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Abstract. — We present and discuss an integro-di¤erential equation that models economic dy-

namics in a closed population. An ‘‘economic inequality index’’ is introduced and some examples
are provided showing how changes in social mobility can produce increasing (or decreasing) social

equity.
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1. Introduction

The aim of this paper is to present and discuss a mathematical model for the
economic dynamics of a given closed population.

Let us start by assuming that, at a given time tb 0, each member of the pop-
ulation is characterized by a ‘‘social index’’ x. This index could correspond to the
yearly salary, to the amount of income tax paid, etc. We assume that x ranges in
a bounded interval and, upon a trivial normalization, we will take x a ½0; 1�.

In this spirit, we can define a function nðx; tÞ, such that, for any fixed time t
and any pair x1, x2, 0a x1 < x2 a 1, the quantity

Z x2

x1

nðx; tÞ dx;ð1:1Þ

represents the number of individuals of the given society whose social index (at
time t) belongs to the interval ðx1; x2Þ. Sometimes, we will refer to nðx; tÞ as to
the ‘‘social density’’ at time t.

When nðx; tÞ ðx a ½0; 1�; tb 0Þ for a given society is known, we say that the
social dynamics of the society is known. It is clear that the social dynamics is
influenced by three main factors: (i) immigration/emigration, (ii) age structure
and birth/death rate, (iii) economic mobility (i.e. change of social index). In this
article we neglect (i) just to keep the discussion simpler and shorter (for a discus-
sion of these factors see e.g. [6]). Taking (ii) into account, on the contrary, would
imply non-trivial modifications, including discussion on hereditary issues and so
on, that are well beyond our present goals. We may just mention that one could



partially include these aspects by assuming that the ‘‘individuals’’ that we con-
sider in our model of society are rather households (as the latter appear in the
usual economic statistics [3]).

Thus, we will confine our analysis to aspect (iii). In order to model economic
mobility (see [5], [1] and the literature cited therein) we characterize it by a
function gðx; yÞ, ðx; yÞ a ½0; 1�2, representing the rate at which individuals having
social index x pass to social index y. More precisely gðx; yÞ is such that, for any
0a t1 < t2, the quantityZ t2

t1

Z x2

x1

nðx; tÞ
Z 1

0

gðx; yÞ dy dx dt;ð1:2Þ

gives the number of individuals that, in the time interval ðt1; t2Þ leave the social
class identified by a social index belonging to the interval ðx1; x2Þ. Conversely, the
number of ‘‘newcomers’’ in the same class in the same time interval is given by

Z t2

t1

Z x2

x1

Z 1

0

nðz; tÞgðz; xÞ dz dx dt;ð1:3Þ

Of course, one could also consider the case of a time-dependent social mobility.
It is immediately seen that the balance for the social density nðx; tÞ is expressed

by the integrodi¤erential equation

qn

qt
ðx; tÞ ¼ �nðx; tÞ

Z 1

0

gðx; yÞ dyþ
Z 1

0

gðz; xÞnðz; tÞ dz:ð1:4Þ

It is clear that an alternative discrete formulation can be obtained by partitioning
the interval ð0; 1Þ into m parts and defining the numbers n1ðtÞ; . . . ; nmðtÞ of indi-
viduals in each of the social classes corresponding to the m sub-intervals. Then, a
ðm�mÞ matrix A can be introduced whose elements ai;k b 0 represent the rate at
which individuals pass from class i to class k. The balance is now expressed by
the following dynamical system

_nnjðtÞ ¼ �
X
kA j

njajk þ
X
kA j

nkakj :ð1:5Þ

A particular case of (1.5), i.e. ajk ¼ 0 if j j � kj > 1, was considered in [12] and
[13].

In this paper we will first discuss (Section 2) the basic properties of the model
and we give some di¤erent formulations and some examples. Then, we focus our
attention (Section 3) on stationary solutions, that correspond to an equilibrium
distribution of the population in the social classes. In Section 4 we include an
index of social inequality associated with any nðx; tÞ and we study the time vari-
ation of the social index xp such that the first p-quantile of the total population
has social index in the interval ð0; xpÞ.

Of course, the problem of economic redistribution is a key topic in political
economy (see [2], [14]) since the economic mobility can be influenced by social
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policy ([7], [9], [15]). In this spirit, Section 5 is devoted to the problem of finding
the kernel of social mobility gðx; yÞ (within a set of functions with a prescribed
structure) that induces a desired stationary distribution. We will provide exam-
ples of non-existence and of non-uniqueness of solution for this problem.

In each section, examples and numerical simulations are displayed. Indeed the
paper is more oriented to provide evidence of the reasonable outcomes of the
model and of its potential usefulness, than to go deeper into its general mathe-
matical structure.

2. Different forms of the social dynamic equation

We will study the following problem

Problem (P). Find nðx; tÞ a L1ð0; 1Þ Et > 0, continuously di¤erentiable w.r.t. t,
for tb 0, satisfying the following di¤erential equation,

qn

qt
ðx; tÞ ¼ �nðx; tÞ

Z 1

0

gðx; yÞ dyþ
Z 1

0

gðz; xÞnðz; tÞ dz:ð2:1Þ

and such that

nðx; 0Þ ¼ n0ðxÞ; x a ð0; 1Þ;ð2:2Þ

where

g a Llð0; 1Þ2; gb 0 a:e:ð2:3Þ
n0 a L1ð0; 1Þ; n0 b 0 a:e:ð2:4Þ r

Of course, problem (P) can be seen as an evolution problem in L1ð0; 1Þ

dn

dt
¼ Fn; nð0Þ ¼ n0 a L1ð0; 1Þ;ð2:5Þ

and the norm of the operator F is bounded by

kFka 2kgkLl :

As a particular case of the results of [4] we have

Theorem 2.1. Problem ðPÞ, i.e. problem (2.5), has one unique solution. Moreover

(i) nðx; tÞb 0 a.e. in ð0; 1Þ, Etb 0.
(ii) If g and n0 are continuously di¤erentiable in ð0; 1Þ2 and in ð0; 1Þ, respectively,

till the order k, then n a Ck w.r.t. x, n a Cl w.r.t. t and
q in

qxi
a Cl w.r.t. t

ði ¼ 1; . . . ; kÞ.
(iii) If n0 a Llð0; 1Þ, nðx; tÞ is analytic w.r.t. t a.e. in x. r
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Moreover, the following conservation property is immediately proved.

Proposition 2.1. For any t > 0

knðx; tÞkL1ð0;1Þ ¼ kn0ðxÞkL1ð0;1ÞCN;ð2:6Þ

i.e. the total population is constant. r

Let us define

gðxÞ ¼
Z 1

0

gðx; yÞ dy;ð2:7Þ

and note that (2.1)–(2.2) can be re-written in the form (because of Theorem 2.1)

nðx; tÞ ¼ n0ðxÞ exp½�gðxÞt�ð2:8Þ

þ
Z t

0

exp½�gðxÞðt� sÞ�
�Z 1

0

gðz; xÞnðz; sÞ dz
�
ds:

It is sometimes useful to define the ‘‘total mobility rate’’ to class y,

Gðy; tÞ ¼
Z 1

0

gðx; yÞnðx; tÞ dx;

and to rewrite (2.8) as an integral equation for G,

Gðy; tÞ ¼ Gðy; tÞ þ
Z t

0

Z 1

0

Kðx; y; t� sÞGðx; sÞ dx ds;ð2:9Þ

where

Gðy; tÞ ¼
Z 1

0

gðx; yÞn0ðxÞ exp½�gðxÞt� dx;

Kðx; y; tÞ ¼ gðx; yÞ exp½�gðxÞt�:

Example 2.1. If g ¼ c, then

nðx; tÞ ¼ N þ ðn0ðxÞ �NÞe�ct; tb 0;ð2:10Þ

(an immediate consequence of (2.8)). r

Example 2.2. If gðx; yÞ ¼ qðyÞ, then, if qA 0,

nðx; tÞ ¼ N

a
qðxÞ½1� e�at� þ n0ðxÞe�at; tb 0;ð2:11Þ
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where

a ¼
Z 1

0

qðyÞ dy:

Obviously, when q ! 0 a.e., i.e. a ! 0, the solution n ¼ n0ðxÞ is easily retrieved
from (2.11). r

Example 2.3. If gðx; yÞ ¼ pðxÞ, then, if pA 0,

nðx; tÞ ¼ nðx; tÞ=pðxÞð2:12Þ

where nðx; tÞ solves

nt þ pðxÞn ¼ pðxÞ
Z 1

0

nðy; tÞ dy; nðx; 0Þ ¼ pðxÞn0ðxÞ;

i.e.

nðx; tÞ ¼ nðx; 0Þ expð�pðxÞtÞ þ pðxÞ
Z t

0

expð�pðxÞðt� sÞÞ
Z 1

0

nðy; sÞ dy ds: r

Example 2.4. If gðx; yÞ ¼ pðxÞqðyÞ, qA 0, then the function

PðtÞ ¼
Z 1

0

pðzÞnðz; tÞ dz;

solves the Volterra integral equation

PðtÞ ¼
Z 1

0

pðzÞn0ðzÞ exp½�gðzÞt� dzþ
Z t

0

PðsÞZðt� sÞ ds;ð2:13Þ

where

ZðtÞ ¼
Z 1

0

pðxÞqðxÞ exp½�gðxÞt� dx;

(a simple consequence of (2.9)). Moreover, once PðtÞ has been determined, the
function

QðtÞ ¼
Z 1

0

qðzÞnðz; tÞ dz

satisfies

QðtÞ ¼ HðtÞ þ
Z t

0

Kðt� sÞPðsÞ ds;
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where

HðtÞ ¼
Z 1

0

qðxÞn0ðxÞe�pðxÞt
R 1
0
qðyÞ dy; KðtÞ ¼

Z 1

0

qðxÞe�pðxÞt
R 1
0
qðyÞ dy: r

3. Stationary solutions

To simplify notation, in the sequel we will deal with the special case in which
n0ðxÞ a C½0; 1� and gðx; yÞ a Cð½0; 1�2Þ, but it is clear that all the results can be
translated into the Ll framework, just by substituting notations like max½0;1� by
essupð0;1Þ etc.

From now on we tacitly exclude the trivial case gC 0, unless explicitly stated.
Recalling definition (2.7) and introducing also

hðxÞ ¼
Z 1

0

gðy; xÞ dy;ð3:1Þ

we prove the following

Theorem 3.1. Assume gðxÞ > 0 in ½0; 1�. Then Problem ðPÞ admits a constant
stationary solution

nlðxÞ ¼ N; x a ½0; 1�;ð3:2Þ

if and only if

gðxÞ ¼ hðxÞ; x a ½0; 1�:ð3:3Þ

Proof. It is obvious that (3.2) implies (3.3). To prove the converse, from (2.1)
we get

nlðxÞ ¼
R 1

0 gðz; xÞnlðzÞ dz
gðxÞ :ð3:4Þ

Let

n¼ max
½0;1�

nlðxÞð3:5Þ

and assume that there exists an x̂x such that nlðx̂xÞ < n. Then from (3.4) we get

n < nmax
hðxÞ
gðxÞ ;ð3:6Þ

thus concluding the proof by contradiction. r

Corollary 3.1. If gðx; yÞ has the form

gðx; yÞ ¼ pðxÞqðyÞ; pðxÞ > 0;
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then problem ðPÞ has the stationary solution

nlðxÞ ¼ N
qðxÞ
pðxÞ

�Z 1

0

qðzÞ
pðzÞ dz

��1

:

In particular the stationary solution is constant if and only if

qðxÞ ¼ ApðxÞ

for any positive constant A. r

Remark 3.1. Of course, multiplying g by any positive constant just changes the
time scale of the evolution but does not a¤ect the asymptotic solution. r

Let us define

g ¼ min
x A ½0;1�

gðxÞ; h ¼ min
x A ½0;1�

hðxÞ; gðxÞ ¼ min
z A ½0;1�

gðz; xÞ;ð3:7Þ

and

g ¼ max
x A ½0;1�

gðxÞ; h ¼ max
x A ½0;1�

hðxÞ; gðxÞ ¼ max
z A ½0;1�

gðz; xÞ:ð3:8Þ

For any x such that gðxÞ > 0, we get from (2.8), (3.7), (3.8),

n0ðxÞ expð�gðxÞtÞ þNgðxÞ 1� expð�gðxÞtÞ
gðxÞ a nðx; tÞ

a n0ðxÞ expð�gðxÞtÞ þNgðxÞ 1� expð�gðxÞtÞ
gðxÞ ;

so that, for the asymptotic value we have

NgðxÞ
g

a nlðxÞa NgðxÞ
g

:

Let us now drop the assumption gðxÞ > 0 in ½0; 1�, and consider the sets

Ag ¼ fx a ð0; 1Þ : gðxÞ ¼ 0g; Ah ¼ fx a ð0; 1Þ : hðxÞ ¼ 0g:

Of course, if Ag ¼ ð0; 1Þ (implying also Ah ¼ ð0; 1Þ) then

nðx; tÞ ¼ n0ðxÞ; Etb 0:

In general we have

n0ðxÞa nðx; tÞa n0ðxÞ þNgðxÞt; x a Ag;

n0ðxÞb nðx; tÞb n0ðxÞe�gðxÞt; x a Ah;
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(more precisely we could put instead of g and g, maxz A ð0;1Þ;x AAg
gðz; xÞ and

maxx AAh
gðxÞ, respectively). Of course if x a AhBAg, it is nðx; tÞ ¼ n0ðxÞ. Con-

cerning asymptotic solution we find that if x a Ah then nlðxÞ ¼ 0, Ex such that
gðxÞ > 0 (i.e. where the arrival rate is zero and the leaving rate is not, the only
possible stationary solution is nlðxÞ ¼ 0).

4. Describing the economic dynamics

We introduce two definitions that may be helpful in the description of the eco-
nomic dynamics of the population:

WabðtÞ ¼
Z b

a

xnðx; tÞ dx;ð4:1Þ

is the cumulative richness at time t of the social class having wealth index x
between a and b, (0a a < ba 1).

ŴWabðtÞ ¼ WabðtÞ=NabðtÞ;ð4:2Þ

is the average (per capita) richness in the same social class. Here

NabðtÞ ¼
Z b

a

nðx; tÞ dx;

and clearly

aa ŴWaba b:ð4:3Þ

In particular, taking a ¼ 0, b ¼ 1 we have the total and average wealth of the
population, WðtÞ and ŴWðtÞ, respectively.

We introduce an index of economic inequality

iðtÞ ¼ 1

NŴW ðtÞð1� ŴWðtÞÞ

Z 1

0

ðx� ŴWðtÞÞ2nðx; tÞ dx:ð4:4Þ

An alternative definition of i is

iðtÞ ¼ ŴW2ðtÞ � ŴW 2ðtÞ
ŴWðtÞ½1� ŴWðtÞ�

;ð4:5Þ

where ŴW2ðtÞ ¼
1

N

Z 1

0

x2nðx; tÞ dx. Since ŴW2 a ŴW , from (4.5) we have 0a ia 1.

Remark 4.1. Of course (4.4) only makes sense if ŴW ðtÞA 0; 1. The cases ŴW ¼ 0,
ŴW ¼ 1 arise just when, at some time t, nðx; tÞ ¼ 2NdðxÞ, nðx; tÞ ¼ 2Ndðx� 1Þ, re-
spectively, where d is the Dirac distribution. In these cases we will define iðtÞ as the
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limit for e ! 0 of the expression (4.4) where nðx; tÞ is replaced by neðxÞ ¼ 2NdðeÞ
or neðxÞ ¼ 2Ndðx� 1þ eÞ, and ŴWeðtÞ is defined accordingly. r

It is well known, since the classical paper [11], that several indexes of eco-
nomic inequality have been proposed, see e.g. the Gini’s paper [8] and the refer-
ences in [10]. We believe that (4.4) is the most natural definition of inequality in
the spirit of our approach.

We note that for a population in which all the members have the same wealth
(necessarily ŴW ; from now on we do not indicate time dependence explicitly, to
simplify notation) we would have nðxÞ ¼ Ndðx� ŴW Þ. In this case i ¼ 0.

On the contrary, for the same total wealth NŴW the most unequal distribution
corresponds to the case in which NŴW individuals have wealth index 1 and
Nð1� ŴWÞ have wealth index 0. This corresponds to

nðxÞ ¼ 2ð1� ŴW ÞdðxÞ þ 2NŴWdðx� 1Þ;ð4:6Þ

(the factor 2 is introduced since

Z 1

0

dðxÞ dx ¼
Z 1

0

dðx� 1Þ dx ¼ 1=2). Hence,
in this case,

i ¼ 1

ŴW ð1� ŴW Þ
½ð1� ŴWÞŴW 2 þ ŴWð1� ŴWÞ2� ¼ 1:ð4:7Þ

To see, on some other examples, how index i depends on the distribution func-
tion nðxÞ, we consider the case

nðxÞ ¼ Naxað1� xÞb;ð4:8Þ

where a; b a N and where a is a normalization constant such that

Z 1

0

nðxÞ dx ¼ N.
After some lengthy algebra we get

Proposition 4.1. If nðxÞ is given by (4.8), then the inequality index i has the
form

i ¼ 1

aþ bþ 3
:ð4:9Þ r

To provide some numerical simulations, let us take the mobility function

gðx; yÞ ¼ bðxÞyðjx� yjÞHðx� yÞ þ aðxÞyðjx� yjÞHðy� xÞð4:10Þ

where

• H is the Heaviside function,

• aðxÞ ¼ ð1� xÞ,
• bðxÞ ¼ x,

• yðzÞ ¼ e�z2=2s2
(with s ¼ 0:3, z ¼ jx� yj) is a function modulating the kernel

with the distance between x and y.
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In (4.10) a denotes the social promotion from class x to class y and b the
social relegation. Both are assumed to depend (linearly) just on the wealth of
class x. The mobility is weighted by a function y that is decreasing with respect
to jx� yj.

Let us take four di¤erent initial conditions (with the same initial population
N ¼ 1=6)

n1ðxÞ ¼
1

3s
ffiffiffiffiffi
2p

p e�x2=2s2 ; s ¼ 0:2;ð4:11Þ

n2ðxÞ ¼
1

6s
ffiffiffiffiffi
2p

p e�ðx�0:5Þ2=2s2 ; s ¼ 0:2;ð4:12Þ

n3ðxÞ ¼
�aðx� x0Þ=x0; 0 < xa x0;

bðx� ð1� x0ÞÞ=x0; ð1� x0Þa xa 1;

0; elsewhere;

8<
:ð4:13Þ

with x0 ¼ 1=8; a ¼ 2; b ¼ ð1=3� ax0Þ=x0;

n4ðxÞ ¼
1

6
ð1þ sinð4pxÞÞ;ð4:14Þ

and compute nðx; tÞ. We use a finite di¤erence scheme, with an explicit forward
method in time. The integrals appearing in the equations are solved by the
trapezoidal rule integration method. The computation shows that the equilibrium
solution corresponding to the four initial conditions coincide (Fig. 1). On the
other hand, the evolution of iðtÞ and W ðtÞ are obviously di¤erent (Fig. 2, 3).

Coming back to definitions (4.1) and (4.2), we find

_̂
WŴWWab ¼

1

Nab

½ _WWab � ŴWab
_NNab� ¼

1

Nab

Z b

a

ðx� ŴWabÞnt dx:ð4:15Þ

This means that in order to get an increase of the per capita wealth of the class
considered it is su‰cient that the number of the individuals with wealth index less
then the average level of the class is increasing with time, and vice-versa.

Another way of visualizing the economic dynamics is to define the time
dependent wealth index xpðtÞ such that the fraction p (the p-quantile) of the total
population is the class ð0; xpðtÞÞ at time t, i.e.1

Z xpðtÞ

0

nðx; tÞ dx ¼ pN:ð4:16Þ

Moreover, since

1Alternatively, one could fix k a ð0; 1� and define pkðtÞ such that

Z k

0

nðx; tÞ dx ¼ pkðtÞN.
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nðxpðtÞ; tÞ _xxpðtÞ ¼
Z xpðtÞ

0

nðx; tÞgðxÞ dx�
Z xpðtÞ

0

dx

Z 1

0

gðy; xÞnðy; tÞ dy

it is immediately seen that a su‰cient condition for the positivity of _xxpðtÞ is

pg >

Z xpðtÞ

0

gðxÞ dx:ð4:17Þ

Figure 1: Reaching the equilibrium solution from di¤erent initial data. The equilibrium
solution (solid line) is the same in all cases, which have been split in two figures only for
the reader convenience. (A): Initial conditions (4.11) and (4.12). (B): Initial conditions
(4.13) and (4.14).
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Figure 2: Inequality index computed using the mobility function (4.10) and initial condi-
tions (4.11), (4.12), (4.13) and (4.14).

Figure 3: Total wealth WðtÞ corresponding to initial conditions (4.11), (4.12), (4.13) and
(4.14).
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5. Inverse problems

It can be worth considering an inverse problem for the integro-di¤erential equa-
tion (2.1) i.e. to look for a function ~ggðx; yÞ such that (2.1) admits a given station-
ary solution ~nnðxÞ. Of course, we do not expect that such problem is uniquely
solvable (apart form the fact that ~gg is in any case defined up to a multiplicative
constant). This is obvious for the case ~nn ¼ N (see Theorem 3.1) and is clearly
shown in a general case

Proposition 5.1. Given ~nnðxÞb 0, for any

~ggðx; yÞ ¼ pðxÞpðyÞ~nnðyÞ;ð5:1Þ

where pðxÞ is an arbitrary positive function, equation (2.1) has the time-independent
solution ~nnðxÞ. r

For a numerical check, let us take n3ðxÞ (see (4.13)) to play the role of target equi-
librium solution and prove that taking

~ggðx; yÞ ¼ pðxÞpðyÞn3ðyÞ

for any positive pðxÞ, problem (P) has the asymptotic solution n3ðxÞ, for any ini-
tial datum. Fig. 4 and 5 verify this fact, taking nðx; 0Þ ¼ n4ðxÞ as initial condition
and taking two di¤erent functions pðxÞ.

From a practical point of view it makes sense to assume that the social mobil-
ity is the sum of a given function g0ðx; yÞb 0 and of a control function gcðx; yÞ

Figure 4: An example of result stated in Proposition 5.1, with nðx; 0Þ ¼ n4ðxÞ and
pðxÞ ¼ xþ 0:1.
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that is superimposed by some ‘‘authority’’ to reach or to approach a desired sta-
tionary solution

gðx; yÞ ¼ g0ðx; yÞ þ gcðx; yÞ:ð5:2Þ

Let us assume a target stationary solution

~nnðxÞ > 0;ð5:3Þ

and define

SðxÞ ¼ 1

~nnðxÞ ~nnðxÞ
Z 1

0

g0ðx; yÞ dy�
Z 1

0

g0ðz; xÞ~nnðzÞ dz
� �

;ð5:4Þ

so that if ~nn is a stationary solution of problem (P) it is

Z 1

0

gcðx; yÞ dy ¼ �SðxÞ þ 1

~nnðxÞ

Z 1

0

gcðz; xÞ~nnðzÞ dz:ð5:5Þ

We consider the example in which gcðx; yÞ is supposed to be dependent on just
one of the two variables.

Proposition 5.2. If gc depends on the first variable, the function

gcðxÞ ¼ �SðxÞ þ c

~nnðxÞ ;ð5:6Þ

Figure 5: An example of result stated in Proposition 5.1, with nðx; 0Þ ¼ n4ðxÞ and
pðxÞ ¼ 1:5þ sinð2pxÞ.

160 i. borsi et al.



(where c is any constant such that gc b 0) is such that (2.1) has the stationary

solution ~nnðxÞ. (Just note that
Z 1

0

SðxÞ~nnðxÞ dx ¼ 0). r

To check this result on a special case let us choose

~nnðxÞ ¼ xð1� xÞ þ 0:1;

and take

g0ðx; yÞ ¼ pðxÞpðyÞðn3ðyÞ þ 0:1Þ;

where e.g. pðxÞ ¼ xþ 0:1.
According to Proposition 5.1 the equilibrium solution corresponding to g0 is

n3ðxÞ þ 0:1. But if we take

gcðxÞ ¼ �SðxÞ þ 0:1

~nnðxÞ ;

we find (Fig. 6) that the equilibrium solution is ~nnðxÞ (in Fig. 6, n1ðxÞ defined in
(4.11) was taken as initial condition, to be specific).

Example 5.1. If gc depends just on the second variable, then any positive function
of the form

gcðyÞ ¼
~nnðyÞ
N

ðC þ SðyÞÞ; C ¼ const:ð5:7Þ

is such that (2.1) has the solution ~nnðxÞ. r

Figure 6: An example of result stated in Example 5.1.
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Another particular case is provided by the following

Example 5.2. Look for some gcðx; yÞ of the form

gcðx; yÞ ¼ lðyþ cðxÞÞ;ð5:8Þ

where l is a positive constant and c is a function to be determined. In this case (5.5)
reads as

~nnðxÞcðxÞ ¼ � ~nnðxÞ
2

� SðxÞ
l

~nnðxÞ þNxþ
Z 1

0

~nnðzÞcðzÞ dzCQðxÞ þ
Z 1

0

~nnðzÞcðzÞ dz:

Noting that

Z 1

0

QðxÞ dx ¼ 0, we find

cðxÞ ¼ QðxÞ
~nnðxÞ þ K ;

where K is any constant such that cðxÞb 0. r

Example 5.3. Look for a gcðx; yÞ of the form

gcðx; yÞ ¼ bðxÞHðx� yÞ þ aðxÞHðy� xÞ;

corresponding to promotion aðxÞ and relegation bðxÞ depending on the social index
x. Now (5.5) gives

~nnðxÞxbðxÞ þ ~nnðxÞaðxÞð1� xÞ ¼ �~nnðxÞSðxÞ þ
Z x

0

aðzÞ~nnðzÞ dzþ
Z 1

x

bðzÞ~nnðzÞ dz:

If we suppose that ~nnðxÞ and aðxÞ are given and look for the unknown function
F ðxÞ ¼ bðxÞ~nnðxÞ we find

xFðxÞ ¼ Q̂QðxÞ þ
Z 1

x

FðzÞ dz

where

Q̂QðxÞ ¼ �~nnðxÞ½SðxÞ þ aðxÞð1� xÞ� þ
Z x

0

aðzÞ~nnðzÞ dz:

It is easily seen that if Q̂QðxÞ ¼ OðxÞ a nonsingular solution is given by

F ðxÞ ¼ Q̂QðxÞ
x

þ 1

x2

Z 1

x

Q̂QðxÞx dx: r
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