C � RLðzÞ �C�1jEk ; for all k a N0

and z a Cnf�k;�k � 1; . . .g: The estimates (3.8) and (3.10) also hold here, and
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for the convergence of f ðtÞ ¼ e tðLþYÞf to the stationary solution see Remark
3.17. As in Section 3 we finally have:

Theorem 4.6. Let E ¼ L2ðoðxÞÞ, where oðxÞ ¼ cosh bjxj, for some b > 0 and
x a Rd , and let Y fulfill the condition (Cd) for this b > 0. Then the perturbed
operator L þY has the following properties in E:

(i) It has compact resolvent, and sðL þYÞ ¼ spðL þYÞ ¼ �N0.
(ii) There holds MðL þYþ kÞ ¼ kerðL þYþ kÞ ¼ spanf fk : jkj ¼ kg, where

the fk are the eigenfunctions given by (4.7). They are related by fk ¼ Dkf0.
(iii) The spectral projection Pk to the eigenvalue �k a �N0 fulfills ranPk

¼ spanf fk : jkj ¼ kg and kerPk ¼ Ekþ1 a spanf fk : jkja k � 1g, where the
ðL þYÞ-invariant spaces Ek are explicitly given in (4.6).

(iv) For every k a N0, the operator ðL þYÞjEk
generates a C0-semigroup in Ek,

denoted by ðe tðLþYÞjEk
Þtb0, which satisfies the estimate

ke tðLþYÞjEk
kBðEkÞ a

~CCke
�kt; tb 0;

where the constant ~CCk > 0 is independent of t.

5. Simulation results

In this section we shall illustrate numerically the exponential convergence for the
one-dimensional perturbed Fokker-Planck equation (1.1), with Q :¼ eðd�a � daÞ,
i.e. Yf ðxÞ ¼ eð f ðxþ aÞ � f ðx� aÞÞ, for some e; a a R. The eigenfunctions fk of
the evolution operator L þY can be obtained by an inverse Fourier transform,
with f̂fk explicitly given in (3.3). If the initial condition j is a (finite) linear combi-
nation of the fk, the solution to (1.1) reads explicitly

f ðt; xÞ ¼ e tðLþYÞ
Xn
j¼1

aj fkj

" #
¼
Xn
j¼1

aje
�kjtfkj ; Etb 0:

In the simulation we use a mass conserving Crank-Nicolson finite di¤erence
scheme for (1.1). It is employed on the spatial interval ½�25; 25� (with 1500
gridpoints) along with zero-flux boundary conditions. Moreover, we choose
a ¼ e ¼ 2 and b ¼ 1, i.e. E ¼ L2ðcosh xÞ.

The following numerical results verify the decaying behaviour of solutions to
(1.1), and yield an estimate to the constants ~CCk from Theorem 3.19. First we con-
sider the initial condition j1 ¼ ð f1 � 1:32f2Þ=k f1 � 1:32f2ko. For the correspond-
ing solution we plot k f ðt; �Þko in Figure 1(a). Since the sequence ð fkÞk AN is not
orthogonal in E , the initial decay rate is here smaller than the individual decay
rate of f1 (i.e. �1). But after some time, the f1-term becomes dominant, and the
decay rate approaches �1. For large times, the norm behaves approximately like
1:73 e�t; so we have the lower bound ~CC1 b 1:73.
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As a second example we choose the initial condition j2 ¼ ðw½�4;0� � w½0;4�Þ=
kw½�4;0� � w½0;4�ko. It lies in E1 since it is massless. The evolution of k f ðt; �Þko is

displayed in Figure 1(b). Here, the norm even increases initially. Only after some
time, the norm begins to decay with a rate tending to �1. For large times t, the
norm behaves approximately like 22:53 e�t, which shows ~CC1 b 22:53.

A. Spectral Projections

In this section we review some properties of spectral projections and resolvents,
cf. [29, Chapters V.9–10], [30, Chapter VIII.8] and [17, Sections III.6.4–5].

Here, X is a Hilbert space, A a CðXÞ, and we assume l a sðAÞ to be an iso-
lated point of the spectrum. Then the corresponding spectral projection PA;l is
defined by (2.1), and l is an isolated singularity of the resolvent RAðzÞ.

Proposition A.1. For every n a N we have

ranðl� AÞn K ker PA;l;

kerðl� AÞn J ran PA;l:

There exists some n a N such that both inclusion relations become equalities i¤ l
is a pole of RAðzÞ. In this case l a spðAÞ, i.e. an eigenvalue.

Proposition A.2. For the reduction of A by a fixed spectral projection PA;l we
have:

(i) There holds PA;lDðAÞHDðAÞ, and ker PA;l and ran PA;l are A-invariant sub-
spaces of X.

(ii) Ajran PA; l
a Cðran PA;lÞ and Ajker PA; l

a Cðker PA;lÞ.

Figure 1: Evolution of the norm k � ko of solutions of the perturbed equation for di¤erent
initial conditions j. (a) Initial condition j1 ¼ ð f1 � 1:32f2Þ=k f1 � 1:32f2ko. (b) Initial con-
dition j2 ¼ ðw½�4;0� � w½0;4�Þ=kw½�4;0� � w½0;4�ko a E1.
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(iii) There holds sðAjran PA; l
Þ ¼ flg and sðAjker PA; l

Þ ¼ sðAÞnflg. Furthermore

Ajran PA; l
a BðranPA;lÞ.

(iv) If dim ranPA;l < l, then l� Ajran PA; l
is nilpotent, l is a pole of RAðzÞ, and

l a spðAÞ.
(v) If l is a pole of RAðzÞ, then Mðl� AÞ ¼ kerðl� AÞ i¤ the pole has order

one.

For a finite number of isolated points of the spectrum we have:

Lemma A.3. For N a N0, let A have isolated points of the spectrum z0; . . . ; zN�1,
which are eigenvalues with dimMðzk � AÞ < l for all 0a kaN � 1. Assume
there exists a closed subspace Y HX, such that

(i) Y is A-invariant, and sðAjY ÞB fz0; . . . ; zN�1g ¼ j.
(ii) X can be decomposed as X ¼ Y aMðz0 � AÞa � � �aMðzN�1 � AÞ.

Then Y ¼ kerPA, where PA :¼ PA;0 þ � � � þPA;N�1 is the sum of the spectral
projections PA;k corresponding to the zk, and Mðzk � AÞ ¼ ranPA;k for all
0a kaN � 1.

Proof. According to the assumptions there holds sðAjY Þ ¼ sðAÞnfz0; . . . ;
zN�1g, and therefore the map z 7! RAðzÞjY is analytic in rðAÞA fz0; . . . ; zN�1g.
Due to the definition (2.1) of spectral projections this implies that PA;kY C 0
for every PA;k, and therefore Y J kerPA. On the other hand we have
Mðzk � AÞJ ranPA;k for all 0a kaN � 1, according to Proposition A.1.
From (ii) we conclude that the inclusions have to be equalities, otherwise
kerPAB ranPAA f0g, which is impossible. r

B. Fourier Transform of the Resolvent

This section deals with the explicit computation of the Fourier transform of the
resolvent RLþYðzÞ of the (one-dimensional) perturbed Fokker-Planck operator
L þY in E , where Y fulfills the condition (C). We begin by considering the re-
solvent equation

ðz� L �YÞ f ¼ g

on R, where we assume Re z > �k and f ; g a Ek for some k a N0. We apply the
Fourier transform, which yields the following di¤erential equation:

x f̂f 0ðxÞ þ
�
xþ z� Q̂QðxÞ

x

�
f̂f ðxÞ

" #
¼ ĝgðxÞ:

By defining ~ff :¼ f̂f =f̂f0 and ~gg :¼ ĝg=f̂f0 we obtain the equivalent equation

x ~ff 0ðxÞ þ z ~ff ðxÞ ¼ ~ggðxÞ:ðB:1Þ
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The general solution for x a Re reads

~ff ðxÞ ¼
Z 1

0

~ggðxsÞsz�1 dsþ Cex
�z ¼: IðxÞ þ Cex

�z;ðB:2Þ

where the Ce a C are integration constants to be determined.
First we shall show that the integral IðxÞ is an analytic function on Wb=2: If

g a Ek, then ~gg is analytic in Wb=2 and has a zero at x ¼ 0 of order not less than
k, see (2.10). Therefore, for any fixed z a C with Re z > �k,

~ggðxsÞsz�1 ¼ ~ggðxsÞ
sk

szþk�1; s a ð0; 1�;

is locally integrable at s ¼ 0, and IðxÞ is well defined for all x a Wb=2. To see that

it is actually analytic, we define IeðxÞ :¼
Z 1

e

Gkðx; sÞszþk�1 ds for e a ½0; 1Þ, where

Gkðx; sÞ :¼

~ggðxsÞ
sk

; s a ð0; 1�;

~ggðkÞð0Þxk

k!
; s ¼ 0;

8>><>>:
for x a Wb=2. The function Gkð�; sÞ is analytic in Wb=2 for all (fixed) s a ½0; 1�, and
Gk is continuous in Wb=2 � ½0; 1�. According to [9, Theorem 4.9.1], the functions
IeðxÞ are analytic in Wb=2 for all e a ð0; 1Þ. Now we show that ðIeÞe A ð0;1Þ converges
normally to I in Wb=2 as e ! 0: Let K HWb=2 be compact. Then we have

sup
x AK

s A ½0;1�

jGkðx; sÞja sup
x AK0

s A ½0;1�

jGkðx; sÞj ¼ sup
x AK0nf0g
s A ð0;1�

~ggðxsÞ
ðxsÞk

xk

�����
�����ðB:3Þ

a sup
x AK0nf0g

~ggðxÞ
xk

���� ���� � sup
x AK0

jxkj ¼: CK < l;

since ~ggðxÞ=xk is analytic in Wb=2 (the singularity at x ¼ 0 is removable). Thereby,
K0 is an appropriate convex, compact set with f0gAKJK0 HWb=2, and CK > 0
is a constant. With (B.3) we obtain the following estimate for x a K and
0 < ea 1:

jIðxÞ � IeðxÞj ¼
Z e

0

Gkðx; sÞszþk�1 ds

���� ����aCK

eRe zþk

Re zþ k
:

Since Re zþ k > 0, this shows the normal convergence of the analytic functions
Ie towards I . According to [9, Theorem 4.2.3] this implies that IðxÞ is analytic
in Wb=2.
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Now it remains to determine the constants Ce in (B.2). If we require f a Ek, it
is necessary that ~ff is analytic in Wb=2 and has a zero of order not less than k
at x ¼ 0. As already shown, IðxÞ is analytic in Wb=2. Furthermore, for g a Ek

and all (fixed) s a ½0; 1�, x 7! Gkðx; sÞ has a zero of order not less than k at x ¼ 0.

Therefore IðxÞ ¼
Z 1

0

Gkðx; sÞszþk�1 ds has the same property, so F �1I a Ek.

Thus, it is su‰cient to consider the term Cex
�z. If z B �N0, then x�z is not

analytic in Wb=2 anyway, hence Cþ ¼ C� ¼ 0. If z a f�k þ 1; . . . ;�1g for
g a Ek, x

�z is analytic, and we obtain Cþ ¼ C� because we require continuity of
the solution. But the order of the zero of x�z is at most k � 1. Since we need a
zero of at least order k, we again obtain Cþ ¼ C� ¼ 0. The conclusion of the
above analysis is summarized in the following proposition:

Proposition B.1. Let g a Ek for some k a N0, and Re z > �k. Then the unique
f a Ek with f ¼ RLþYðzÞg satisfies

f̂f ðxÞ ¼ f̂f0ðxÞ
Z 1

0

ĝgðsxÞ
f̂f0ðsxÞ

sz�1 ds; x a Wb=2:

C. Deferred Proofs and Lemmata

Proof of Lemma 2.2. For f a E there holds f ðxÞebx a L2ðRÞ for all b a�
� b

2 ;
b
2

�
. Therefore f̂f is analytic in Wb=2 according to [25, Theorem IX.13]. Due to

part (b) of the proof of that theorem (see page 132 in [25]), Result (ii) follows. We
proceed to the proof of (i). If f a E and b a

�
� b

2 ;
b
2

�
, we clearly have

k f ðxÞebxkL2ðRÞ a k f ðxÞe
b
2jxjkL2ðRÞ a

ffiffiffi
2

p
k f ko:

On the left hand side we insert the identity from (ii) and use Plancherel’s identity,
which shows (2.2). Conversely, let us now assume that f̂f is analytic in Wb=2 and
that (2.2) holds. We shall now show that f a E . Due to these assumptions we
conclude from [25, Theorem IX.13] that f ðxÞebx a L2ðRÞ for all b a


� b

2 ;
b
2

�
.

For these values of b we may therefore use the representation from (ii). We insert
it in (2.2) and after applying Plancherel’s identity we get

sup
jbj<b=2
b AR

k f ðxÞebjxjkL2ðRÞ < l:ðC:1Þ

But this is only possible if f a E , otherwise the supremum in (C.1) would not be
finite.

Finally we show (iii). For f a E there holds f ðxÞeeb
2x a L2ðRÞ, and there-

fore x 7! f̂f ðxe ib=2Þ, as defined in (2.3), is again an element of L2ðRÞ. With
this definition we now show b 7! f̂f ð� þ ibÞ a Cð½�b=2; b=2�;L2ðRÞÞ. Due to
Plancherel’s identity we may show equivalently that b 7! f ðxÞebx is continuous
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in L2ðRÞ. To this end we fix b; b0 a ½�b=2; b=2�, and we split the integral for any
R > 0:

k f ðxÞebx � f ðxÞeb0xk2L2ðRÞ ¼
Z

Rn½�R;R�

j f ðxÞj2ðeb0x � ebxÞ2 dxðC:2Þ

þ
Z R

�R

j f ðxÞj2ðeb0x � ebxÞ2 dx

Now, for any e > 0 we can find some R ¼ RðeÞ > 0 so that

Z
Rn½�R;R�

j f ðxÞj2ebjxj dx
< e. So we get for the first integral (independent of b, b0)Z

Rn½�R;R�

j f ðxÞj2ðeb0x � ebxÞ2 dxa
Z

Rn½�R;R�

j f ðxÞj2e2jxjmaxfjbj; jb0jg dx

a

Z
Rn½�R;R�

j f ðxÞj2ebjxj dx < e:

The second integral in (C.2) converges to zero, for any fixed R > 0, as b ! b0.
Altogether

lim
b!b0

k f ðxÞebx � f ðxÞeb0xk2L2ðRÞ < e: r

Proof of Lemma 2.6. According to Corollary 2.5 the operator ðL� 1�
b2=2ÞjCl

0
ðRÞ is dissipative, so it is closable (cf. [24, Theorem 1.4.5 (c)]), and so is

LjCl
0
ðRÞ. We define L :¼ clE LjCl

0
ðRÞ, and the domain DðLÞ consists of all f a E

such that there exists some h a E such that (for some ð fnÞn AN HCl
0 ðRÞ)

limn!l k fn � f ko ¼ 0;

limn!l kLfn � hko ¼ 0:

�
For such f we have Lf :¼ h ¼ Lf . Therefore DðLÞJ f f a E : Lf a Eg. Since
k � kE is stronger than k � ko we also have DðLÞHDðLÞ.

Finally we need to show that the above inclusion for the domain indeed is an
equality. We take z a C with Re zb 1þ b2=2. From Theorem 2.1 and the dissi-
pativity of z� L we know that ðz� LÞ�1jE ¼ ðz� LÞ�1 is a well-defined operator
on E. And from (2.6) we conclude that this is even a bounded operator in E
with dense domain E. Therefore, also its closure clEððz� LÞ�1jEÞ ¼ ðz� LÞ�1 is
bounded in E , and therefore z a rðLÞ. Now assume that there is some f a EnDðLÞ
such that Lf a E . Because z a rðLÞ, z� L : DðLÞ ! E is a bijection, and therefore
there exists a unique f a DðLÞ with ðz� LÞf ¼ ðz� LÞ f , which is equivalent to
the existence of f? a E with f?A 0 such that ðz� LÞf? ¼ 0. But according to
(2.6) this is impossible. r
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Lemma C.1. Consider two Hilbert spaces X ,! X , and a projection PX a BðX Þ,
such that PX :¼ PX jX a BðX Þ. Then ran PX ¼ clX ran PX and ker PX ¼ clX ker PX .

Proof. We give here the proof of the equality of the ranges, the other identity
can be shown analogously, using the complementary projections instead. On the
one hand we have ran PX J ran PX , and so clX ran PX J ranPX , since ran PX is
closed in X due to the boundedness of PX . On the other hand PX ¼ clX PX , which
implies ran PX J clX ran PX . r

Lemma C.2. Let X ,! X be Hilbert spaces, and c0; . . . ;ck�1 a BðX ;CÞ, k a N,

be linearly independent functionals. Then ~ccj :¼ cjjX a BðX ;CÞ for all 0a ja
k � 1, and

\k�1

j¼0

kercj ¼ clX
\k�1

j¼0

ker ~ccj:

Proof. The boundedness of the ~ccj is an immediate consequence of X ,! X .
In order to show the second statement, we notice that according to the Riesz
representation theorem there exists a unique xj a X such that ~ccjð�Þ ¼ 3�; xj4X for
every 0a ja k � 1, where 3� ; �4X denotes the inner product in X . The set
fx0; . . . ; xk�1g is linearly independent, because the corresponding functionals
are. We now apply the Gram-Schmidt process to fx0; . . . ; xk�1g to obtain the
orthonormal family fx̂x0; . . . ; x̂xk�1g with same linear hull. As a consequence, there
exists a regular matrix L :¼ ðl j

lÞl; j a Ck�k such that x̂xl ¼
Pk�1

j¼0 l
j
lxj. With this

we get

x̂xl3�; x̂xl4X ¼
Xk�1

i; j¼0

l i
ll

j

lxi3�; xj4X ¼
Xk�1

i; j¼0

l i
ll

j

lxi
~ccjð�Þ; 0a la k � 1:

We may now define the orthogonal projection

PX :¼
Xk�1

l¼0

x̂xl3�; x̂xl4X ¼
Xk�1

i; j;l¼0

l i
ll

j

lxi
~ccjð�Þ:ðC:3Þ

It can naturally be extended to a projection PX in X by replacing the ~ccj by cj.
Since cj a BðX ;CÞ for all 0a ja k � 1, there follows PX a BðX Þ from (C.3).
Now we apply Lemma C.1 to PX HPX to obtain ker PX ¼ clX ker PX .

Now it remains to characterize the kernels of the projections. Due to (C.3)
we have PX f ¼ 0 in X i¤

Xk�1

j¼0

~ccjð f Þ
Xk�1

l¼0

l i
ll

j

l ¼ 0; 0a ia k � 1;ðC:4Þ
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since the vectors xi are linearly independent. We note that the sums
Pk�1

l¼0 l
i
ll

j

l

for 0a i; ja k � 1 are the elements of the matrix L2 :¼ LL�; where L� is the
Hermitian conjugate of L. Since L2 is regular, it follows that (C.4) holds i¤
~ccjð f Þ ¼ 0 for all 0a ja k � 1: The proof of PX f ¼ 0 i¤ cjð f Þ ¼ 0 for all
0a ja k � 1 is analogous. r

Proof of Lemma 4.2. We only consider the situation jkj ¼ 1, the estimate
for higher derivatives follows by repeated application of that result. Without
loss of generality we assume k ¼ ð1; 0; . . . ; 0Þ for the proof. For the norm we
use the equivalent weight o?ðxÞ ¼ cosh bx1 cosh bx2 . . . cosh bxd . In this context
we write x̂x1 :¼ ðx2; . . . ; xdÞ and o?ðx̂x1Þ :¼ o?ðxÞ=cosh bx1. By applying the one-
dimensional Poincaré inequality (2.5) we obtain for f a Cl

0 ðRdÞ:

k f k2o?
¼
Z
Rd

j f ðxÞj2o?ðxÞ dxðC:5Þ

¼
Z
R

�Z
Rd�1

j f ðxÞj2o?ðx̂x1Þ dx̂x1
�1

2

� 	2
cosh bx1 dx1

aCb

Z
R

q

qx1

�Z
Rd�1

j f ðxÞj2o?ðx̂x1Þ dx̂x1
�1

2

� 	2
cosh bx1 dx1:

For the inner integral we compute

q

qx1

�Z
Rd�1

j f ðxÞj2o?ðx̂x1Þ dx̂x1
�1
2

¼ 1

2
�
R
Rd�1

q
qx1

j f ðxÞj2o?ðx̂x1Þ dx̂x1R
Rd�1 j f ðxÞj2o?ðx̂x1Þ dx̂x1

�1
2

a

R
Rd�1 j f ðxÞj2o?ðx̂x1Þ dx̂x1

�1
2
R

Rd�1 j q
qx1

f ðxÞj2o?ðx̂x1Þ dx̂x1
�1
2R

Rd�1 j f ðxÞj2o?ðx̂x1Þ dx̂x1
�1
2

¼
�Z

Rd�1

q

qx1
f ðxÞ

���� ����2o?ðx̂x1Þ dx̂x1
�1

2

:

Inserting this in (C.5) we conclude

k f k2o?
aCb

Z
R

Z
Rd�1

q

qx1
f ðxÞ

���� ����2o?ðx̂x1Þ dx̂x1

 !
cosh bx1 dx1 ¼ Cb

qf

qx1

���� ����2
o?

: r
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