Rend. Lincei Mat. Appl. 25 (2014), 109140
DOI 10.4171/RLM/670

Partial Differential Equations — A4 degenerate elliptic operator with unbounded
diffusion coefficients, by G. METAFUNE and C. SpPINA, communicated on 14
February 2014.

ABSTRACT. — We prove that, for N > 3, the operator L = |x|*A generates an analytic semigroup
in L?(RY) if =2 and 1 < p< oo or <2 and &= < p < oo or o >2 and %5 < p < . The
above bounds are shown to be sharp.
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1. INTRODUCTION AND NOTATION

In this paper we deal with the operator Lu = |x|*Au for o € R, on L? =
L?(RY,dx), N >3, with respect to the Lebesgue measure. We are interested
both in parabolic problems u, — Lu = 0, u(0) = f and in the solvability of the
elliptic equation Au — Lu = f for A € C anf f in L?.

We recall that a (minimal) resolvent and a (minimal) semigroup can be
constructed in spaces of continuous functions as in [13], by solving elliptic and
parabolic problems associated with L in a sequence of annuli filling the whole
space, see also the next Section.

On the other hand related results concerning the L”-theory for some second-
order elliptic divergence-type operators with measurable coefficients have been
developped in [8] and [18].

Since the operator is degenerate both at 0 and oo, we study separately the
operators L; = |x|*A in the ball Bg and L, = |x|”A in the exterior domain Bg,
both with Dirichlet boundary conditions.

Concerning the operator L,, we observe that it can be treated as the operator
(1 + |x|)A in the whole space R". Generation results and domain description
for this last operator are already known by [14] in the case o > 2 and by [5]
in the case o <2. It follows that L, generates an analytic semigroup for
1 < p < oo when o <2 and for % < p < oo when o > 2, the restriction on p
being sharp.

The operator L; is singular near the origin. However a generalization of the
results of [5] allows to prove generation of analytic semigroup when « > 2, to-
gether with an explicit desciption of the domain.

The case o < 2 requires several steps. We first prove that L; is invertible
and that its resolvent is positive. Then the bound on the resolvent norm
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(A= L1)~"|| < ||L;"|| follows for A > 0. This however is not enough to obtain
generation results by the classical Hille-Yosida Theorem. The operator L; =

|x|*A is similar in L+, via the Kelvin transform, to the operator |x|*"*A defined
on the exterior domain Bj. Since the operator |x|*""A generates an analytic
semigroup in L?(B), p = (2N)/(N — 2), consequently, L; generates an analytic
semigroup in L?(B) for the same p. By interpolation we deduce analiticity for
p= % To conclude, an extrapolation procedure based on the boundedness
of the resovent, scaling arguments and the generation results for large p, allows
to prove generation for every p > % We point out that the above restriction on
p is sharp. Glueing togehther the resolvents of L; and L, we obtain the results
for L.

The paper is organized as follows. In the first Section we recall the construc-
tion of the resolvent in spaces of continuous functions. In Section 3, we slightly
generalize some results of [5] used throughout the paper. Section 4 is mainly
devoted to understand the appropriate domains of L; and L,. Moreover the
invertibility, the positivity of the resolvent and the coherence of the resolvent in
the L? scale are proved. In Section 5 it is explained how to construct a resolvent
for L by gluing the resolvent of | and L, or to deduce some results for interior
and exterior domains from results in the whole space. In Sections 6, 7 and 8 the
main generation results are proved. Section 9 contains a variational proof of
the dissipativity based on Hardy type inequalities. The precise values of p for
which the semigroups is contractive are also obtained. Finally Section 10 contains
kernel estimates for L. Even though some of our results are valid also for
N = 1,2 (e.g. the generation results for L, when o < 2), we keep the assumption
N > 3 to unify the exposition.

Notation. Fix R > 0. Assume that N > 3, set Q = RV\{0}, Qr = Bz\{0},

Co(Q) ={ue G(Q) : lim u(x) =0},

|x]—=0
Co(Qr) = {u € Cp(QR) : u(x) = 0 on dBr},
Co(Bg) = {u € Cy(Byg) : u(x) =0 on 0Bg, lim u(x) = 0},

|x|— 0

endowed with the sup-norm.

2. THE OPERATOR IN SPACES OF CONTINUOUS FUNCTIONS

For a fixed real o (positive or negative) we consider the operators
L(x) = [x|"A,  Li(x) = |x["A,  La(x) = |x[A,

endowed with their maximal domain in the space of continuous functions respec-
tively given by
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max(L) = {u € Co(Q) n W2 (Q) forall p < oo : Lu € Cp(Q)},

loc

D
Dian(L1) = {u € Co(Qr) n WA (Qg) forall p < oo : Lu e Co(Qg)},
D

loc
max(L2) = {u € Co(BY) N WEP(BS)  forall p < oo: Lue Co(BS}
We start by studying existence and uniqueness of bounded solutions of the elliptic
equation

(1) Au—Lu=f

for A > 0 and f € Cy(Q2). Due to the degeneracy at the origin and unboundedness
at infinity (if o > 0), the classical theory does not apply and existence and unique-
ness are not clear. Existence is stated in the following result whise proof is identi-
cal to that in [13, Theorem 3.4].

PROPOSITION 2.1. For every f € Co(Q), A > 0, there exists u € D, (L) solving
equation (1) and satisfying the inequality ||ul , < | fl../4 Moreover, u > 0 when-
ever f > 0.

Uniqueness follows from the existence of suitable Lyapunov functions for the
operator L.

DEFINITION 2.2. We say that V is a Lyapunov function for L if V e C?(Q),
V > 1, V goes to infinity as |x| — 0 and gV — LV > 0 for some Jy > 0.

PROPOSITION 2.3. Suppose that there exists V' Lyapunov function for the opera-
tor L. Then A — L is injective on D, (L) for every A > 0.

PROOF. Let 4 > 1y where /g is as in Definition 2.2. We show that if u € D, (L)
satisfies Au — Lu < 0 then u < 0. For every ¢ > 0, introduce the function u, =
u —e&V. Observe that, by assumption, u, satisfies Au, — Lu, <0 in Q. Suppose
that u, > 0 somewhere. Since u, is negative near 0 and oo, then u, attains its
positive maximum at some x; € Q. By Bony’s maximum principle, see [13,
Lemma 3.2], Au,(xo) <0, hence Lu.(xy) = |xo|“Aus(x9) <0 and Au, — Lu, >0
at xp. Since this is a contraddiction, then u, < 0 and, letting ¢ to 0, u < 0 in Q.
Changing u with —u we obtain that Au — Lu is injective on D, (L) for 1 > A.
Combining the injectivity of 2 — L with the existence result stated in Proposition
2.1, it follows that if u € Dy (L) satisfies iu — Lu = f, then |ju| , < 1| f] .. Let
now 0 <A< /g and u € Dyyy(L) such that Au— Lu = 0. Clearly Aou — Lu =
(4 — A)u and, as observed above, ||u| , < 2%‘ ||lu|| ... The last inequality yields
u = 0 and the injectivity of 4 — L for 0 < 1 < . O

REMARK 2.4. Let 0 < ¢ <1 be a smooth cut-off function such that ¢(x) =1
Sor |x| <1/2 and ¢(x) =0 for |x| > 1. By easy computations it follows that the
Sfunction V(x) = —¢(x)In|x| + 1 is a Lyapunov function for L. Therefore . — L is
injective on Dy, (L) for every 1 > 0.
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Since D4 (L) need not to be dense in Cy(Q2), see Proposition 4.12, we cannot say
that L generates a semigroup. In the sequel, however, we need resolvent estimates
for complex values of 4.

PROPOSITION 2.5. For every 4 € C with Re A > 0, the operator . — L is invertible
from Dya(L) to Co(Q) and its resolvent R(1, L) satisfies |[R(A,L)|| < gL5.

PrOOF. For Z > 0 the statement follows from the previous two propositions and
therefore the operator L is dissipative, see [7, Corollary 1.3.5]. It follows that the
inequality above holds whenever Re 4 > 0 and 4 — L is invertible. Since the resol-
vent set of L is open, contains (0, c0) and the norm of the resolvent operator
R(A, L) explodes when A approches the boundary of the resolvent set, the thesis
follows. O

Existence and uniqueness of bounded solutions of the elliptic problems
Ju—Lu=f,u€ Dyu(L;), for i = 1,2, can be proved similarly.

PROPOSITION 2.6. For every A € C with Rel > 0, the operators 2 — L;, i = 1,2
are invertible from Dyx(L;) to Co(Qgr), Co(Bg) respectively and their resolvents
satisfy ||[R(A, L;)|| < ﬁ.

3. A PRELIMINARY RESULT IN L?(RY)

Here we consider the operator 4 = a(x)A, with a satisfying

2) a:RY [0, +o0f, ate WhLF(RY), |Vai|, <c

loc

for some positive constant ¢. Observe that if a(x) = |x|” near the origin, then
o > 2 whereas if a(x) = |x|” near infinity, then o < 2.

Set Q = {xe R :a(x) >0} and F = {x € R" : a(x) = 0}. The aim of this
subsection consists in proving that, for any p € |1, co[, the operator 4, = (4, D,),
where 4 = a(x)A and

(3) D, = {ue W2'(Q) A L?(R") : a*Vu,aD*u € L"(R")},

generates an analytic semigroup in L”(R”"). We point out that the present results
are a slight generalization of those in [5, Section 2], where the additional assump-
tion a(x) > 0 for every x € RY is required. Most of the proofs are unchanged. As
a first step, we identify a core for 4,,.

Set Dr = {u € L?(RY) : u = uy,} and observe that Dr, C*(Q) = D,.

LeMMA 3.1. The space Dr + C(Q) is dense in D,, endowed with the norm
1
lull p, = llull, + lla>Vuell, + [|aDul,,-
PrROOEF. By the assumptions on « it follows that

(4) a(x) <c(l1+ |x|2), a(x) < cd(x, F)Z.
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Indeed, for every x e Qand y € F,

Va(x) = [Va(x) = Va(y)| < clx - y|

and hence a(x) < ¢?|x — y|?, as claimed. Let now u e D,, u=uyp +uyo and
uyr € Dp = D). Setting v = uy,, we approximate v with functions in W??(Q)
having compact support in Q. Let

2n

Q”_{xegzd(va)Z%}a én:XQm*¢l

where ¢ is a classical mollifier supported in B;, with / #=1 and ¢i(x) =
RY 5

n™Ng(nx). It is easy to check that &,(x) = 1 for x € Q,, &, is supported in Q and
that 0 < &, < 1, |V&,| < Cn, |D?E,| < Cn?. Consider also a smooth function 7
such that yz <# < yp and, for every n € N, define 7,(x) = 5(%). Set v, = &,n,v.
It is immediate to check that v, tends to v in L”(R"). Concerning the gradient
term, we have

(V&) = Vo = [ aofieum, — 11" I¥el”

C 2
sl s aGf [ prear [ aul
n? n<|x[<2n {n<|x|<2n} Q\Q,

By (4)

la*(V(&um0) = Vo)) < / a(x)*|&um, =117 |Vol?
RY

+Clal. / ol + / o]?
{n<|x|<2n} Q\Q,

which tends to 0, by dominated convergence. Using a similar argument one
shows that aD?v, tends to aD?v in L?(R"). Finally we can use a standard con-
volution argument to approximate functions with compact support in W27 (Q)
with C°(Q) functions. O

In the next lemma we state the main a-priori estimates.

LeMMA 3.2. There exist &, C > 0 depending only on ¢, N such that for every
0<e<egyandany u € D,

1 C
(5) lazVull, < elladull, +—ul],

(6) laD?ul], < C(lladul|, + [[ul],)-
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PROOF. In view of Lemma 3.1, it is enough to prove (5) and (6) for functions in
Dp + CF(Q). The claimed inequalities are obvious for u € Dg. If u € CF(Q) we
consider, for 6 > 0, as = a + 6 which is positive and satisfies (2) with ¢ indepen-
dent of 0. From [5, Lemma 2.4] we deduce that (5) and (6) hold for asA with ¢, C
independent of 0. Letting & — 0 the thesis follows. |

THEOREM 3.3. For any 1 < p < oo, the operator A, generates a strongly contin-
uous analytic semigroup. Moreover, such a semigroup is positive and consistent

with respect to p.

The proof follows from the previous two lemmas, as in [5, Theorem 2.5, 2.7]. The
following a-priori estimates will be useful in the next section.

COROLLARY 3.4. There exist two constants A, >0 and C >0 such that, for
every u € D, and every Re A > A,

AL

ull, < CllAu — Aull,.

ProoF. The estimate |A] [|ul|, < C||Au — Aul|, is nothing but sectoriality. The
gradient estimate follows from it, using (5) w1th e= A" 2, Similarly, the Hessian
estimate follows from sectoriality and (6). O

In the next proposition we prove that D, given by (3) coincides with the maximal
domain.

ProrosITION 3.5. The domain D, given by (3) coincides with the maximal
domain
Dy max(A) = {u € LP(RN) n W2 (Q) : Au e LP(RY)}.

PrOOF. The inclusion D, = D, ,u.(A) is obvious. Conversely, let u € D), v (A)
and let 4 >0 be in the resolvent set of (4,D,). Set f = /Au— Au and v =
u—R(A,A)f. Then v belongs to D, u.(A4) and satisfies v —4v=0. We
prove that v = 0 if 4 is large enough. Let &,, 7, be as in the proof of Lemma 3.1
and set ¢, = &,n, and recall that &,(x) =1 for x € Q, and has support in Q,.
Then |V§n| < Cnyg,\q,- Similarly, [Vy,| < Cn~lyp, 5. Using (4), we see that
a|lVe,|* < C, with C 1ndependent of n, and has support in (Q,\Q,) U (B, \By).

By integrating by parts the identity / (Ao — aAv)v|v|"~ 2C2 =0 (see [10, Section
3]if 1 < p < 2), we obtain RY

0=1 / o"C 4 (p— 1) / alVol |72
RN RN

+ 2/ al,|v|? vV - VE, + / &2 |o|?*vVa - V.
RN RN
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By Holder’s inequality and observing that a|VCn|2 <Cif xeE,=(By\B:) v
(22,\Q,) and aV{, = 0 otherwise, we obtain

= </ ‘”55|Wzlv|”2)%</Na|u|n|vcn|2)%
. R
sai( [ amori ) ( [ 1)

_ C
Se/ aCﬁ|VU|2|v|p 2—1——2/ |v|?
RY e Jg,

o, . 1
for every ¢ > 0 and some positive constants C;, C,. Since |Va| < ca? we also

obtain in a similar way
o C
Ss/ al2|Vol*|v]” 2+—-”/ o]
RN & Jrv

‘/ E|o)P*oVay - Vo

RN

for every ¢ > 0 and some positive constant C3. Combining the last inequalities we
obtain

C 2C
(-=) / oG+ (p = 1= 3¢) / a|Vol*|of ") - == / [ol” <0.
& RN RN ¢ En

Finally, choosing 3¢ < p — 1 and letting n to infinity, we obtain

(;,—p(fl)/w|u|ljgo

which implies v = 0, if 1 is large enough. O

‘/ aly|v)? "oV - Ve,
RN

As an immediate application of Theorem 3.3 and Proposition 3.5 we obtain the
following result.

COROLLARY 3.6. The operator L = |x|2A with domain D), = Dy, yax(L) gener-
ates an analytic semigroup in L?(R"), 1 < p < co. The semigroup is positive and
consistent with p.

4. THE DEFINITION OF THE OPERATORS IN L7

Let L = |x|*A in RY, L; = |x|*A in the ball Bg, with Dirichlet boundary condi-
tions and L, = |x|”A in the exterior domain B§, again with Dirichlet boundary
conditions. In this section we define the domain of L, L;, L, and we recall that
Qr = Br\{0}.

4.1. The domain of L,

We define the maximal domain of L; as follows.
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DEFINITION 4.1.

Dy max(L1) = {u € LP(Br) n W*P(BR\B,) Ve > 0 : u(x) = 0if |x| = R,
|x|*Au € L?(Bgr)}-

Observe that the Dirichlet boundary condition u(x) = 0 for |x| = R makes sense,
since u has second derivatives in L” in a neighborhood of the boundary of Bg. By
elliptic regularity L; is closed on its maximal domain. If « > 2 the function
a(x) = |x|* satisfies the inequality |Va'/?| < C in the ball Bg even though not
globally in RY when o > 2. In analogy with Section 3 we define the domain of
L as follows.

DEFINITION 4.2. If o > 2 we set

D,(Ly) = {u € L?(Bg) n W*?P(Bg\B,) Ve > 0 : u(x) = 0 if |x| = R,
|x|*/?Vu, |x|*D*u € L?(Bg)}.

Observe that the Dirichlet boundary condition u(x) = 0 for |x| = R makes sense,
since u has second derivatives in L? in a neighborhood of the boundary of Bg.
Observe also that the “fundamental solution” of the Laplacian u(x) = |x|*™"
(near the origin) belongs to D,(L;), « > 2, if and only if p < N/(N —2).

ProposSITION 4.3. If o > 2, then D) u(L1) = D,(L1) and the operator L, is
closed on its domain.

Proor. Clearly D,(Li) © Dy max(L1). To prove the opposite inclusion, let
u € Dy max(L1) and 5 be a cut-off function such that #(x) =1 if |x| < R/2 and
n(x) =0 if |x] > 3R/4. Finally, consider L =aA where a(x) = |x|* if |x| <R
and a(x) = R* if |x| > R. The operator L satisfies the assumption of the previous
section and therefore, by Proposition 3.5, D,(L) = Dp nax(L). We write u =
nu + (1 — n)u and observe that (1 — #)u € D,(L,) since it vanishes in a neighbor-
hood of the origin. Finally, #u € D, (L) = D,(L) and hence |x|*/*Vu,
|x|D?u € L?(Bg), that is nu € D,(L;). The closedness of L; now follows since
it is closed on its maximal domain. O

We consider next the case o < 0.
DEFINITION 4.4. If o < 0 we set
D,(L1) = {u e W»P(Bg) n Wy?(Bg) : |x|"Au € L”(Bg)}.

ProposITION 4.5. If o < 0, the operator (Li,D,(L1)) is closed and invertible
with compact resolvent. Its spectrum is independent of 1 < p < co.

ProOOF. If (u,) = D,(L;) converges to u in L?(Bg) and |x|*Au, — v in L?(Bg),
then Au, converges in L”(Bg), since « < 0. Since u, = W?>?(Bg) N Wol”’(BR), by
elliptic regularity u, converges to u in W27 (Bg). It follows that v = |x|*Au, hence
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u € D,(Ly) and Liu = v. This shows the closedness. To show the invertibility, we
observe that the equation Lyju = f, u =0 on 0Bg, is equlvalent to Au = f|x|™*,
u =0 on dBg which has a unique solution u € WzP(BR) N W, "7 (Bg). Such a u
belongs to D,(L;) and solves Lju = f. Since L; is clearly 1n]ectlve on its do-
main, this shows that it is invertible. The compactness of the resolvent follows
from the compactness of the embedding of W?”(Bg) into L?(Bg) and proves
that the spectrum consists of eigenvalues which are independent of 1 < p < o,
see [1]. O

In order to deal with the case 0 < o < 2 we need some considerations which
hold in the more general case 0 < o < N. If f € L?(Bg) then f|x| * € LY(Bg)
for some ¢ > 1 if p > N/(N — a). In this case, Holder’s inequality yields any
1 < g < Np/(N +uap).

DEFINITION 4.6. If0 <a<2and p > N/(N — «) we set

D,(Ly) = {u e W4(Bg) n W,y (Bg) for every ¢ < |x|°‘Au € LP(BR)}

Np
N + o
ProPOSITION 4.7. If 0 <a <2, p>N/(N —u«), the operator (Ly,D,(L;)) is
closed and invertible with compact resolvent. Its spectrum is independent of
I <p<oo.

ProoF. If (u,) = D,(L;) converges to u in L?(Bg) and |x|*Au, — v in L?(Bg),
then Au, converges in L7(Bg), for every 1 < g < Np/(N + ap), by Holder’s in-
equality. Since u, = W2>4(Bg) N W ( ), by elliptic regularity u, converges to
u in W>9(Bg). It follows that v = |x| Au, hence u € D,(Ly) and Liu = v. This
shows the closedness. To show the invertibility, we observe that the equation
Liu= f, u=0 on 0By is equivalent to Au= f|x|* N u =0 on 0Bg, which has
a unique solution u € W>4(Bg) n W, "9(Bg). If Nﬂp < &, then, by Sobolev
embedding, u € L*(Bg) where 1/s = l/q —2/N < 1/p, if ¢ is chosen sufficiently
close to Np/(N + op), since o < 2. Otherwise we can choose ¢ >4 and, by
Sobolev embeddings again, u € L™ (Bg) and so u € L?(Bg). Such a u belongs to
D, (L) and solves Liu = f". Since L, is clearly injective on its domain, this shows
that it is invertible. The compactness of the resolvent follows from the compact-
ness of the embedding of W?24(Bg) into L”(Bg) and the independence of the
spectrum on p > N /(N — a) follows from [1]. O

Next we investigate the validity of the equality D, ,ux(L1) = D,(L;) which we
have already proved in the case o > 2 in Proposition 4.3.

PROPOSITION 4.8. Letu € L?(Bg) with p > N /(N — 2) and suppose that Au = 0
in Qr = Bg\{0}. Then u is harmonic in Bg.

PrOOF. By the mean value property

: /
= u(y)dy
|B(X,}’)| B(x,r) ( )
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for every 0 # x e Br and r = |x|/2. Holder inequality (with p = N/(N —2))
yields

B B 1-2/N
el < O ()

X,r)

and hence u(x)|x|N ~2 — 0 as x — 0. By elementary properties of harmonic func-

tions, u can be extended as an harmonic function in Bg. O

Observe that the limitation p > N /(N — 2) is necessary to exclude the fundamen-
tal solution |x|*".

PropOSITION 4.9. If o <0, p > N/(N —2), then D, yax(L1) = D,(Ly1).

PROOF. Letu € Dy yax(Li). From Lu = f we infer Au = f|x|™" in Q. The func-
tion g = f|x| " belongs to L”(Bg), since « < 0. Let v € W>?(Bg) n W, (Bg) be
such that Av =g. Then A(u —v) =0 in Qg and, by Proposition 4.8, u — v is
harmonic in Bg. Therefore u € W?>7(Bg) and belongs to D,(L;) as defined in
Definition 4.4. Since the converse inclusion is obvious, the proof is complete. O

The argument above can be generalized when 0 < o < N, as follows.

ProPOSITION 4.10. Let 0 <a < N and p > N/(N — o), p>N/(N —2). Then
all functions u € Dy max(L1) belong to W*4(Bg) for every 1 < q < Np/(N + ap).
In particular Dy, jax(L1) = Dp(Ly) when 0 < <2 and p > N/(N —2).

PROOF. Let u € D), jyax(L1). As before Au=g = f|x| " in Qg. By Holder in-
equality g € LY(Bg) for every 1 < ¢ < Np/(N + ap) (observe that Np/(N + op)
> 1 since p > N/(N —«)). Let ¢ > 1 as in the statement and v € W?>4(Bg) N
Wol’q(BR) be such that Av = g. Then A(u — v) = 0 in Qg. By Sobolev embedding
ve LY (Bg) with 1/¢* =1/q—2/N if ¢ < N/2 and ¢* any number if ¢ > N /2.
In each case ¢* > N/(N — 2) and therefore Proposition 4.8 applies and u — v is
harmonic in Bg. Therefore u e W?>4(Bg). If 0 <a <2 and p> N/(N —2),
then p > N /(N — ) and therefore u belongs to D,(L;), see Definition 4.6. Since
the converse inclusion is obvious, the proof is complete. |

Summing up, we have proved in particular the following result.

COROLLARY 4.11. The equality D,(Li) = Dy max(L1) holds if o > 2 and when
<2, p=N/(N-2).

Of course, when 0 < a < 2, we always assume that p > N/(N — «), otherwise the
operator L; is not defined. We note the following easy consequence of Proposi-
tions 4.9, 4.10.

ProrosITION 4.12. If 0 <0 and p > N/2, p>N/(N —2) or 0 <a <2 and
p>NQ2—a), p>=N/(N —2), then all functions in D, .(Ly) can be continu-
ously extended to the origin.
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PrOOF. We only note that for 0 < o < 2 the exponent Np/(N + ap) given by
Lemma 4.10 is greater than N/2 when p > N /(2 — «). O

In particular, if o < 2, then

Doax(L1) = {u € Co(RY) n W2 (Q) for all p < oo : Lu € Co(Q)}.

loc

ExXAMPLE 4.13. Let o > 2, u(x) = sinln|x| near the origin. Then u € D,,(L;)
but u is not continuous at the origin.

Let us show that in all cases smooth functions are a core for L.
PROPOSITION 4.14. The space C*(BR) is a core for (Ly, Dy(Ly)).

PrOOF. If o > 2 this follows arguing as in Lemma 3.1 or can be deduced from
it, as in Proposition 4.3. Let then o <2 (and p > N/(N — o) when 0 < o < 2),
ue Dy(Ly) and set /= Lju € L”(Bg). We consider a sequence (f,) of C* func-
tions with compact support contained in Qg (hence vanishing near 0) such that
Ju— fin LP(Bg). Since (L1, D,(Ly)) is invertible, the functions u, = L !f, are
well-defined and converge to u in the graph norm of L;. By elliptic regularity,
since Au, = |x|”*f,, the u, are C* functions in Bg\B; for every ¢ > 0. Moreover,
if £, =0 in B,, then Au, =0 in B,\{0}. Since u, € W>4(Bg), where ¢ = p if
o <0 and ¢ > 1 is any number less than Np/(N + ap) if 0 < o < 2, it follows
that Au = 0 in B,, hence u, € C*(Bg). O

Next, we show the consistency of the resolvents with respect to p and their posi-
tivity for 4 > 0.

PropoOSITION 4.15. Let 7 € p(Li,D,(L1)) N p(L1,Dpax(L1)). Then the resol-
vents of Ly in L?(Bg) and in Cy(Qg) coincide on Cy(Qg). In particular the resol-
vents in L?(Bg) and L1(BR) coincide and are positive if A is positive.

ProoF. If o > 2, then D,y (L1) < Dy max(L1) = Dp(L1) and hence the solution
u € Dy(Ly) of the equation Au — Liu = f € Cy(Qg) is also the unique solution
in D,(L;). This shows the consistency for o« > 2. If « < 2, the above argument
works only for p > N/(N —2), since then D,(L) = D, yax(L1) and we modify
it as follows. Let f € Cy(Qr) and u € D,(L;) solve Au — Liu = f. By Definition
4.4, u e W>P(Bg) and vanishes at the boundary. If p > N/2, then u € Co(Bg)
and hence Lju € Cy(Qg), that is u € Dy, (L) and we are done. If p < N/2,
by Sobolev embedding u € L?'(Bg) where 1/p; =1/p —2/N, hence by elliptic
regularity u € WP (Bg). By iterating the procedure until u € W2P(Bg) with
pr > N /2, we conclude as before. The consistency of the resolvents in L?, LY
follows by density, as well as the positivity of the resolvent in L?(Bg) for positive
A in the resovent set, since the resolvent of (L, D, (L1)) is positive. O

Finally, we show that when 0 <o <2 and p < N/(N — o) the equation
Ju — |x|*Au = f for positive 4 has no positive solutions in D), ,...(L) for certain
positive f € L?(Bg).
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LEMMA 4.16. Let0 <a<2,1 < p < N/(N — o) and u solve the ordinary differ-
ential equation

of 1 N —1 ry
(7) —r (u + . u) =y
in 10,1, with g € L?((0,1); 7N~V dr). Then for & > 0 sufficiently small

lim | N u(r) = 0.
PrROOF. We get
1
u'(r)=r= / g(s)sV 1 ds 4 er'™N

and Hélder’s inequality with respect to the measure r¥~! dr (the norms are taken
in L? with respect to the measure r¥~! dr) implies

W (r)] < gl NN N p < NJ(N - 2)
lu'(r)] < ||g||pr1*N|logr|l/p/ +er'™ if p=N/(N —a)

hence
ju(r)| < CPP NN p < NJ(N — o)
W' (r)| < Cr¥ Nlogr|"" if p=N/(N — o)
near r = 0. These estimates easily imply the result, since o < 2. m|

LEMMA 4.17. Let 0<a<2, 1<p<N/(N—a). If f(r)=r"" for p<
N/(N —a) or f(r) =r*Vlog ”X\]o,1/2[|_1 if p=N/(N —u), then for A >0 the
ordinary differential equation

/lu—r“(u”+N u’) =f

,
has no positive solution u € L?((0,1);rN=" dr).

PROOF. Assume that u € L”((0,1);rV="dr) solves the above equation in ]0, 1]
and let g = f — Au. Then u solves (7) and Lemma 4.16 yields u(r)/f(r) — 0 as
r — 0, hence Au(r) < (1/2)f(r) for small r. Since

1
W = [U6) = 2l s

ro
it follows that u'(r)r¥=' > 1 for r < ry hence u(rg) — u(r) > / s'=N ds implies
that u(r) — —oo as r — 0. r O
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ProrosITION 4.18. If 0 <a<2and p<N/(N — o) and f € L?(By) is as in
Lemma 4.17, then the equation Ju — |x|*Au = f for positive ). has no positive
solutions in Dy, yax(L1). In particular (Ly, D) cannot be the generator of a positive
semigroup in L?(By) for any D < Dy, ax(Ly).

PROOF. Assume that for a certain 4> 0 there exists u € Dy yuc(L1), u >0,
solving Au — |x|*Au = f. Since u is radial, the function

o(r) —/ u(rw) do(w),
SN-1
where S¥~! is the unit sphere in RY and do its surface measure, still belongs to

Dy max(L1) and solves v — |x|*Av = f or

lv—r"’(v”—f—NT_lv’) =f.

By Lemma 4.17, v cannot be positive, hence neither . O
4.2. The domains of L, and of L

The maximal domain of L, is defined in the usual way.
DEFINITION 4.19.
Dy max(La) = {u € L?(BY) n WP (Bgn B,) Vr > 0: u(x) = 0if |x| = R,
|x|*Au € L?(B%)}.

Observe that the Dirichlet boundary condition u(x) = 0 for |x| = R makes sense,
since u has second derivatives in L” in a neighborhood of the boundary of Bj. By
local elliptic regularity, L, is closed on its maximal domain. However, when
a < 2 the function a(x) = |x|* satisfies the inequality |Va!/?| < C in the exterior
domain Bj. In analogy with Section 3 we can also define the domain D,(L,) as
follows.

DEFINITION 4.20. If o < 2 we set
D,(Ly) = {u e LP(BY) n W*P(B% " B,) Vr > 0 : u(x) = 0 if |x| = R,
x|**Vu, |x|*D*u e L”(BS)}.
The proof of the next proposition is similar to that of Proposition 4.3.

PrOPOSITION 4.21. If a <2, then D, yax(L2) = D,(L>) and the operator L; is
closed on its domain.

Therefore the domain of L, is always the maximal one and coincides with D,(L;)
when o < 2. Next we show the consistency of the resolvents with respect to p and
their positivity for 4 > 0.
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PrROPOSITION 4.22. Let 0 < A € p(La, Dp max(L2)) N p(L2, Dpax(L2)). Then the
resolvents of L, in LP(Bg) and in Co(By) coincide on LP(By) N Co(Bg). In
particular the resolvents in LP(By) and L,(Bg) coincide and are positive if 1 is
positive.

PrROOF. Assume first that o« > 0 and take f € C*(Bg), u € D) nax(L) such that
Ju— Lyu= f. Then Au € L?(Bj) and, since u vanishes at the boundary, by ellip-
tic regularity, u € W>P(B%). If p > N /2, then u € Cy(BS), hence u € Dyun(L2)
and the consistency of the resolvents follows by the density of C(Bj) both in
Co(B%) and L?(Bg). If p < N/2 we use Sobolev embedding as in the proof of
Proposition 4.15 to conclude the proof.

Let now a < 0. If p > R, f € C¥(Bg), A > 0, we solve the Dirichlet problem
Ju—|x|"Au= fin C, = p\BR with Dirichlet boundary conditions if |x| = R or
|x| = p. The solutlon u, belongs to W7(C,) N W ?(C,) for every p < oo and
satisfies A||u, ||, < ||f],,- To get L? estimates 1ndependent of p, we multiply the

equation by u|u|” 2 and integrate by parts. Since the boundary terms vanish we
get
b ¥4 o 21, 1p—2
il =) [l
C/) C/'

o—1 -1 -1
<ol [ vl [ Ul
C, C,
o/2 -1 . ~1
<c [ R+ [ 1l
c, G
1/2 1/2
o 2 -2 —1
<o [ 2) () el
Cp C,

From this we easily deduce the existence of 4y > 0 such that for every A > 4 the
estimate (4 — 4o)|u,l|, <[], holds. A weak compactness argument based on
local W?? estimates now produces a function u satisfying iu — |x|*Au = f with
u e L?(Bg) N Co(Bg), hence the coherence of the resolvents. The coherence
of the resolvents in L”, L4, as well as their positivity for 4 > 0, now follows
immediately. O

We shall construct a resolvent for L by gluing together the resolvents of L; and
L,. Accordingly, the domain of L will be defined in terms of the domains of L
and L, as in the following construction. We fix a radius R > 0 and we consider
the operator L; in the ball Bz and the operator L, in the exterior domain B,
with the domains defined according to this section and depending on .

DEFINITION 4.23.

Dy(L) = {ue LP(RY) A W2 (Q) : u=uy +uz,uy € Dy(Ly), 1ty € Dp pax(L2),

loc

uy, u, with compact support contained in Bsg, By respectively}.
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REMARK 4.24. It is easily seen that the definition of D,(L) is independent of the
choice of the radius R. Moreover, u € D,(L) if and only if u € L?(R") A W/i’cp (Q),

nu e D,(Ly), (1 = Qu € Dy pax(La) for fixed cut-off functions n, { with support in
Bog and equal to 1 near the origin.

Also for the operator L we can define the maximal domain.
DEFINITION 4.25.

Dy max(L) = {u € LP(RY) A W2P(Q) : |x|*Au e LP(RV)}.
The equality D, yax(L) = D,(L) holds if and only if the same equality for L,
holds, hence

COROLLARY 4.26. The equality D,(L) = D) max(L) holds if o > 2 and when
%<2, p>N/(N-2).

5. GLUING THE RESOLVENTS

We shall construct a resolvent for L by gluing together the resolvents of L; and
L,. In some other cases we also deduce results for L; or L, from properties of L
in the whole space. This section is devoted to explain these methods. First let us
fix some notations.

For 0 <0 < &, p > 0, we denote by X , the closed set

29, ={2eC:|i =p,|Argi| <0}

Even though more general operators can be considered, we confine to the case
A =aA in L?(V) where V is an open set containing the annulus Cg = Byg\ Bg.
The function « is assumed to be locally Holder continuous and strictly positive
in any compact set contained in V' n Q, hence having possible singularities only
at 0, oo. We shall apply these results to a(x) = |x|”.

DEFINITION 5.1. Let (4, D) be the operator aA with D < D,, 4 (A) on L?(V),
1 < p < . We say that (4, D) satisfies P(0,p, C,y), where C, p >0, y > 0 and
0<0<mifXy, c p(4) and for every 1 € X, , the following estimate holds

- C
(8) 12— 4) 7' < =5
|

DEFINITION 5.2. We say that (A4, D) satisfies P(0,p, R, C,y,0), R > 0,0 € Rif it
satisfies P(0, p, C,7), a(x) < C for x € C(R) and moreover

C

1
9) 1(A=A) " NLopr—wrrcwy < ek

where the last norm is understood as the operator norm from L7”(V) to
W2 (C(R)).
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Clearly, A generates an analytic semigroup if and only if P(6,p,C,y) holds
for some 0 > /2, y = 1. Assume that (41, D), (A2, D>), where 4; = a;(x)A,
Ay = a(x)A, are given in L?(Bsg), L?(Bg) respectively. We also assume that if
u; € D; and #; are C* function with compact support in Byg, Bj, respectively,
such that #; = 0 in a neighborhood of the origin and #, = 1 in a neighborhood
of infinity, then n,u;n; € D;, for i,j=1,2. These conditions are clearly verified
for Ly, L,, by the definition of the corresponding domains given in Section 4.
If a(x) = ax(x) in Cg we set 4 = a(x)A where a(x) = a;(x) for |x] < R and
a(x) = ay(x) for |x| = R. The domain of 4, say D, is defined as follows.

DEFINITION 5.3.

D= {M S LP(RN) cu=u +uy,uy € Dy,uy € Dy,
uy, up, with compact support contained in Bag, By respectively}.

REMARK 5.4. Observe that if u € D, then nu € D;. In fact, writing u = uy + u,
with u; as in Definition 5.3, then nu; € D;.

PROPOSITION 5.5. Under the above assumptions, suppose that (A, D), (42, D7)
satisfy P(0,p, R, C,y,0) in L?(Byg) and in L,(Bg) respectively, with 6 > 0. If there
exists Ay >0 such that (A — A, D) is injective for 1> Ay, then (A, D) satisfies
P(0,py, C1,7) in LP(RY), where p,, Cy depend only on p, 0, p, R, C, y. If y >4
then (A,D) satisfies P(0,p,,Cy,y) in LP(RY) without the extra injectivity as-
sumption on L. Finally, if P(0,p,, R, C,y,0) are satisfied both in L?, LY and the
resolvents of Ay, A, are coherent in L, L4, then the resolvents of A are coherent
in L?, L4,

ProoFr. Let 0 <#;,n, <1 be positive C®-functions supported in Bg and
RN\ Bg, respectlvely, such that 7 +#n3=1. For A1e%y, feL’(R"), s
Ri(A)f =n,(A—A4)""(n.f) = D;~nD for i=1,2. Observing that Ay, = A,n,,
n;A = n,;A; it follows that
(A= AR(A)f = (2= A2 = Ai)~ (0]
= ni(A— A4) (2= A) " (0 ) + Iy, A4 — 40) 7 (i)
=02 f + i, AV (2~ 4D (0if)

where
[, Ailg = njaAg — aA(n;g) = —2aVn;Vg — a(An;)g

is a first order operator supported on Cg. Therefore (1 — A)R ( V=0 f+

Si(2)f where Si(2)f = —2aVp,V(i.— L:)~ (n;f) — a(An;) (A — L)~ (n:f)- By (9),
it follows that

o

ISi () | Lo
@ = 1P
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for AeXy, and with ¢; depending only on C, R. Then (1—A)R(1)f =
[+ S(2)f where

Choosing || > p; large enough, we find [[S(2)|| gy < 1 and we deduce that the
operator I + S(2) is invertible in L?(R™). Setting V(1) = (I + S(4))~" we have

(A= ARV =T

and hence the operator R(1)V(A), which maps L?(R") into D, is a right inverse
of 1 — A4 and, by (8), satisfies

(10) IRV ()] < i

for 2 € Xy, . Clearly R(4)V(Z) coincides with (4 — A)~" whenever this last is
injective. If 1 — A is injective for A > Ay, then ], o[ < p(4) and the a-priori
estimates (10) show that the norm of the resolvent cannot explode in the set
%y 5, hence this set is contained in p(A4) where the resolvent operator coincide
with R(1) V(1) and satisfies (10).

If y> % we have to prove the injectivity of A — A for || large enough. Let
ueD, ey, Thennue D; see Remark 5.4, n,Lu = n,L;u and

2 2

Z’?i(/1 - Ai)_]’hu — A)u= 277:‘(/1 - 1‘11’)_1’71'(}L — Ai)u

i=1 i=1

R(2)().— Lu

|
'M“

2
(4 — Ai)_] (A —Ainu+ Z ni(4— Ai)_] [, n;]u.
=1

i=1 i=

Suppose that (1 — A)u = 0. Thenu = — 252:1 n.(A — A;) " [A;, n,|u. 1t follows that
2
1dull, < > 472 — 4) ' [Ai,mul,.
i1
Since Vr;, Ay; have support contained in Cg and by the definition of [4;, #,]u, we
have
lAm (= A4 Annul, < 11G: = AdniCi = A4) sl
s = A) M A mul, < Nini(;— 4G — 4) " [Ainul],
+ W1lis i) (2 = A0) ™ [Aiymiull, + 1 (2 = A3) ™ [ Ai,miJul,
< il mlull, + A 2 — 40 e mlul, + 1, — 43) ' [AwmJu,

1—
< Cllullwrrcwy +W lll woccqry + 1A Nl wrncry | -
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By the interpolative estimates [6, Theorem 7.28] there exists C > 0 such that for
every ¢ > 0

el oy < ellttll iy + " Hu”L,,(CR)‘

Using the interior estimates for elliptic operators (note that a is positive far from
the origin) as in [6, Theorem 9.11] we deduce the existence of a constant C > 0
such that for every ¢ > 0

1
”uHWl«!’(C(R)) =< C[8||Au||u(3m+l\3§) +g ||”||L11(32R+1\3§)}
It follows that for every ¢,& > 0 and some C independent of ¢, ¢
1 1—y Lo
1ull, < Celldul, + 2 lull, + er 2l Aul, + 2 Al |

where all norms are taken over R". By choosing & = £|A"|y_1, it follows that

1 | )
Jul, < el dul + ul, + 5 2, |
By choosing ¢ small enough, [|4ul|, < C|/1|272"||u||p. Since Au = ju and y >1,
u = 0 for |1] > p, p large enough, and /1 — A4 is injective. Finally, if the hypotheses
hold in L?, L9 and the resolvents of A, A, are coherent in L”, L? (in Byg, B,

respectively, we have seen in the proof that the resolvent of A4 is the operator
R(2) V(1) which is coherent in L”(RY), L4(R") by construction. O

The above proof can be adapted to deduce results both in exterior and interior
domains from the whole space. We consider (4, D) in L?(RY), where 4 = aA
with D < Dy ax(4) = {u € L?(RY) n W;;"(Q) : Au e L?(R™)}. Next we intro-
duce 4; = aA in Byg with Dirichlet boundary conditions if |x| = 2R. More pre-
cisely we define its domain D; as

(11) D1 = {u € LP(BZR N Wz‘p(BzR\Bg) Ve>0: UoByy = 0,
nu € DVn e CF(Bar),n =1 near 0}.

Similarly, we consider 4, in Bj, where 4, = aA and

(12) Dy ={ue L?(Bgn W*P(B,\Bg) Vp > R : uap,o,
nue D Vne C*(By),n =1 near co,n = 0 near 0Bg}.

PROPOSITION 5.6. Let (A4, D) = (aA, D) satisfy P(0,p, R, C,y,0) in L?(RN). Let
(A2, Dy) in Bge as defined in (12). If there exists 4y > 0 such that A — A, is injective
for A > o, then A, satisfies P(0, p,, Ca,7) in L?, where p,, Cy depend only on p, 0,
PR Coyp Ify > % then A, satisfies P(0,p,, C1,y) in L? without the extra injectivity
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assumption on Az. Finally, if P(0,p,, R, C,y,0) is satisfied both in L?, LY and the
resolvent of A are coherent in L?, L1, then the resolvents of A, are coherent in
L?, LY.

PrROOF. The proof is similar to that of Proposition 5.5 and we only outline the
main steps. Let 0 <#,,7#, <1 be positive C*-functions supported in B,z and
B¢, respectively, such that #7 + 53 = 1. Let Ag be the operator ¢A in the annulus
Cgr with Dirichlet boundary conditions, that is with domain

D,(Ag) = {u € W*P(Cr) 0 W, (Cg)}.

Since a > 0 in Cg, Ay is uniformly elliptic and generates an analytic semigroup in
Cr, see [9]. In particular, A satisfies P(0,p, R, C,y,0).
For 1 € Xy, f € L?(Byg) (extended to zero outside Bg) we set

RS =m(A—Ar) " (nS) +m(i— A)" (n.f) € Da.
Then we argue as in Proposition 5.5. O

PROPOSITION 5.7. Let (A, D) = (aA, D) satisfy P(0,p, R, C,7,6) in L?(R™). Let
(A1, Dy) in Byg as defined in (11). If there exists Ay > 0 such that A — A, is injective
Sfor 4> lo, then Ay satisfies P(0,p,, C1,y) in L?, where p,, C| depend only on p, 0,
p. R, C,p. If y > % then A; satisfies P(0, py, C1,y) in L? without the extra injectivity
assumption on Ly. Finally, if P(0,p,, R, C,y,0) is satisfied both in L?, LY and the
resolvents of A are coherent in L?, L1, then the resolvents of A, are coherent in
L?, L1,

Proor. Keeping the notation of the proof of Proposition 5.6, for f € L,(Bar)
(extended to zero outside Bg) we set

RO =m(—A) " (0, f) +ny(2— Ar) "' (n2f) € Dy

and we argue as in Proposition 5.5. O

6. GENERATION RESULTS FOR L,

We indicate by (73()),-, the semigroup generated by (La, Dyax(L2)) in Co(Bg),
see Section 2.

PROPOSITION 6.1. Let o < 2. Then the operator (L, D,(L)) generates coherent
positive analytic semigroups (T ,(t)),-o in L?(Bg) for 1 < p < oo. If f € Co(Bg)
ﬁLp(B;é), then Tz’p(l)f = Tg(l)f.

PROOF. We extend the operator to the whole RY by setting

() R* |x|<R
ax) =<, .,
|x|* |x| >R
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and L = aA. Since « < 2, the operator (L, D,(L)) belongs to the class studied in
Subsection 3 and then generates coherent analytlc semigroups in L?(R"), by
Theorem 3.3. The equality ,,mm(L) = D,(L) follows from Proposition 3.5.
Finally, by Proposition 5.6, (L»,D,(L,)) generates an analytic semigroup in
L?(Bg) for 1 < p < o0. Coherence and positivity of the semigroups follows
from consistency and positivity of the resolvents proved in Proposition 4.22. O

Next we consider the case o > 2.

PROPOSITION 6.2. Let oo > 2. Then (Ly, D) max(L2)) generates coherent positive
analytic semigroup (T ,(t)),s o in L?(Bg) for N/(N —2) < p < 0. If f € Co(Bg)
N LP(Bg), then T> ,(t) f = T>(t)f. Finally, if p > N/(N — a),

Dy max(L2) = {u € WHP(B) + (14 [x" ), (1 -+ 3" Vu
(1+|x|")D%u € L7(BR)}.

PrOOF. As before we extend the operator to the whole RY by setting L = aA.
By [14, Theorem 5.5], (L, D, nax(L)) generates coherent analytic semigroup in
L?(RY) for N/(N —2) < p < oo and the domain characterization follows from
[14, Theorem 9.8]. Finally, by Proposition 5.6, (Lz, p.max(L2)) generates an
analytic semigroup in L?(Bj) for 1 < p < o0. Also in this case, coherence and
positivity of the semigroups are consequence of Proposition 4.22. |

7. GENERATION RESULTS FOR L

We indicate by (7(¢)),. the semigroup generated by (L1, Dyax(L1)) in Co(Qr),
see Section 2. When o > 2 the operator L; belongs to the class studied in Subsec-
tion 3.

ProroSITION 7.1. Let «>2 and 1 < p < co. Then the operator (Ly,D,(L1))
generates coherent positive analytic semigroups (T ,(t)),~o in L?(Br). If f €
C()(QR) then Tl,p(l)f = T1(Z)f.

PrROOF. We extend the operator to the whole RY by setting

- x| x| <R
a(x) =
R* |x|>R

and L = aA. Since o > 2 the operator (L, D,(L)) belongs to the class studied
in Subsection 3 and then generates coherent analytlc semigroups in L?(RY), by
Theorem 3.3. The equality D), max(L) = D,(L) follows from Proposmon 3.5. By
Proposition 5.7, (Li,D,(L1)) generates an analytic semigroup in L”(Bg) for
1 <p<oo. Coherence and positivity of the semigroups follow from the consis-
tency and positivity of the resolvents proved in Proposition 4.15. |

The case o < 2 is more involved and we proceed in several steps.



A DEGENERATE ELLIPTIC OPERATOR WITH UNBOUNDED DIFFUSION COEFFICIENTS 129

PROPOSITION 7.2. Let <0, 1<p<ow or 0<a<2 and p>5. If
Re A > 0, then the operator ). — Ly is invertible on D,(L;) and

1 =L)< L) 7

Moreover (. — L)™' > 0 for 4 > 0.

PrOOF. First consider positive 4. Let p be the resolvent set of (L, D,(L)) and
observe that Propositions 4.5, 4.7 and 4.15 show that 0 € p and if 0 < 4 € p,
then (4 — L;)~' > 0. By the resolvent equation (A— L)™' < (—L)"' and there-
fore ||(4 — L1)71||p < ||(—L1)71||[,. Let E = [0, 00[ n p. Then E is non empty and
open in [0, oo[, since p is open, and closed since the operator norm of (1 — L)~
is bounded in E. Then E = [0, o[. If Re X > 0, f € Co(Qr),

-1 < [ e AT d = Rez = 1)
0

By the coherence of the resolvents (Proposition 4.15), we deduce that
-1 -1 -1
(2= L) I, < [(Red = L) ], < [[(=L1) |,

whenever 4 € p. Repeating the argument used in [0, oo[ one concludes the proof.
O

The next step consists in proving that, for large p, the operator L; generates an
analytic semigroup in L”(Bg). We apply the Kelvin transform in order to deduce
results for L, from those of L,.

PROPOSITION 7.3. Let o <2 and% < p < . Then the operator

(leDp(Ll)) = (Ll)Dp,max(Ll))

generates coherent positive analytic semigroups (T ,(t)),5o in L?(Br). If f €
C()(QR) then T17p<l)f = T1<Z)f.

PrROOF. We may assume that R = 1 and write B for Bg. The equality D,(L;) =
Dy, max(Ly) follows from Corollary 4.11 since p > 2N /(N — 2). To indicate the
dependence of L; on « we write L}. Similarly for L,.

First we consider the case p = py := 225. For u € L (B) we define its Kelvin
transform 7u on B¢ by

(MM:M”%ﬁﬂ
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If y= x/|x|2, then dy = ]x|_2N, T :L"(B) — L™ (B°) is an invertible isometry
and its inverse 7! has the same expression. Setting v = Tu it follows that (see
[4, Theorem 2.70])

(13) Au(x)::p4*N*2Au(—f;).

x|
It follows that, if v € L7 (B¢),
(TL*T ') = |x|*"Av = L} .
This identity implies that 7Dy, yax (L3 ™) = Dy max(L?) and therefore
TLIT ' = L3

as operators. By Proposition 6.2, the operator (L%, Dy max(L3 ")) generates a
positive analytic semigroup in L#°(B¢) and therefore (L1, Dp, max(L])) generates
a positive analytic semigroup (7,,,(1)), in L7 (B).
Since T ,,(t)f = Ti(t)f for f € Co(Qr) by Proposition 4.15 (and then for
f € L*(Qg) by the integral representation through a kernel (see [12, Theorem
4.4])), by Stein’s interpolation Theorem [9, Chapter 5] it follows that (77(7),5,
extends to an analytic semigroup (7,,(1)),- in L?(Bg) for every 25 < p < 0.
Let (A4, D,) its generator in L?(Bg). From the description of the domain in contin-
uous function space (see [12, Section 5, pag. 184]), it follows that D,,.(L1) = D,
and Au = Lju for every u € Dy,(L;). Since Cy(Qg) is dense in L?(Bg) then
Diax(L1) = (4 — L) " (Co(Qg)) is dense in D, with respect to the graph norm
and hence D, < D, yax(L1), since Dyax(L1) < D) max(L1) and this last is closed.
The equality D, = D, yuux(L1) now follows since L; is injective on D), yax(L1).
O

THEOREM 7.4. Let o <2 and i < p < co. Then the operator (Ly,D,(L1)) gen-
erates coherent positive analytic semigroups (T (1)), in L?(Bg). If f € Co(Qr)
then Ty ,(1)f = T1(2)f.

PRrROOE. By the provious result we may assume that p <2N /(N — 2).

Let N/(N—a)<g< % = po < oo and let Re4 > 0. By Proposition 7.3,
(L1,Dy,(L1)) satisties P(01,p,C,1) (see (5.1)) in L?°(Bg) for some 0, > n/2, p,
Cy > 0. Since all resolvents are consistent, see Proposition 4.15, we use the Riesz
Thorin Theorem to interpolate between the resolvent estimates given by Proposi-
tion 7.3, 7.2 and deduce that for every 0 < 7 < % and

1 1-7 =

)

D1 Po q

there are constants p; = p v 1, C; > 0 such that for every 1 € C with |1| > p; and
Rel >0

(A — L) <qAn

-1
H[’l
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From Ju—Liju=f and the bound on u we deduce that || |x|"Aul|, <
C+ AN, <2CIA7 (£, if [2] > p;. By the estimates ({6, Theorem 9.13])
and the interpolative estimates [6, Theorem 7.28], the gradient estimate in the
annulus C = BR\B§

_ 1
(14) IV = L) Moy < Gl

follows as in the proof of Proposition 5.5. Now we use a scaling argument to
prove that the resolvent set of L; contains a sector of angle # > n/2 and that
the analyticity estimate holds. Since scaling is allowed in the whole space, first
we use the results of Section 5 to show property P(6,p, C,1 — 1), see (5.2), for
the operator L with the same p; as above.

By Proposition 6.1, the operator (L, Dy, max(L2)) generates an analytic semi-
group in L/ (B%’) and therefore it satisfies

Pl )

for some 0, > %, p,, C > 0. By Proposition 5.5, since 7 < 1/2, (L, D, (L)) satis-
fies P(0,p, C,1 — ) for some 0 > 75, p, C > 0. In particular the resolvent tends to
zero when |Im 1] — oo and the resolvent set p intersects the left half-plane. For
s> 0 let I;: L” — LP' defined by Lu(x) = u(sx). Clearly I is invertible with
inverse I, and |[Lul|, = s V7|u], . Since L = s> *LLI", I,D, (L) = D, (L),
then the resolvent set is a cone and contains a closed sector of angle 0 > n/2,
since it intersects the left half-plane. If 1 € C, 1 = ro with |o| =1, |Argw| < 0,
then the equality

A—L=1ILr (w -
yields the decay

. C B
1A=L), < mlI(w—L) il

nET

provided that s = 7. As before we deduce the gradient estimate (14) with 7 = 0
with L instead of L; and, by Proposition 5.7, we deduce that (L, D), (L)) gener-
ates an analytic semigroup in L?'(Bg).

The above procedure does not allow to reach any p > N/(N — o) in one
step, since 7 < 1/2. However, it can be iterated starting from p; instead of py.
For a fixed N/(N —a) < p <2N/(N —2) we fix N/(N —a) < ¢ < p and set
po=2N/(N —2) and
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We apply repeatedly the above computations obtaining sequences 60, > 7/2, p,,
C, > 0 such that (L, D,, (L)) satisfies P(0,,p,, Cy,1). Since p, converges to ¢
we can find m such that p,, < p and then (L, D,, (L)) is sectorial in L”"(Bg).
Since (L, D,,(L1)) is also sectorial in L?°(Bg) and all resolvents are coherent,
by interpolation (L, D,(L)) is sectorial in L?(Bg). O

8. GENERATION RESULTS FOR L

We denote by (7'(1)),- the semigroup generated by (L, D,x(L)) in Co(Q).

THEOREM 8.1. Let a=2and 1 < p < o0, o <2 and i~ < p < o0 or o> 2 and

5 < p < 0. Then the operator (L,D,(L)) generate coherent positive analytic
semigroups (T(1)) = in LP(RN). If f € LP(RY) A Co(Q) then T,(t)f = T(t)f.

PrROOF. The case o = 2 has been already treated in Corollary 3.6. In the other
cases, analyticity and consistency follow by Proposition 5.5 after observing that,
since L; and L, generate analytic and consistent semigroups in L”(B,g) and
L?(B%) by Propositions 6.1, 6.2, 7.1 and 7.4, respectively, then they satisfy
P(0,p,C, R, 1,}) for suitable 0 > =/2, p, C.

The positivity of T,(¢) follows from the equality 7,(¢)f = T(¢)f for f €
L?(RY) n Cy(Q) or, equivalently, from the fact that the resolvents of (L, D,(L))
and (L, D,ux(L)) coincide for positive 2 on L?(RY)n Cy(Q). To show this we
notice that by Propositions 4.15 and 4.22 the resolvents of L; and L, in L? and
in Cy are coherent and that the resolvent of (L, D,(L)) is constructed by gluing
together the resolvents of L;, L, as in Proposition 5.5. Therefore it is sufficient
to show that also the resolvent of (L, D,,,(L)) in Cyp(Q) can be obtained by the
resolvents of Li, L, in Cy(Qar), Co(B%) with the same procedure which is
recalled below.

Let 2> 00 <#,,n, <1 positive C*-functions as in Proposition 5.5 and set
Ri(A)f =n;(A— L) '(,f) for i =1,2. Tt follows that (1 — L)R,(A)f = n*f +
Si(4)f where S;(2) = —2aVn,V(i — L) 'n; — a(An,) (% — L;) 'y, is a first order
operator supported in a compact set K of the the annulus Cg. Fix p > N. Fix
s > 0 such that K} = {x : dist(x, K) < s} is a compact subset of Cg. Combining
the Morrey estimates

V()| < CNP|Vull o gy + P ID?ul i
for x € K and the interpolative estimates for small ¢
5 C
||Vu||u(1<1) <¢[[D uHLl’(Kl) +E||”||LP(K1)7

we deduce that |\Vu||L-,,(1.<) £8||D?u||L,.,(K1> +§£,||u||Lp(Kl) for. small ¢ and with
7= (N+ p)/(p— N). Using the interior estimates for elliptic operators (see
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[6, Theorem 9.11]) we deduce the existence of a constant C >0 such that
||D2u||L,,<K1) < Cl[[Laull = (cpy + Nlull 2 ()] and therefore for small &

C
Vel oy < ellLittllpo oy + 2 MUl (-

Applying this last inequality to S;(4)f and taking into account that
AG=L) I, </l it follows that [S;(A)f], < CA~ Y1) We have
(A—=L)R(A)f = f+ S(A)f where

Choosing 4 large enough, we find [[S(2)|[,-ry) < 1 and we deduce that the
operator I + S(4) is invertible in Co(Q). Setting V(1) = (I + S(1)) " we have
(A—A)R(Z)V(A)f = f and hence the operator R(1)V'(A) is a right inverse of
) — L. Clearly R(2)V(2) coincides with (4 — L)™' since this last is injective by
Proposition 2.3.

Since R(4)V'(A) is also the resolvent of (L,D,(L)), see Proposition 5.5, the
consistency of the resolvents is proved and the proof is complete. O

Standard perturbation arguments as in [14, Theorem 9.8] allow us to show that
the operator m(x)a(x)A, where a is as above, generates an analytic semigroup
in L?(R") if aA does it, whenever m € C(R"), m(x) > 0 for every x € R" and
lim|x‘_,oo m(x) =/>0.

9. DISSIPATIVITY

THEOREM 9.1. Let N>3,2—-N<a<(p—1)(N—-2). Then (L,D,(L)) is a
dissipative operator.

PrOOF. For f e C*(RY), p>0, >0, we consider the Dirichlet problem in
L?(B,\B)

Ju—Lu= f in B,\Bu,
(15) w=0 on 3(B,\B.).

According to Theorem 9.15 in [6], for A > 0 there exists a unique solution u,
in WZ*P(Bp\Bl)) N Wol”’(Bp\Bl)). We set u* = up|up|p72, multiply Lu, by u* and
integrate over /BP\B% . The inte/gration by parts is straightforward when p > 2. For
1 <p<2,|u,l’ 2 becomes singular near the zeros of u,. It is possible to prove
that the integration by parts is allowed also in this case (see [10]). Notice also
that all boundary terms vanish since u, = 0 at the boundary. We obtain
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* o -2 2
—/ Lwl—@—U/ 1] | P2 V|
Bﬂ\B% Bﬂ\B%

_ X
+°‘/ upVidy|uy| ” 2|x|°‘ g
n 1 |x|

B,

=(p— 1)/3 |X|OC|L‘/)|p_2|V“/J|2

ﬂ\Bl
P

-2+ N .
—ﬂi—i;l/ | 71| 2.
p B,\By
P

Clearly, if 2—- N <a <0, — / Lu,u* > 0. If « >0, by Hardy’s inequality
B/I\Bl
i

(see for example [14, Proposition 9.10])

2
o— P o -2 2
wwuvzs——————/‘ Ix] ity 2| Vit
/B \B% r (N +o— 2)2 BP\B% r r

P

and hence

op 20 2
- Luu*Z(p—l—7>/ u,| 77| x| %V, |~
L, b ) ) A

p \PL
»

Observe that p — 1 — is positive for o < (p — 1)(N — 2).

B
N+oa—-2

Summing up, L is dissipative in B,\B; for 2— N <a < (p—1)(N —2) and
therefore !

(16) Mupll, < [1F 1120

Next we use weak compactness arguments to produce a function u € D, (L)
satisfying Au — Lu = f. Let us fix a radius r and apply the interior L? estimates
([6, Theorem 9.11]) together with (16) to the functions u, with p < r+1

||u/J||W2~I)(B/,\Bl) < Cy[||Au, — Lu,|
P

< G| Sl

gy ) T plles, 5]
r+1 r+1

By weak compactness and a diagonal argument, we can find a sequence
(p,) — oo such that the functions (u,, ) converge weakly in th)’cp (Q) to a function
u. Clearly u satisfies Au — Lu = f and, by (16), A||u||,, < ||f]l;,. In particular
u € Dy nax(L) and is a solution of the equation Au — Lu = f.
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If «>2 or «<2 and p>N/(N —2), then u € D,(L) =D, n(L) and,
by density, the estimate A||R(4,L), <1 follows for 4>0. If «<2 and
N/(N—-a)<p<N/(N-2), we fix ¢g=N/(N —2) and use the consistency
of the resolvents in L?(R") and L(R") proved in Theorem 8.1. For large /, say
A = J9, both the resolvent of (L,D,(L)) and (L,D,(L)) exist and coincide on
L?(RY) A LY(RY). Therefore, since ue D, (L), then ue D,(L) and hence
AIR(4, L), <1 holds for 2> /. If 0 <A< 4y and iu— Lu= f, then Aou —
Lu= (% — Au+ [, hence Zollull, < (Zo — Dllull, + I/1l, and Aull, <11,
From this a-priori estimate it follows that ]0, co[ = p(L) and that (L, D,(L)) is
dissipative. |

Finally we show that the condition 2 — N < o < (p — 1)(N — 2) is necessary
for the dissipativity.

PROPOSITION 9.2. Suppose that the operator (L,D,(L)) is dissipative. Then
2-N<a<(p—-1)(N-2).

PrOOF. Assume L dissipative. Then, for every u € D,(L), / |x) “ulu) "> Au < 0.
RN

If ue CX(Q) (hence equal to 0 in a neighborhood of the origin), we may inte-
grate by parts twice and, using the identity V|u|? = pulu|”*Vu, we get

2N+~ 2) / 4?32 < p(p— 1) / x| ]2 V.
RN RN

It follows that a(N +a —2) <0, thatis2 — N <o <0 or

_ -1) -
17 Pl o—2 < p(p / oy 1 p—2 2
(17) w1 < SRR
for every ue C(Q). Since (LY is the best constant in Hardy’s
Y ¢ ’ N+oa-2 Y

inequality above (see [14, Proposition 9.10]), we obtain

= 2
oc(]p\ff—a—2) = <N+[;—2> !

which implies 2 — N <a < (p —1)(N —2). O

10. HEAT KERNEL ESTIMATES

As in [16], we can prove kernel estimates for L, L;, L, by using the equivalence
between weighted Nash inequalities and ultracontractivity ([2]). We give the
details only for L, the other cases being similar. We introduce the Hilbert spaces
L; = LX(R"), where du(x) = |x| " dx, endowed with its canonical inner product
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and H = {ue L}:Vue L*(R")} endowed with the inner product (u,v), =
/ (uvdp+ Vu - Vodx). Let 7~ be the closure of C°(Q) in H, with respect to
RY

the norm of A and observe that Sobolev inequality ||u ; <C ||Vu||§ holds in 7.

‘We next introduce the form

(18) a(u,v) —/ Vu - Vidx
RY
for u,v € 7" and the self-adjoint operator . defined by
D(Z) = {u € Li : there existsfeLi ca(u,v) = —/ foduVve "V} Lu=f.
RN

Since a(u, u) > 0, the operator . generates an analytic semigroup of contractions
e in Lj. An application of the Beurling-Deny criteria shows that the generated
semigroup is positive and L*-contractive. For our purposes we need to show that
the resolvent of ¢ and of (L, D,(L)) are coherent. This is done in the following
proposition.

PROPOSIITION 10.1. If A>0 and feLl’([RiN)mLi, then (h—2)7\f =
(A=L)"f.

PROOF. Let 0 < f € C.(Q) and fix an annulus C, = B,\B: in R". Consider the
problem !

u—Lu=f xeC,
u=20 x € 0C,.

Smce the operator L is uniformly elhptlc in C,, there exists a unique solution
e W>2(C,) n W 2(C,) of the previous problem satisfying

(19) /1/ uﬁd,u+/ Vu,,Vl‘)dx—/fvdu
G G G

for every v € Wol’z(C,,). Moreover, as in Section 2, se also [13, Theorem 3.4], u,
is positive, increasing and converges pointwise to a function u € me( ) which
satisfies Au — Lu = f. Setting v = u, in (19) we obtain /1||u,,\|Lz + Y 2HVunHLz <
£l L2 Letting  to infinity, by monotone convergence, we deduce that u, — u

in L2 Moreover, for a suitable subsequence (nx), Vu,, converges weakly, hence
u € H and u belongs to the closure in H of W2 functions with compact support,
thatisu € 7. Letting n — oo in (19) we obtain a(u,v) = —(Au — f, v )Lz, for every
v e W2 having compact support and, by density, for every v e ¥°, that is
ue D(¥L) and Au— YLu= f. This shows the coeherence of the resolvents of
(L, Dpax(L) and &£ for A > 0, hence of £ and (L,D,(L)), by Theorem 8.1. 0O
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Since the operator L is symmetric with respect to the measure du(x) = (|x|*) “ax
we shall reepresent the generated semigroup 7'(¢) through a kernel with respect
to du, namely

TS0 = [ o0 ) ),

Clearly p,(x, y, 1) = |y|"p(x, y, ), if p is the kernel with respect to the Lebesgue
measure. Our goal consists in obtaining upper bounds for p, following the
approach of [2], which now describe. A positive C? function V is a Lyapunov
function for L if LV < cV for some positive c¢. This implies that T(¢)V <
Vexpct, see for example [12, Lemma 3.9]. It turns out that the estimate
pu(x, p,1) < Ct™N2e'V (x) V() is equivalent to the weighted Nash inequality

(/[RN |u|2d,u)l+‘% < Ca(u,u)(/RN |u|Vd,u)%,

see [2, Theorem 2.5]. Let V(x) = |x|; since LV = B(N + f—2)|x|*""7% it is
clear the inequality LV < ¢} will be satisfied in B and in B¢ for different values
of . This explains why different choices of the parameters will be done in B
and B¢

ProroSITION 10.2. Letu e V. Then

(/ \u|2dﬂ)l+"zV < Ca(u,u)(/RN v du)"

where

1 X € B,
V(x)= 2N <0
|x|"*  x € B
|

T 0<a<4

|x|°‘¥ xeB
V(x) = sy Toa>4.
|x|”" x e B¢

PROOF. Suppose o < 4 and let u € #". Then, by Holder’s inequality,

ul* du = u S |u[v2(|x] ) dx
RN|| n=1,

< (/ ||V dx) Yl |x] 7 dy)vE
RY

2% 2%\2_]12 =N ﬁ
= () T Tl 7 )
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where 2* = 2N /(N — 2). By Sobolev embedding,

_4

2 2 A_ﬁ/z a2=N N+2
ul d,uSC( Vil dx) ( ul [x|*5 dﬂ)
R/\ RN RI\
4
< Catwa)( [ Jullx" du)"
RN

Since ]x|°‘% < V(x), the claim follows. If & > 4 we split the integral on R” as the
sum of the integrals over B and B¢. By Holder’s inequality

4

([ )™ < e [ ae)( [l )’
T c(/B > (1 + |x|)4%|x|adx)22_*
() a)’
< c(/B|u|2* dx)zz*(/3|u| |x|“¥dﬂ)%
+ c(/B |u|2*dx)2%</3( ] | )2 du)%

2 4
2% 2% N
gC(/RNM dx) (/RN|qu/1> .

By Sobolev embedding the proof follows also in this case. |

THEOREM 10.3. Let V be as in Proposition 10.2. Then the kernel p, satisfies

ect
p,u(xv Y, t) < t_¥ V(.X) V(y)
for every t > 0, x, y € RY and for some c € R.
PROOF. Let W be a C*(Q) function such that

1 xeBl, 0
W(x) = T xe RV\ B, v

Wkx)=V(x) 0<a<4

2—-N
i xe B
Wix) = ¥ L a4
{| IV xeRM\B,
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It easily follows that W is a Lyapunov function for L. Since e/ W <V < e, W,
for suitable ¢,c; > 0, the statement follows from Proposition 10.2 and [2,
Theorem 2.5]. O

Since p(x, ,1) = [y pu(x, y, 1) it follows that p(x, y,7) < < |y 7"V (x)V(»)

12
for every ¢ > 0, x, y € R". Heat kernel estimates for L, L, easily follows from
above, since the semigroups generated by L, L, are pointwise dominated by
that generated by L.
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