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Abstract. — We prove that, for Nb 3, the operator L ¼ jxjaD generates an analytic semigroup

in L pðRNÞ if a ¼ 2 and 1 < p < l or a < 2 and N
N�a

< p < l or a > 2 and N
N�2 < p < l. The

above bounds are shown to be sharp.
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1. Introduction and notation

In this paper we deal with the operator Lu ¼ jxjaDu for a a R, on Lp ¼
LpðRN ; dxÞ, Nb 3, with respect to the Lebesgue measure. We are interested
both in parabolic problems ut � Lu ¼ 0, uð0Þ ¼ f and in the solvability of the
elliptic equation lu� Lu ¼ f for l a C anf f in Lp.

We recall that a (minimal) resolvent and a (minimal) semigroup can be
constructed in spaces of continuous functions as in [13], by solving elliptic and
parabolic problems associated with L in a sequence of annuli filling the whole
space, see also the next Section.

On the other hand related results concerning the Lp-theory for some second-
order elliptic divergence-type operators with measurable coe‰cients have been
developped in [8] and [18].

Since the operator is degenerate both at 0 and l, we study separately the
operators L1 ¼ jxjaD in the ball BR and L2 ¼ jxjaD in the exterior domain Bc

R,
both with Dirichlet boundary conditions.

Concerning the operator L2, we observe that it can be treated as the operator
ð1þ jxjaÞD in the whole space RN . Generation results and domain description
for this last operator are already known by [14] in the case a > 2 and by [5]
in the case aa 2. It follows that L2 generates an analytic semigroup for
1 < p < l when aa 2 and for N

N�2 < p < l when a > 2, the restriction on p
being sharp.

The operator L1 is singular near the origin. However a generalization of the
results of [5] allows to prove generation of analytic semigroup when ab 2, to-
gether with an explicit desciption of the domain.

The case a < 2 requires several steps. We first prove that L1 is invertible
and that its resolvent is positive. Then the bound on the resolvent norm



kðl� L1Þ�1ka kL�1
1 k follows for l > 0. This however is not enough to obtain

generation results by the classical Hille-Yosida Theorem. The operator L1 ¼
jxjaD is similar in L

2N
N�2, via the Kelvin transform, to the operator jxj4�aD defined

on the exterior domain Bc
R. Since the operator jxj4�aD generates an analytic

semigroup in LpðBc
RÞ, p ¼ ð2NÞ=ðN � 2Þ, consequently, L1 generates an analytic

semigroup in LpðBÞ for the same p. By interpolation we deduce analiticity for
pb 2N

N�2 . To conclude, an extrapolation procedure based on the boundedness
of the resovent, scaling arguments and the generation results for large p, allows
to prove generation for every p > N

N�a
. We point out that the above restriction on

p is sharp. Glueing togehther the resolvents of L1 and L2 we obtain the results
for L.

The paper is organized as follows. In the first Section we recall the construc-
tion of the resolvent in spaces of continuous functions. In Section 3, we slightly
generalize some results of [5] used throughout the paper. Section 4 is mainly
devoted to understand the appropriate domains of L1 and L2. Moreover the
invertibility, the positivity of the resolvent and the coherence of the resolvent in
the Lp scale are proved. In Section 5 it is explained how to construct a resolvent
for L by gluing the resolvent of L1 and L2 or to deduce some results for interior
and exterior domains from results in the whole space. In Sections 6, 7 and 8 the
main generation results are proved. Section 9 contains a variational proof of
the dissipativity based on Hardy type inequalities. The precise values of p for
which the semigroups is contractive are also obtained. Finally Section 10 contains
kernel estimates for L. Even though some of our results are valid also for
N ¼ 1; 2 (e.g. the generation results for L2 when aa 2), we keep the assumption
Nb 3 to unify the exposition.

Notation. Fix R > 0. Assume that Nb 3, set W ¼ RNnf0g, WR ¼ BRnf0g,

C0ðWÞ ¼ fu a CbðWÞ : lim
jxj!l

uðxÞ ¼ 0g;

C0ðWRÞ ¼ fu a CbðWRÞ : uðxÞ ¼ 0 on qBRg;
C0ðBc

RÞ ¼ fu a CbðBc
RÞ : uðxÞ ¼ 0 on qBR; lim

jxj!l
uðxÞ ¼ 0g;

endowed with the sup-norm.

2. The operator in spaces of continuous functions

For a fixed real a (positive or negative) we consider the operators

LðxÞ ¼ jxjaD; L1ðxÞ ¼ jxjaD; L2ðxÞ ¼ jxjaD;

endowed with their maximal domain in the space of continuous functions respec-
tively given by
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DmaxðLÞ ¼ fu a C0ðWÞBW
2;p
loc ðWÞ for all p < l : Lu a C0ðWÞg;

DmaxðL1Þ ¼ fu a C0ðWRÞBW
2;p
loc ðWRÞ for all p < l : Lu a C0ðWRÞg;

DmaxðL2Þ ¼ fu a C0ðBc
RÞBW

2;p
loc ðB

c
RÞ for all p < l : Lu a C0ðBc

Rg:

We start by studying existence and uniqueness of bounded solutions of the elliptic
equation

lu� Lu ¼ fð1Þ

for l > 0 and f a C0ðWÞ. Due to the degeneracy at the origin and unboundedness
at infinity (if a > 0), the classical theory does not apply and existence and unique-
ness are not clear. Existence is stated in the following result whise proof is identi-
cal to that in [13, Theorem 3.4].

Proposition 2.1. For every f a C0ðWÞ, l > 0, there exists u a DmaxðLÞ solving
equation (1) and satisfying the inequality kukl a k f kl=l. Moreover, ub 0 when-
ever f b 0.

Uniqueness follows from the existence of suitable Lyapunov functions for the
operator L.

Definition 2.2. We say that V is a Lyapunov function for L if V a C2ðWÞ,
V b 1, V goes to infinity as jxj ! 0 and l0V � LV b 0 for some l0 > 0.

Proposition 2.3. Suppose that there exists V Lyapunov function for the opera-
tor L. Then l� L is injective on DmaxðLÞ for every l > 0.

Proof. Let lb l0 where l0 is as in Definition 2.2. We show that if u a DmaxðLÞ
satisfies lu� Lua 0 then ua 0. For every e > 0, introduce the function ue ¼
u� eV . Observe that, by assumption, ue satisfies lue � Lue a 0 in W. Suppose
that ue > 0 somewhere. Since ue is negative near 0 and l, then ue attains its
positive maximum at some x0 a W. By Bony’s maximum principle, see [13,
Lemma 3.2], Dueðx0Þa 0, hence Lueðx0Þ ¼ jx0jaDueðx0Þa 0 and lue � Lue > 0
at x0. Since this is a contraddiction, then ue a 0 and, letting e to 0, ua 0 in W.
Changing u with �u we obtain that lu� Lu is injective on DmaxðLÞ for lb l0.
Combining the injectivity of l� L with the existence result stated in Proposition
2.1, it follows that if u a DmaxðLÞ satisfies lu� Lu ¼ f , then kukl a 1

l
k f kl. Let

now 0 < l < l0 and u a DmaxðLÞ such that lu� Lu ¼ 0. Clearly l0u� Lu ¼
ðl0 � lÞu and, as observed above, kukl a

l0�l
l0

kukl. The last inequality yields

u ¼ 0 and the injectivity of l� L for 0 < l < l0. r

Remark 2.4. Let 0a fa 1 be a smooth cut-o¤ function such that fðxÞ ¼ 1
for jxja 1=2 and fðxÞ ¼ 0 for jxjb 1. By easy computations it follows that the
function VðxÞ ¼ �fðxÞ lnjxj þ 1 is a Lyapunov function for L. Therefore l� L is
injective on DmaxðLÞ for every l > 0.
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Since DmaxðLÞ need not to be dense in C0ðWÞ, see Proposition 4.12, we cannot say
that L generates a semigroup. In the sequel, however, we need resolvent estimates
for complex values of l.

Proposition 2.5. For every l a C with Re l > 0, the operator l� L is invertible
from DmaxðLÞ to C0ðWÞ and its resolvent Rðl;LÞ satisfies kRðl;LÞka 1

Re l .

Proof. For l > 0 the statement follows from the previous two propositions and
therefore the operator L is dissipative, see [7, Corollary I.3.5]. It follows that the
inequality above holds whenever Re l > 0 and l� L is invertible. Since the resol-
vent set of L is open, contains ð0;lÞ and the norm of the resolvent operator
Rðl;LÞ explodes when l approches the boundary of the resolvent set, the thesis
follows. r

Existence and uniqueness of bounded solutions of the elliptic problems
lu� Liu ¼ f , u a DmaxðLiÞ, for i ¼ 1; 2, can be proved similarly.

Proposition 2.6. For every l a C with Re l > 0, the operators l� Li, i ¼ 1; 2
are invertible from DmaxðLiÞ to C0ðWRÞ, C0ðBc

RÞ respectively and their resolvents
satisfy kRðl;LiÞka 1

Re l .

3. A preliminary result in LpðRNÞ

Here we consider the operator A ¼ aðxÞD; with a satisfying

a : RN ! ½0;þl½; a
1
2 a W

1;l
loc ðRNÞ; k‘a1

2kla cð2Þ

for some positive constant c. Observe that if aðxÞ ¼ jxja near the origin, then
ab 2 whereas if aðxÞ ¼ jxja near infinity, then aa 2.

Set W ¼ fx a RN : aðxÞ > 0g and F ¼ fx a RN : aðxÞ ¼ 0g. The aim of this
subsection consists in proving that, for any p a �1;l½, the operator Ap ¼ ðA;DpÞ,
where A ¼ aðxÞD and

Dp ¼ fu a W
2;p
loc ðWÞBLpðRNÞ : a1

2‘u; aD2u a LpðRNÞg;ð3Þ

generates an analytic semigroup in LpðRNÞ. We point out that the present results
are a slight generalization of those in [5, Section 2], where the additional assump-
tion aðxÞ > 0 for every x a RN is required. Most of the proofs are unchanged. As
a first step, we identify a core for Ap.

Set DF ¼ fu a LpðRNÞ : u ¼ uwFg and observe that DF , C
l
c ðWÞHDp.

Lemma 3.1. The space DF þ Cl
c ðWÞ is dense in Dp, endowed with the norm

kukDp
¼ kukp þ ka1

2‘ukp þ kaD2ukp:

Proof. By the assumptions on a it follows that

aðxÞa cð1þ jxj2Þ; aðxÞa c2dðx;F Þ2:ð4Þ
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Indeed, for every x a W and y a F ,

ffiffiffiffiffiffiffiffiffi
aðxÞ

p
¼ j

ffiffiffiffiffiffiffiffiffi
aðxÞ

p
�

ffiffiffiffiffiffiffiffiffi
aðyÞ

p
ja cjx� yj

and hence aðxÞa c2jx� yj2, as claimed. Let now u a Dp, u ¼ uwF þ uwW and
uwF a DF HDp. Setting v ¼ uwW, we approximate v with functions in W 2;pðWÞ
having compact support in W. Let

Wn ¼ x a W : dðx;F Þb 1

n

� �
; xn ¼ wW2n

� f 1
2n

where f is a classical mollifier supported in B1, with

Z
RN

f ¼ 1 and f1
n
ðxÞ ¼

nNfðnxÞ. It is easy to check that xnðxÞ ¼ 1 for x a Wn, xn is supported in W and
that 0a xn a 1, j‘xnjaCn, jD2xnjaCn2. Consider also a smooth function h
such that wB1

a ha wB2
and, for every n a N, define hnðxÞ ¼ h

�
x
n

�
. Set vn ¼ xnhnv.

It is immediate to check that vn tends to v in LpðRNÞ. Concerning the gradient
term, we have

ka1
2ð‘ðxnhnvÞ � ‘vÞkp

p a

Z
RN

aðxÞ
p
2 jxnhn � 1j pj‘vj p

þ C

np
khkl sup

najxja2n

aðxÞ
p
2

Z
fnajxja2ng

jvj p þ n p

Z
WnWn

a
p
2jvj p:

By (4)

ka1
2ð‘ðxnhnvÞ � ‘vÞk p

p a

Z
RN

aðxÞ
p
2 jxnhn � 1j pj‘vj p

þ Ckhkl
Z
fnajxja2ng

jvj p þ
Z
WnWn

jvj p

which tends to 0, by dominated convergence. Using a similar argument one
shows that aD2vn tends to aD2v in LpðRNÞ. Finally we can use a standard con-
volution argument to approximate functions with compact support in W 2;pðWÞ
with Cl

c ðWÞ functions. r

In the next lemma we state the main a-priori estimates.

Lemma 3.2. There exist e0, C > 0 depending only on c, N such that for every
0 < e < e0 and any u a Dp,

ka1
2‘ukp a ekaDukp þ

C

e
kukpð5Þ

kaD2ukp aCðkaDukp þ kukpÞ:ð6Þ
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Proof. In view of Lemma 3.1, it is enough to prove (5) and (6) for functions in
DF þ Cl

c ðWÞ. The claimed inequalities are obvious for u a DF . If u a Cl
c ðWÞ we

consider, for d > 0, ad ¼ aþ d which is positive and satisfies (2) with c indepen-
dent of d. From [5, Lemma 2.4] we deduce that (5) and (6) hold for adD with e0;C
independent of d. Letting d ! 0 the thesis follows. r

Theorem 3.3. For any 1 < p < l, the operator Ap generates a strongly contin-
uous analytic semigroup. Moreover, such a semigroup is positive and consistent
with respect to p.

The proof follows from the previous two lemmas, as in [5, Theorem 2.5, 2.7]. The
following a-priori estimates will be useful in the next section.

Corollary 3.4. There exist two constants Lp > 0 and C > 0 such that, for
every u a Dp and every Re lbLp

jlj kukp þ jlj
1
2ka1

2‘ukp þ kaD2ukp aCklu� Aukp:

Proof. The estimate jlj kukp aCklu� Aukp is nothing but sectoriality. The
gradient estimate follows from it, using (5) with e ¼ jlj�

1
2. Similarly, the Hessian

estimate follows from sectoriality and (6). r

In the next proposition we prove that Dp given by (3) coincides with the maximal
domain.

Proposition 3.5. The domain Dp given by (3) coincides with the maximal
domain

Dp;maxðAÞ ¼ fu a LpðRNÞBW
2;p
loc ðWÞ : Au a LpðRNÞg:

Proof. The inclusion Dp HDp;maxðAÞ is obvious. Conversely, let u a Dp;maxðAÞ
and let l > 0 be in the resolvent set of ðA;DpÞ. Set f ¼ lu� Au and v ¼
u� Rðl;AÞ f . Then v belongs to Dp;maxðAÞ and satisfies lv� Av ¼ 0. We
prove that vC 0 if l is large enough. Let xn, hn be as in the proof of Lemma 3.1
and set zn ¼ xnhn and recall that xnðxÞ ¼ 1 for x a Wn and has support in W2n.
Then j‘xnjaCnwW2nnWn

. Similarly, j‘hnjaCn�1wB2nnBn
. Using (4), we see that

aj‘znj2 aC, with C independent of n, and has support in ðW2nnWnÞA ðB2nnBnÞ.

By integrating by parts the identity

Z
RN

ðlv� aDvÞvjvj p�2z2n ¼ 0 (see [10, Section
3] if 1 < p < 2), we obtain

0 ¼ l

Z
RN

jvj pz2n þ ðp� 1Þ
Z
RN

aj‘vj2jvj p�2
z2n

þ 2

Z
RN

aznjvj p�2
v‘v � ‘zn þ

Z
RN

z2n jvj
p�2

v‘a � ‘v:
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By Hölder’s inequality and observing that aj‘znj2 aC if x a En ¼ ðB2nnBnÞA
ðW2nnWnÞ and a‘zn ¼ 0 otherwise, we obtainZ

RN

aznjvj p�2
v‘v � ‘zn

����
����a�Z

RN

az2n j‘vj
2jvj p�2

�1
2
�Z

RN

ajvj pj‘znj2
�1

2

aC1

�Z
RN

az2n j‘vj
2jvj p�2

�1
2
�Z

En

jvj p
�1

2

a e

Z
RN

az2n j‘vj
2jvj p�2 þ C2

e

Z
En

jvj p

for every e > 0 and some positive constants C1, C2. Since j‘aja ca
1
2 we also

obtain in a similar wayZ
RN

z2n jvj
p�2

v‘a1 � ‘v
����

����a e

Z
RN

az2n j‘vj
2jvj p�2 þ C3

e

Z
RN

jvj p

for every e > 0 and some positive constant C3. Combining the last inequalities we
obtain�

l� C3

e

�Z
RN

jvj pz2n þ ðp� 1� 3eÞ
Z
RN

aj‘vj2jvj p�2z2n �
2C2

e

Z
En

jvj p a 0:

Finally, choosing 3e < p� 1 and letting n to infinity, we obtain

�
l� C3

p� 1

�Z
RN

jvj p a 0

which implies vC 0, if l is large enough. r

As an immediate application of Theorem 3.3 and Proposition 3.5 we obtain the
following result.

Corollary 3.6. The operator L ¼ jxj2D with domain Dp ¼ Dp;maxðLÞ gener-
ates an analytic semigroup in L pðRNÞ, 1 < p < l. The semigroup is positive and
consistent with p.

4. The definition of the operators in Lp

Let L ¼ jxjaD in RN , L1 ¼ jxjaD in the ball BR, with Dirichlet boundary condi-
tions and L2 ¼ jxjaD in the exterior domain Bc

R, again with Dirichlet boundary
conditions. In this section we define the domain of L, L1, L2 and we recall that
WR ¼ BRnf0g.

4.1. The domain of L1

We define the maximal domain of L1 as follows.
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Definition 4.1.

Dp;maxðL1Þ ¼ fu a LpðBRÞBW 2;pðBRnBeÞ Ee > 0 : uðxÞ ¼ 0 if jxj ¼ R;

jxjaDu a LpðBRÞg:

Observe that the Dirichlet boundary condition uðxÞ ¼ 0 for jxj ¼ R makes sense,
since u has second derivatives in Lp in a neighborhood of the boundary of BR. By
elliptic regularity L1 is closed on its maximal domain. If ab 2 the function
aðxÞ ¼ jxja satisfies the inequality j‘a1=2jaC in the ball BR even though not
globally in RN when a > 2. In analogy with Section 3 we define the domain of
L1 as follows.

Definition 4.2. If ab 2 we set

DpðL1Þ ¼ fu a LpðBRÞBW 2;pðBRnBeÞ Ee > 0 : uðxÞ ¼ 0 if jxj ¼ R;

jxja=2‘u; jxjaD2u a LpðBRÞg:

Observe that the Dirichlet boundary condition uðxÞ ¼ 0 for jxj ¼ R makes sense,
since u has second derivatives in Lp in a neighborhood of the boundary of BR.
Observe also that the ‘‘fundamental solution’’ of the Laplacian uðxÞ ¼ jxj2�N

(near the origin) belongs to DpðL1Þ, ab 2, if and only if p < N=ðN � 2Þ.

Proposition 4.3. If ab 2, then Dp;maxðL1Þ ¼ DpðL1Þ and the operator L1 is
closed on its domain.

Proof. Clearly DpðL1ÞHDp;maxðL1Þ. To prove the opposite inclusion, let
u a Dp;maxðL1Þ and h be a cut-o¤ function such that hðxÞ ¼ 1 if jxjaR=2 and
hðxÞ ¼ 0 if jxjb 3R=4. Finally, consider L ¼ aD where aðxÞ ¼ jxja if jxjaR
and aðxÞ ¼ Ra if jxjbR. The operator L satisfies the assumption of the previous
section and therefore, by Proposition 3.5, DpðLÞ ¼ Dp;maxðLÞ. We write u ¼
huþ ð1� hÞu and observe that ð1� hÞu a DpðL1Þ since it vanishes in a neighbor-
hood of the origin. Finally, hu a Dp;maxðLÞ ¼ DpðLÞ and hence jxja=2‘u,
jxjaD2u a LpðBRÞ, that is hu a DpðL1Þ. The closedness of L1 now follows since
it is closed on its maximal domain. r

We consider next the case a < 0.

Definition 4.4. If a < 0 we set

DpðL1Þ ¼ fu a W 2;pðBRÞBW
1;p
0 ðBRÞ : jxjaDu a LpðBRÞg:

Proposition 4.5. If a < 0, the operator ðL1;DpðL1ÞÞ is closed and invertible
with compact resolvent. Its spectrum is independent of 1 < p < l.

Proof. If ðunÞHDpðL1Þ converges to u in LpðBRÞ and jxjaDun ! v in LpðBRÞ,
then Dun converges in LpðBRÞ, since a < 0. Since un HW 2;pðBRÞBW

1;p
0 ðBRÞ, by

elliptic regularity un converges to u in W 2;pðBRÞ. It follows that v ¼ jxjaDu, hence
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u a DpðL1Þ and L1u ¼ v. This shows the closedness. To show the invertibility, we
observe that the equation L1u ¼ f , u ¼ 0 on qBR, is equivalent to Du ¼ f jxj�a,
u ¼ 0 on qBR which has a unique solution u a W 2;pðBRÞBW

1;p
0 ðBRÞ. Such a u

belongs to DpðL1Þ and solves L1u ¼ f . Since L1 is clearly injective on its do-
main, this shows that it is invertible. The compactness of the resolvent follows
from the compactness of the embedding of W 2;pðBRÞ into LpðBRÞ and proves
that the spectrum consists of eigenvalues which are independent of 1 < p < l,
see [1]. r

In order to deal with the case 0 < a < 2 we need some considerations which
hold in the more general case 0 < a < N. If f a LpðBRÞ then f jxj�a a LqðBRÞ
for some q > 1 if p > N=ðN � aÞ. In this case, Hölder’s inequality yields any
1 < q < Np=ðN þ apÞ.

Definition 4.6. If 0 < a < 2 and p > N=ðN � aÞ we set

DpðL1Þ ¼ u a W 2;qðBRÞBW
1;q
0 ðBRÞ for every q <

Np

N þ ap
: jxjaDu a LpðBRÞ

� �
:

Proposition 4.7. If 0 < a < 2, p > N=ðN � aÞ, the operator ðL1;DpðL1ÞÞ is
closed and invertible with compact resolvent. Its spectrum is independent of
1 < p < l.

Proof. If ðunÞHDpðL1Þ converges to u in LpðBRÞ and jxjaDun ! v in LpðBRÞ,
then Dun converges in LqðBRÞ, for every 1 < q < Np=ðN þ apÞ, by Hölder’s in-
equality. Since un HW 2;qðBRÞBW

1;q
0 ðBRÞ, by elliptic regularity un converges to

u in W 2;qðBRÞ. It follows that v ¼ jxjaDu, hence u a DpðL1Þ and L1u ¼ v. This
shows the closedness. To show the invertibility, we observe that the equation
L1u ¼ f , u ¼ 0 on qBR is equivalent to Du ¼ f jxj�a, u ¼ 0 on qBR, which has

a unique solution u a W 2;qðBRÞBW
1;q
0 ðBRÞ. If

Np

Nþap
a N

2 , then, by Sobolev
embedding, u a LsðBRÞ where 1=s ¼ 1=q� 2=N < 1=p, if q is chosen su‰ciently
close to Np=ðN þ apÞ, since a < 2. Otherwise we can choose q > N

2 and, by
Sobolev embeddings again, u a LlðBRÞ and so u a LpðBRÞ. Such a u belongs to
DpðL1Þ and solves L1u ¼ f . Since L1 is clearly injective on its domain, this shows
that it is invertible. The compactness of the resolvent follows from the compact-
ness of the embedding of W 2;qðBRÞ into LpðBRÞ and the independence of the
spectrum on p > N=ðN � aÞ follows from [1]. r

Next we investigate the validity of the equality Dp;maxðL1Þ ¼ DpðL1Þ which we
have already proved in the case ab 2 in Proposition 4.3.

Proposition 4.8. Let u a LpðBRÞ with pbN=ðN � 2Þ and suppose that Du ¼ 0
in WR ¼ BRnf0g. Then u is harmonic in BR.

Proof. By the mean value property

uðxÞ ¼ 1

jBðx; rÞj

Z
Bðx; rÞ

uðyÞ dy
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for every 0Ax a BR
2
and r ¼ jxj=2. Hölder inequality (with p ¼ N=ðN � 2Þ)

yields

juðxÞjaCjxj2�N
�Z

Bðx; rÞ
juðyÞjN=ðN�2Þ

dy
�1�2=N

and hence uðxÞjxjN�2 ! 0 as x ! 0. By elementary properties of harmonic func-
tions, u can be extended as an harmonic function in BR. r

Observe that the limitation pbN=ðN � 2Þ is necessary to exclude the fundamen-
tal solution jxj2�N .

Proposition 4.9. If a < 0, pbN=ðN � 2Þ, then Dp;maxðL1Þ ¼ DpðL1Þ.

Proof. Let u a Dp;maxðL1Þ. From Lu ¼ f we infer Du ¼ f jxj�a in WR. The func-
tion g ¼ f jxj�a belongs to LpðBRÞ, since aa 0. Let v a W 2;pðBRÞBW

1;p
0 ðBRÞ be

such that Dv ¼ g. Then Dðu� vÞ ¼ 0 in WR and, by Proposition 4.8, u� v is
harmonic in BR. Therefore u a W 2;pðBRÞ and belongs to DpðL1Þ as defined in
Definition 4.4. Since the converse inclusion is obvious, the proof is complete. r

The argument above can be generalized when 0 < a < N, as follows.

Proposition 4.10. Let 0 < a < N and p > N=ðN � aÞ, pbN=ðN � 2Þ. Then
all functions u a Dp;maxðL1Þ belong to W 2;qðBRÞ for every 1a q < Np=ðN þ apÞ.
In particular Dp;maxðL1Þ ¼ DpðL1Þ when 0 < a < 2 and pbN=ðN � 2Þ.

Proof. Let u a Dp;maxðL1Þ. As before Du ¼ g ¼ f jxj�a in WR. By Hölder in-
equality g a LqðBRÞ for every 1a q < Np=ðN þ apÞ (observe that Np=ðN þ apÞ
> 1 since p > N=ðN � aÞ). Let q > 1 as in the statement and v a W 2;qðBRÞB
W

1;q
0 ðBRÞ be such that Dv ¼ g. Then Dðu� vÞ ¼ 0 in WR. By Sobolev embedding

v a Lq�ðBRÞ with 1=q� ¼ 1=q� 2=N if q < N=2 and q� any number if qbN=2.
In each case q� bN=ðN � 2Þ and therefore Proposition 4.8 applies and u� v is
harmonic in BR. Therefore u a W 2;qðBRÞ. If 0 < a < 2 and pbN=ðN � 2Þ,
then p > N=ðN � aÞ and therefore u belongs to DpðL1Þ, see Definition 4.6. Since
the converse inclusion is obvious, the proof is complete. r

Summing up, we have proved in particular the following result.

Corollary 4.11. The equality DpðL1Þ ¼ Dp;maxðL1Þ holds if ab 2 and when
a < 2, pbN=ðN � 2Þ.

Of course, when 0 < a < 2, we always assume that p > N=ðN � aÞ, otherwise the
operator L1 is not defined. We note the following easy consequence of Proposi-
tions 4.9, 4.10.

Proposition 4.12. If aa 0 and p > N=2, pbN=ðN � 2Þ or 0 < a < 2 and
p > Nð2� aÞ, pbN=ðN � 2Þ, then all functions in Dp;maxðL1Þ can be continu-
ously extended to the origin.
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Proof. We only note that for 0 < a < 2 the exponent Np=ðN þ apÞ given by
Lemma 4.10 is greater than N=2 when p > N=ð2� aÞ. r

In particular, if a < 2, then

DmaxðL1Þ ¼ fu a C0ðRNÞBW
2;p
loc ðWÞ for all p < l : Lu a C0ðWÞg:

Example 4.13. Let ab 2, uðxÞ ¼ sin lnjxj near the origin. Then u a DmaxðL1Þ
but u is not continuous at the origin.

Let us show that in all cases smooth functions are a core for L1.

Proposition 4.14. The space ClðBRÞ is a core for ðL1;DpðL1ÞÞ.

Proof. If ab 2 this follows arguing as in Lemma 3.1 or can be deduced from
it, as in Proposition 4.3. Let then a < 2 (and p > N=ðN � aÞ when 0 < a < 2),
u a DpðL1Þ and set f ¼ L1u a LpðBRÞ. We consider a sequence ð fnÞ of Cl func-
tions with compact support contained in WR (hence vanishing near 0) such that
fn ! f in LpðBRÞ. Since ðL1;DpðL1ÞÞ is invertible, the functions un ¼ L�1

1 fn are
well-defined and converge to u in the graph norm of L1. By elliptic regularity,
since Dun ¼ jxj�a

fn, the un are C
l functions in BRnBe for every e > 0. Moreover,

if fnC 0 in Be, then Dun ¼ 0 in Benf0g. Since un a W 2;qðBRÞ, where q ¼ p if
a < 0 and q > 1 is any number less than Np=ðN þ apÞ if 0 < a < 2, it follows
that Du ¼ 0 in Be, hence un a ClðBRÞ. r

Next, we show the consistency of the resolvents with respect to p and their posi-
tivity for l > 0.

Proposition 4.15. Let l a rðL1;DpðL1ÞÞB rðL1;DmaxðL1ÞÞ. Then the resol-
vents of L1 in L pðBRÞ and in C0ðWRÞ coincide on C0ðWRÞ. In particular the resol-
vents in L pðBRÞ and LqðBRÞ coincide and are positive if l is positive.

Proof. If ab 2, then DmaxðL1ÞHDp;maxðL1Þ ¼ DpðL1Þ and hence the solution
u a DmaxðL1Þ of the equation lu� L1u ¼ f a C0ðWRÞ is also the unique solution
in DpðL1Þ. This shows the consistency for ab 2. If a < 2, the above argument
works only for pbN=ðN � 2Þ, since then DpðL1Þ ¼ Dp;maxðL1Þ and we modify
it as follows. Let f a C0ðWRÞ and u a DpðL1Þ solve lu� L1u ¼ f . By Definition
4.4, u a W 2;pðBRÞ and vanishes at the boundary. If p > N=2, then u a C0ðBRÞ
and hence L1u a C0ðWRÞ, that is u a DmaxðL1Þ and we are done. If p < N=2,
by Sobolev embedding u a Lp1ðBRÞ where 1=p1 ¼ 1=p� 2=N, hence by elliptic
regularity u a W 2;p1ðBRÞ. By iterating the procedure until u a W 2;pkðBRÞ with
pk > N=2, we conclude as before. The consistency of the resolvents in Lp, Lq

follows by density, as well as the positivity of the resolvent in LpðBRÞ for positive
l in the resovent set, since the resolvent of ðL1;DmaxðL1ÞÞ is positive. r

Finally, we show that when 0 < a < 2 and paN=ðN � aÞ the equation
lu� jxjaDu ¼ f for positive l has no positive solutions in Dp;maxðL1Þ for certain
positive f a LpðBRÞ.
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Lemma 4.16. Let 0 < a < 2, 1 < paN=ðN � aÞ and u solve the ordinary di¤er-
ential equation

�ra
�
u 00 þN � 1

r
u 0
�
¼ gð7Þ

in �0; 1�, with g a Lpðð0; 1Þ; rN�1 drÞ: Then for e > 0 su‰ciently small

lim
r!0

jrjN�a�e
uðrÞ ¼ 0:

Proof. We get

u 0ðrÞ ¼ r1�N

Z 1

r

gðsÞsN�1�a dsþ cr1�N

and Hölder’s inequality with respect to the measure rN�1 dr (the norms are taken
in Lp with respect to the measure rN�1 dr) implies

ju 0ðrÞja kgkpr1�NþN=p0�a þ cr1�N if p < N=ðN � aÞ

ju 0ðrÞja kgkpr1�N jlog rj1=p
0
þ cr1�N if p ¼ N=ðN � aÞ

hence

juðrÞjaCr2�NþN=p0�a if p < N=ðN � aÞ
ju 0ðrÞjaCr2�N jlog rj1=p

0
if p ¼ N=ðN � aÞ

near r ¼ 0. These estimates easily imply the result, since a < 2. r

Lemma 4.17. Let 0 < a < 2, 1 < paN=ðN � aÞ. If f ðrÞ ¼ ra�N for p <
N=ðN � aÞ or f ðrÞ ¼ ra�N jlog rwj�0;1=2½j

�1
if p ¼ N=ðN � aÞ, then for lb 0 the

ordinary di¤erential equation

lu� ra
�
u 00 þN � 1

r
u 0
�
¼ f

has no positive solution u a Lpðð0; 1Þ; rN�1 drÞ.

Proof. Assume that u a Lpðð0; 1Þ; rN�1 drÞ solves the above equation in �0; 1�
and let g ¼ f � lu. Then u solves (7) and Lemma 4.16 yields uðrÞ=f ðrÞ ! 0 as
r ! 0, hence luðrÞa ð1=2Þ f ðrÞ for small r. Since

u 0ðrÞrN�1 ¼
Z 1

r

ð f ðsÞ � luðsÞÞsN�1�a dsþ c;

it follows that u 0ðrÞrN�1 b 1 for ra r0 hence uðr0Þ � uðrÞb
Z r0

r

s1�N ds implies
that uðrÞ ! �l as r ! 0. r
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Proposition 4.18. If 0 < a < 2 and paN=ðN � aÞ and f a LpðB1Þ is as in
Lemma 4.17, then the equation lu� jxjaDu ¼ f for positive l has no positive
solutions in Dp;maxðL1Þ. In particular ðL1;DÞ cannot be the generator of a positive
semigroup in L pðB1Þ for any DHDp;maxðL1Þ.

Proof. Assume that for a certain lb 0 there exists u a Dp;maxðL1Þ, ub 0,
solving lu� jxjaDu ¼ f . Since u is radial, the function

vðrÞ ¼
Z
SN�1

uðroÞ dsðoÞ;

where SN�1 is the unit sphere in RN and ds its surface measure, still belongs to
Dp;maxðL1Þ and solves lv� jxjaDv ¼ f or

lv� ra
�
v 00 þN � 1

r
v 0
�
¼ f :

By Lemma 4.17, v cannot be positive, hence neither u. r

4.2. The domains of L2 and of L

The maximal domain of L2 is defined in the usual way.

Definition 4.19.

Dp;maxðL2Þ ¼ fu a LpðBc
RÞBW 2;pðBc

RBBrÞ Er > 0 : uðxÞ ¼ 0 if jxj ¼ R;

jxjaDu a LpðBc
RÞg:

Observe that the Dirichlet boundary condition uðxÞ ¼ 0 for jxj ¼ R makes sense,
since u has second derivatives in Lp in a neighborhood of the boundary of Bc

R. By
local elliptic regularity, L2 is closed on its maximal domain. However, when
aa 2 the function aðxÞ ¼ jxja satisfies the inequality j‘a1=2jaC in the exterior
domain Bc

R. In analogy with Section 3 we can also define the domain DpðL2) as
follows.

Definition 4.20. If aa 2 we set

DpðL2Þ ¼ fu a LpðBc
RÞBW 2;pðBc

RBBrÞ Er > 0 : uðxÞ ¼ 0 if jxj ¼ R;

jxja=2‘u; jxjaD2u a LpðBc
RÞg:

The proof of the next proposition is similar to that of Proposition 4.3.

Proposition 4.21. If aa 2, then Dp;maxðL2Þ ¼ DpðL2Þ and the operator L2 is
closed on its domain.

Therefore the domain of L2 is always the maximal one and coincides with DpðL2Þ
when aa 2. Next we show the consistency of the resolvents with respect to p and
their positivity for l > 0.
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Proposition 4.22. Let 0 < l a rðL2;Dp;maxðL2ÞÞB rðL2;DmaxðL2ÞÞ. Then the
resolvents of L2 in L pðBc

RÞ and in C0ðBc
RÞ coincide on L pðBc

RÞBC0ðBc
RÞ. In

particular the resolvents in L pðBc
RÞ and LqðBc

RÞ coincide and are positive if l is
positive.

Proof. Assume first that a > 0 and take f a Cl
c ðBc

RÞ, u a Dp;maxðL2Þ such that
lu� L2u ¼ f . Then Du a LpðBc

RÞ and, since u vanishes at the boundary, by ellip-
tic regularity, u a W 2;pðBc

RÞ. If p > N=2, then u a C0ðBc
RÞ, hence u a DmaxðL2Þ

and the consistency of the resolvents follows by the density of Cl
c ðBc

RÞ both in
C0ðBc

RÞ and LpðBc
RÞ. If paN=2 we use Sobolev embedding as in the proof of

Proposition 4.15 to conclude the proof.
Let now a < 0. If r > R, f a Cl

c ðBc
RÞ, l > 0, we solve the Dirichlet problem

lu� jxjaDu ¼ f in Cr ¼ BrnBR with Dirichlet boundary conditions if jxj ¼ R or
jxj ¼ r. The solution ur belongs to W 2;pðCrÞBW

1;p
0 ðCrÞ for every p < l and

satisfies lkurkl a k f kl. To get Lp estimates independent of r, we multiply the

equation by ujuj p�2 and integrate by parts. Since the boundary terms vanish we
get

l

Z
Cr

juj p þ ðp� 1Þ
Z
Cr

jxjaj‘uj2juj p�2

a jaj
Z
Cr

jxja�1j‘uj juj p�1 þ
Z
Cr

j f j juj p�1

aC

Z
Cr

jxja=2j‘uj juj p�1 þ
Z
Cr

j f j juj p�1

aC
�Z

Cr

jxjaj‘uj2juj p�2
�1=2�Z

Cr

juj p
�1=2

þ k f kpkuk
p�1
p :

From this we easily deduce the existence of l0 > 0 such that for every l > l0 the
estimate ðl� l0Þkurkp a k f kp holds. A weak compactness argument based on
local W 2;p estimates now produces a function u satisfying lu� jxjaDu ¼ f with
u a LpðBc

RÞBC0ðBc
RÞ, hence the coherence of the resolvents. The coherence

of the resolvents in Lp, Lq, as well as their positivity for l > 0, now follows
immediately. r

We shall construct a resolvent for L by gluing together the resolvents of L1 and
L2. Accordingly, the domain of L will be defined in terms of the domains of L1

and L2, as in the following construction. We fix a radius R > 0 and we consider
the operator L1 in the ball B2R and the operator L2 in the exterior domain Bc

R,
with the domains defined according to this section and depending on a.

Definition 4.23.

DpðLÞ ¼ fu a LpðRNÞBW
2;p
loc ðWÞ : u ¼ u1 þ u2; u1 a DpðL1Þ; u2 a Dp;maxðL2Þ;

u1; u2 with compact support contained in B2R;B
c
R respectivelyg:
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Remark 4.24. It is easily seen that the definition of DpðLÞ is independent of the
choice of the radius R. Moreover, u a DpðLÞ if and only if u a LpðRNÞBW

2;p
loc ðWÞ,

hu a DpðL1Þ, ð1� zÞu a Dp;maxðL2Þ for fixed cut-o¤ functions h, z with support in
B2R and equal to 1 near the origin.

Also for the operator L we can define the maximal domain.

Definition 4.25.

Dp;maxðLÞ ¼ fu a LpðRNÞBW
2;p
loc ðWÞ : jxjaDu a LpðRNÞg:

The equality Dp;maxðLÞ ¼ DpðLÞ holds if and only if the same equality for L1

holds, hence

Corollary 4.26. The equality DpðLÞ ¼ Dp;maxðLÞ holds if ab 2 and when
a < 2, pbN=ðN � 2Þ.

5. Gluing the resolvents

We shall construct a resolvent for L by gluing together the resolvents of L1 and
L2. In some other cases we also deduce results for L1 or L2 from properties of L
in the whole space. This section is devoted to explain these methods. First let us
fix some notations.

For 0a y < p, r > 0, we denote by Sy;r the closed set

Sy;r ¼ fl a C : jljb r; jArg lja yg:

Even though more general operators can be considered, we confine to the case
A ¼ aD in LpðVÞ where V is an open set containing the annulus CR ¼ B2RnBR.
The function a is assumed to be locally Hölder continuous and strictly positive
in any compact set contained in V BW, hence having possible singularities only
at 0, l. We shall apply these results to aðxÞ ¼ jxja.

Definition 5.1. Let ðA;DÞ be the operator aD with DHDp;maxðAÞ on LpðVÞ,
1 < p < l. We say that ðA;DÞ satisfies Pðy; r;C; gÞ, where C, r > 0, gb 0 and
0a y < p if Sy;r H rðAÞ and for every l a Sy;r the following estimate holds

kðl� AÞ�1ka C

jljg :ð8Þ

Definition 5.2. We say that ðA;DÞ satisfies Pðy; r;R;C; g; dÞ, R > 0, d a R if it
satisfies Pðy; r;C; gÞ, aðxÞaC for x a CðRÞ and moreover

kðl� AÞ�1kL pðVÞ!W 1; pðCðRÞÞ a
C

jljd
;ð9Þ

where the last norm is understood as the operator norm from LpðVÞ to
W 1;pðCðRÞÞ.
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Clearly, A generates an analytic semigroup if and only if Pðy; r;C; gÞ holds
for some y > p=2, g ¼ 1. Assume that ðA1;D1Þ, ðA2;D2Þ, where A1 ¼ a1ðxÞD,
A2 ¼ a2ðxÞD, are given in LpðB2RÞ, LpðBc

RÞ respectively. We also assume that if
ui a Di and hi are Cl function with compact support in B2R, B

c
R, respectively,

such that h1 ¼ 0 in a neighborhood of the origin and h2 ¼ 1 in a neighborhood
of infinity, then hiujhi a Di, for i; j ¼ 1; 2. These conditions are clearly verified
for L1, L2, by the definition of the corresponding domains given in Section 4.
If aðxÞ ¼ a2ðxÞ in CR we set A ¼ aðxÞD where aðxÞ ¼ a1ðxÞ for jxjaR and
aðxÞ ¼ a2ðxÞ for jxjbR. The domain of A, say D, is defined as follows.

Definition 5.3.

D ¼ fu a LpðRNÞ : u ¼ u1 þ u2; u1 a D1; u2 a D2;

u1; u2 with compact support contained in B2R;B
c
R respectivelyg:

Remark 5.4. Observe that if u a D, then hiu a Di. In fact, writing u ¼ u1 þ u2
with ui as in Definition 5.3, then hiuj a Di.

Proposition 5.5. Under the above assumptions, suppose that ðA1;D1Þ, ðA2;D2Þ
satisfy Pðy; r;R;C; g; dÞ in L pðB2RÞ and in LpðBc

RÞ respectively, with d > 0. If there
exists l0 > 0 such that ðl� A;DÞ is injective for l > l0, then ðA;DÞ satisfies
Pðy; r1;C1; gÞ in L pðRNÞ, where r1, C1 depend only on p, y, r, R, C, g: If g > 1

2
then ðA;DÞ satisfies Pðy; r1;C1; gÞ in L pðRNÞ without the extra injectivity as-
sumption on L. Finally, if Pðy; r1;R;C; g; dÞ are satisfied both in L p, Lq and the
resolvents of A1, A2 are coherent in L p, Lq, then the resolvents of A are coherent
in L p, Lq.

Proof. Let 0a h1; h2 a 1 be positive Cl-functions supported in B2R and
RNnBR, respectively, such that h21 þ h22 ¼ 1. For l a Sy;r f a LpðRNÞ, set
RiðlÞ f ¼ hiðl� AiÞ�1ðhi f ÞHDi BD for i ¼ 1; 2. Observing that Ahi ¼ Aihi,
hiA ¼ hiAi it follows that

ðl� AÞRiðlÞ f ¼ ðl� AÞhiðl� AiÞ�1ðhi f Þ
¼ hiðl� AiÞðl� AiÞ�1ðhi f Þ þ ½hi;A�ðl� AiÞ�1ðhi f Þ
¼ h2i f þ ½hi;A�ðl� AiÞ�1ðhi f Þ

where

½hi;Ai�g ¼ hiaDg� aDðhigÞ ¼ �2a‘hi‘g� aðDhiÞg

is a first order operator supported on CR. Therefore ðl� AÞRiðlÞ f ¼ h2i f þ
SiðlÞ f where SiðlÞ f ¼ �2a‘hi‘ðl� LiÞ�1ðhi f Þ � aðDhiÞðl� LiÞ�1ðhi f Þ. By (9),
it follows that

kSiðlÞkL pðRN Þ a
c1

jljd
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for l a Sy;r and with c1 depending only on C, R. Then ðl� AÞRðlÞ f ¼
f þ SðlÞ f where

RðlÞ ¼
X2

i¼1

RiðlÞ; SðlÞ ¼
X2

i¼1

SiðlÞ:

Choosing jlj > r1 large enough, we find kSðlÞkL pðRN Þ a
1
2 and we deduce that the

operator I þ SðlÞ is invertible in LpðRNÞ. Setting VðlÞ ¼ ðI þ SðlÞÞ�1 we have

ðl� AÞRðlÞÞVðlÞ f ¼ f

and hence the operator RðlÞVðlÞ, which maps LpðRNÞ into D, is a right inverse
of l� A and, by (8), satisfies

kRðlÞVðlÞka 2C

jljgð10Þ

for l a Sy;r1 . Clearly RðlÞVðlÞ coincides with ðl� AÞ�1 whenever this last is
injective. If l� A is injective for l > l0, then �l0;l½H rðAÞ and the a-priori
estimates (10) show that the norm of the resolvent cannot explode in the set
Sy;r, hence this set is contained in rðAÞ where the resolvent operator coincide
with RðlÞVðlÞ and satisfies (10).

If g > 1
2 we have to prove the injectivity of l� A for jlj large enough. Let

u a D, l a Sy;r. Then hiu a Di, see Remark 5.4, hiLu ¼ hiLiu and

RðlÞðl� LÞu ¼
X2

i¼1

hiðl� AiÞ�1
hiðl� AÞu ¼

X2

i¼1

hiðl� AiÞ�1
hiðl� AiÞu

¼
X2

i¼1

hiðl� AiÞ�1ðl� AiÞhiuþ
X2

i¼1

hiðl� AiÞ�1½A; hi�u:

Suppose that ðl� AÞu ¼ 0. Then u ¼ �
P2

i¼1 hiðl� AiÞ�1½Ai; hi�u. It follows that

kAukp a
X2

i¼1

kAhiðl� AiÞ�1½Ai; hi�ukp:

Since ‘hi, Dhi have support contained in CR and by the definition of ½Ai; hi�u, we
have

kAhiðl� AiÞ�1½Ai; hi�ukp a kðl� AiÞhiðl� AiÞ�1½Ai; hi�ukp
þ klhiðl� AiÞ�1½A; hi�ukp a khiðl� AiÞðl� AiÞ�1½Ai; hi�ukp
þ k½Ai; hi�ðl� AiÞ�1½Ai; hi�ukp þ klhiðl� AiÞ�1½Ai; hi�ukp

a khi½Ai; hi�ukp þ k½Ai; hi�ðl� AiÞ�1½Ai; hi�ukp þ klhiðl� AiÞ�1½Ai; hi�ukp

aC kukW 1; pðCðRÞÞ þ
1

jljd
kukW 1; pðCðRÞÞ þ jlj1�gkukW 1; pðCðRÞÞ

" #
:
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By the interpolative estimates [6, Theorem 7.28] there exists C > 0 such that for
every e > 0

kukW 1; pðCRÞ a ekukW 2; pðCRÞ þ
C

e
kukLpðCRÞ:

Using the interior estimates for elliptic operators (note that a is positive far from
the origin) as in [6, Theorem 9.11] we deduce the existence of a constant C > 0
such that for every e > 0

kukW 1; pðCðRÞÞ aC ekAukL pðB2Rþ1nBR
2
Þ þ

1

e
kukL pðB2Rþ1nBR

2
Þ

	 

:

It follows that for every e; e1 > 0 and some C independent of e, e1

kAukp aC ekAukp þ
1

e
kukp þ e1jlj1�gkAukp þ

1

e1
jlj1�gkukp

	 

;

where all norms are taken over RN . By choosing e1 ¼ ejljg�1, it follows that

kAukp aC ekAukp þ
1

e
kukp þ

1

e
jlj2�2gkukp

	 

:

By choosing e small enough, kAukp aCjlj2�2gkukp. Since Au ¼ lu and g > 1
2 ,

u ¼ 0 for jlj > r, r large enough, and l� A is injective. Finally, if the hypotheses
hold in Lp, Lq and the resolvents of A1, A2 are coherent in Lp, Lq (in B2R, B

c
R,

respectively, we have seen in the proof that the resolvent of A is the operator
RðlÞVðlÞ which is coherent in LpðRNÞ, LqðRNÞ by construction. r

The above proof can be adapted to deduce results both in exterior and interior
domains from the whole space. We consider ðA;DÞ in LpðRNÞ, where A ¼ aD
with DHDp;maxðAÞ ¼ fu a LpðRNÞBW

2;p
loc ðWÞ : Au a LpðRNÞg. Next we intro-

duce A1 ¼ aD in B2R with Dirichlet boundary conditions if jxj ¼ 2R. More pre-
cisely we define its domain D1 as

D1 ¼ fu a LpðB2RBW 2;pðB2RnBeÞ Ee > 0 : ujqB2R
¼ 0;ð11Þ

hu a D Eh a Cl
c ðB2RÞ; hC 1 near 0g:

Similarly, we consider A2 in Bc
R, where A2 ¼ aD and

D2 ¼ fu a LpðBc
RBW 2;pðBrnBRÞ Er > R : ujqBR¼0;ð12Þ

hu a D Eh a ClðBc
RÞ; hC 1 near l; hC 0 near qBRg:

Proposition 5.6. Let ðA;DÞ ¼ ðaD;DÞ satisfy Pðy; r;R;C; g; dÞ in L pðRNÞ. Let
ðA2;D2Þ in BRc as defined in (12). If there exists l0 > 0 such that l� A2 is injective
for l > l0, then A2 satisfies Pðy; r2;C2; gÞ in L p, where r2, C2 depend only on p, y,
r, R, C, g. If g > 1

2 then A2 satisfies Pðy; r1;C1; gÞ in L p without the extra injectivity
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assumption on A2. Finally, if Pðy; r1;R;C; g; dÞ is satisfied both in L p, Lq and the
resolvent of A are coherent in L p, Lq, then the resolvents of A2 are coherent in
L p, Lq.

Proof. The proof is similar to that of Proposition 5.5 and we only outline the
main steps. Let 0a h1; h2 a 1 be positive Cl-functions supported in B2R and
Bc
R, respectively, such that h21 þ h22 ¼ 1. Let AR be the operator aD in the annulus

CR with Dirichlet boundary conditions, that is with domain

DpðARÞ ¼ fu a W 2;pðCRÞBW
1;p
0 ðCRÞg:

Since a > 0 in CR, AR is uniformly elliptic and generates an analytic semigroup in
CR, see [9]. In particular, AR satisfies Pðy; r;R;C; g; dÞ.

For l a Sy;r f a LpðBc
RÞ (extended to zero outside Bc

R) we set

RðlÞ f ¼ h1ðl� ARÞ�1ðh1 f Þ þ h2ðl� AÞ�1ðh2 f Þ a D2:

Then we argue as in Proposition 5.5. r

Proposition 5.7. Let ðA;DÞ ¼ ðaD;DÞ satisfy Pðy; r;R;C; g; dÞ in L pðRNÞ. Let
ðA1;D1Þ in B2R as defined in (11). If there exists l0 > 0 such that l� A1 is injective
for l > l0, then A1 satisfies Pðy; r1;C1; gÞ in L p, where r1, C1 depend only on p, y,
r, R, C, g. If g > 1

2 then A1 satisfies Pðy; r1;C1; gÞ in L p without the extra injectivity
assumption on L1. Finally, if Pðy; r1;R;C; g; dÞ is satisfied both in L p, Lq and the
resolvents of A are coherent in L p, Lq, then the resolvents of A1 are coherent in
L p, Lq.

Proof. Keeping the notation of the proof of Proposition 5.6, for f a LpðB2RÞ
(extended to zero outside BR) we set

RðlÞ f ¼ h1ðl� AÞ�1ðh1 f Þ þ h2ðl� ARÞ�1ðh2 f Þ a D1

and we argue as in Proposition 5.5. r

6. Generation results for L2

We indicate by ðT2ðtÞÞtb0 the semigroup generated by ðL2;DmaxðL2ÞÞ in C0ðBc
RÞ,

see Section 2.

Proposition 6.1. Let aa 2. Then the operator ðL2;DpðL2ÞÞ generates coherent
positive analytic semigroups ðT2;pðtÞÞtb0 in L pðBc

RÞ for 1 < p < l. If f a C0ðBc
RÞ

BLpðBc
RÞ, then T2;pðtÞ f ¼ T2ðtÞ f .

Proof. We extend the operator to the whole RN by setting

~aaðxÞ ¼ Ra jxjaR

jxja jxjbR

�
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and ~LL ¼ ~aaD. Since aa 2, the operator ð~LL;Dpð~LLÞÞ belongs to the class studied in
Subsection 3 and then generates coherent analytic semigroups in LpðRNÞ, by
Theorem 3.3. The equality Dp;maxð~LLÞ ¼ Dpð~LLÞ follows from Proposition 3.5.
Finally, by Proposition 5.6, ðL2;DpðL2ÞÞ generates an analytic semigroup in
LpðBc

RÞ for 1 < p < l. Coherence and positivity of the semigroups follows
from consistency and positivity of the resolvents proved in Proposition 4.22. r

Next we consider the case a > 2.

Proposition 6.2. Let a > 2. Then ðL2;Dp;maxðL2ÞÞ generates coherent positive
analytic semigroup ðT2;pðtÞÞtb0 in L pðBc

RÞ for N=ðN � 2Þ < p < l. If f a C0ðBc
RÞ

BLpðBc
RÞ, then T2;pðtÞ f ¼ T2ðtÞ f . Finally, if p > N=ðN � aÞ,

Dp;maxðL2Þ ¼ fu a W 2;pðBc
RÞ : ð1þ jxja�2Þu; ð1þ jxja�1Þ‘u;

ð1þ jxjaÞD2u a LpðBc
RÞg:

Proof. As before we extend the operator to the whole RN by setting ~LL ¼ ~aaD.
By [14, Theorem 5.5], ð~LL;Dp;maxð~LLÞÞ generates coherent analytic semigroup in
LpðRNÞ for N=ðN � 2Þ < p < l and the domain characterization follows from
[14, Theorem 9.8]. Finally, by Proposition 5.6, ðL2;Dp;maxðL2ÞÞ generates an
analytic semigroup in LpðBc

RÞ for 1 < p < l. Also in this case, coherence and
positivity of the semigroups are consequence of Proposition 4.22. r

7. Generation results for L1

We indicate by ðT1ðtÞÞtb0 the semigroup generated by ðL1;DmaxðL1ÞÞ in C0ðWRÞ,
see Section 2. When ab 2 the operator L1 belongs to the class studied in Subsec-
tion 3.

Proposition 7.1. Let ab 2 and 1 < p < l. Then the operator ðL1;DpðL1ÞÞ
generates coherent positive analytic semigroups ðT1;pðtÞÞtb0 in L pðBRÞ. If f a
C0ðWRÞ then T1;pðtÞ f ¼ T1ðtÞ f .

Proof. We extend the operator to the whole RN by setting

~aaðxÞ ¼ jxja jxjaR

Ra jxjbR

�

and ~LL ¼ ~aaD. Since ab 2 the operator ð~LL;Dpð~LLÞÞ belongs to the class studied
in Subsection 3 and then generates coherent analytic semigroups in LpðRNÞ, by
Theorem 3.3. The equality Dp;maxð~LLÞ ¼ Dpð~LLÞ follows from Proposition 3.5. By
Proposition 5.7, ðL1;DpðL1ÞÞ generates an analytic semigroup in LpðBRÞ for
1 < p < l. Coherence and positivity of the semigroups follow from the consis-
tency and positivity of the resolvents proved in Proposition 4.15. r

The case a < 2 is more involved and we proceed in several steps.
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Proposition 7.2. Let a < 0, 1 < p < l or 0 < a < 2 and p > N
N�2 . If

Re lb 0, then the operator l� L1 is invertible on DpðL1Þ and

kðl� L1Þ�1kp a kð�L1Þ�1kp:

Moreover ðl� L1Þ�1
b 0 for lb 0.

Proof. First consider positive l. Let r be the resolvent set of ðL1;DpðL1ÞÞ and
observe that Propositions 4.5, 4.7 and 4.15 show that 0 a r and if 0a l a r,
then ðl� L1Þ�1

b 0. By the resolvent equation ðl� LÞ�1
a ð�LÞ�1 and there-

fore kðl� L1Þ�1kp a kð�L1Þ�1kp. Let E ¼ ½0;l½B r. Then E is non empty and
open in ½0;l½, since r is open, and closed since the operator norm of ðl� L1Þ�1

is bounded in E. Then E ¼ ½0;l½. If Re l > 0, f a C0ðWRÞ,

jðl� LÞ�1
f ja

Z l

0

e�Re ltTðtÞj f j dt ¼ ðRe l� LÞ�1j f j:

By the coherence of the resolvents (Proposition 4.15), we deduce that

kðl� L1Þ�1kp a kðRe l� L1Þ�1kp a kð�L1Þ�1kp

whenever l a r. Repeating the argument used in ½0;l½ one concludes the proof.
r

The next step consists in proving that, for large p, the operator L1 generates an
analytic semigroup in LpðBRÞ. We apply the Kelvin transform in order to deduce
results for L1 from those of L2.

Proposition 7.3. Let a < 2 and 2N
N�2 a p < l. Then the operator

ðL1;DpðL1ÞÞ ¼ ðL1;Dp;maxðL1ÞÞ

generates coherent positive analytic semigroups ðT1;pðtÞÞtb0 in L pðBRÞ. If f a
C0ðWRÞ then T1;pðtÞ f ¼ T1ðtÞ f .

Proof. We may assume that R ¼ 1 and write B for BR. The equality DpðL1Þ ¼
Dp;maxðL1Þ follows from Corollary 4.11 since pb 2N=ðN � 2Þ. To indicate the
dependence of L1 on a we write La

1 . Similarly for L2.
First we consider the case p ¼ p0 :¼ 2N

N�2 . For u a Lp0ðBÞ we define its Kelvin
transform Tu on Bc by

ðTuÞðxÞ ¼ jxj2�N
u
� x

jxj2
�
:
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If y ¼ x=jxj2, then dy ¼ jxj�2N , T : Lp0ðBÞ ! Lp0ðBcÞ is an invertible isometry
and its inverse T�1 has the same expression. Setting v ¼ Tu it follows that (see
[4, Theorem 2.70])

DuðxÞ ¼ jxj�N�2Dv
� x

jxj2
�
:ð13Þ

It follows that, if v a Lp0ðBcÞ,

ðTLa
1T

�1vÞ ¼ jxj4�aDv ¼ L4�a
2 v:

This identity implies that T�1Dp0;maxðL4�a
2 Þ ¼ Dp0;maxðLa

1 Þ and therefore

TLa
1T

�1 ¼ L4�a
2

as operators. By Proposition 6.2, the operator ðL4�a
2 ;Dp0;maxðL4�a

2 ÞÞ generates a
positive analytic semigroup in Lp0ðBcÞ and therefore ðL1;Dp0;maxðLa

1 ÞÞ generates
a positive analytic semigroup ðT1;p0ðtÞÞtb0 in Lp0ðBÞ.

Since T1;p0ðtÞ f ¼ T1ðtÞ f for f a C0ðWRÞ by Proposition 4.15 (and then for
f a LlðWRÞ by the integral representation through a kernel (see [12, Theorem
4.4])), by Stein’s interpolation Theorem [9, Chapter 5] it follows that ðT1ðtÞtb0
extends to an analytic semigroup ðT1;pðtÞÞtb0 in LpðBRÞ for every 2N

N�2 a p < l.
Let ðA;DpÞ its generator in LpðBRÞ. From the description of the domain in contin-
uous function space (see [12, Section 5, pag. 184]), it follows that DmaxðL1ÞHDp

and Au ¼ L1u for every u a DmaxðL1Þ. Since C0ðWRÞ is dense in LpðBRÞ then
DmaxðL1Þ ¼ ðl� L1Þ�1ðC0ðWRÞÞ is dense in Dp with respect to the graph norm
and hence Dp HDp;maxðL1Þ, since DmaxðL1ÞHDp;maxðL1Þ and this last is closed.
The equality Dp ¼ Dp;maxðL1Þ now follows since L1 is injective on Dp;maxðL1Þ.

r

Theorem 7.4. Let a < 2 and N
N�a

< p < l. Then the operator ðL1;DpðL1ÞÞ gen-
erates coherent positive analytic semigroups ðT1;pðtÞÞtb0 in L pðBRÞ. If f a C0ðWRÞ
then T1;pðtÞ f ¼ T1ðtÞ f .

Proof. By the provious result we may assume that pa 2N=ðN � 2Þ.
Let N=ðN � aÞ < q < 2N

N�2 ¼ p0 < l and let Re l > 0. By Proposition 7.3,
ðL1;Dp0ðL1ÞÞ satisfies Pðy1; r;C; 1Þ (see (5.1)) in Lp0ðBRÞ for some y1 > p=2, r,
C1 > 0. Since all resolvents are consistent, see Proposition 4.15, we use the Riesz
Thorin Theorem to interpolate between the resolvent estimates given by Proposi-
tion 7.3, 7.2 and deduce that for every 0a t < 1

2 and

1

p1
¼ 1� t

p0
þ t

q
;

there are constants r1 ¼ r41, C1 > 0 such that for every l a C with jlj > r1 and
Re l > 0

kðl� L1Þ�1kp1 aC1jljt�1:
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From lu� L1u ¼ f and the bound on u we deduce that k jxjaDukp1 a
Cð1þ jljtÞk f kp1 a 2Cjljtk f kp1 if jlj > r1. By the estimates ([6, Theorem 9.13])

and the interpolative estimates [6, Theorem 7.28], the gradient estimate in the
annulus C ¼ BRnBR

2

k‘ðl� L1Þ�1kL p1 ðCÞ aC1jljt�
1
2ð14Þ

follows as in the proof of Proposition 5.5. Now we use a scaling argument to
prove that the resolvent set of L1 contains a sector of angle y > p=2 and that
the analyticity estimate holds. Since scaling is allowed in the whole space, first
we use the results of Section 5 to show property Pðy; r;C; 1� tÞ, see (5.2), for
the operator L with the same p1 as above.

By Proposition 6.1, the operator ðL2;Dp1;maxðL2ÞÞ generates an analytic semi-
group in Lp1ðBc

R
2

Þ and therefore it satisfies

P
�
y2; r2;C;

R

2
;
1

2
; 1
�

for some y2 >
p
2 , r2, C > 0. By Proposition 5.5, since t < 1=2, ðL;Dp1ðLÞÞ satis-

fies Pðy; r;C; 1� tÞ for some y > p
2 , r, C > 0. In particular the resolvent tends to

zero when jIm lj ! l and the resolvent set r intersects the left half-plane. For
s > 0 let Is : L

p1 ! Lp1 defined by IsuðxÞ ¼ uðsxÞ. Clearly Is is invertible with
inverse Is�1 and kIsukp1 ¼ s�N=pkukp1 . Since L ¼ s2�aIsLI

�1
s , IsDp1ðLÞ ¼ Dp1ðLÞ,

then the resolvent set is a cone and contains a closed sector of angle y > p=2,
since it intersects the left half-plane. If l a C, l ¼ ro with joj ¼ 1, jArgoja y,
then the equality

l� L ¼ Isr
�
o� s2�a

r

�
I�1
s

yields the decay

kðl� LÞ�1kp1 a
C

jlj kðo� LÞ�1kp1 a
C

jlj ;

provided that s ¼ r
1

2�a. As before we deduce the gradient estimate (14) with t ¼ 0
with L instead of L1 and, by Proposition 5.7, we deduce that ðL1;Dp1ðL1ÞÞ gener-
ates an analytic semigroup in Lp1ðBRÞ.

The above procedure does not allow to reach any p > N=ðN � aÞ in one
step, since t < 1=2. However, it can be iterated starting from p1 instead of p0.
For a fixed N=ðN � aÞ < p < 2N=ðN � 2Þ we fix N=ðN � aÞ < q < p and set
p0 ¼ 2N=ðN � 2Þ and

1

pnþ1
¼ ð1� tÞ

pn
þ t

q
:
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We apply repeatedly the above computations obtaining sequences yn > p=2, rn,
Cn > 0 such that ðL1;DpnðL1ÞÞ satisfies Pðyn; rn;Cn; 1Þ. Since pn converges to q
we can find m such that pm < p and then ðL1;DpmðL1ÞÞ is sectorial in LpmðBRÞ.
Since ðL1;Dp0ðL1ÞÞ is also sectorial in Lp0ðBRÞ and all resolvents are coherent,
by interpolation ðL1;DpðL1ÞÞ is sectorial in LpðBRÞ. r

8. Generation results for L

We denote by ðTðtÞÞtb0 the semigroup generated by ðL;DmaxðLÞÞ in C0ðWÞ.

Theorem 8.1. Let a ¼ 2 and 1 < p < l, a < 2 and N
N�a

< p < l or a > 2 and
N

N�2 < p < l. Then the operator ðL;DpðLÞÞ generate coherent positive analytic
semigroups ðTpðtÞÞtb0 in L pðRNÞ. If f a LpðRNÞBC0ðWÞ then TpðtÞ f ¼ TðtÞ f .

Proof. The case a ¼ 2 has been already treated in Corollary 3.6. In the other
cases, analyticity and consistency follow by Proposition 5.5 after observing that,
since L1 and L2 generate analytic and consistent semigroups in LpðB2RÞ and
LpðBc

RÞ by Propositions 6.1, 6.2, 7.1 and 7.4, respectively, then they satisfy
P
�
y; r;C;R; 1; 12

�
for suitable y > p=2, r, C.

The positivity of TpðtÞ follows from the equality TpðtÞ f ¼ TðtÞ f for f a
LpðRNÞBC0ðWÞ or, equivalently, from the fact that the resolvents of ðL;DpðLÞÞ
and ðL;DmaxðLÞÞ coincide for positive l on LpðRNÞBC0ðWÞ. To show this we
notice that by Propositions 4.15 and 4.22 the resolvents of L1 and L2 in Lp and
in C0 are coherent and that the resolvent of ðL;DpðLÞÞ is constructed by gluing
together the resolvents of L1, L2 as in Proposition 5.5. Therefore it is su‰cient
to show that also the resolvent of ðL;DmaxðLÞÞ in C0ðWÞ can be obtained by the
resolvents of L1, L2 in C0ðW2RÞ, C0ðBc

RÞ with the same procedure which is
recalled below.

Let l > 0 0a h1; h2 a 1 positive Cl-functions as in Proposition 5.5 and set
RiðlÞ f ¼ hiðl� LiÞ�1ðhi f Þ for i ¼ 1; 2. It follows that ðl� LÞRiðlÞ f ¼ h2i f þ
SiðlÞ f where SiðlÞ ¼ �2a‘hi‘ðl� LiÞ�1hi � aðDhiÞðl� LiÞ�1hi is a first order
operator supported in a compact set K of the the annulus CR. Fix p > N. Fix
s > 0 such that K1 ¼ fx : distðx;KÞa sg is a compact subset of CR. Combining
the Morrey estimates

j‘uðxÞjaCðr�N=pk‘ukL pðK1Þ þ r1�N=pkD2ukL pðK1Þ

for x a K and the interpolative estimates for small e

k‘ukL pðK1Þ a ekD2ukL pðK1Þ þ
C

e
kukLpðK1Þ;

we deduce that k‘ukLlðKÞ a ekD2ukL pðK1Þ þ
C
et
kukLpðK1Þ for small e and with

t ¼ ðN þ pÞ=ðp�NÞ. Using the interior estimates for elliptic operators (see
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[6, Theorem 9.11]) we deduce the existence of a constant C > 0 such that
kD2ukL pðK1Þ aC½kLiukLlðCRÞ þ kukLlðCRÞ� and therefore for small e

k‘ukLlðKÞ a ekLiukLlðCRÞ þ
C

et
kukLlðCRÞ:

Applying this last inequality to SiðlÞ f and taking into account that
lkðl� LiÞ�1

f kl a k f kl it follows that kSiðlÞ f kl aCl�1=ð1þtÞ. We have
ðl� LÞRðlÞ f ¼ f þ SðlÞ f where

RðlÞ ¼
X2

i¼1

RiðlÞ; SðlÞ ¼
X2

i¼1

SiðlÞ:

Choosing l large enough, we find kSðlÞkLlðRN Þ a
1
2 and we deduce that the

operator I þ SðlÞ is invertible in C0ðWÞ. Setting VðlÞ ¼ ðI þ SðlÞÞ�1 we have
ðl� AÞRðlÞVðlÞ f ¼ f and hence the operator RðlÞVðlÞ is a right inverse of
l� L. Clearly RðlÞVðlÞ coincides with ðl� LÞ�1 since this last is injective by
Proposition 2.3.

Since RðlÞVðlÞ is also the resolvent of ðL;DpðLÞÞ, see Proposition 5.5, the
consistency of the resolvents is proved and the proof is complete. r

Standard perturbation arguments as in [14, Theorem 9.8] allow us to show that
the operator mðxÞaðxÞD, where a is as above, generates an analytic semigroup
in LpðRNÞ if aD does it, whenever m a CðRNÞ, mðxÞ > 0 for every x a RN and
limjxj!l mðxÞ ¼ l > 0.

9. Dissipativity

Theorem 9.1. Let Nb 3, 2�Na aa ðp� 1ÞðN � 2Þ. Then ðL;DpðLÞÞ is a
dissipative operator.

Proof. For f a Cl
c ðRNÞ, r > 0, l > 0, we consider the Dirichlet problem in

LpðBrnB1
r
Þ

lu� Lu ¼ f in BrnB1
r
;

u ¼ 0 on qðBrnB1
r
Þ:

(
ð15Þ

According to Theorem 9.15 in [6], for l > 0 there exists a unique solution ur
in W 2;pðBrnB1

r
ÞBW

1;p
0 ðBrnB1

r
Þ. We set u? ¼ urjurj p�2, multiply Lur by u? and

integrate over BrnB1
r
. The integration by parts is straightforward when pb 2. For

1 < p < 2, jurj p�2 becomes singular near the zeros of ur. It is possible to prove
that the integration by parts is allowed also in this case (see [10]). Notice also
that all boundary terms vanish since ur ¼ 0 at the boundary. We obtain
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�
Z
BrnB1

r

Luru
? ¼ ðp� 1Þ

Z
BrnB1

r

jxjajurj p�2j‘urj2

þ a

Z
BrnB1

r

ur‘urjurj p�2jxja�1 x

jxj

¼ ðp� 1Þ
Z
BrnB1

r

jxjajurj p�2j‘urj2

� aða� 2þNÞ
p

Z
BrnB1

r

jurj pjxja�2:

Clearly, if 2�Na aa 0, �
Z
BrnB1

r

Luru
?
b 0. If a > 0, by Hardy’s inequality

(see for example [14, Proposition 9.10])

Z
BrnB1

r

jurj pjxja�2
a

p2

ðN þ a� 2Þ2
Z
BrnB1

r

jxjajurj p�2j‘urj2

and hence

�
Z
BrnB1

r

Luru
?
b

�
p� 1� ap

N þ a� 2

�Z
BrnB1

r

jurj p�2jxjaj‘urj2:

Observe that p� 1� pa

N þ a� 2
is positive for aa ðp� 1ÞðN � 2Þ.

Summing up, L is dissipative in BrnB1
r
for 2�Na aa ðp� 1ÞðN � 2Þ and

therefore

lkurkp a k f kL p :ð16Þ

Next we use weak compactness arguments to produce a function u a Dp;maxðLÞ
satisfying lu� Lu ¼ f . Let us fix a radius r and apply the interior Lp estimates
([6, Theorem 9.11]) together with (16) to the functions ur with r < rþ 1

kurkW 2; pðBrnB1
r
Þ aC1½klur � LurkL pðBrþ1nB 1

rþ1
Þ þ kurkL pðBrþ1nB 1

rþ1
Þ�

aC2k f kL p :

By weak compactness and a diagonal argument, we can find a sequence
ðrnÞ ! l such that the functions ðurnÞ converge weakly in W

2;p
loc ðWÞ to a function

u. Clearly u satisfies lu� Lu ¼ f and, by (16), lkukL p a k f kL p . In particular
u a Dp;maxðLÞ and is a solution of the equation lu� Lu ¼ f .
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If ab 2 or a < 2 and pbN=ðN � 2Þ, then u a DpðLÞ ¼ Dp;maxðLÞ and,
by density, the estimate lkRðl;LÞkp a 1 follows for l > 0. If a < 2 and
N=ðN � aÞ < p < N=ðN � 2Þ, we fix qbN=ðN � 2Þ and use the consistency

of the resolvents in LpðRNÞ and LqðRNÞ proved in Theorem 8.1. For large l, say
lb l0, both the resolvent of ðL;DpðLÞÞ and ðL;DqðLÞÞ exist and coincide on
LpðRNÞBLqðRNÞ. Therefore, since u a DqðLÞ, then u a DpðLÞ and hence
lkRðl;LÞkp a 1 holds for lb l0. If 0 < l < l0 and lu� Lu ¼ f , then l0u�
Lu ¼ ðl0 � lÞuþ f , hence l0kukp a ðl0 � lÞkukp þ k f kp and lkukp a k f kp.
From this a-priori estimate it follows that �0;l½H rðLÞ and that ðL;DpðLÞÞ is
dissipative. r

Finally we show that the condition 2�Na aa ðp� 1ÞðN � 2Þ is necessary
for the dissipativity.

Proposition 9.2. Suppose that the operator ðL;DpðLÞÞ is dissipative. Then
2�Na aa ðp� 1ÞðN � 2Þ.

Proof. Assume L dissipative. Then, for every u a DpðLÞ,
Z
RN

jxjaujuj p�2Dua 0.

If u a Cl
c ðWÞ (hence equal to 0 in a neighborhood of the origin), we may inte-

grate by parts twice and, using the identity ‘juj p ¼ pujuj p�2‘u, we get

aðN þ a� 2Þ
Z
RN

juj pjxja�2
a pðp� 1Þ

Z
RN

jxjajuj p�2j‘uj2:

It follows that aðN þ a� 2Þa 0, that is 2�Na aa 0 or

Z
RN

juj pjxja�2
a

pðp� 1Þ
aðN þ a� 2Þ

Z
RN

jxjajuj p�2j‘uj2ð17Þ

for every u a Cl
c ðWÞ. Since

� p

N þ a� 2

�2
is the best constant in Hardy’s

inequality above (see [14, Proposition 9.10]), we obtain

pðp� 1Þ
aðN þ a� 2Þ b

� p

N þ a� 2

�2
;

which implies 2�Na aa ðp� 1ÞðN � 2Þ. r

10. Heat kernel estimates

As in [16], we can prove kernel estimates for L, L1, L2 by using the equivalence
between weighted Nash inequalities and ultracontractivity ([2]). We give the
details only for L, the other cases being similar. We introduce the Hilbert spaces
L2
m ¼ L2

mðRNÞ, where dmðxÞ ¼ jxj�a
dx, endowed with its canonical inner product
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and H ¼ fu a L2
m : ‘u a L2ðRNÞg endowed with the inner product ðu; vÞH ¼Z

RN

ðuv dmþ ‘u � ‘v dxÞ. Let V be the closure of Cl
c ðWÞ in H, with respect to

the norm of H and observe that Sobolev inequality kuk22� aCk‘uk22 holds in V.
We next introduce the form

aðu; vÞ ¼
Z
RN

‘u � ‘v dxð18Þ

for u; v a V and the self-adjoint operator L defined by

DðLÞ ¼ u a L2
m : there exists f a L2

m : aðu; vÞ ¼ �
Z
RN

f v dm Ev a V

� �
Lu ¼ f :

Since aðu; uÞb 0, the operator L generates an analytic semigroup of contractions
etL in L2

m. An application of the Beurling-Deny criteria shows that the generated
semigroup is positive and Ll-contractive. For our purposes we need to show that
the resolvent of L and of ðL;DpðLÞÞ are coherent. This is done in the following
proposition.

Proposition 10.1. If l > 0 and f a LpðRNÞBL2
m, then ðl�LÞ�1

f ¼
ðl� LÞ�1

f .

Proof. Let 0a f a CcðWÞ and fix an annulus Cn ¼ BnnB1
n
in RN . Consider the

problem

lu� Lu ¼ f x a Cn;

u ¼ 0 x a qCn:

�

Since the operator L is uniformly elliptic in Cn, there exists a unique solution
un a W 2;2ðCnÞBW

1;2
0 ðCnÞ of the previous problem satisfying

l

Z
Cn

uv dmþ
Z
Cn

‘un‘v dx ¼
Z
Cn

fv dmð19Þ

for every v a W 1;2
0 ðCnÞ. Moreover, as in Section 2, se also [13, Theorem 3.4], un

is positive, increasing and converges pointwise to a function u a DmaxðLÞ which
satisfies lu� Lu ¼ f . Setting v ¼ un in (19) we obtain lkunkL2

m
þ l1=2k‘unkL2

m
a

k f kL2
m
. Letting n to infinity, by monotone convergence, we deduce that un ! u

in L2
m. Moreover, for a suitable subsequence ðnkÞ, ‘unk converges weakly, hence

u a H and u belongs to the closure in H of W 1;2 functions with compact support,
that is u a V. Letting n ! l in (19) we obtain aðu; vÞ ¼ �ðlu� f ; vÞL2

m
, for every

v a W 1;2 having compact support and, by density, for every v a V, that is
u a DðLÞ and lu�Lu ¼ f . This shows the coeherence of the resolvents of
ðL;DmaxðLÞ and L for l > 0, hence of L and ðL;DpðLÞÞ, by Theorem 8.1. r
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Since the operator L is symmetric with respect to the measure dmðxÞ ¼ ðjxjaÞ�1
dx

we shall reepresent the generated semigroup TðtÞ through a kernel with respect
to dm, namely

TðtÞ f ðxÞ ¼
Z
RN

pmðx; y; tÞ f ðyÞ dmðyÞ:

Clearly pmðx; y; tÞ ¼ jyjapðx; y; tÞ, if p is the kernel with respect to the Lebesgue
measure. Our goal consists in obtaining upper bounds for pm following the
approach of [2], which now describe. A positive C2 function V is a Lyapunov
function for L if LV a cV for some positive c. This implies that TðtÞV a

V exp ct, see for example [12, Lemma 3.9]. It turns out that the estimate
pmðx; y; tÞaCt�N=2ectVðxÞVðyÞ is equivalent to the weighted Nash inequality

�Z
RN

juj2 dm
�1þ 2

N
aCaðu; uÞ

�Z
RN

jujV dm
� 4

N
;

see [2, Theorem 2.5]. Let VðxÞ ¼ jxjb; since LV ¼ bðN þ b � 2Þjxjaþb�2 it is
clear the inequality LV a cV will be satisfied in B and in Bc for di¤erent values
of b. This explains why di¤erent choices of the parameters will be done in B
and Bc.

Proposition 10.2. Let u a V. Then

�Z
RN

juj2 dm
�1þ 2

N
aCaðu; uÞ

�Z
RN

jujV dm
� 4

N

where

VðxÞ ¼
1 x a B;

jxja
2�N
4 x a Bc

�
a < 0

VðxÞ ¼ jxja
2�N
4 0 < aa 4

VðxÞ ¼ jxja
2�N
4 x a B;

jxj2�N
x a Bc

(
a > 4:

Proof. Suppose aa 4 and let u a V. Then, by Hölder’s inequality,Z
RN

juj2 dm ¼
Z
RN

juj
2N
Nþ2juj

4
Nþ2ðjxjaÞ�1

dx

a

�Z
RN

juj
2N
Nþ2

Nþ2
N�2 dx

�N�2
Nþ2ðjuj jxj�aNþ2

4 dxÞ
4

Nþ2

¼
�Z

RN

juj2
�
dx

� 1
2�

2N
Nþ2

�Z
RN

juj jxja
2�N
4 dm

� 4
Nþ2

;
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where 2� ¼ 2N=ðN � 2Þ. By Sobolev embedding,

Z
RN

juj2 dmaC
�Z

RN

j‘uj2 dx
� N

Nþ2
�Z

RN

juj jxja
2�N
4 dm

� 4
Nþ2

aCaðu; uÞ
�Z

RN

juj jxja
2�N
4 dm

� 4
N
:

Since jxja
2�N
4 aVðxÞ, the claim follows. If ab 4 we split the integral on RN as the

sum of the integrals over B and Bc. By Hölder’s inequality

�Z
RN

juj2 dm
�1þ 2

N

aC
�Z

B

juj2
�
dx

� 2
2 �
�Z

B

juj jxja
2�N
4 dm

� 4
N

þ C
�Z

Bc

juj2
�
ð1þ jxjÞ4 1

1þ jxja dx
� 2

2�

�
�Z

Bc

jujð1þ jxjÞ2�N
dm

� 4
N

aC
�Z

B

juj2
�
dx

� 2
2 �
�Z

B

juj jxja
2�N
4 dm

� 4
N

þ C
�Z

Bc

juj2
�
dx

� 2
2�
�Z

Bc

juj jxj2�N
dm

� 4
N

aC
�Z

RN

juj2
�
dx

� 2
2�
�Z

RN

jujV dm
� 4

N

:

By Sobolev embedding the proof follows also in this case. r

Theorem 10.3. Let V be as in Proposition 10.2. Then the kernel pm satisfies

pmðx; y; tÞa
ect

t
N
2

VðxÞVðyÞ

for every t > 0, x; y a RN and for some c a R.

Proof. Let W be a C2ðWÞ function such that

WðxÞ ¼
1 x a B1;

jxja
2�N
4 x a RNnB2

�
a < 0

WðxÞ ¼ VðxÞ 0 < aa 4

W ðxÞ ¼ jxja
2�N
4 x a B1;

jxj2�N
x a RNnB2

(
a > 4:
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It easily follows that W is a Lyapunov function for L. Since c1W aV a c2W ,
for suitable c1; c2 > 0, the statement follows from Proposition 10.2 and [2,
Theorem 2.5]. r

Since pðx; y; tÞ ¼ jyj�a
pmðx; y; tÞ it follows that pðx; y; tÞa ect

t
N
2

jyj�a
VðxÞVðyÞ

for every t > 0, x; y a RN . Heat kernel estimates for L1, L2 easily follows from
above, since the semigroups generated by L1, L2 are pointwise dominated by
that generated by L.
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