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Jerison-Kenig, by BoZHIDAR VELICHKOV, communicated on 14 February 2014.

ABSTRACT. — The aim of this note is to prove the monotonicity formula of Caffarelli-Jerison-
Kenig for functions, which are not necessarily continuous. We also give a detailed proof of the
multiphase version of the monotonicity formula in any dimension.
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1. INTRODUCTION

The Alt-Caffarelli-Friedman monotonicity formula is one of the most powerful
tools in the study of the regularity of multiphase optimization problems as, for
example, optimal partition problems for functionals involving some partial differ-
ential equation, a prototype being the multiphase Alt-Caffarelli problem

(1.1) min{Z/Q \Vui|® — fou; + O™ ymoy dx : (ur, ... ) € &/(Q)},
i—1

where Q — R? is a given (Lipschitz) bounded open set, Q : Q@ — R is a measur-
able function, f1,..., f,, € L*(Q) and the admissible set .o7(Q) is given by

(1.2) A (Q) = {(u1,...,up) € [H(Q)]" : u; = 0,u; = ¢ on 0Q,
uiu; = 0 a.e. on Q, Vi # j},

where ¢ > 0 is a given constant.

REMARK 1.1. e If O = 0, then we have a classical optimal partition problem as
the ones studied in [8], [10], [11], [12] and [15].

elfc=1,m=1, fi=0and 0 <a< Q> <b< +oo, then (1.1) reduces to the
problem considered in [1].

elfm=1, 0=1, fi = f and f, = —f, then the solution of (1.1) is given by

uj = uj :=sup{u”,0}, wu; =u’ :=sup{—u",0},
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where u* € H}(Q) is a solution of the following problem, considered in [4],

min{/ \Vu|* — fudx + [{u#0} :ue HOI(Q)}.
Q

elf,0=1land fj =--- = f,, = f, then (1.1) reduces to a problem considered in
[6] and [3].

One of the main tools in the study of the Lipschitz continuity of the solutions
(uf,...,u;,) of the multiphase problem (1.1) is the monotonicity formula, which
relates the behaviour of the different phases u in the points on the common
boundary d{u; > 0} nd{u; > 0}, the main purpose being to provide a bound
for the gradients |Vu;| and |Vu;| in these points. The following estimate was
proved in [7], as a generalization of the monotonicity formula from [2], and
was widely used (for example in [4] and also [5]) in the study of free-boundary

problems.

THEOREM 1.2 (Caffarelli-Jerison-Kenig). Let By = R? be the unit ball in R?
and let uy,u, € H' (By) be non-negative and continuous functions such that

Aui+1>0, fori=1,2, and ui, =0 on By.

Then there is a dimensional constant Cy such that for each r € (0, 1) we have

13) H(ﬂ Vui|? x) ( Z IVuzl )

i1 5 || 3 x|

The aim of this paper is to show that the continuity assumption in Theorem
1.2 can be dropped (Theorem 3.1) and to provide the reader with a detailed proof
of the multiphase version (Theorem 4.1 and Corollary 4.2) of Theorem 1.2, which
was proved in [6]. We note that the proof of Theorem 3.1 follows precisely the
one of Theorem 1.2 given in [7]. We report the estimates, in which the continuity
assumption was used, in Section 2 and we adapt them, essentially by approxima-
tion, to the non-continuous case.

A strong initial motivation was provided by the multiphase version of the Alt-
Caffarelli-Friedman monotonicity formula, proved in [10] in the special case of
sub-harmonic functions u; in R? and also for non-linear eigenfunctions, for which
the same technique can be applied. The argument from [10] allows to avoid the
continuity assumption and applies also in the presence of more phases. As a con-
clusion of the Introduction section, we give the proof of this result, which has the
advantage of avoiding the technicalities present in the general case, emphasising
the stronger decay of the gradients in the multiphase case and showing that the
continuous assumption is unnecessary.

THEOREM 1.3 (Alt-Caffarelli-Friedman; Conti-Terracini-Verzini). Consider the
unit ball B; = R?> and let ULy ... Uy € Hl(Bl) be m non-negative subharmonic
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functions such that /
R
{1,...,m}. Then the function

uiuydx = 0, for every choice of different indices i, j e
, Uikt

m

(1.4) o) =[] <r£"/3 Vit dx)

i=1
is non-decreasing on [0, 1]. In particular,
T/ 1 2 2 2 5,\"
1.5 —/ Vu;|"dx) < / Vu dx—|—~-~+/ Vu,,|”dx) .
(1.5) H(r'" |Vl dx) < ([ Val 1Vl dx)

ProoF. The function @ is of bounded variation and calculating its derivative
we get

(D/(V) < 7m72 iW
o fB,.W“i|2dx '

i=1

(1.6)

We now prove that the right-hand side is positive for every r € (0,1) such that
u; € H'(0B,), for every i=1,...,m, and u,-ujdjfl =0, for every i # j €

0B,
{1,...,m}. We use the sub-harmonicity of u; to calculate

Ou; 3 3
L. i2 i*l : / ; ! / n z’2 :
(1.7) /Br|Vu| dx < /Mru “Lax g( L d%)( [ Vi dyf),

o

and decomposing the gradient Vu; in the tangent and normal parts V,u; and V,u;,
we have

(1.8) /|Vui|2d%"—/ |V,,u,»|2d<%”1+/ V| dA’!
0B, 0B, 0B,

¢

22(/ |Vnu,-|2d9fl)%</ |Vfui|2d%1>%.
0B, OB,

(&

Putting together (1.7) and (1.8), we obtain

fé’B, |V”i|2d°9f1 faB,. |Vrui|2d%]
R i 2(—

1.9
R AN Jop A

)E > 2\/71(0B, " Q),
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where we use the notation Q; := {u; > 0} and for an # !_measurable set v = 0B,
we define

cve H'(0B,), #'({v #0}\w) = 0}.

. . T 2
By a standard symmetrization argument, we have 1;(w) > <%1—) and
A (w

so, by (1.6) and the mean arithmetic-mean harmonic inequality, we obtain the
estimate

which concludes the proof. |

2. PRELIMINARY RESULTS ON THE MONOTONICITY FACTORS
In this section we consider non-negative functions u € H'(B;) such that
Au+1>0 weaklyin [H)(By)]'

and we study the energy functional

2
Ay = [V

dx,

d-2
B, |x]|

for r € (0,1), which is precisely the quantity that appears in (3.2) and (4.1). We
start with a lemma, which was first proved in [7, Remark 1.5].

LEMMA 2.1. Suppose that u e H'(B,) is a non-negative Sobolev function such
that Au+1>0 on B, = R Then, there is a dimensional constant C; such
that

2
2.1) Vl” g < Cu(1 +/ u dx).
B>)\B

B |x|

ProOOF. Let u, = ¢, x u, where ¢, € C(B;) is a standard molifier. Then u, — u
strongly in H'(B,), u, € C*(B,) and Au, +1 >0 on B, ,. We will prove (2.1)
for u,. We note that a brief computation gives the inequality

(2.2) A(u?) = 2|Vu,)* + 2u,Au, > 2|Vu,|* — 2u, in [H] (B, )]

We now choose a positive and radially decreasing function ¢ € C(B3/;) such
that ¢ = 1 on B;. By (2.2) we get
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$(x)|Vu,|? 2u, + A(u?)
d-2 dx < (X) )
| By |x|

[ ()
- / 2 () &

[ (ot oty
B3 |x|‘ |x]

+ 1 Vh(x) - V(IXl”)} dx — Cqu; (0)

(23) 2 dx

By, |x

<?2 ();)fl; dx + Cd/ uf dx.
B)\By

By |x]

Thus, in order to obtain (2.1), it is sufficient to estimate the norm [|u;( ;- 5, With
the r.h.s. of (2.1). To do that, we first note that since A(u,(x) + |x|*/2d) > 0, we
have

(2.4) m%x{ug(x) +|x|?/2d} < Cy+ Cd][
xeB; 0B,

u dA Vre (3/2,2 —¢),
and, after integration in r and the Cauchy-Schwartz inequality, we get

1/2
(2.5) el o 5,y < Cd+Cd</ ufdx) ,

B\B
which, together with (2.3), gives (2.1). O
REMARK 2.2. For a non-negative function u € H'(B,), satisfying

Au+1>0 in[H(B)],
we denote with 4,(r) the quantity

v

= d—2
B, ||

(2.6) A, (r) dx < +o0.

e The function r — A,(r) is bounded and increasing in r.
e We note that A4,(r) is invariant with respect to the rescaling u,(x) := u(rx).
Indeed, for any 0 < r < 1 we have

Au,+1>0 and 4,(1)=A4,(r).
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The next result is implicitly contained in [7, Lemma 2.8] and it is the point in
which the continuity of u; was used. The inequality (2.7) is the analogue of the
estimate (1.9), which is the main ingredient of the proof of Theorem 1.3.

LEMMA 2.3. Let u € H'(B,) be a non-negative function such that Au+ 1> 0 on
Bs. Then for Lebesgue almost every r € (0, 1) we have the estimate

2

(2.7) / ||V”| <Ci(1+ 7;(% - ( ][B Vi) dyfd-l)%)

d -3
4 dedr ]/ Vul2 dr",
0B,

200(u, 1)
where
[op V0> do ™!
(2.8) A(u,r) ;= min (f 2 T H'(0B,), such that
o8, Y

#4 (fo 0} {u=0}) = o},

and o(u,r) € R™ is the characteristic constant of {u >0} N 0B, i.e. the non-
negative solution of the equation

(2.9) o(u, r) (oc(u, r) + d—f) = u,r).

PrOOF. We start by determining the subset of the interval (0, 1) for which we
will prove that (2.7) holds. Let u, := u * ¢,, where ¢, is a standard molifier. Then
we have that:

(1) for almost every r € (0, 1) the restriction of u to 0B, is Sobolev. i.e. u;p €
H'(2B,);
(i) for almost every r e (0,1) the sequence of restrictions (Viu,),p converges
strongly in L?(0B,; RY) to (Vu) 5,

We now consider r € (0,1) such that both (i) and (ii) hold. Using the scaling
u,(x) := r2u(rx), we have that

][ \Vul* dow =" = rz][ V| doa !,
0B

|Vu| \
/ ] =/, |x|d—2 dx,
1

a(up, 1) = ro(u,r) and  A(up, 1) = r?A(u,r).
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Substituting in (2.7), we can suppose that r =1 and set «:= a(u,1) and 1 :=

Au, 1).

If #9°'({u=0}n0B;) =0, then 2 = 0. Now if / \Vu|* d# =" > 0, then
0B,

the inequality (2.7) is trivial. If on the other hand, / \Vu|* d#?=" = 0, then u is
0B

a constant on 0B; and so, we may suppose that u —0on R\ By, which again

gives (2.7), by choosing C,; large enough. Thus, it remains to prove the Lemma

in the case #“'({u =0} ndB;) > 0.

We first note that since # /"' ({u = 0} N dB;) > 0, the eigenvalue / is strictly
positive. Using the restriction of # on ¢B) as a test function in (2.8) we get

;v/ u2dyfd1g/ \Vou|> don 1,
(3Bl (QBI

where V, is the tangential gradient on dBy. In particular, we have
(2.10) ,1/ wdn ! < / Vol dn ' < / \Vu|* d#?=" =: B,(1).
0B 0B 0By

For every ¢ > 0, using the inequality
AW?) = 2uAu, + 2|Vuy|* = —2u, + 2|Vu,|?,

and the fact that A(u, + |x|*/2d) > 0, we have

Vu,|* 2u, + Au?)
(2.11) 2 | ;des / ———dx
Bl |.X| Bl |x|

1/2 A(u?
< Cd+Cd(/ wtdr ) +/ (u;)
2By B | x|

We now estimate the last term on the right-hand side.

(2.12) /B AGE) /B | Allx/ )2 dx

x|
+
0B

< —d(d — 2)wau?(0) + / 2u,—da !

0B, on

dx.

o(u7)

on

27d)
e P [

- (d—2)/ u>don !
(331

s/ 2u86“8dyfd—1+(d—2)/ w>dn !,
B on

0B,
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where we used that —A(|x|2_d) =d(d —2)wa0 (see for example [13, Section
2.2.1]). Since (ii) holds, we may pass to the limit in (2.11) and (2.12), as ¢ — 0.
Using (2.10) we obtain the inequality

2 1/2
2/ |VZ‘|72 dx < Cy+ Cd(/ 2 d%"’l) + (d—2)/ W2 dd=!
B | x| 2By

0By
= dwl)%( W o
“ 0B on
<Cd+C\/ / — d%‘“
By
+a<+<d—2> i
A 0B 0t
B,(1) B,(1
— Cd + Cd L + —() ,
A o
where the last equality is due to the definition of o from (2.9). O

3. THE TWO-PHASE MONOTONICITY FORMULA

In this section we prove the Caffarelli-Jerison-Kenig monotonicity formula for
Sobolev functions. We follow precisely the proof given in [7], since the only esti-
mates, where the continuity of u; was used are now isolated in Lemma 2.1 and
Lemma 2.3.

THEOREM 3.1 (Two-phase monotonicity formula). Let B < R be the unit ball
in RY and uy,ur € H' (B1) be two non-negative Sobolev functions such that

(3.1) Au;+1>0, fori=1,2, and wmuy =0 a.e. in By.

Then there is a dimensional constant Cy such that for each r € (0,1) we have

(3.2) ]'[(r2 'V”’_‘ d) < (+Z Val 4 )"

i=1 Bi |X‘

For the sake of simplicity of the notation, for i = 1,2 and u;, u, as in Theorem
3.1, we set

12
(3.3) A(r) = [V
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In the next Lemma we estimate the derivative (with respect to r) of the quan-
tity that appears in the left-hand side of (3.2) from Theorem 3.1.

LEMMA 3.2. Let uy and u, be as in Theorem 3.1. Then there is a dimensional
constant Cq > 0 such that the following implication holds: if A,(1/4) > C,; and
A>(1/4) > Cy, then

d [Al(r)Az(r) 1 )Al(r)Az(r)

1
dr ré } z—Cd<‘/Al(r)+1/A2(r) 4

for Lebesgue almost every r € [1/4,1].

i

Proor. Weset, fori=1,2and r > 0,
Bi(r) = / \Vas|* dow?=".
0B,

Since 4, and A, are increasing functions, they are differentiable almost every-
where on (0,+00). Moreover, A!(r) = r>=4B;, for i = 1,2, in sense of distribu-
tions. Thus, the function

ri— A1 (r) As(r),
differentiable a.e. and we have

d {AI(V)Az(V)] :( 4+V2dBl(V)+V2de(r))Al(er(V)_

A 4

dr

r Al(r) Az(r)

Thus, it is sufficient to prove, that for almost every r € [1/4, 1] we have

4 r7IBi(r) r79By(r)

O A NC I N e

_Cd<

1 1
«/A](r) i w/Az(V))'
2

Using the rescaling u; ,(x) := r~=u;(rx), we have the identities

1
35 LPdad! = / N2 dad!
(3.5) / V| [, 1Vl ,
2 2
i 1 Vu;
/ |Vucj—|2 dx = — | L;z—|2dx’
B |x] " JB, |x|

and so, it is sufficient to prove (3.4) in the case r = 1. We consider two cases:

(A) Suppose that B;(1) > 44,(1) or B(1) > 4A4;,(1). In both cases we have

Bi(1) | B(1) _

4 +A1(1) Ax(1) —

which gives (3.4).
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(B) Suppose that Bi(1) <44;(1) and By(1) <44,(1). By Lemma 2.3 we have

>

1)  Bi(l Ai1(1)  By(l1
(3.6) A1) <Ca+Cy 1«()-1- 1()st+Cd 1~()_|_ 1(>7
2z 20 A 20

where we used the notation o; := o(u;, 1) and 4; = A(u;, 1) where o and A are
as in Lemma 2.3. We now consider two sub-cases:
(B1) Suppose that o; >4 or a > 4. By (3.6), we get

A, (1) +Bl(1).

Al(l) <2Cy 7 o

Now since V4] > o; > 4 we obtain

2Cy 31(1)>7

441(1) <2C/ (1) + Bi(1) = Al(”(m*/n(l)

which gives (3.4).
(B2) Suppose that oy <4 and on <4. Then for both i=1,2, we have
Cy < \/A;// and so, by (3.6)

20(1'14,'(1) < Cd\/ A,(l) + B,(l)
Thus (3.4) reduces to a; + oy > 2, which was proved in [14] (see also
[9]). O

The following is the discretized version of Lemma 3.2 and also the main

ingredient in the proof of Theorem 3.1.

LEMMA 3.3. Let u; and uy be as in Theorem 3.1. Then there is a dimensional

constant Cy > 0 such that the following implication holds: if for some r € (0, 1)

1 [ |Viy)? 1 Vu,|?
= | L:11_|2 dx > Cyq and —4/ | Li]2_|2 dx = Cy,
/s |x| ™ JB, |x|

then we have the estimate

(3.7) A1 (r/4) A2(r/4) < (1+012(r) A1 (r) A (1),

where

o9 an= (G Stee) (G a0 ™)

V4 B, |x|d72 r4 B, |x|d72

PrROOF. Using the rescaling u,(x) = r—2u(rx), we can suppose that r = 1. We

consider two cases:
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(A) IfA](l) > 44A1(1/4) or Az(l) = 44A2(1/4), then
A1(1)Ax(1) = 424, (1/4)4>(1/4) = A41(1)(4a(1) — 4% 42(1/4)) = 0,
and so, we have the claim.
(B) Suppose that A;(1) <4%*4;(1/4) or A>(1) <4*45(1/4). Then A(r) > C,
and A>(r) = Cy, for every r € (1/4,1) and so, we may apply Lemma 3.2

A1(1)Ax(1) — 4%4,(1/4)4>(1/4)

> —Cd/1 ( ! + ! )AI(V)Az(V)dr
h 14 N\ Ai(r)  \/Ax(r)
3 1 1
2~ ) A O
3, 16 16
=Gy O

where in the second inequality we used the monotonicity of 4; and 4,. O

The following lemma corresponds to [7, Lemma 2.9] and its proof implicitly
contains [7, Lemma 2.1] and [7, Lemma 2.3]. We state it here as a single separate
result since it is only used in the proof of the two-phase monotonicity formula
(Theorem 3.1).

LeEMMA 3.4. Let uy and uy be as in Theorem 3.1. Then there are dimensional con-
stants Cy > 0 and ¢ > 0 such that the following implication holds: if A(1) = Cy,
Az(l) > Cy and44A1(1/4) > Al(l), then A2<1/4) < (1 — 8)142(1)

PRrROOF. The idea of the proof is roughly speaking to show that if 4,(1/4) is not
too small with respect to 4;(1), then there is a big portion of the set {u; > 0} in
the annulus B, /,\B)/4. This of course implies that there is a small portion of
{u> > 0} in By »\B)/4 and so A5(1/4) is much smaller than A,(1). We will prove
the Lemma in two steps.

Step 1. There are dimensional constants C >0 and 6 >0 such that if
Al(l) > C and 44A1(1/4) > Al(l), then |{u1 > 0} ﬁBl/Q\B1/4| > 5|Bl/2\B1/4|

By Lemma 2.1 we have that

mW®3Q+Q/ ui dx,
Bi5\Bys
and by choosing C > 0 large enough we get

Ammgq/ u? dx.
Bi)\Bi)4
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Now if [{u; > 0} N By5\B 4| > 1/2|By/2\B) 4|, then there is nothing to prove.
Otherwise, there is a dimensional constant C; such that the Sobolev inequality
holds

(/ @Z@TSQ/ Vun|> dx < Cady (1).
Bi2\Biy Bi2\Bij4

By the Holder inequality, we get

A1(1/4) < Col{ur > 0} 0 Bijs\Byjali4i (1)
< Cal{ur > 0} A By 5\ By 4| 74% 41 (1/4),

which gives the claim of Step I since 4;(1/4) > 0. The proof in dimension 2 is
analogous.

Step 2. Let 0 € (0,1). Then there are constants C > 0 and ¢ > 0, depending
on ¢ and the dimension, such that if A>(1) = C and [{uz >0} 0 By5\B 4| <
(1 _5)|Bl/2\Bl/4‘: then A2(1/4) < (1 - 6)A2(1)

Since [{uz = 0} N By 2\ B1/s| = 6|B12\By4|, there is a constant Cs > 0 such
that

/ uz dx < C,;/ \Vup|? dx.
By \Bis B1)2\Biya

We can suppose that

1
/ \Vus|*dx = = [ |Vua|* dx > E,
By, 2 B 2

since otherwise the claim holds with ¢ = 1/2. Applying Lemma 2.1 we obtain

(3.9) /wﬁwsq+q/ u? dx
B4 B

172\B1/4

< Cd—l—CdC(s(/ |Vu2|2dx—/ |Vu2|2dx)
B Bis

1
< (CdC(; +—) \Van|* dx — Cdes/ Vus|* dx,
2 B Bia

where for the last inequality we chose C > 0 large enough. O

The proof of Theorem 3.1 continues exactly as in [7]. In what follows, for
i =1,2, we adopt the notation

AF = A4;47%), b =4a%4,47%) and O :=012(47F),

where 4; was defined in (3.3) and 9, in (3.8).
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ProOOF OF THEOREM 3.1. Let M > 0 be a fixed constant, larger than the dimen-
sional constants in Lemma 3.2, Lemma 3.3 and Lemma 3.4.
Suppose that k € N is such that

(3.10) 4% A% A% > M1+ 40+ 49)%.
Then we have
(3.11) by =4%Af > M and by =4%45 > M.
Thus, applying Lemma 3.3 we get that if k£ € N does not satisfy (3.10), then
(3.12) AT AT < (1 +6,) AT A5
We now denote with S} (M) the set
S{(M) = {k e N : 4% Ak 4% < M(1 4+ 4% + 49)%},
and with S, the set
Sy i={keN:4* AT 45 < Af 4%}

Let L € N be such that L ¢ S;(M) and let / € {0,1,...,L} be the largest index
such that / € S;(M). Note that if {{+1,..., L — 1}\S, = 0, then we have

44LA1LA2L < 44(L71)A1LflA2Lfl <...< 44(1+1)A{+1Aé+1 < 44441A{Aé,

which gives that L e S;(4*M).
Repeating the proof of [7, Theorem 1.3], we consider the decreasing sequence
of indices

[+1<k,<---<ky<k <L,
constructed as follows:

® k is the largest index in the set {/ + 1,..., L} such that k| ¢ S>;
e ki1 is the largest integer in {/ + 1,...,k; — 1}\S, such that

(3.13) b < (146,)bY and  bYT < (146, )bY.
We now conclude the proof in four steps.
Step 1. 44 AT AL < 440ka+D) g g
Indeed, since {k; +1,...,L} = S,, we have
44LA1LA2L < 44(L—1)A1L—1A2L—1 <...< 44(k1+1)A{€1+1Aé€1+1 < 4444k1A{€1A§1.

Step 2. 4% A Al < 44M (1 + A) + A9)°.
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_ Let ke {l+1,...,ky,— 1} be the smallest integer such that k ¢ S,. If no such
k exists, then we have

44k’;1A{CHIA§W < ... £44(/+1)A{+1Aé+1 < 44441A{Aé < 44M(1 +A?+Ag)2

Otherwise, since k,, is the last index in the sequence constructed above, we have
that

PEFU S (146p)bk or BEYN > (1 45;)bl.
Assuming, without loss of generality that the first inequality holds, we get

440e+1) Ak+1

k k gk gk I g1 41
s AT < atk gl gk <o <4t 4l 4]

4km km kHl
4% A A <
<4*M(1+ 47 + 49)°,
where in the second inequality we used Lemma 3.3 and afterwards we used the

fact that {/ + 1. -1} <= S,.
Step 3. 44kA ’A <( +5k )44kf“Ak/HAkM

We reason as in Step 2 choosmg ke{kii+1,. 1} to be the smallest
integer such that k ¢ S,. If no such k exists, then {k]+1 + 1 -1} <= S, and
so we have

Aé{f_l <. . < 44(kj“+1)Aicj+l+1A?HH

4% 417 45 < 4401 4 <
< (148, )4%m 4l 4501

k-1
1

where the last inequality is due to Lemma 3.3. Suppose now that k exists. Since k;
and k;, | are consecutive indices, we have that

BEFY > (14+0p)by or 05N> (1+3,)by.

As in Step 2, we assume that the first inequality holds. By Lemma 3.3 we
have
440k+1) k+1

Ak+1 < 44kAkAk
1+5~

4l 4 ki
4% 445 <
Ak +1) gk +1 kga+1 A g1 kit
< 43D AT < (1 46, A AT A5

which concludes the proof of Step 3.
Step 4. Conclusion. Combining the results of Steps 1, 2 and 3, we get

(3.14) 4 AL AL < a3 M (1 + 4D + 4D) H (1+5,).
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We now prove that the sequences bf’ and b;’ can both be estimated from above
by a geometric progression. Indeed, since k; ¢ S>, we have

A ’A <44Ak,+1Ak+l 44Ak+1A

Thus Af’ < 44141{9'+1 and analogously Aé{’ < 44A§/+1. Applying Lemma 3.4 we
get

kj+l
Al

<(1—e)dy and AY" < (1—¢)dy.
Using again the fact that k; ¢ S, we obtain

4 fA <44Ak+1 k+1 44Ak+1(1 e)A;(’,
and so
(3.15) bf" < (1 —fls)bfﬁrl and bé{" <(l- )ka, forevery j=1,...,m.

By the construction of the sequence k;, we have that for i = 1,2
bkj+1+1 bkj+1

phi > i > i > (1 —f)flbf‘f“
b 1+5k/+1 N (1+5k/+1)(1 _8) N 2 b

where for the last inequality we choose M large enough such that k ¢ S;(M) im-
plies o < &/2, where ¢ is the dimensional constant from Lemma 3.4. Setting

ag=(1- 6/2)1/2, we have that

b > o 2l > s g2Umpke 5 ppg2em),

. . . C . .
which by the definition of Jy, gives dy, < ﬁdam*-’ < Cyo™™, for M > 0 large
enough, and

(3.16) 4 afal < TJ(1+ Cao/)4M(1 + 47 + 49)°

J=1

< exp(z log(1 + Cdaj)>48M(1 + A0+ 49)>
=

< exp(CdZo-/)48M(1 + 49+ 49)
=1

Ca 8 0 0\2
)4 M(1+ 4D + 49,

which concludes the proof. |

< exp(
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4. MULTIPHASE MONOTONICITY FORMULA

This section is dedicated to the multiphase version of Theorem 3.1, proved in [6].
The proof follows the same idea as in [7]. The major technical difference with
respect to the two-phase case consists in the fact that we only need Lemma 3.3
and its three-phase analogue Lemma 4.5, while the estimate from Lemma 3.4 is
not necessary.

THEOREM 4.1 (Three-phase monotonicity formula). Let B; < RY be the unit ball
in RY and let u; e H'(By), i = 1,2, 3, be three non-negative Sobolev functions such
that

Aui+1>0, Vi=1,2,3, and uwu;=0a.e. inBy, Vi#j.

Then there are dimensional constants ¢ > 0 and Cq > 0 such that for eachr € (0,1)
we have

2 3 2
(4.1) I1 (rig/ W‘ﬂzdx) SEDS |V|‘;"|2dx)3.

i=1 B, |x| =1 /B |x

As a corollary, we obtain the following result.

COROLLARY 4.2 (Multiphase monotonicity formula). Let m > 2 and B; = R?
be the unit ball in R?. Let u; e H'(By), i =1,...,m, be m non-negative Sobolev
functions such that

Au;+1>0, Vi=1,...,m, and wu;=0a.e. inBy, Vi# j.

Then there are dimensional constants ¢ > 0 and C4 > 0 such that for eachr € (0,1)
we have

(4.2) ﬁ(rm/ ||V|u’| v) < Cof +Z/ Wul'

1=

REMARK 4.3. We note that the additional decay r—¢ provided by the presence of
a third phase is not optimal. Indeed, at least in dimension two, we expect that
& =m — 2, where m is the number of phases involved. In our proof the constant
¢ cannot exceed 2/3 in any dimension.

We now proceed with the proof of the three-phase formula. Before we start
with the proof of Theorem 4.1 we will need some preliminary results, analogous
to Lemma 3.2 and Lemma 3.3.

We recall that, for u;, u» and u3 as in Theorem 4.1, we use the notation

(4.3) Ai(r) = ||V|“’| dx, fori=1,2,3.
B |x




A NOTE ON THE MONOTONICITY FORMULA OF CAFFARELLI-JERISON-KENIG 181

The following Lemma 4.4 and Lemma 4.5 were proved in [6] and concern the
function

O(r) = r~ 039 4, (r) A5 (r) A3(r).
We report here the proofs for convenience of the reader.

LEMMA 4.4. Let uy, up and uz be as in Theorem 4.1. Then there are dimensional
constants Cg > 0 and ¢ > 0 such that if A;(1/4) = Cy, for every i = 1,23, then

1 1 1
NN GG

for Lebesgue almost every r € [1/4,1].

@'(r) = ~Cuf )o0),

Proor. Weset, fori=1,2,3and r > 0,
Bi(r) = / Vi > d ",
0B,

Since A;, for i =1,2,3, are increasing functions they are differentiable almost
everywhere on R and A/(r) = r*"/B; + 1; in sense of distributions. Thus, the
function @(r) is differentiable a.e. and we have

@' (r) =

_6+3¢ r=Bi(r) 7 By(r)  r*Bi(r) p
( p 40 T4 T A )q’( )

Thus, it is sufficient to prove that for almost every r € [1/4, 1] we have

6+ 3¢ _4(Bi(r)  Ba(r) Bs(r)

(44 G0 e aw)

1 1 1
2Cd(\/Al(V)+\/AZ(V)JF\/As(V)).

Using again the rescaling u; ,(x) := r~2u;(rx), we have that (3.5) holds and so, we
may assume that » = 1. We consider two cases.

(A) Suppose that there is some i = 1,2,3, say i = 1, such that (6 4 3¢)4;(1) <
Bi(1). Then we have

B (1) +Bz(1)

B NIV R NCURIRTY

which proves (4.4) and the lemma.
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(B) Suppose that for each i = 1,2,3 we have (6 + 3¢)A4;(1) > B;(1). Since, for
every i =1,2,3 we have A4;(1) > C,, we can choose C; large enough and
& > 0 small enough such that, by Lemma 2.3 with the notation «; = o(u;, 1)
and 2; = A(u;, 1), we get

(2 — &) 4;(1) < Ca/Bi(1) /25 + Bi(1) /oy < Ca/A:(1) 75 + Bi(1) /.

Moreover, ocfz < J;, implies

(4.5) (2 —&)oAi(1) < Car/Ai(1) + Bi(1

Dividing both sides by 4;(1) and summing for i = 1,2, 3, we obtain

Bi(1)

3 1 3
2-¢)(u+o+o3) < Cd;\/er;Ai(l)’

and so, in order to prove (4.4), it is sufficient to prove that

6+3
(4.6) o +op 4 o3 > 2+ 8.

Let Q,Q7,Qf < 0B be the optimal partition of the sphere dB; for the
characteristic constant «, i.e. the triple {Qf,Q;,Q} is a solution of the
problem

(4.7) min{o(Q)) + a(Q) + a(Q3) : Q; = By, Vi;
AN QN Q) =0,Vi # j}.

We recall that for a set Q < 0By, the characteristic constant «(Q) is the
unique positive real number such that A(Q) = «(Q)(«(Q) + d — 2), where

HY(0B)), #7'({u #0}\Q) = 0}.
We note that, by [14], «(Q;") + «(Q;) > 2, for i # j and so summing on i and
J, we have '

3 < a(Q)) + () + () < oy + 0 + 3.
Moreover, the first inequality is strict. Indeed, if this is not the case, then
() + «(Q5) = 2, which in turn gives that Q[ and Q, are two opposite

hemispheres (see for example [9]). Thus Qf = (), which is impossible since it
contradicts the equality «(€Q;) + «(€3) = 2, which in turn is implied by the

.. . . 6 + 3¢ .
contradiction assumption. Choosing ¢ to be such that is smaller than

the minimum in (4.7), the proof is concluded. ¢ O
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LEMMA 4.5. Let uy, up and us be as in Theorem 4.1. Then, there are dimensional
constants Cy > 0 and ¢ > 0 such that the following implication holds: if for some
r>0

1 |Vu,~|2
;,«4 B, ‘x|d72

dx > Cy, foralli=1,2,3,

then we have the estimate

r

4.8) 4+ 4, (g)Az(Z)A3(£) < (140123 (1) Ay (F) Aa (1) A3 (1),

where

3 2
LV
(4.9) o123(r) == Cy E (r_“ —l i dx) i
i

B, |x|*?

ProOOF. We first note that the (4.8) is invariant under the rescaling u,(x) =
r~2u(xr). Thus, we may suppose that r = 1. We consider two cases:

(A) Suppose that for some i = 1,2,3, say i = 1, we have 4°7%4,(1/4) < A4,(1).
Then we have

4577 41(1/4)A2(1/4) 43(1/4) < A1 (1)42(1)43(1).
(B) Suppose that for every i=1,2,3, we have 4%%34,(1/4) > A4;(1). Then

A;(1/4) > C,; for some C; large enough and so, we can apply Lemma 4.4,
obtaining that

Ay (r)Ax(r)A3(r) dr

£
|
&
=
N
Vv
|
Q
S
~
/N
N
©
N~—~

3 1
> =Cuz (3~ J (DA ()

3
> 30 (3 ) () A1) A1),

which gives the claim. O

In what follows we give two proofs of Theorem 4.1. The first one follows
precisely the proof of Theorem 3.1, while the second one is more direct and is
contained in [6].
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PrOOF I oF THEOREM 4.1. Fori=1,2,3, we adopt the notation

(4.10) AR = 4,478, bF=4%4,(47F) and 6 :=013(475),

1

where 4; was defined in (3.3) and J3 in (4.9).
Let M > 0 and let

S (M) = {k e N : 43k gk gk 4% < p(1 4+ 4D+ 49 + 49)*Y,
Sy = {k e N : 453 4 A3 S+ < Afaf A},

We first note that if k& ¢ S;, then we have
M(1+ 47 + 43 + 49)° < 4653k gf 4k 4}
< 47(2738)kb{€44kA§A§c

< DKC (14 AV + A3 + 49)%,

where the last inequality is due to the two-phase monotonicity formula (Theorem
3.1). Choosing M > 0 big enough, we have that

(k¢ S1(M)) = (bF = Cy,¥i=1,2,3).

Fix L € N and suppose that L ¢ S;(M). Let/ € {0,..., L} be the largest index
such that / € S;(M). We now consider two cases for the interval [/ + 1, L].
(Case 1) If {I+1,...,L} = S5, then we have

4(6+36)LA1LA2LA3L <...< 4(6+Sa)(1+1)A{+1Aé+1Aé+1
<4 M(1+ A + A9 + 49)%

and so L € S;(45+%M).
(Case 2) If {I + 1,...,L}\S, # 0, then we choose k; to be the largest index in
{l+1,...,L}\S,. Then we define the sequence

I+1<k,<---<k <L,
by induction as
ki1 o= max{k € {/+1,....k; — T\Sy: b < (146,060, vi=1,2,3}.
The proof now proceeds in four steps.
Step 1. 4(6+3a)LAlLA2LA3L < 4(6+3£)(k‘+1)A{€1A§1A§1.
Indeed, since {k; +1,...,L} = S,, we have

4(6+3£)LA1LA2LA3L <. < 4(6+38)(k1+1)A{C1+1A§I+1A:{:l+l

< 46+384(6+3£)k]A{€1A§1A§q.
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Step 2. 4(0+39km gim g5 g5 < 463 M1 4 AD + A9 + A9)°. i
Letke {/+1,...,k, — 1} be the smallest index such that k ¢ S,. If no such k
exists, then we have

6-+3e)ki glm gkm gkm 6+3¢e)(I+1) 41+1 41+1 41+1
4613k glom glm g3 < o < 4UOBTED) g1 g1 415
6+3e 4 (643e)l 41 41 41
< 467346530 g1 gl 4!

< AN+ AV + A+ 49)°.

Otherwise, since k,, is the last index in the sequence constructed above, there
exists i € {1,2,3} such that

(4.11) B s (1 45,)b0.
Assuming, without loss of generality that i = 1, we get

4(6+38)kn1A{(mA§mA§m _ 4(*2+38)kmb{(m 44kmA§mA§m

Y 1\ \ g4 —1) ghom—1 k=1
(412) = Téébl (1 +523(4 m ))4 m A2m A3m

4(=2436)(kn—1) e
(4.13) Tire frl g8k =) gl gl

4(-243)(k+1) Rl gd(ft1) gh+1 ghit1
(4.14) < Té,;bl+ A0 ghl g

_ 4(6+36)(k+1)A];+1A]€+1A]€+1
L+, °0 72 75

(415) < 4(6+3€)/€A11€A/2€A13€ <... < 4(6+3£)(1+1)A{+1Aé+1Aé+1
(4.16) < 467340800 gl gl 4l < 4T M(1 + A) + 49 + 47)°,

where in order to obtain (4.12) we used (4.11) and the two-phase estimate from
Lemma 3.3; for (4.13), we absorb the term that appears after applying Lemma
3.3, using that if M is large enough and & < 2/3, then (1 4 6s3(4Fnt1))4-2+3%
< 1; repeating the same estimate as above we obtain (4.14); for (4.15), we use
the three-phase Lemma 4.5 and then the fact that {/+1,...,k} = S,; for the
last inequality (4.16) we just observed that / € S}(M).

Step 3. 4(6+3£)k/Ai‘,/‘A;‘fA§‘j < (1 +5kf+1)4(6+38)kj+]Ai(jHA?HA?H.

We reason as in Step 2 choosing k € {k;j .1 +1,...,k; — 1} to be the smallest
index such that k ¢ S,. If no such k exists, then {k; .1 +1,...,k; — 1} = S, and so
we have
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(6+3e)k; 4K qki gK; (643) (ki1 +1) gkt g+l kga+l
4 1A' Ay Ay < <4 T A4, A, A,

< (1 . 0O 451 4 41

where the last inequality is due to Lemma 3.3. Suppose now that k exists. Since kj
and k;; are consecutive indices, there exists some 7 € {1,2,3} such that

(4.17) B s (146,)b0.
Without loss of generality we may assume that i = 1.

4(()+33)k/-Af€jA§/’A§/ — 4(*2+38)k/bf€/ 44k,A§/A§ff

4(72+3£)k,~ - 3 3
(4.18) < s bR (1 +523(4—k,+1))44(k,—1)A§, 1A;c/ 1
(-2+30) (k1) o
(4.19) - 41be+144</¢,1)14§ gl

4(=2+38)(k+1)

k+1 g4(k+1) ghk+1 gk+1
(4.20) < S oA
46430k k+1 gkt1 gh+1 (6+3e)k 4k gk 4k
- 1+0; AT AT AT < APTORATATAT < - -
(4.21) < 4(6+38>(kj+1+1)A{C/+1+IA§]+I+1AéffHJrl
(4.22) <(1 +5](/“)4(6+3£)kj+1Ai‘j+lA;‘HIA;‘,/'-I’

where for (4.18) we used (4.17) and Lemma 3.3; for (4.19) and (4.20), we use that
for M > 0 large enough and ¢ < 2/3 we have (1 + dy3(4%*1))4=2+3 < 1; for
(4.21), we apply Lemma 4.5 and then the fact that {/+1,... ,IE} = S,; for the
last inequality (4.22) we use Lemma 4.5.

Step 4. Conclusion. By the steps 1, 2 and 3 we have that

(4.23) 4Ol l AL < A2OBIM(1+ A + 49+ 49 T[(1 +0%)
j=1

we now prove that for each i = 1,2, 3 the sequence bf-’ is majorized by a geomet-
ric progression depending on M. Indeed, since k; ¢ S>, we have

AT AY AL < 463 g5 gl gl
_(7— k: 7. ki ki
<474 4P (1 403 (475)) Ay A7

ki+1 ki k;
<447 4y Ay,



A NOTE ON THE MONOTONICITY FORMULA OF CAFFARELLI-JERISON-KENIG 187

for some dimensional constant ¢ < 1, where the second inequality is due to
Lemma 3.3 and the last inequality is due to the choice of M large enough and
& < 2/3. Thus we obtain

(4.24) b < Wi=123andV¥j=1,....m.

for each i = 1,2,3 and each k; € S3. Now using the definition of the finite se-
quence k; and (4.24), we deduce that for all i =1,2,3 and j = 2,...,m we have

k,

kj -1 ki1
i =< O-bi ’

b’

1

<o < G?(1+6,)b
and so, repeating the above estimate, we get

N .
and, by the definition (4.27) (and (4.9)) of d,,

(4.25) S < MGT', Vi=1,...,m.

By (4.23) and (4.25) and reasoning as in (3.16) we deduce

C
(4.26) 4 Alafat < exp( "= %)42““8)1\4(1 +AY+ A9+ 49)°,
which concludes the proof of Theorem 4.1. O

Proor IT oF THEOREM 4.1. Fori=1,2,3, we adopt the notation
(427)  AF = 4,475, bF:=4%4,(47%) and O =13 (470),

where A; was defined in (3.3) and J;3 in (4.9).
Let M > 0 and let

S(M) = {k e N : 439k gk gk gl < pp(1+ 4% 4+ 49 + 49)°).

We will prove that if ¢ > 0 is small enough, then there is M large enough such
that for every k ¢ S(M), we have

40039k gk gk gk < CM(1 + A) + 49 + 49)°,

where C is a constant depending on d and e.
We first note that if k ¢ S(M), then we have
M(1+ 47 + 49 + 49)° < 4673k 4 4k 4}
47(2738)kbic44kAécA§c
<4 CKpEC (1 4+ 47 + 49 + 49)°,

IA
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and so b¥ > C;'M42=3) where C, is the constant from Theorem 3.1. Thus,
choosing ¢ <2/3 and M > 0 large enough, we can suppose that, for every
i=1,2,3, b{‘ > Cy, where C, 1s the constant from Lemma 4.5.

Suppose now that L € N is such that L ¢ S(M) and let

[=max{keN:keSM)n[0,L]} <L,

where we note that the set S(M) [0, L] is non-empty for large M, since for
k=0,1, we can apply Theorem 3.1. Applying Lemma 4.5, for k =1+1,...,
L — 1 we obtain

L—1
(4.28) 4(6+36)LA1LA2LA3L < ( (1 +5/{))4(6+3£)(l+1)All+1Aé+1Aé+l
k=I+1

L-1

< (IT (1+00) 469040 4 al g

L—1
s( ITa +5k))46+38M(1 + AV + A9 + 49)%,
k=I+1

where 6% is the variable from Lemma 4.5.

Now it is sufficient to notice that for k =/+1,..., L — 1, the sequence Jj is
bounded by a geometric progression. Indeed, setting ¢ = 4~ 1+%/2 < 1, we have
that, for k ¢ S(M), 5, < Ca¥, which gives

-1 -
(4.29) [T a+060) < H + Ca")
k=I+1
= ( Z log(1+ Co ))
k=I+1
L+l
<ew(C > ) <ew(=,).
which concludes the proof. O
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