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Abstract. — In this Note we present a new variational characterization of the first nontrivial

curve of the Fučı́k spectrum for elliptic operators with Dirichlet or Neumann boundary conditions.
Moreover, we describe the asymptotic behaviour and some properties of this curve and of the

corresponding eigenfunctions. In particular, this new characterization allows us to compare the first
curve of the Fučı́k spectrum with the infinitely many curves we obtained in previous works (see

[8, 9]): for example, we show that these curves are all asymptotic to the same lines as the first curve,
but they are all distinct from such a curve.
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1. Introduction

The Fučı́k spectrum plays an important role in the study of some elliptic prob-
lems with linear growth. Let us consider, for example, the Dirichlet problem

Duþ gðx; uÞ ¼ 0 in W; u ¼ 0 on qW;

where W is a smooth bounded connected domain of RN and g is a Carathéodory
function in W� R such that

lim
t!�l

gðx; tÞ
t

¼ a; lim
t!þl

gðx; tÞ
t

¼ b Ex a W;

with a; b a R. Existence and multiplicity of solutions of problems of this type are
strictly related to the position of the pair ða; bÞ with respect to the Fučı́k spectrum
S which is defined as the set of all the pairs ða; bÞ a R2 such that the Dirichlet
problem

Du� au� þ buþ ¼ 0 in W; u ¼ 0 on qWð1:1Þ

has nontrivial solutions (i.e. u a H 1
0 ðWÞ, u2 0). In analogous way one can define

the Fučı́k spectrum ~SS when the Dirichlet boundary condition is replaced by the
Neumann condition qu

qn
¼ 0 on qW.



After the pioneering papers [2, 1] on these problems, the important role of
the Fučı́k spectrum has been pointed out in [5, 3]. Then, several works have
been devoted to describe the structure of S and ~SS (see, for instance, [4, 11, 12]
and the references therein). The really interesting case is N > 1 since, in the
case N ¼ 1, S and ~SS are completely known and may be obtained by direct
computation.

Let us denote by l1 < l2 a l3 a � � � the eigenvalues of �D in H 1
0 ðWÞ; it is clear

that S includes the lines fl1g � R and R� fl1g, contains all the pairs ðli; liÞ
Ei a N (that are the only pairs ða; bÞ of S such that a ¼ b) and is symmetric
with respect to the line fða; bÞ a R2 : a ¼ bg; moreover, if aA l1, bA l1 and
ða; bÞ a S, then a > l1, b > l1 and the Fučı́k eigenfunctions corresponding to
ða; bÞ are sign changing functions (analogous properties hold for ~SS).

In [3] it is shown that the lines fl1g � R and R� fl1g are isolated in S. Many
results (see [6, 7, 11, 12, 4] and the references therein) concern the curves in S
emanating from each pair ðli; liÞ (local existence and multiplicity, variational
characterization, local and global properties, etc. . . .). Combining these results,
one can infer in particular that S contains a first nontrivial curve, which passes
through ðl2; l2Þ and extends to infinity. In [4] the authors prove directly the
existence of such a first curve, show that it is asymptotic to the lines fl1g � R
and R� fl1g, give a variational characterization and deduce that all the corre-
sponding eigenfunctions have exactly two nodal domains (extending the well
known Courant nodal domains theorem).

Recently (see [8, 9]) we have proved that, if N > 1, the Fučı́k spectrum S
contains infinitely many curves asymptotic to the lines fl1g � R and R� fl1g
(notice that, on the contrary, if N ¼ 1 S has only two curves asymptotic to
fl1g � R and R� fl1g).

A similar result holds also in the case of Neumann boundary condition. In this
case the first eigenvalue of �D is zero and, if N > 1, the Fučı́k spectrum ~SS
includes infinitely many curves asymptotic to the lines f0g � R and R� f0g
(notice that, on the contrary, if N ¼ 1 ~SS does not contain any curve asymptotic
to f0g � R or to R� f0g).

More precisely, the following theorem holds.

Theorem 1.1. Let W be a smooth bounded domain of RN, Nb 2. Then, there
exists a nondecreasing sequence ðbkÞk of positive numbers such that Ek a N
and Eb > bk there exists ak;b > l1 and ~aak;b > 0 such that ðak;b; bÞ a S and
ð~aak;b; bÞ a ~SS; moreover, Ek a N, ak;b and ~aak;b depend continuously on b
in �bk;þl½, ak;b < akþ1;b , ~aak;b < ~aakþ1;b Eb > bkþ1 and limb!þl ak;b ¼ l1,
limb!þl ~aak;b ¼ 0.

In this Note we present a new variational characterization of the first nontrivial
curve of the Fučı́k spectrum in the cases of Dirichlet and Neumann boundary
conditions; this characterization, in particular, allows us to show that all the
curves given by Theorem 1.1 (even for k ¼ 1) are distinct from such a curve.
This results, announced in this Note, will appear in [10], presented and proved
in a more completed and detailed way.
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For the sake of simplicity, here we present our results in the case of the
Laplace operator; however, they may be easily extended in order to cover the
case of more general elliptic operators in divergence form.

2. The main results

Theorems 2.1 and 2.2 give a variational characterization of the first nontrivial
curve of the Fučı́k spectrum in the cases, respectively, of Dirichlet and Neumann
boundary conditions.

Theorem 2.1 (see [10] for the proof ). Let W be a smooth bounded connected
domain of RN with Nb 2. For all b > l1, let us set

ab ¼ inf

�Z
W

jDu�j2 dx : u a H 1
0 ðWÞ;ð2:1Þ

kuþkL2ðWÞ ¼ ku�kL2ðWÞ ¼ 1;

Z
W

jDuþj2 dx ¼ b

�
:

Then ab > l1, ðab; bÞ a S Eb > l1 and ab a a for every a > l1 such that ða; bÞ a S.
Moreover, ab is continuous and decreasing with respect to b in �l1;þl½, the infi-
mum in (2.1) is achieved Eb > l1 and an eigenfunction corresponding to the pair
ðab; bÞ is given by ub ¼ �u�b þ mbu

þ
b , where ub is a minimizing function for (2.1)

and mb is a suitable positive constant.
As b ! þl, ab ! l1 and ub ! �e1 in H 1

0 ðWÞ, where e1 is the positive function
in H 1

0 ðWÞ such that De1 þ l1e1 ¼ 0 in W and ke1kL2ðWÞ ¼ 1; as b ! l1, ab ! þl
and kuþb k

�1
L2ðWÞub ! e1 in H 1

0 ðWÞ.

Theorem 2.2 (see [10] for the proof ). Let W be a smooth bounded connected
domain of RN with Nb 2. For all b > 0, let us set

~aab ¼ inf

�Z
W

jDu�j2 dx : u a H 1ðWÞ;ð2:2Þ

kuþkL2ðWÞ ¼ ku�kL2ðWÞ ¼ 1;

Z
W

jDuþj2 dx ¼ b

�
:

Then ~aab > 0, ð~aab; bÞ a ~SS Eb > 0 and ~aab a a for every a > 0 such that ða; bÞ a ~SS.
Moreover, ~aab is continuous and decreasing with respect to b in �0;þl½, the infimum
in (2.2) is achieved Eb > 0 and an eigenfunction corresponding to the pair ð~aab; bÞ is
given by ~uub ¼ �ûu�b þ ~mmbûu

þ
b , where ûub is a minimizing function for (2.2) and ~mmb is a

suitable positive constant.
As b ! þl, ~aab ! 0 and ~uub ! �jWj�

1
2 in H 1ðWÞ while, as b ! 0, ~aab ! þl

and k~uuþb k
�1
L2ðWÞ~uub ! jWj�

1
2 in H 1ðWÞ.

Finally, for all b > 0, there exist ~xxb a W and rb > 0 such that limb!þl rb ¼ 0
and suppð~uuþb ÞHBð~xxb; rbÞ Eb > 0; if (up to a subsequence) limb!þl ~xxb ¼ ~xx for a
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suitable ~xx, then ~xx a qW and, if we set ~HH ¼ fx a RN : ðx � ~nnÞ < 0g where ~nn denotes
the outward normal to qW in ~xx, then we have

lim
b!þl

�
sup
W

~uub

��1

~uub

� xffiffiffi
b

p þ ~xxb

�
¼ UðxÞ Ex a ~HH;

where U is the radial solution of the problem DU þUþ ¼ 0 in RN, Uð0Þ ¼ 1.
Similar properties hold for �k~uuþb k

�1
L2ðWÞ~uub as b ! 0.

All the properties of the first nontrivial curve of the Fučı́k spectrum and of the
corresponding eigenfunctions, in the cases of Dirichlet and Neumann boundary
conditions, may be deduced from the variational characterization given by
Theorems 2.1 and 2.2. In particular, one can deduce that al2 ¼ l2 (namely, the
first curve of S passes through ðl2; l2Þ) and, analogously, that ~aa~ll2

¼ ~ll2, where ~ll2
denotes the second eigenvalue of the Laplace operator �D with the Neumann
boundary condition qu

qn
¼ 0 on qW. In next proposition we use this variational

characterization to show that the curves given by Theorem 1.1, contained in S
[respectively, in ~SS], are all distinct from the first nontrivial curve of S [respec-
tively, of ~SS].

Proposition 2.3. Let W be a smooth bounded domain of RN with Nb 2. Then,
there exists b > 0 such that ab < ak;b and ~aab < ~aak;b Ek a N, Eb > maxfb; bkg.

Sketch of the proof. For simplicity, here we consider only the case Nb 3 (the case
N ¼ 2, which requires more refined estimates, is considered in [10]).

In order to prove that ab < ak;b, for b large enough, notice that (as we proved
in [9])

lim
b!þl

b
N�2
2 ðak;b � l1Þ ¼ k capðr1Þ

�
max
W

e1

�2

Ek a N;ð2:3Þ

where r1 is the radius of the balls in RN for which the first eigenvalue of �D in H 1
0

is equal to 1 and capðr1Þ denotes the capacity of these balls. Then, choose x a W
such that e1ðxÞ < maxW e1 and (for b large enough so that Bðx; r1=

ffiffiffi
b

p
ÞHW) set

abðxÞ ¼ inf

�Z
W

jDuj2 dx : u a H 1
0 ðWÞ; ua 0 in W;ð2:4Þ

u ¼ 0 in B
�
x;

r1ffiffiffi
b

p �
; kukL2ðWÞ ¼ 1

�
:

Since there exists u a H 1
0 ðWÞ such that ub 0 in W, u ¼ 0 in WnBðx; r1=

ffiffiffi
b

p
Þ,

kukL2ðWÞ ¼ 1 and

Z
W

jDuj2 dx ¼ b, we have ab a abðxÞ. As b ! þl (after rescal-
ing) we obtain

lim
b!þl

b
N�2
2 ½abðxÞ � l1� ¼ capðr1Þ½e1ðxÞ�2 < capðr1Þ

�
max
W

e1

�2
:ð2:5Þ
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It follows that there exists bb b1 such that ab a abðxÞ < a1;b Eb > b and, as a
consequence, ab < ak;b Ek a N, Eb > maxfb; bkg.

In analogous way one can prove that ~aab < ~aak;b Ek a N, for b > 0

large enough, because limb!þl b
N�2
2 ~aak;b ¼ k capðr1ÞjWj�1 Ek a N while

limb!þl b
N�2
2 ~aab ¼ ð1=2Þ capðr1ÞjWj�1 (see [10] for more details).

Remark 2.4. The eigenfunctions uk;b a H 1
0 ðWÞ and ~uuk;b a H 1ðWÞ, correspond-

ing respectively to the pairs ðak;b; bÞ a S and ð~aak;b; bÞ a ~SS, present k interior
bumps; moreover, for uk;b and for ~uuk;b, the asymptotic profile of the rescaled
bumps is described by the function U introduced in Theorem 2.2 (see [8]).

On the contrary, the eigenfunctions ub a H 1
0 ðWÞ and ~uub a H 1ðWÞ, correspond-

ing respectively to the pairs ðab; bÞ a S and ð~aab; bÞ a ~SS, have only one bump
which, for b large enough, is localized near the boundary of W. In Theorem 2.2
we have described this property for ~uub; a similar property holds also for ub, but
the asymptotic profile of the rescaled bump of ub is not described by the function
U ; in fact, as b ! þl, the functions uþb concentrate near suitable points xb such
that limb!þl distðxb; qWÞ ¼ 0; if (up to a subsequence) limb!þl xb ¼ x̂x, for a
suitable x̂x a qW, and if we set ĤH :¼ fx a RN : ðx � n̂nÞ < 0g where n̂n denotes the
outward normal to qW in x̂x, then limb!þlðsupW ubÞ�1

ubðx=
ffiffiffi
b

p
þ xbÞ ¼ ÛUðxÞ

Ex a ĤH; where ÛU is a function in H 1
0 ðĤHÞ, which solves a suitable limit equation

in ĤH.

References

[1] A. Ambrosetti - G. Prodi, On the inversion of some di¤erentiable mappings with

singularities between Banach spaces, Ann. Mat. Pura Appl. (4) 93 (1972), 231–246.

[2] R. Caccioppoli, Un principio di inversione per le corrispondenze funzionali e sue appli-

cazioni alle equazioni alle derivate parziali, Atti Acc. Naz. Lincei 16 (1932), 392–400.

[3] E. N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial di¤eren-

tial equations, Proc. Roy. Soc. Edinburgh Sect. A 76, (1976/77), no. 4, 283–300.

[4] D. G. de Figueiredo - J.-P. Gossez, On the first curve of the Fučı́k spectrum of
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