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Partial Di¤erential Equations — A note on the monotonicity formula of Ca¤arelli-
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Abstract. — The aim of this note is to prove the monotonicity formula of Ca¤arelli-Jerison-

Kenig for functions, which are not necessarily continuous. We also give a detailed proof of the
multiphase version of the monotonicity formula in any dimension.
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1. Introduction

The Alt-Ca¤arelli-Friedman monotonicity formula is one of the most powerful
tools in the study of the regularity of multiphase optimization problems as, for
example, optimal partition problems for functionals involving some partial di¤er-
ential equation, a prototype being the multiphase Alt-Ca¤arelli problem

min
Xm
i¼1

Z
W

j‘uij2 � fiui þQ21fui>0g dx : ðu1; . . . ; umÞ a AðWÞ
( )

;ð1:1Þ

where WHRd is a given (Lipschitz) bounded open set, Q : W ! R is a measur-
able function, f1; . . . ; fm a LlðWÞ and the admissible set AðWÞ is given by

AðWÞ :¼ fðu1; . . . ; umÞ a ½H 1ðWÞ�m : ui b 0; ui ¼ c on qW;ð1:2Þ
uiuj ¼ 0 a:e: on W; EiA jg;

where cb 0 is a given constant.

Remark 1.1. • If Q ¼ 0, then we have a classical optimal partition problem as
the ones studied in [8], [10], [11], [12] and [15].

• If c ¼ 1, m ¼ 1, f1 ¼ 0 and 0 < aaQ2 a b < þl, then (1.1) reduces to the
problem considered in [1].

• If m ¼ 1, QC 1, f1 ¼ f and f2 ¼ �f , then the solution of (1.1) is given by

u�
1 ¼ u�

þ :¼ supfu�; 0g; u�
2 ¼ u�

� :¼ supf�u�; 0g;



where u� a H 1
0 ðWÞ is a solution of the following problem, considered in [4],

min

Z
W

j‘uj2 � fu dxþ jfuA 0gj : u a H 1
0 ðWÞ

� �
:

• If, QC 1 and f1 ¼ � � � ¼ fm ¼ f , then (1.1) reduces to a problem considered in
[6] and [3].

One of the main tools in the study of the Lipschitz continuity of the solutions
ðu�

1 ; . . . ; u
�
mÞ of the multiphase problem (1.1) is the monotonicity formula, which

relates the behaviour of the di¤erent phases u�
i in the points on the common

boundary qfu�
i > 0gB qfu�

j > 0g, the main purpose being to provide a bound
for the gradients j‘u�

i j and j‘u�
j j in these points. The following estimate was

proved in [7], as a generalization of the monotonicity formula from [2], and
was widely used (for example in [4] and also [5]) in the study of free-boundary
problems.

Theorem 1.2 (Ca¤arelli-Jerison-Kenig). Let B1 HRd be the unit ball in Rd

and let u1; u2 a H 1ðB1Þ be non-negative and continuous functions such that

Dui þ 1b 0; for i ¼ 1; 2; and u1u2 ¼ 0 on B1:

Then there is a dimensional constant Cd such that for each r a ð0; 1Þ we have

Y2
i¼1

� 1

r2

Z
Br

j‘uij2

jxjd�2
dx

�
aCd

�
1þ

X2

i¼1

Z
B1

j‘uij2

jxjd�2
dx

�2
:ð1:3Þ

The aim of this paper is to show that the continuity assumption in Theorem
1.2 can be dropped (Theorem 3.1) and to provide the reader with a detailed proof
of the multiphase version (Theorem 4.1 and Corollary 4.2) of Theorem 1.2, which
was proved in [6]. We note that the proof of Theorem 3.1 follows precisely the
one of Theorem 1.2 given in [7]. We report the estimates, in which the continuity
assumption was used, in Section 2 and we adapt them, essentially by approxima-
tion, to the non-continuous case.

A strong initial motivation was provided by the multiphase version of the Alt-
Ca¤arelli-Friedman monotonicity formula, proved in [10] in the special case of
sub-harmonic functions ui in R2 and also for non-linear eigenfunctions, for which
the same technique can be applied. The argument from [10] allows to avoid the
continuity assumption and applies also in the presence of more phases. As a con-
clusion of the Introduction section, we give the proof of this result, which has the
advantage of avoiding the technicalities present in the general case, emphasising
the stronger decay of the gradients in the multiphase case and showing that the
continuous assumption is unnecessary.

Theorem 1.3 (Alt-Ca¤arelli-Friedman; Conti-Terracini-Verzini). Consider the
unit ball B1 HR2 and let u1; . . . ; um a H 1ðB1Þ be m non-negative subharmonic

166 b. velichkov



functions such that

Z
R2

uiuj dx ¼ 0, for every choice of di¤erent indices i; j a

f1; . . . ;mg. Then the function

FðrÞ ¼
Ym
i¼1

� 1

rm

Z
Br

j‘uij2 dx
�

ð1:4Þ

is non-decreasing on ½0; 1�. In particular,

Ym
i¼1

� 1

rm

Z
Br

j‘uij2 dx
�
a

�Z
B1

j‘u1j2 dxþ � � � þ
Z
B1

j‘umj2 dx
�m

:ð1:5Þ

Proof. The function F is of bounded variation and calculating its derivative
we get

F 0ðrÞ
FðrÞ b�m2

r
þ
Xm
i¼1

R
qBr

j‘uij2 dH1R
Br
j‘uij2 dx

:ð1:6Þ

We now prove that the right-hand side is positive for every r a ð0; 1Þ such that

ui a H 1ðqBrÞ, for every i ¼ 1; . . . ;m, and

Z
qBr

uiuj dH
1 ¼ 0, for every iA j a

f1; . . . ;mg. We use the sub-harmonicity of ui to calculate

Z
Br

j‘uij2 dxa
Z
qBr

ui
qui

qn
dH1

a

�Z
qBr

u2i dH
1
�1

2
�Z

qBr

j‘nuij2 dH1
�1

2

;ð1:7Þ

and decomposing the gradient ‘ui in the tangent and normal parts ‘tui and ‘nui,
we have

Z
qBr

j‘uij2 dH1 ¼
Z
qBr

j‘nuij2 dH1 þ
Z
qBr

j‘tuij2 dH1ð1:8Þ

b 2
�Z

qBr

j‘nuij2 dH1
�1

2
�Z

qBr

j‘tuij2 dH1
�1

2

:

Putting together (1.7) and (1.8), we obtain

R
qBr

j‘uij2 dH1R
Br
j‘uij2 dx

b 2
� R

qBr
j‘tuij2 dH1R

qBr
u2i dH

1

�1
2

b 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1ðqBrBWiÞ

p
;ð1:9Þ
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where we use the notation Wi :¼ fui > 0g and for an H1-measurable set oH qBr

we define

l1ðoÞ :¼ min

R
qBr

j‘tvj2 dH1R
qBr

v2 dH1
: v a H 1ðqBrÞ; H1ðfvA 0gnoÞ ¼ 0

( )
:

By a standard symmetrization argument, we have l1ðoÞb
� p

H1ðoÞ

�2
and

so, by (1.6) and the mean arithmetic-mean harmonic inequality, we obtain the
estimate

F 0ðrÞ
FðrÞ b�m2

r
þ
Xm
i¼1

2p

H1ðqBrBWiÞ
b 0;

which concludes the proof. r

2. Preliminary results on the monotonicity factors

In this section we consider non-negative functions u a H 1ðB2Þ such that

Duþ 1b 0 weakly in ½H 1
0 ðB2Þ�0;

and we study the energy functional

AuðrÞ :¼
Z
Br

j‘uj2

jxjd�2
dx;

for r a ð0; 1Þ, which is precisely the quantity that appears in (3.2) and (4.1). We
start with a lemma, which was first proved in [7, Remark 1.5].

Lemma 2.1. Suppose that u a H 1ðB2Þ is a non-negative Sobolev function such
that Duþ 1b 0 on B2 HRd . Then, there is a dimensional constant Cd such
that Z

B1

j‘uj2

jxjd�2
dxaCd

�
1þ

Z
B2nB1

u2 dx
�
:ð2:1Þ

Proof. Let ue ¼ fe � u, where fe a Cl
c ðBeÞ is a standard molifier. Then ue ! u

strongly in H 1ðB2Þ, ue a ClðB2Þ and Due þ 1b 0 on B2�e. We will prove (2.1)
for ue. We note that a brief computation gives the inequality

Dðu2e Þ ¼ 2j‘uej2 þ 2ueDue b 2j‘uej2 � 2ue in ½H 1
0 ðB2�eÞ�0:ð2:2Þ

We now choose a positive and radially decreasing function f a Cl
c ðB3=2Þ such

that f ¼ 1 on B1. By (2.2) we get
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2

Z
B3=2

fðxÞj‘uej2

jxjd�2
dxa

Z
B3=2

fðxÞ 2ue þ Dðu2e Þ
jxjd�2

dxð2:3Þ

¼
Z
B3=2

2
fðxÞue
jxjd�2

þ u2eD
� fðxÞ
jxjd�2

�
dx

¼
Z
B3=2

(
2
fðxÞue
jxjd�2

þ u2e
DfðxÞ
jxjd�2

þ u2e‘fðxÞ � ‘ðjxj
2�dÞ

)
dx� Cdu

2
e ð0Þ

a 2

Z
B3=2

fðxÞue
jxjd�2

dxþ Cd

Z
B2nB1

u2e dx:

Thus, in order to obtain (2.1), it is su‰cient to estimate the norm kuekLlðB1Þ with
the r.h.s. of (2.1). To do that, we first note that since DðueðxÞ þ jxj2=2dÞb 0, we
have

max
x AB1

fueðxÞ þ jxj2=2dgaCd þ Cd

Z
qBr

ue dH
d�1; Er a ð3=2; 2� eÞ;ð2:4Þ

and, after integration in r and the Cauchy-Schwartz inequality, we get

kuekLlðB1Þ aCd þ Cd

�Z
B2nB1

u2e dx
�1=2

;ð2:5Þ

which, together with (2.3), gives (2.1). r

Remark 2.2. For a non-negative function u a H 1ðBrÞ, satisfying

Duþ 1b 0 in ½H 1
0 ðBrÞ�0;

we denote with AuðrÞ the quantity

AuðrÞ :¼
Z
Br

j‘uj2

jxjd�2
dx < þl:ð2:6Þ

• The function r 7! AuðrÞ is bounded and increasing in r.

• We note that AuðrÞ is invariant with respect to the rescaling urðxÞ :¼ uðrxÞ.
Indeed, for any 0 < ra 1 we have

Dur þ 1b 0 and Aurð1Þ ¼ AuðrÞ:
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The next result is implicitly contained in [7, Lemma 2.8] and it is the point in
which the continuity of ui was used. The inequality (2.7) is the analogue of the
estimate (1.9), which is the main ingredient of the proof of Theorem 1.3.

Lemma 2.3. Let u a H 1ðB2Þ be a non-negative function such that Duþ 1b 0 on
B2. Then for Lebesgue almost every r a ð0; 1Þ we have the estimate

1

r4

Z
Br

j‘uj2

jxjd�2
dxaCd

�
1þ r�2ffiffiffiffiffiffiffiffiffiffiffiffiffi

lðu; rÞ
p �Z

qBr

j‘uj2 dHd�1
�1

2
�

ð2:7Þ

þ dodr
�3

2aðu; rÞ

Z
qBr

j‘uj2 dHd�1;

where

lðu; rÞ :¼ min

(R
qBr

j‘vj2 dHd�1R
qBr

v2 dHd�1
: v a H 1ðqBrÞ; such thatð2:8Þ

Hd�1ðfvA 0gB fu ¼ 0gÞ ¼ 0

)
;

and aðu; rÞ a Rþ is the characteristic constant of fu > 0gB qBr, i.e. the non-
negative solution of the equation

aðu; rÞ
�
aðu; rÞ þ d � 2

r

�
¼ lðu; rÞ:ð2:9Þ

Proof. We start by determining the subset of the interval ð0; 1Þ for which we
will prove that (2.7) holds. Let ue :¼ u � fe, where fe is a standard molifier. Then
we have that:

(i) for almost every r a ð0; 1Þ the restriction of u to qBr is Sobolev. i.e. ujqBr
a

H 1ðqBrÞ;
(ii) for almost every r a ð0; 1Þ the sequence of restrictions ð‘ueÞjqBr

converges
strongly in L2ðqBr;R

dÞ to ð‘uÞjqBr
.

We now consider r a ð0; 1Þ such that both (i) and (ii) hold. Using the scaling
urðxÞ :¼ r�2uðrxÞ, we have that

Z
qBr

j‘uj2 dHd�1 ¼ r2
Z
qB1

j‘urj2 dHd�1;

1

r4

Z
Br

j‘uj2

jxjd�2
dx ¼

Z
B1

j‘urj2

jxjd�2
dx;

aður; 1Þ ¼ raðu; rÞ and lður; 1Þ ¼ r2lðu; rÞ:
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Substituting in (2.7), we can suppose that r ¼ 1 and set a :¼ aðu; 1Þ and l :¼
lðu; 1Þ.

If Hd�1ðfu ¼ 0gB qB1Þ ¼ 0, then l ¼ 0. Now if

Z
qB1

j‘uj2 dHd�1 > 0, then

the inequality (2.7) is trivial. If on the other hand,

Z
qB1

j‘uj2 dHd�1 ¼ 0, then u is

a constant on qB1 and so, we may suppose that u ¼ 0 on RdnB1, which again
gives (2.7), by choosing Cd large enough. Thus, it remains to prove the Lemma
in the case Hd�1ðfu ¼ 0gB qB1Þ > 0.

We first note that since Hd�1ðfu ¼ 0gB qB1Þ > 0, the eigenvalue l is strictly
positive. Using the restriction of u on qB1 as a test function in (2.8) we get

l

Z
qB1

u2 dHd�1
a

Z
qB1

j‘tuj2 dHd�1;

where ‘t is the tangential gradient on qB1. In particular, we have

l

Z
qB1

u2 dHd�1
a

Z
qB1

j‘tuj2 dHd�1
a

Z
qB1

j‘uj2 dHd�1 ¼: Buð1Þ:ð2:10Þ

For every e > 0, using the inequality

Dðu2e Þ ¼ 2ueDue þ 2j‘uej2 b�2ue þ 2j‘uej2;

and the fact that Dðue þ jxj2=2dÞb 0, we have

2

Z
B1

j‘uej2

jxjd�2
dxa

Z
B1

2ue þ Dðu2e Þ
jxjd�2

dxð2:11Þ

aCd þ Cd

�Z
qB1

u2e dH
d�1

�1=2
þ
Z
B1

Dðu2e Þ
jxjd�2

dx:

We now estimate the last term on the right-hand side.Z
B1

Dðu2e Þ
jxjd�2

dx ¼
Z
B1

Dðjxj2�dÞu2e dxð2:12Þ

þ
Z
qB1

qðu2e Þ
qn

jxj2�d � qðjxj2�dÞ
qn

u2e

" #
dHd�1

a�dðd � 2Þodu
2
e ð0Þ þ

Z
qB1

2ue
que

qn
dHd�1

þ ðd � 2Þ
Z
qB1

u2e dH
d�1

a

Z
qB1

2ue
que

qn
dHd�1 þ ðd � 2Þ

Z
qB1

u2e dH
d�1;
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where we used that �Dðjxj2�dÞ ¼ dðd � 2Þod d0 (see for example [13, Section
2.2.1]). Since (ii) holds, we may pass to the limit in (2.11) and (2.12), as e ! 0.
Using (2.10) we obtain the inequality

2

Z
B1

j‘uj2

jxjd�2
dxaCd þ Cd

�Z
qB1

u2 dHd�1
�1=2

þ ðd � 2Þ
Z
qB1

u2 dHd�1

þ 2
�Z

qB1

u2 dHd�1
�1

2
�Z

qB1

qu

qn

����
����
2

dHd�1
�1

2

aCd þ Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
Buð1Þ
l

r
þ 1

a

Z
qB1

qu

qn

����
����
2

dHd�1

þ aþ ðd � 2Þ
l

Z
qB1

qu

qt

����
����
2

dHd�1

¼ Cd þ Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
Buð1Þ
l

r
þ Buð1Þ

a
;

where the last equality is due to the definition of a from (2.9). r

3. The two-phase monotonicity formula

In this section we prove the Ca¤arelli-Jerison-Kenig monotonicity formula for
Sobolev functions. We follow precisely the proof given in [7], since the only esti-
mates, where the continuity of ui was used are now isolated in Lemma 2.1 and
Lemma 2.3.

Theorem 3.1 (Two-phase monotonicity formula). Let B1 HRd be the unit ball

in Rd and u1; u2 a H 1ðB1Þ be two non-negative Sobolev functions such that

Dui þ 1b 0; for i ¼ 1; 2; and u1u2 ¼ 0 a:e: in B1:ð3:1Þ

Then there is a dimensional constant Cd such that for each r a ð0; 1Þ we have

Y2
i¼1

� 1

r2

Z
Br

j‘uij2

jxjd�2
dx

�
aCd

�
1þ

X2

i¼1

Z
B1

j‘uij2

jxjd�2
dx

�2
:ð3:2Þ

For the sake of simplicity of the notation, for i ¼ 1; 2 and u1, u2 as in Theorem
3.1, we set

AiðrÞ :¼ AuiðrÞ ¼
Z
Br

j‘uij2

jxjd�2
dx:ð3:3Þ
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In the next Lemma we estimate the derivative (with respect to r) of the quan-
tity that appears in the left-hand side of (3.2) from Theorem 3.1.

Lemma 3.2. Let u1 and u2 be as in Theorem 3.1. Then there is a dimensional
constant Cd > 0 such that the following implication holds: if A1ð1=4ÞbCd and
A2ð1=4ÞbCd, then

d

dr

A1ðrÞA2ðrÞ
r4

� �
b�Cd

� 1ffiffiffiffiffiffiffiffiffiffiffi
A1ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A2ðrÞ

p �A1ðrÞA2ðrÞ
r4

;

for Lebesgue almost every r a ½1=4; 1�.

Proof. We set, for i ¼ 1; 2 and r > 0,

BiðrÞ ¼
Z
qBr

j‘uij2 dHd�1:

Since A1 and A2 are increasing functions, they are di¤erentiable almost every-
where on ð0;þlÞ. Moreover, A 0

i ðrÞ ¼ r2�dBi, for i ¼ 1; 2, in sense of distribu-
tions. Thus, the function

r 7! r�4A1ðrÞA2ðrÞ;

di¤erentiable a.e. and we have

d

dr

A1ðrÞA2ðrÞ
r4

� �
¼
�
� 4

r
þ r2�dB1ðrÞ

A1ðrÞ
þ r2�dB2ðrÞ

A2ðrÞ

�A1ðrÞA2ðrÞ
r4

:

Thus, it is su‰cient to prove, that for almost every r a ½1=4; 1� we have

� 4

r
þ r2�dB1ðrÞ

A1ðrÞ
þ r2�dB2ðrÞ

A2ðrÞ
b�Cd

� 1ffiffiffiffiffiffiffiffiffiffiffi
A1ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A2ðrÞ

p �
:ð3:4Þ

Using the rescaling ui; rðxÞ :¼ r�2uiðrxÞ, we have the identitiesZ
qB1

j‘ui; rj2 dHd�1 ¼ 1

rdþ1

Z
qBr

j‘uij2 dHd�1;ð3:5Þ

Z
B1

j‘ui; rj2

jxjd�2
dx ¼ 1

r4

Z
Br

j‘uij2

jxjd�2
dx;

and so, it is su‰cient to prove (3.4) in the case r ¼ 1. We consider two cases:

(A) Suppose that B1ð1Þb 4A1ð1Þ or B2ð1Þb 4A2ð1Þ. In both cases we have

�4þ B1ð1Þ
A1ð1Þ

þ B2ð1Þ
A2ð1Þ

b 0;

which gives (3.4).
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(B) Suppose that B1ð1Þa 4A1ð1Þ and B2ð1Þa 4A2ð1Þ. By Lemma 2.3 we have

A1ð1ÞaCd þ Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
B1ð1Þ
l1

s
þ B1ð1Þ

2a1
aCd þ Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1Þ
l1

s
þ B1ð1Þ

2a1
;ð3:6Þ

where we used the notation ai :¼ aðui; 1Þ and li ¼ lðui; 1Þ where a and l are
as in Lemma 2.3. We now consider two sub-cases:
(B1) Suppose that a1 b 4 or a2 b 4. By (3.6), we get

A1ð1Þa 2Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1Þ
l1

s
þ B1ð1Þ

a1
:

Now since
ffiffiffi
l

p
1 b a1 b 4 we obtain

4A1ð1Þa 2Cd

ffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1Þ

p
þ B1ð1Þ ¼ A1ð1Þ

� 2Cdffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1Þ

p þ B1ð1Þ
A1ð1Þ

�
;

which gives (3.4).
(B2) Suppose that a1 a 4 and a2 a 4. Then for both i ¼ 1; 2, we have

Cd a
ffiffiffiffiffiffiffiffiffiffi
Ai=l

p
and so, by (3.6)

2aiAið1ÞaCd

ffiffiffiffiffiffiffiffiffiffiffi
Aið1Þ

p
þ Bið1Þ:

Thus (3.4) reduces to a1 þ a2 b 2, which was proved in [14] (see also
[9]). r

The following is the discretized version of Lemma 3.2 and also the main
ingredient in the proof of Theorem 3.1.

Lemma 3.3. Let u1 and u2 be as in Theorem 3.1. Then there is a dimensional
constant Cd > 0 such that the following implication holds: if for some r a ð0; 1Þ

1

r4

Z
Br

j‘u1j2

jxjd�2
dxbCd and

1

r4

Z
Br

j‘u2j2

jxjd�2
dxbCd ;

then we have the estimate

44A1ðr=4ÞA2ðr=4Þa ð1þ d12ðrÞÞA1ðrÞA2ðrÞ;ð3:7Þ

where

d12ðrÞ :¼ Cd

�� 1

r4

Z
Br

j‘u1j2

jxjd�2
dx

��1=2

þ
� 1

r4

Z
Br

j‘u2j2

jxjd�2
dx

��1=2�
:ð3:8Þ

Proof. Using the rescaling urðxÞ ¼ r�2uðrxÞ, we can suppose that r ¼ 1. We
consider two cases:
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(A) If A1ð1Þb 44A1ð1=4Þ or A2ð1Þb 44A2ð1=4Þ, then

A1ð1ÞA2ð1Þ � 44A1ð1=4ÞA2ð1=4ÞbA1ð1ÞðA2ð1Þ � 44A2ð1=4ÞÞb 0;

and so, we have the claim.
(B) Suppose that A1ð1Þa 44A1ð1=4Þ or A2ð1Þa 44A2ð1=4Þ. Then A1ðrÞbCd

and A2ðrÞbCd , for every r a ð1=4; 1Þ and so, we may apply Lemma 3.2

A1ð1ÞA2ð1Þ � 44A1ð1=4ÞA2ð1=4Þ

b�Cd

Z 1

1=4

� 1ffiffiffiffiffiffiffiffiffiffiffi
A1ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A2ðrÞ

p �
A1ðrÞA2ðrÞ dr

b�Cd

3

4

� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1=4Þ

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1=4Þ

p �
A1ð1ÞA2ð1Þ

b�Cd

3

4

� 16ffiffiffiffiffiffiffiffiffiffiffiffi
A1ð1Þ

p þ 16ffiffiffiffiffiffiffiffiffiffiffiffi
A2ð1Þ

p �
A1ð1ÞA2ð1Þ;

where in the second inequality we used the monotonicity of A1 and A2. r

The following lemma corresponds to [7, Lemma 2.9] and its proof implicitly
contains [7, Lemma 2.1] and [7, Lemma 2.3]. We state it here as a single separate
result since it is only used in the proof of the two-phase monotonicity formula
(Theorem 3.1).

Lemma 3.4. Let u1 and u2 be as in Theorem 3.1. Then there are dimensional con-
stants Cd > 0 and e > 0 such that the following implication holds: if A1ð1ÞbCd,
A2ð1ÞbCd and 44A1ð1=4ÞbA1ð1Þ, then A2ð1=4Þa ð1� eÞA2ð1Þ.

Proof. The idea of the proof is roughly speaking to show that if A1ð1=4Þ is not
too small with respect to A1ð1Þ, then there is a big portion of the set fu1 > 0g in
the annulus B1=2nB1=4. This of course implies that there is a small portion of
fu2 > 0g in B1=2nB1=4 and so A2ð1=4Þ is much smaller than A2ð1Þ. We will prove
the Lemma in two steps.

Step 1. There are dimensional constants C > 0 and d > 0 such that if
A1ð1ÞbC and 44A1ð1=4ÞbA1ð1Þ, then jfu1 > 0gBB1=2nB1=4jb djB1=2nB1=4j.

By Lemma 2.1 we have that

A1ð1=4ÞaCd þ Cd

Z
B1=2nB1=4

u21 dx;

and by choosing C > 0 large enough we get

A1ð1=4ÞaCd

Z
B1=2nB1=4

u21 dx:
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Now if jfu1 > 0gBB1=2nB1=4j > 1=2jB1=2nB1=4j, then there is nothing to prove.
Otherwise, there is a dimensional constant Cd such that the Sobolev inequality
holds

�Z
B1=2nB1=4

u
2d
d�2

1 dx
�d�2

d

aCd

Z
B1=2nB1=4

j‘u1j2 dxaCdA1ð1Þ:

By the Hölder inequality, we get

A1ð1=4ÞaCd jfu1 > 0gBB1=2nB1=4j
2
dA1ð1Þ

aCd jfu1 > 0gBB1=2nB1=4j
2
d44A1ð1=4Þ;

which gives the claim of Step 1 since A1ð1=4Þ > 0. The proof in dimension 2 is
analogous.

Step 2. Let d a ð0; 1Þ. Then there are constants C > 0 and e > 0, depending
on d and the dimension, such that if A2ð1ÞbC and jfu2 > 0gBB1=2nB1=4ja
ð1� dÞjB1=2nB1=4j, then A2ð1=4Þa ð1� eÞA2ð1Þ.

Since jfu2 ¼ 0gBB1=2nB1=4jb djB1=2nB1=4j, there is a constant Cd > 0 such
that Z

B1=2nB1=4

u22 dxaCd

Z
B1=2nB1=4

j‘u2j2 dx:

We can suppose that Z
B1=4

j‘u2j2 dxb
1

2

Z
B1

j‘u2j2 dxb
C

2
;

since otherwise the claim holds with e ¼ 1=2. Applying Lemma 2.1 we obtainZ
B1=4

j‘u2j2 dxaCd þ Cd

Z
B1=2nB1=4

u22 dxð3:9Þ

aCd þ CdCd

�Z
B1

j‘u2j2 dx�
Z
B1=4

j‘u2j2 dx
�

a

�
CdCd þ

1

2

�Z
B1

j‘u2j2 dx� CdCd

Z
B1=4

j‘u2j2 dx;

where for the last inequality we chose C > 0 large enough. r

The proof of Theorem 3.1 continues exactly as in [7]. In what follows, for
i ¼ 1; 2, we adopt the notation

Ak
i :¼ Aið4�kÞ; bk

i :¼ 44kAið4�kÞ and dk :¼ d12ð4�kÞ;

where Ai was defined in (3.3) and d12 in (3.8).
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Proof of Theorem 3.1. Let M > 0 be a fixed constant, larger than the dimen-
sional constants in Lemma 3.2, Lemma 3.3 and Lemma 3.4.

Suppose that k a N is such that

44kAk
1A

k
2 bMð1þ A0

1 þ A0
2Þ

2:ð3:10Þ

Then we have

bk
1 ¼ 44kAk

1 bM and bk
2 ¼ 44kAk

2 bM:ð3:11Þ

Thus, applying Lemma 3.3 we get that if k a N does not satisfy (3.10), then

44Akþ1
1 Akþ1

2 a ð1þ dkÞAk
1A

k
2 :ð3:12Þ

We now denote with S1ðMÞ the set

S1ðMÞ :¼ fk a N : 44kAk
1A

k
2 aMð1þ A0

1 þ A0
2Þ

2g;

and with S2 the set

S2 :¼ k a N : 44Akþ1
1 Akþ1

2 aAk
1A

k
2

	 

:

Let L a N be such that L B S1ðMÞ and let l a f0; 1; . . . ;Lg be the largest index
such that l a S1ðMÞ. Note that if fl þ 1; . . . ;L� 1gnS2 ¼ j, then we have

44LAL
1 A

L
2 a 44ðL�1ÞAL�1

1 AL�1
2 a � � �a 44ðlþ1ÞAlþ1

1 Alþ1
2 a 4444lAl

1A
l
2;

which gives that L a S1ð44MÞ.
Repeating the proof of [7, Theorem 1.3], we consider the decreasing sequence

of indices

l þ 1a km < � � � < k2 < k1 aL;

constructed as follows:

• k1 is the largest index in the set fl þ 1; . . . ;Lg such that k1 B S2;

• kjþ1 is the largest integer in fl þ 1; . . . ; kj � 1gnS2 such that

b
kjþ1þ1
1 a ð1þ dkjþ1

Þbkj
1 and b

kjþ1þ1
2 a ð1þ dkjþ1

Þbkj
2 :ð3:13Þ

We now conclude the proof in four steps.
Step 1. 44LAL

1 A
L
2 a 44ðk1þ1ÞAk1

1 Ak1
2 :

Indeed, since fk1 þ 1; . . . ;LgHS2, we have

44LAL
1 A

L
2 a 44ðL�1ÞAL�1

1 AL�1
2 a � � �a 44ðk1þ1ÞAk1þ1

1 Ak1þ1
2 a 4444k1Ak1

1 Ak1
2 :

Step 2. 44kmAkm
1 Akm

2 a 44Mð1þ A0
1 þ A0

2Þ
2.
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Let ~kk a fl þ 1; . . . ; km � 1g be the smallest integer such that ~kk B S2. If no such
~kk exists, then we have

44kmAkm
1 Akm

2 a � � �a 44ðlþ1ÞAlþ1
1 Alþ1

2 a 4444lAl
1A

l
2 a 44Mð1þ A0

1 þ A0
2Þ

2:

Otherwise, since km is the last index in the sequence constructed above, we have
that

b
~kkþ1
1 > ð1þ d~kkÞb

km
1 or b

~kkþ1
2 > ð1þ d~kkÞb

km
2 :

Assuming, without loss of generality that the first inequality holds, we get

44kmAkm
1 Akm

2 a
44ð

~kkþ1ÞA
~kkþ1
1

1þ d~kk
A

~kkþ1
2 a 44

~kkA
~kk
1A

~kk
2 a � � �a 4444lAl

1A
l
2

a 44Mð1þ A0
1 þ A0

2Þ
2;

where in the second inequality we used Lemma 3.3 and afterwards we used the
fact that fl þ 1; . . . ; ~kk � 1gHS2.

Step 3. 44kjA
kj
1 A

kj
2 a ð1þ dkjþ1

Þ44kjþ1A
kjþ1

1 A
kjþ1

2 .
We reason as in Step 2 choosing ~kk a fkjþ1 þ 1; . . . ; kj � 1g to be the smallest

integer such that ~kk B S2. If no such ~kk exists, then fkjþ1 þ 1; . . . ; kj � 1gHS2 and
so we have

44kjA
kj
1 A

kj
2 a 44ðkj�1ÞA

kj�1
1 A

kj�1
2 a � � �a 44ðkjþ1þ1ÞA

kjþ1þ1
1 A

kjþ1þ1
2

a ð1þ dkjþ1
Þ44kjþ1A

kjþ1

1 A
kjþ1

2 ;

where the last inequality is due to Lemma 3.3. Suppose now that ~kk exists. Since kj
and kjþ1 are consecutive indices, we have that

b
~kkþ1
1 > ð1þ d~kkÞb

kj
1 or b

~kkþ1
2 > ð1þ d~kkÞb

kj
2 :

As in Step 2, we assume that the first inequality holds. By Lemma 3.3 we
have

44kjA
kj
1 A

kj
2 a

44ð
~kkþ1ÞA

~kkþ1
1

1þ d~kk
A

~kkþ1
2 a 44

~kkA
~kk
1A

~kk
2 a � � �

a 44ðkjþ1þ1ÞA
kjþ1þ1
1 A

kjþ1þ1
2 a ð1þ dkjþ1

Þ44kjþ1A
kjþ1

1 A
kjþ1

2 :

which concludes the proof of Step 3.
Step 4. Conclusion. Combining the results of Steps 1, 2 and 3, we get

44LAL
1 A

L
2 a 48Mð1þ A0

1 þ A0
2Þ

2
Ym
j¼1

ð1þ dkjÞ:ð3:14Þ
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We now prove that the sequences b
kj
1 and b

kj
2 can both be estimated from above

by a geometric progression. Indeed, since kj B S2, we have

A
kj
1 A

kj
2 a 44A

kjþ1
1 A

kjþ1
2 a 44A

kjþ1
1 A

kj
2 :

Thus A
kj
1 a 44A

kjþ1
1 and analogously A

kj
2 a 44A

kjþ1
2 . Applying Lemma 3.4 we

get

A
kjþ1
1 a ð1� eÞAkj

1 and A
kjþ1
2 a ð1� eÞAkj

2 :

Using again the fact that kj B S2, we obtain

A
kj
1 A

kj
2 a 44A

kjþ1
1 A

kjþ1
2 a 44A

kjþ1
1 ð1� eÞAkj

2 ;

and so

b
kj
1 a ð1� eÞbkjþ1

1 and b
kj
2 a ð1� eÞbkjþ1

2 ; for every j ¼ 1; . . . ;m:ð3:15Þ

By the construction of the sequence kj, we have that for i ¼ 1; 2

b
kj
i b

b
kjþ1þ1
i

1þ dkjþ1

b
b
kjþ1

i

ð1þ dkjþ1
Þð1� eÞ b

�
1� e

2

��1

b
kjþ1

i ;

where for the last inequality we choose M large enough such that k B S1ðMÞ im-
plies dk a e=2, where e is the dimensional constant from Lemma 3.4. Setting

s ¼ ð1� e=2Þ1=2, we have that

b
kj
i b s�2b

kjþ1

i b � � �b s2ð j�mÞbkm
i bMs2ð j�mÞ;

which by the definition of dkj gives dkj a
Cd

M
sm�j

aCds
m�j; for M > 0 large

enough, and

44LAL
1 A

L
2 a

Ym
j¼1

ð1þ Cds
jÞ48Mð1þ A0

1 þ A0
2Þ

2ð3:16Þ

a exp
�Xm

j¼1

logð1þ Cds
jÞ
�
48Mð1þ A0

1 þ A0
2Þ

2

a exp
�
Cd

Xm
j¼1

s j
�
48Mð1þ A0

1 þ A0
2Þ

2

a exp
� Cd

1� s

�
48Mð1þ A0

1 þ A0
2Þ

2;

which concludes the proof. r
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4. Multiphase monotonicity formula

This section is dedicated to the multiphase version of Theorem 3.1, proved in [6].
The proof follows the same idea as in [7]. The major technical di¤erence with
respect to the two-phase case consists in the fact that we only need Lemma 3.3
and its three-phase analogue Lemma 4.5, while the estimate from Lemma 3.4 is
not necessary.

Theorem 4.1 (Three-phase monotonicity formula). Let B1 HRd be the unit ball
in Rd and let ui a H 1ðB1Þ, i ¼ 1; 2; 3, be three non-negative Sobolev functions such
that

Dui þ 1b 0; Ei ¼ 1; 2; 3; and uiuj ¼ 0 a:e: in B1; EiA j:

Then there are dimensional constants e > 0 and Cd > 0 such that for each r a ð0; 1Þ
we have

Y3
i¼1

� 1

r2þe

Z
Br

j‘uij2

jxjd�2
dx

�
aCd

�
1þ

X3

i¼1

Z
B1

j‘uij2

jxjd�2
dx

�3
:ð4:1Þ

As a corollary, we obtain the following result.

Corollary 4.2 (Multiphase monotonicity formula). Let mb 2 and B1 HRd

be the unit ball in Rd . Let ui a H 1ðB1Þ, i ¼ 1; . . . ;m, be m non-negative Sobolev
functions such that

Dui þ 1b 0; Ei ¼ 1; . . . ;m; and uiuj ¼ 0 a:e: in B1; EiA j:

Then there are dimensional constants e > 0 and Cd > 0 such that for each r a ð0; 1Þ
we have

Ym
i¼1

� 1

r2þe

Z
Br

j‘uij2

jxjd�2
dx

�
aCd

�
1þ

Xm
i¼1

Z
B1

j‘uij2

jxjd�2
dx

�m
:ð4:2Þ

Remark 4.3. We note that the additional decay r�e provided by the presence of
a third phase is not optimal. Indeed, at least in dimension two, we expect that
e ¼ m� 2, where m is the number of phases involved. In our proof the constant
e cannot exceed 2=3 in any dimension.

We now proceed with the proof of the three-phase formula. Before we start
with the proof of Theorem 4.1 we will need some preliminary results, analogous
to Lemma 3.2 and Lemma 3.3.

We recall that, for u1, u2 and u3 as in Theorem 4.1, we use the notation

AiðrÞ ¼
Z
Br

j‘uij2

jxjd�2
dx; for i ¼ 1; 2; 3:ð4:3Þ
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The following Lemma 4.4 and Lemma 4.5 were proved in [6] and concern the
function

FðrÞ ¼ r�ð6þ3eÞA1ðrÞA2ðrÞA3ðrÞ:

We report here the proofs for convenience of the reader.

Lemma 4.4. Let u1, u2 and u3 be as in Theorem 4.1. Then there are dimensional
constants Cd > 0 and e > 0 such that if Aið1=4ÞbCd, for every i ¼ 1; 2; 3, then

F 0ðrÞb�Cd

� 1ffiffiffiffiffiffiffiffiffiffiffi
A1ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A2ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A3ðrÞ

p �
FðrÞ;

for Lebesgue almost every r a ½1=4; 1�.

Proof. We set, for i ¼ 1; 2; 3 and r > 0,

BiðrÞ ¼
Z
qBr

j‘uij2 dHd�1:

Since Ai, for i ¼ 1; 2; 3, are increasing functions they are di¤erentiable almost
everywhere on R and A 0

iðrÞ ¼ r2�dBi þ mi in sense of distributions. Thus, the
function FðrÞ is di¤erentiable a.e. and we have

F 0ðrÞ ¼
�
� 6þ 3e

r
þ r2�dB1ðrÞ

A1ðrÞ
þ r2�dB2ðrÞ

A2ðrÞ
þ r2�dB3ðrÞ

A3ðrÞ

�
FðrÞ:

Thus, it is su‰cient to prove that for almost every r a ½1=4; 1� we have

� 6þ 3e

r
þ r2�d

�B1ðrÞ
A1ðrÞ

þ B2ðrÞ
A2ðrÞ

þ B3ðrÞ
A3ðrÞ

�
ð4:4Þ

b�Cd

� 1ffiffiffiffiffiffiffiffiffiffiffi
A1ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A2ðrÞ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
A3ðrÞ

p �
:

Using again the rescaling ui; rðxÞ :¼ r�2uiðrxÞ, we have that (3.5) holds and so, we
may assume that r ¼ 1. We consider two cases.

(A) Suppose that there is some i ¼ 1; 2; 3, say i ¼ 1, such that ð6þ 3eÞA1ð1Þa
B1ð1Þ. Then we have

�ð6þ 3eÞ þ B1ð1Þ
A1ð1Þ

þ B2ð1Þ
A2ð1Þ

þ B3ð1Þ
A3ð1Þ

b�ð6þ 3eÞ þ B1ð1Þ
A1ð1Þ

b 0;

which proves (4.4) and the lemma.
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(B) Suppose that for each i ¼ 1; 2; 3 we have ð6þ 3eÞAið1ÞbBið1Þ. Since, for
every i ¼ 1; 2; 3 we have Aið1ÞbCd , we can choose Cd large enough and
e > 0 small enough such that, by Lemma 2.3 with the notation ai ¼ aðui; 1Þ
and li ¼ lðui; 1Þ, we get

ð2� eÞAið1ÞaCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið1Þ=li

p
þ Bið1Þ=ai aCd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aið1Þ=li

p
þ Bið1Þ=ai:

Moreover, a2i a li, implies

ð2� eÞaiAið1ÞaCd

ffiffiffiffiffiffiffiffiffiffiffi
Aið1Þ

p
þ Bið1Þ:ð4:5Þ

Dividing both sides by Aið1Þ and summing for i ¼ 1; 2; 3, we obtain

ð2� eÞða1 þ a2 þ a3ÞaCd

X3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
Aið1Þ

p þ
X3

i¼1

Bið1Þ
Aið1Þ

;

and so, in order to prove (4.4), it is su‰cient to prove that

a1 þ a2 þ a3 b
6þ 3e

2� e
:ð4:6Þ

Let W�
1 ;W

�
2 ;W

�
3 H qB1 be the optimal partition of the sphere qB1 for the

characteristic constant a, i.e. the triple W�
1 ;W

�
2 ;W

�
3

	 

is a solution of the

problem

minfaðW1Þ þ aðW2Þ þ aðW3Þ : Wi H qB1; Ei;ð4:7Þ
Hd�1ðWi BWjÞ ¼ 0; EiA jg:

We recall that for a set WH qB1, the characteristic constant aðWÞ is the
unique positive real number such that lðWÞ ¼ aðWÞðaðWÞ þ d � 2Þ, where

lðWÞ ¼ min

R
qB1

j‘vj2Hd�1R
qB1

v2Hd�1
: v a H 1ðqB1Þ;Hd�1ðfuA 0gnWÞ ¼ 0

( )
:

We note that, by [14], aðW�
i Þ þ aðW�

j Þb 2, for iA j and so summing on i and
j, we have

3a aðW�
1 Þ þ aðW�

2 Þ þ aðW�
3 Þa a1 þ a2 þ a3:

Moreover, the first inequality is strict. Indeed, if this is not the case, then
aðW�

1 Þ þ aðW�
2 Þ ¼ 2, which in turn gives that W�

1 and W�
2 are two opposite

hemispheres (see for example [9]). Thus W�
3 ¼ j, which is impossible since it

contradicts the equality aðW�
1 Þ þ aðW�

3 Þ ¼ 2, which in turn is implied by the

contradiction assumption. Choosing e to be such that
6þ 3e

2� e
is smaller than

the minimum in (4.7), the proof is concluded. r
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Lemma 4.5. Let u1, u2 and u3 be as in Theorem 4.1. Then, there are dimensional
constants Cd > 0 and e > 0 such that the following implication holds: if for some
r > 0

1

r4

Z
Br

j‘uij2

jxjd�2
dxbCd ; for all i ¼ 1; 2; 3;

then we have the estimate

4ð6þ3eÞA1

� r

4

�
A2

� r

4

�
A3

� r

4

�
a ð1þ d123ðrÞÞA1ðrÞA2ðrÞA3ðrÞ;ð4:8Þ

where

d123ðrÞ :¼ Cd

X3

i¼1

� 1

r4

Z
Br

j‘uij2

jxjd�2
dx

��1=2

:ð4:9Þ

Proof. We first note that the (4.8) is invariant under the rescaling urðxÞ ¼
r�2uðxrÞ. Thus, we may suppose that r ¼ 1. We consider two cases:

(A) Suppose that for some i ¼ 1; 2; 3, say i ¼ 1, we have 46þ3eA1ð1=4ÞaA1ð1Þ.
Then we have

46þ3eA1ð1=4ÞA2ð1=4ÞA3ð1=4ÞaA1ð1ÞA2ð1ÞA3ð1Þ:

(B) Suppose that for every i ¼ 1; 2; 3, we have 46þ3eAið1=4ÞbAið1Þ. Then
Aið1=4ÞbCd for some Cd large enough and so, we can apply Lemma 4.4,
obtaining that

Fð1Þ �Fð1=4Þb�Cd

Z 1

1=4

�X3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
AiðrÞ

p �
A1ðrÞA2ðrÞA3ðrÞ dr

b�Cd

3

4

�X3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aið1=4Þ

p �
A1ð1ÞA2ð1ÞA3ð1Þ

b�3Cd4
2þ3

2e
�X3

i¼1

1ffiffiffiffiffiffiffiffiffiffiffi
Aið1Þ

p �
A1ð1ÞA2ð1ÞA3ð1Þ;

which gives the claim. r

In what follows we give two proofs of Theorem 4.1. The first one follows
precisely the proof of Theorem 3.1, while the second one is more direct and is
contained in [6].
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Proof I of Theorem 4.1. For i ¼ 1; 2; 3, we adopt the notation

Ak
i :¼ Aið4�kÞ; bk

i :¼ 44kAið4�kÞ and dk :¼ d123ð4�kÞ;ð4:10Þ

where Ai was defined in (3.3) and d123 in (4.9).
Let M > 0 and let

S1ðMÞ ¼ fk a N : 4ð6þ3eÞkAk
1A

k
2A

k
3 aMð1þ A0

1 þ A0
2 þ A0

3Þ
3g;

S2 ¼ fk a N : 46þ3eAkþ1
1 Akþ1

2 Akþ1
3 aAk

1A
k
2A

k
3 g:

We first note that if k B S1, then we have

Mð1þ A0
1 þ A0

2 þ A0
3Þ

3
a 4ð6þ3eÞkAk

1A
k
2A

k
3

a 4�ð2�3eÞkbk
1 4

4kAk
2A

k
3

a bk
1Cdð1þ A0

1 þ A0
2 þ A0

3Þ
2;

where the last inequality is due to the two-phase monotonicity formula (Theorem
3.1). Choosing M > 0 big enough, we have that

ðk B S1ðMÞÞ ) ðbk
i bCd ; Ei ¼ 1; 2; 3Þ:

Fix L a N and suppose that L B S1ðMÞ. Let l a f0; . . . ;Lg be the largest index
such that l a S1ðMÞ. We now consider two cases for the interval ½l þ 1;L�.

(Case 1) If fl þ 1; . . . ;LgHS2, then we have

4ð6þ3eÞLAL
1 A

L
2 A

L
3 a � � �a 4ð6þ3eÞðlþ1ÞAlþ1

1 Alþ1
2 Alþ1

3

a 46þ3eMð1þ A0
1 þ A0

2 þ A0
3Þ

2;

and so L a S1ð46þ3eMÞ.
(Case 2) If fl þ 1; . . . ;LgnS2A j, then we choose k1 to be the largest index in

fl þ 1; . . . ;LgnS2. Then we define the sequence

l þ 1a km < � � � < k1 aL;

by induction as

kjþ1 :¼ maxfk a fl þ 1; . . . ; kj � 1gnS2 : b
kjþ1þ1
i a ð1þ dkjþ1

Þbkj
i ; Ei ¼ 1; 2; 3g:

The proof now proceeds in four steps.
Step 1. 4ð6þ3eÞLAL

1 A
L
2 A

L
3 a 4ð6þ3eÞðk1þ1ÞAk1

1 Ak1
2 Ak1

3 :
Indeed, since fk1 þ 1; . . . ;LgHS2, we have

4ð6þ3eÞLAL
1 A

L
2 A

L
3 a � � �a 4ð6þ3eÞðk1þ1ÞAk1þ1

1 Ak1þ1
2 Ak1þ1

3

a 46þ3e4ð6þ3eÞk1Ak1
1 Ak1

2 Ak1
3 :
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Step 2. 4ð6þ3eÞkmAkm
1 Akm

2 Akm
3 a 46þ3eMð1þ A0

1 þ A0
2 þ A0

3Þ
3.

Let ~kk a fl þ 1; . . . ; km � 1g be the smallest index such that ~kk B S2. If no such ~kk
exists, then we have

4ð6þ3eÞkmAkm
1 Akm

2 Akm
3 a � � �a 4ð6þ3eÞðlþ1ÞAlþ1

1 Alþ1
2 Alþ1

3

a 46þ3e4ð6þ3eÞlAl
1A

l
2A

l
3

a 46þ3eMð1þ A0
1 þ A0

2 þ A0
3Þ

3:

Otherwise, since km is the last index in the sequence constructed above, there
exists i a f1; 2; 3g such that

b
~kkþ1
i > ð1þ d~kkÞb

km
i :ð4:11Þ

Assuming, without loss of generality that i ¼ 1, we get

4ð6þ3eÞkmAkm
1 Akm

2 Akm
3 ¼ 4ð�2þ3eÞkmbkm

1 44kmAkm
2 Akm

3

a
4ð�2þ3eÞkm

1þ d~kk
b
~kkþ1
1 ð1þ d23ð4�kmþ1ÞÞ44ðkm�1ÞAkm�1

2 Akm�1
3ð4:12Þ

a
4ð�2þ3eÞðkm�1Þ

1þ d~kk
b
~kkþ1
1 44ðkm�1ÞAkm�1

2 Akm�1
3ð4:13Þ

� � �

a
4ð�2þ3eÞð~kkþ1Þ

1þ d~kk
b
~kkþ1
1 44ð

~kkþ1ÞA
~kkþ1
2 A

~kkþ1
3ð4:14Þ

¼ 4ð6þ3eÞð~kkþ1Þ

1þ d~kk
A

~kkþ1
1 A

~kkþ1
2 A

~kkþ1
3

a 4ð6þ3eÞ~kkA
~kk
1A

~kk
2A

~kk
3 a � � �a 4ð6þ3eÞðlþ1ÞAlþ1

1 Alþ1
2 Alþ1

3ð4:15Þ
a 46þ3e4ð6þ3eÞlAl

1A
l
2A

l
3 a 46þ3eMð1þ A0

1 þ A0
2 þ A0

3Þ
3;ð4:16Þ

where in order to obtain (4.12) we used (4.11) and the two-phase estimate from
Lemma 3.3; for (4.13), we absorb the term that appears after applying Lemma
3.3, using that if M is large enough and e < 2=3, then ð1þ d23ð4�kmþ1ÞÞ4�2þ3e

a 1; repeating the same estimate as above we obtain (4.14); for (4.15), we use
the three-phase Lemma 4.5 and then the fact that fl þ 1; . . . ; ~kkgHS2; for the
last inequality (4.16) we just observed that l a S1ðMÞ.

Step 3. 4ð6þ3eÞkjA
kj
1 A

kj
2 A

kj
3 a ð1þ dkjþ1

Þ4ð6þ3eÞkjþ1A
kjþ1

1 A
kjþ1

2 A
kjþ1

3 .
We reason as in Step 2 choosing ~kk a fkjþ1 þ 1; . . . ; kj � 1g to be the smallest

index such that ~kk B S2. If no such ~kk exists, then fkjþ1 þ 1; . . . ; kj � 1gHS2 and so
we have
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4ð6þ3eÞkjA
kj
1 A

kj
2 A

kj
3 a � � �a 4ð6þ3eÞðkjþ1þ1ÞA

kjþ1þ1
1 A

kjþ1þ1
2 A

kjþ1þ1
3

a ð1þ dkjþ1
Þ4ð6þ3eÞkjþ1A

kjþ1

1 A
kjþ1

2 A
kjþ1

3 ;

where the last inequality is due to Lemma 3.3. Suppose now that ~kk exists. Since kj
and kjþ1 are consecutive indices, there exists some i a f1; 2; 3g such that

b
~kkþ1
i > ð1þ d~kkÞb

kj
i :ð4:17Þ

Without loss of generality we may assume that i ¼ 1.

4ð6þ3eÞkjA
kj
1 A

kj
2 A

kj
3 ¼ 4ð�2þ3eÞkj b

kj
1 44kjA

kj
2 A

kj
3

a
4ð�2þ3eÞkj

1þ d~kk
b
~kkþ1
1 ð1þ d23ð4�kjþ1ÞÞ44ðkj�1ÞA

kj�1
2 A

kj�1
3ð4:18Þ

a
4ð�2þ3eÞðkj�1Þ

1þ d~kk
b
~kkþ1
1 44ðkj�1ÞA

kj�1
2 A

kj�1
3ð4:19Þ

� � �

a
4ð�2þ3eÞð~kkþ1Þ

1þ d~kk
b
~kkþ1
1 44ð

~kkþ1ÞA
~kkþ1
2 A

~kkþ1
3ð4:20Þ

¼ 4ð6þ3eÞð~kkþ1Þ

1þ d~kk
A

~kkþ1
1 A

~kkþ1
2 A

~kkþ1
3 a 4ð6þ3eÞ~kkA

~kk
1A

~kk
2A

~kk
3 a � � �

a 4ð6þ3eÞðkjþ1þ1ÞA
kjþ1þ1
1 A

kjþ1þ1
2 A

kjþ1þ1
3ð4:21Þ

a ð1þ dkjþ1
Þ4ð6þ3eÞkjþ1A

kjþ1

1 A
kjþ1

2 A
kjþ1

3 ;ð4:22Þ

where for (4.18) we used (4.17) and Lemma 3.3; for (4.19) and (4.20), we use that
for M > 0 large enough and e < 2=3 we have ð1þ d23ð4�kmþ1ÞÞ4�2þ3e a 1; for

(4.21), we apply Lemma 4.5 and then the fact that fl þ 1; . . . ; ~kkgHS2; for the
last inequality (4.22) we use Lemma 4.5.

Step 4. Conclusion. By the steps 1, 2 and 3 we have that

4ð6þ3eÞLAL
1 A

L
2 A

L
3 a 42ð6þ3eÞMð1þ A0

1 þ A0
2 þ A0

3Þ
3
Ym
j¼1

ð1þ dkj Þð4:23Þ

we now prove that for each i ¼ 1; 2; 3 the sequence b
kj
i is majorized by a geomet-

ric progression depending on M. Indeed, since kj B S2, we have

A
kj
1 A

kj
2 A

kj
3 a 46þ3eA

kjþ1
1 A

kjþ1
2 A

kjþ1
3

a 4�ð2�3eÞ44A
kjþ1
1 ð1þ d23ð4�kj ÞÞAkj

2 A
kj
3

a s244A
kjþ1
1 A

kj
2 A

kj
3 ;
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for some dimensional constant s < 1, where the second inequality is due to
Lemma 3.3 and the last inequality is due to the choice of M large enough and
e < 2=3. Thus we obtain

b
kj
i a s2b

kjþ1
i ; Ei ¼ 1; 2; 3 and E j ¼ 1; . . . ;m:ð4:24Þ

for each i ¼ 1; 2; 3 and each kj a S3. Now using the definition of the finite se-
quence kj and (4.24), we deduce that for all i ¼ 1; 2; 3 and j ¼ 2; . . . ;m we have

b
kj
i a s2b

kjþ1
i a s2ð1þ dkjÞb

kj�1

i a sb
kj�1

i ;

and so, repeating the above estimate, we get

b
kj
i b s�1b

kjþ1

i b � � �b s j�mbkm
i b s j�mM;

and, by the definition (4.27) (and (4.9)) of dkj ,

dkj a
Cd

M
s

m�j

2 ; E j ¼ 1; . . . ;m:ð4:25Þ

By (4.23) and (4.25) and reasoning as in (3.16) we deduce

4ð6þ3eÞLAL
1 A

L
2 A

L
3 a exp

� Cd

1�
ffiffiffi
s

p
�
42ð6þ3eÞMð1þ A0

1 þ A0
2 þ A0

3Þ
3;ð4:26Þ

which concludes the proof of Theorem 4.1. r

Proof II of Theorem 4.1. For i ¼ 1; 2; 3, we adopt the notation

Ak
i :¼ Aið4�kÞ; bk

i :¼ 44kAið4�kÞ and dk :¼ d123ð4�kÞ;ð4:27Þ

where Ai was defined in (3.3) and d123 in (4.9).
Let M > 0 and let

SðMÞ ¼ fk a N : 4ð6þ3eÞkAk
1A

k
2A

k
3 aMð1þ A0

1 þ A0
2 þ A0

3Þ
3g:

We will prove that if e > 0 is small enough, then there is M large enough such
that for every k B SðMÞ, we have

4ð6þ3eÞkAk
1A

k
2A

k
3 aCMð1þ A0

1 þ A0
2 þ A0

3Þ
3;

where C is a constant depending on d and e.
We first note that if k B SðMÞ, then we have

Mð1þ A0
1 þ A0

2 þ A0
3Þ

3
a 4ð6þ3eÞkAk

1A
k
2A

k
3

a 4�ð2�3eÞkbk
1 4

4kAk
2A

k
3

a 4�ð2�3eÞkbk
1Cdð1þ A0

1 þ A0
2 þ A0

3Þ
2;
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and so bk
1 bC�1

d M4ð2�3eÞk, where Cd is the constant from Theorem 3.1. Thus,
choosing e < 2=3 and M > 0 large enough, we can suppose that, for every
i ¼ 1; 2; 3, bk

i > Cd , where Cd is the constant from Lemma 4.5.
Suppose now that L a N is such that L B SðMÞ and let

l ¼ maxfk a N : k a SðMÞB ½0;L�g < L;

where we note that the set SðMÞB ½0;L� is non-empty for large M, since for
k ¼ 0; 1, we can apply Theorem 3.1. Applying Lemma 4.5, for k ¼ l þ 1; . . . ;
L� 1 we obtain

4ð6þ3eÞLAL
1 A

L
2 A

L
3 a

� YL�1

k¼lþ1

ð1þ dkÞ
�
4ð6þ3eÞðlþ1ÞAlþ1

1 Alþ1
2 Alþ1

3ð4:28Þ

a

� YL�1

k¼lþ1

ð1þ dkÞ
�
4ð6þ3eÞðlþ1ÞAl

1A
l
2A

l
3

a

� YL�1

k¼lþ1

ð1þ dkÞ
�
46þ3eMð1þ A0

1 þ A0
2 þ A0

3Þ
2;

where dk is the variable from Lemma 4.5.
Now it is su‰cient to notice that for k ¼ l þ 1; . . . ;L� 1, the sequence dk is

bounded by a geometric progression. Indeed, setting s ¼ 4�1þ3e=2 < 1, we have
that, for k B SðMÞ, dk aCsk, which gives

YL�1

k¼lþ1

ð1þ dkÞa
YL�1

k¼lþ1

ð1þ CskÞð4:29Þ

¼ exp
� XL�1

k¼lþ1

logð1þ CskÞ
�

a exp
�
C

XLþ1

k¼l�1

sk
�
a exp

� C

1� s

�
;

which concludes the proof. r
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