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Partial Di¤erential Equations — Local versus nonlocal interactions in a reaction-
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Abstract. — We study existence of patterns for a reaction-di¤usion system of population dynam-

ics with nonlocal interaction. We address the system as a bifurcation problem (the bifurcation
parameter being the di¤usivity of one species), and investigate the possibility of patterns bifurcating

out of a constant steady state solution via Turing destabilization. It is shown that the nonlocal
character of the interaction enhances the possibility that patterns exist with respect to the case of

the companion problem with local interaction.
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1. Introduction

Reaction-di¤usion systems with nonlocal interactions arise in a variety of appli-
cations, particularly in models of mathematical biology (e.g., see [4, 6, 7, 10, 11,
19, 20] and references therein), the motivation for their introduction depending
on the context. For instance, in epidemiological models it is conceivable that the
presence of infectives at some point influences some surrounding region as far as
the spread of epidemics is concerned, whereas in population dynamics one can
think of a population whose individuals communicate by chemical means, or
compete for some resource which can rapidly redistribute itself, e.g. by convec-
tion. Nonlocal terms in equations modelling population dynamics can also arise
by very di¤erent factors (e.g., see [2, 5, 18]), or derive by some limiting procedure
(as in the ‘‘shadow system’’ associated to some reaction-di¤usion system with
local interaction [12, 13, 16, 17]).

In this note we address the following reaction-di¤usion system with nonlocal
interaction (see [8, 9]):
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ut ¼ uxx þ uð1� uÞ � uv in W� Rþ

vt ¼ lvxx � wðuxvÞx � bvþ d
3u; v4

31; v4
v� g

uv

1þ tv
in W� Rþ

ux ¼ vx ¼ 0 in qW� Rþ
u ¼ u0; v ¼ v0 in W� f0g:

8>>>>><
>>>>>:

ð1:1Þ

Here WC ð0; 1Þ, RþC ð0;lÞ, qWC f0; 1g, b, g, d, t are positive constant coe‰-
cients, l > 0 and wb 0 will be regarded as parameters, and

3u; v4ðtÞ :¼
Z 1

0

uðx; tÞvðx; tÞ dx; 31; v4ðtÞ :¼
Z 1

0

vðx; tÞ dx ðt a RþÞð1:2Þ

for any measurable u; v : W� Rþ ! Rþ. The unknowns v ¼ vðx; tÞ and u ¼ uðx; tÞ
denote the densities of a population of amoebae, feeding on bacteria, respectively
of bacteria belonging to a virulent strain, which can kill amoebae by infecting
them—a novel feature with respect to standard predator-prey interaction (in
fact, amoebae are attacked by bacteria following a Holling type II functional re-
sponse, with handling time t and attack rate g). However, the main feature of the
model is that predation of the amoeboid population on bacteria is governed by

a nonlocal law through the integral term d
3u; v4

31; v4
v. This describes the fact that

amoebae behave like a sole organism when food supply is low, so that food is
redistributed among all cells (see [8] for a discussion of this point).

The question we want to address in this note is that of existence of patterns,
namely, of space dependent stable equilibrium solutions of problem (1.1). Both
experimental and numerical evidence support the existence of such solutions,
which is related to the pathogenic action of bacteria [9]. Specifically, we wonder
whether existence or nonexistence of patterns is a¤ected by the nonlocal character
of the interaction. Therefore, we also investigate existence of patterns for the
companion problem

ut ¼ uxx þ uð1� uÞ � uv in W� Rþ

vt ¼ lvxx � wðuxvÞx � bvþ duv� g
uv

1þ tv
in W� Rþ

ux ¼ vx ¼ 0 in qW� Rþ
u ¼ u0; v ¼ v0 in W� f0g;

8>>>>><
>>>>>:

ð1:3Þ

where the nonlocal term d
3u; v4

31; v4
v is replaced by the local interaction term duv.

Our approach is to treat both (1.1) and (1.3) as bifurcation problems, the bifurca-
tion parameter being the di¤usivity l of amoebae, and investigate the possibility
of patterns bifurcating out of a constant steady state solution. As we shall see, a
second relevant parameter in this analysis is the strength w of the chemotactic
term �wðuxvÞx.
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Both systems (1.1) and (1.3) are space dependent generalizations of the
‘‘lumped parameter’’ Cauchy problem

_uu ¼ uð1� uÞ � uv in Rþ

_vv ¼ �bvþ duv� g
uv

1þ tv
in Rþ

uð0Þ ¼ u0; vð0Þ ¼ v0:

8>>><
>>>:ð1:4Þ

Steady state solutions of problem (1.4) are spatially homogeneous equilibria of
both problems (1.1) and (1.3). In particular, we shall be interested in coexistence
equilibria of (1.4)—namely, in steady state solutions UC ðu; vÞ such that u; v > 0.
In the following we assume that there exists a coexistence steady state U , with
0 < u < 1, 0 < v < 1, which is asymptotically stable with respect to problem
(1.4) (note that we can do it, since this occurs for a suitable choice of parameters
b, d, g, t (see [8])). Then we seek conditions on the parameters l and w ensuring
that:

(i) the steady state U becomes unstable with respect to solutions of problem
(1.3)—namely, Turing destabilization of U occurs;

(ii) patterns of problem (1.3) bifurcate from U .

Subsequently, the same question is addressed for problem (1.1), to study whether
the conditions of Turing destabilization are a¤ected by the nonlocal character of
the interaction.

The main qualitative outcome of the above analysis is that the nonlocal inter-
action enhances the possibility that patterns exist with respect to the case of local
interaction. In fact, in the local case patterns can only exist for small values of the
parameter w (see assumption ðA1Þ), a requirement which has no counterpart in
the nonlocal case. Moreover, in the local case patterns can exist for a more lim-
ited range of values of the di¤usivity l than in the nonlocal case (this is apparent
from the subsequent discussion, since the function ~cc defined in (2.20) is always
smaller than the function c defined in (2.9)). It is worth observing that these
results are in agreement with those proven in [10] for a single reaction-di¤usion
equation with nonlocal interaction, showing that for such an equation patterns
can exist in cases where this is impossible, if a local interaction is considered
[3, 15].

2. Results

2.1. Well-posedness. Let CkðWÞ denote the space of k times continuously dif-
ferentiable functions u : W ! R, endowed with the usual norm (k a NA f0g;
CðWÞCC0ðWÞ).

Solutions of problems (1.1) and (1.3) are always meant in the classical sense.
The following well-posedness result for problem (1.1) is easily proven. A compan-
ion result holds for problem (1.3), whose formulation is left to the reader.
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Theorem 2.1. For any u0; v0 a CðWÞ, u0 b 0, v0 b 0 there exists a unique global
solution ðu; vÞ of problem (1.1). Moreover, there holds u > 0, v > 0 in W� Rþ.

2.2. Existence of patterns: local interaction. Let us first address the simpler prob-
lem (1.3).

Steady state solutions of problem (1.4) are found solving the system

Fðu; vÞ :¼ uð1� u� vÞ ¼ 0

Gðu; vÞ :¼
�
� g

u

1þ tv
þ du� b

�
v ¼ 0:

8<
:ð2:1Þ

In particular, coexistence equilibria of problem (1.4) are found solving the system

u ¼ 1� v

g
u

1þ tv
� duþ b ¼ 0:

8<
:ð2:2Þ

Hereafter we set FuCFuðUÞ, FvCFvðUÞ;GuCGuðUÞ, GvCGvðUÞ. There holds

Fu ¼ Fv ¼ �u;ð2:3Þ

Gu ¼
�
d� g

1þ tv

�
v;ð2:4Þ

Gv ¼
gt

ð1þ tvÞ2
uv:ð2:5Þ

Denote by

JC Jðu; vÞ :¼ Fu Fv

Gu Gv

� �
ð2:6Þ

the linearized operator of the right-hand side on the solution U . By standard
results, U is asymptotically stable with respect to the ODE problem (1.4) if

Fu þ Gv < 0; Gu > Gv;ðA0Þ

in fact, the above conditions ensure that

Tr J ¼ Fu þ Gv < 0; Det J ¼ FuGv � FvGu > 0:

Let U be a solution of (2.2). We wonder whether the Turing destabilization
of U , regarded as a spatially homogeneous equilibrium of (1.3), occurs for some
values of the parameters l and w. It turns out that this can only happen if

0a w < w0 :¼
Gv

vjFvj
¼ gt

ð1þ tvÞ2
;ðA1Þ
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and

0 < l < l0 :¼
1

jFuj
ð2Gu � Gv þ wvFv � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGu þ wvFvÞðGu � GvÞ

p
ÞðA2Þ

(observe that l0 is well defined and positive by assumptions ðA0Þ–ðA1Þ). More
precisely, we have the following result.

Theorem 2.2. Let UC ðu; vÞ be a stationary solution of problem (1.4) such that
0 < u < 1, 0 < v < 1, and let assumption ðA0Þ be satisfied. Then the homogeneous
steady state U is unstable with respect to problem (1.3) if and only if:

(i) the chemotaxis coe‰cient w satisfies condition ðA1Þ, and the di¤usion coe‰-
cient l of amoebae satisfies condition ðA2Þ;

(ii) there exists n a N such that

k�ðl; wÞ < kn :¼ n2p2 < kþðl; wÞ;ð2:7Þ

where

keðl; wÞ :¼
1

2l
fFulþ Gv þ wvFvð2:8Þ

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFulþ Gv þ wvFvÞ2 þ 4lFuðGu � GvÞ

q
g:

Observe that the functions ke defined in (2.7) are the roots of the equation

cðl; w; kÞ :¼ lk2 � ðFulþ Gv þ wvFvÞk � FuðGu � GvÞ ¼ 0:ð2:9Þ

By assumption ðA0Þ and equality (2.3) there holds

cðl; w; 0Þ ¼ FuðGv � GuÞ ¼ jFujðGu � GvÞ > 0;ð2:10Þ

thus positive roots of equation (2.9) need not exist. Existence prevails, if as-
sumptions ðA1Þ–ðA2Þ are satisfied; in fact, in this case there holds 0 < k�ðl; wÞ <
kþðl; wÞ (see Section 3).

In the following of this subsection we assume w a ½0; w0Þ to be fixed. Accord-
ingly, for any fixed w a ½0; w0Þ we set cðl; kÞCcðl; w; kÞ and keðlÞCkeðl; wÞ.
An elementary analysis shows that (see Figure 2.1):

(a) k� is increasing, kþ decreasing with l a ð0; l0Þ and

keðl0Þ ¼
Ful0 þ Gv þ wvFv

2l0
;ð2:11Þ

(b) there holds

lim
l!0þ

k�ðlÞ ¼
jFujðGu � GvÞ
Gv þ wvFv

> 0; lim
l!0þ

kþðlÞ ¼ l:ð2:12Þ
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The proof of Theorem 2.2 relies on a linearized stability analysis of problem
(1.3). The Fréchet derivative of the system in (1.3) at UC ðu; vÞ is the operator-
valued matrix

d 2

dx2
þ Fu Fv

�wv
d 2

dx2
þ Gu l

d 2

dx2
þ Gv

0
BBB@

1
CCCA

(see (3.4)), supplemented with homogeneous Neumann boundary conditions. Its
spectrum consists of eigenvalues zn a C, which are the roots of the equation

z2 þ fðl; knÞzþ cðl; knÞ ¼ 0ð2:13Þ

where kn :¼ n2p2 ðn a NA f0gÞ and

fðl; kÞ :¼ ð1þ lÞk � ðFu þ GvÞ:ð2:14Þ

Clearly, we are interested in eigenvalues zn with positive real part, which turn out
to be real positive solutions of equation (2.13). The proof of Theorem 2.2 shows
that such solutions exist if and only if the conditions (i)–(ii) of the theorem are
satisfied.

Now suppose that assumptions ðA0Þ–ðA2Þ are satisfied. By (2.12) inequality
(2.7) is satisfied for any n a N su‰ciently large, thus by Theorem 2.2 U is unsta-
ble for any l > 0 su‰ciently small. Then it is natural to conjecture that a pattern
of problem (1.3) bifurcates from U at some value l a ð0; l0�.

The above question can be addressed by standard methods of bifurcation
theory (e.g., see [1, 14]). In fact, let there exist n0 a N and ~ll0 a ð0; l0� such that
kn0 ¼ k�ð~ll0Þ. Then cð~ll0; kn0Þ ¼ cð~ll0; k�ð~ll0ÞÞ ¼ 0, and zðkn0Þ ¼ 0 is an eigen-
value of the operator A~ll0

. To avoid technicalities, we only consider the case

Figure 2.1
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when this eigenvalue is simple. This is certainly the case if ~ll0 ¼ l0, since for any
n a Nnfn0g there holds cðl0; knÞ > 0, thus the real part of zðknÞ is negative (see
Figure 2.2). Then we have the following result (see Figure 2.3), where the labels
s and u stand for ‘‘stable’’ and ‘‘unstable’’, respectively, and E denotes the eigen-
vector (3.9)).

Theorem 2.3. Let U be the homogeneous steady state considered in Theorem
2.2. Let assumptions ðA0Þ–ðA2Þ be satisfied. Moreover, suppose that

there exists n0 a N such that kn0 ¼ keðl0Þ:ð2:15Þ

Figure 2.2: Condition (2.15)

Figure 2.3: Theorem 2.3
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Then:

(i) ðl0;UÞ is a bifurcation point of stationary solutions of problem (1.3);
(ii) the bifurcating stationary solutions are nonconstant, and exist in some neigh-

bourhood of the bifurcation point ðl0;UÞ;
(iii) the bifurcation is subcritical, and the bifurcating nonconstant stationary solu-

tions are asymptotically stable.

Remark 2.1. Concerning statement (ii) of Theorem 2.3, the set of bifurcating
solutions can be described as follows (see [1, Proposition 26.13]). Denote by Y
the Banach space

Y :¼ fUC ðu; vÞ a C2ðWÞ � C2ðWÞ j u 0ð0Þ ¼ v 0ð0Þ ¼ u 0ð1Þ ¼ v 0ð1Þ ¼ 0gð2:16Þ

with norm

kUkY :¼
X2

k¼0

fkuðkÞkl þ kvðkÞklg

for any UC ðu; vÞ a Y . Then there exist e > 0 and a smooth map U : ð�e; eÞ ! Y
such that for any s a ð�e; eÞ and x a W the bifurcating stationary solutions are
given by the equality

Uðs; xÞ ¼ U þ s
�
cosð

ffiffiffiffiffiffi
kn0

p
xÞ; kn0 � Fu

Fv

cosð
ffiffiffiffiffiffi
kn0

p
xÞ
�
þ yðs; xÞ

� �
;ð2:17Þ

where the map s ! yðs; �Þ belongs to C1ðð�e; eÞ;NcÞ for some closed subspace
Nc JY , and yð0; �Þ ¼ 0. Moreover, there exists a smooth map l : ð�e; eÞ ! Rþ
such that l ¼ lðsÞ for any s a ð�e; eÞ, l a Rþ being the parameter in problem
(1.3) and l0 ¼ lð0Þ.

In view of Theorem 2.3 and Remark 2.1, there exists e > 0 such that for any
l a ðl0 � e; l0Þ there exist patterns of problem (1.3). Observe that, under the as-
sumptions of Theorem 2.3, the steady state U is unstable with respect to problem
(1.3) for any l a ð0; l0Þ, whereas it is asymptotically stable for any l > l0 (see
Theorem 2.2 and Figure 2.3).

Remark 2.2. Conclusions similar to those of Theorem 2.3 hold in more general
situations. In fact, let there exist n0 a N such that

k�ð0Þ < kn0 < keðl0Þ:ðA3ÞðiÞ

Then there exists a unique ~ll0 a ð0; l0Þ such that kn0 ¼ k�ð~ll0Þ (see Figure 2.4a).
Suppose that

kn0þ1 > kþð~ll0Þ:ðA3ÞðiiÞ
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Since the function c is increasing in ðkeðl0Þ;lÞ, this implies that cðknÞ > 0 for
every nb n0 þ 1. Plainly, it follows that the real part of zðknÞ is negative for any
n a Nnfn0g. Then the same conclusions of Theorem 2.3 hold with l0 replaced by
~ll0. Similar remarks hold in analogous situations (e.g., see Figure 2.4b); we leave
their formulation to the reader.

2.3. Existence of patterns: nonlocal interaction. Let us now regard the coexis-
tence steady state U as a spatially homogeneous equilibrium of problem (1.1). It
will be seen below that in this case the functions ke of the previous analysis (see
(2.8)) are replaced by

~kkeðl; wÞ :¼
1

2l
fFulþ Gv þ wvFvð2:18Þ

e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFulþ Gv þ wvFvÞ2 � 4lFuðGv � Gu þ dvÞÞ

q
g;

which are the roots of the equation

~ccðl; w; kÞ ¼ 0;ð2:19Þ

here

~ccðl; w; kÞ :¼ cðl; w; kÞ þ dvFvð2:20Þ
¼ lk2 � ðFulþ Gv þ wvFvÞk þ FuðGv � Gu þ dvÞ

Observe that, at variance from the previous case (see (2.10)), there holds

~ccðl; w; 0Þ ¼ FuðGv � Gu þ dvÞ ¼ �g
uv

ð1þ tvÞ2
½1þ tðuþ vÞ� < 0:ð2:21Þ

Figure 2.4
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Hence for any l > 0 and wb 0

~kk�ðl; wÞ < 0 < ~kkðl; wÞð2:22Þ

(see Figure 2.5, where wb 0 is fixed). The root ~kk� has no role in the subsequent
analysis since it is always negative, thus we set ~kkC ~kkþ hereafter. Observe that
assumptions ðA1Þ–ðA2Þ have no counterpart in the present case. However, it is
worth mentioning that

lim
l!0þ

~kk�ðlÞ ¼
FuðGv � Gu þ dvÞ

Gv þ wvFv

< 0 if ðA1Þ holds

�l otherwise:

8<
:

Let wb 0 be fixed, and set ~ccðl; kÞC ~ccðl; w; kÞ, ~kkðlÞC ~kkðl; wÞ. It is easily
checked that ~kk is decreasing in ð0;lÞ, and

lim
l!0þ

~kkðlÞ ¼ l; lim
l!l

~kkðlÞ ¼ 0:

Denote by l1 a ð0;lÞ the unique root of the equation ~kkðlÞ ¼ k1, namely

l ¼ l1 , ~kkðlÞ ¼ k1ð2:23Þ

(recall that k1 :¼ p2). Arguing as in Subsection 2.2, we obtain the following
result.

Theorem 2.4. Let UC ðu; vÞ be a stationary solution of problem (1.4) such that
0 < u < 1, 0 < v < 1, and let assumption ðA0Þ be satisfied. Let l1 a ð0;lÞ be the

Figure 2.5
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unique root of the equation ~kkðlÞ ¼ k1. Then the homogeneous steady state U is
unstable with respect to problem (1.1) if and only if l a ð0; l1Þ.

As in the case of local interaction, the proof of Theorem 2.4 is based on a
linearized stability analysis of problem (1.1). The Fréchet derivative of the system
in (1.1) at UC ðu; vÞ is the operator-valued matrix

d 2

dx2
þ Fu Fv

�wv
d 2

dx2
þ Gu þ dv½31; �4� 1� l

d 2

dx2
þ Gv

0
BBB@

1
CCCAð2:24Þ

(see Section 4), supplemented with homogeneous Neumann boundary conditions;
here the linear functional 31; �4 is defined in (1.2), FuCFuðu; vÞ, and so on. By
analogy with the situation encountered for the case of local interaction, it is nat-
ural to conjecture that ðU ; l1Þ be a bifurcation point of patterns of problem (1.1).
The a‰rmative answer is the content of the following theorem.

Theorem 2.5. Let U be the homogeneous steady state considered in Theorem
2.2, and let assumption ðA0Þ be satisfied. Let l1 a ð0;lÞ be the unique root of
the equation ~kkðlÞ ¼ k1. Then the conclusions of Theorem 2.3 hold true, with l0
replaced by l1. Moreover, the nonconstant bifurcating stationary solutions are of
the form (2.17) with kn0 replaced by k1.

3. Local interaction: proofs

Consider the Banach space X :¼ CðWÞ � CðWÞ endowed with the norm

kUkX :¼ kukl þ kvkl ðUC ðu; vÞ a X Þ:

Define a bounded nonlinear operator F : Rþ � Rþ � Y ! X , with Y as in
(2.16)), by setting

Fðl; w;UÞ :¼ u 00 þ F ðu; vÞ
lv 00 � wðu 0vÞ0 þ Gðu; vÞ

� �
ð3:1Þ

for any l > 0, wb 0 and UC ðu; vÞ a Y . Then problem (1.3) reads as the abstract
Cauchy problem

Ut ¼ Fðl; w;UÞ in Rþ
Uð0Þ ¼ U0 :¼ ðu0; v0Þ:

�
ð3:2Þ

Proof of Theorem 2.1. For every l > 0, wb 0 the map Fðl; w; �Þ : Y ! X is
locally Lipschitz continuous, thus for each U0 a X a unique local solution exists.
The solution is global by elementary a priori estimates. The claim concerning
nonnegativity follows by the maximum principle. r
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To prove Theorem 2.2 we need a linearized stability analysis of problem (1.3),
which is conveniently thought of in the abstract form (3.2). If so, stationary
solutions of problem (1.3) satisfy

Fðl; w;UÞ ¼ 0:ð3:3Þ

Clearly, for any UC ðu1; v1Þ a Y

FUðl; w;UÞU1 ¼
u 00
1 þ Fuðu; vÞu1 þ Fvðu; vÞv1

lv 001 � w½ðu 0v1Þ0 þ ðu 0
1vÞ

0� þ Guðu; vÞu1 þ Gvðu; vÞv1

� �
;

hereafter, by FU , FlU , FUU , FUUU we denote the Fréchet partial derivatives of
F with respect to its arguments. Observe that FUðl; w;UÞ a LðY ;XÞ (LðW ;ZÞ
denoting the space of bounded linear operators from the Banach space W to the
Banach space Z).

Let UC ðu; vÞ be a stationary solution of problem (1.4). By the above equal-
ity, the linearized operator at U of the right-hand side of (3.2) is

Al;wCFUðl; w;UÞ ¼

d 2

dx2
þ Fu Fv

�wv
d 2

dx2
þ Gu l

d 2

dx2
þ Gv

0
BBB@

1
CCCA;ð3:4Þ

where FuCFuðu; vÞ, and so on. It is easily seen that the linearized operator Al;w

has compact resolvent, thus purely point spectrum. Its eigenvalues are the roots
zn a C of the equation

zþ kn � Fu �Fv

�wvkn � Gu zþ lkn � Gv

				
				¼ 0 , z2 þ fðl; knÞzþ cðl; w; knÞ ¼ 0;ð3:5Þ

where kn :¼ n2p2 ðn a NA f0gÞ and the functions f, c are defined by (2.14), re-
spectively (2.9) (here use of equalities (2.3) has been made). The corresponding
eigenfunctions are

FnC ðjn
1 ; j

n
2 Þ ¼ ða cosð

ffiffiffiffiffi
kn

p
xÞ; b cosð

ffiffiffiffiffi
kn

p
xÞÞ;ð3:6Þ

with a; b a R to be chosen. By the completeness of the trigonometric system it is
easily seen that no other eigenfunctions and eigenvalues exist.

In the following we suppose that assumption ðA0Þ is satisfied. Let us seek
conditions on the parameter l ensuring that some eigenvalue zn of the linearized
operator Al has positive real part, so that the steady state ðu; vÞ becomes unstable
with respect to solutions of the PDE problem (1.3). In fact, this amounts to prove
Theorem 2.2.

Proof of Theorem 2.2. Every complex root z ¼ z1 þ iz2 of the equation

z2 þ fðl; kÞzþ cðl; w; kÞ ¼ 0 ðkb 0Þð3:7Þ
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satisfies the system

z21 � z22 þ fðl; kÞz1 þ cðl; w; kÞ ¼ 0

½2z1 þ fðl; kÞ�z2 ¼ 0:

�

Since we seek solutions with z1 > 0, and there holds fðl; kÞ > 0 for any l; kb 0
(see (2.14) and recall that Fu þ Gv < 0 by assumption ðA0Þ), the second equation
gives z2 ¼ 0. Hence solutions of the above system with z1 > 0 exist, if and only if
there exist real positive solutions of equation (3.7). Since fðl; kÞ > 0 for any
l; kb 0, this happens if and only if cðl; w; kÞ < 0 for some l > 0, wb 0 and
k > 0.

By equalities (2.8)–(2.9) and (2.10) there holds

cðl; w; kÞ < 0 for some k > 0 , Fulþ Gv þ wvFv > 0

ðFulþ Gv þ wvFvÞ2 þ 4FuðGu � GvÞl > 0:

�

The second inequality of the above system is satisfied if either l < l0, or

l > lð2Þ :¼ 1

jFuj
ð2Gu � Gv þ wvFv þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðGu þ wvFvÞðGu � GvÞ

p
Þ;

whereas the first inequality yields

l < lð1Þ :¼ Gv þ wvFv

jFuj
:

By assumptions ðA0Þ–ðA1Þ there holds 0 < l0 < lð1Þ < lð2Þ, thus condition ðA2Þ
ensures that the system of inequalities above is satisfied.

Therefore, if w and l satisfy conditions ðA1Þ and ðA2Þ respectively, there exists
k > 0 such that cðl; w; kÞ < 0. On the other hand, there holds cðl; w; 0Þ > 0 (see
(2.10)) and cðl; w; kÞ ! l as k ! l, since by assumption l > 0. Then, by con-
tinuity, for every w a ½0; w0Þ and l a ð0; l0Þ there exist 0 < k�ðl; wÞ < kþðl; wÞ
such that cðl; w; keðl; wÞÞ ¼ 0 and cðl; w; kÞ < 0 for any k a ðk�ðl; wÞ; kþðl; wÞÞ.
Therefore, an eigenvalue of the linearized operator Al with positive real part
(namely, a real positive solution of equation (3.7) with k ¼ kn) exists if and only
if inequality (2.7) is satisfied for some n a N. This completes the proof. r

In the remaining part of this section we suppose that w a ½0; w0Þ is fixed, thus
we denote by Fðl;UÞCFðl; w;UÞ the operator defined in (3.1).

If condition (2.15) is satisfied, the roots of equation (2.13) are zþðkn0Þ ¼ 0,
z�ðkn0Þ ¼ �fðl; kn0Þ < 0. Then the linearized operator Al0 CFUðl0;UÞ is not in-
vertible, since it has an eigenvalue equal to zero. Moreover, if assumptions ðA0Þ–
ðA2Þ are satisfied, U is unstable with respect to problem (1.3) for any l a ð0; l0Þ.
This suggests that the point ðl0;UÞ is a bifurcation point of equation (3.3), as in
fact the following proposition shows.
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Proposition 3.1. Let the assumptions of Theorem 2.3 be satisfied. Then the
statements (i)–(ii) of the same theorem hold true.

To prove Proposition 3.1 we need some preliminary remarks. Set FC
ðj1; j2Þ a Y . Then the eigenvalue equation Al0F ¼ zF reads (see (3.4))

j 00
1 þ Fuj1 þ Fvj2 ¼ zj1

l0j
00
2 � wvj 00

1 þ Guj1 þ Gvj2 ¼ zj2 in W

j 0
1ð0Þ ¼ j 0

2ð0Þ ¼ j 0
1ð1Þ ¼ j 0

2ð1Þ ¼ 0:

8><
>:ð3:8Þ

It is immediately checked that any vector E a Y ,

EC ðe1; e2Þ :¼ ða cosð
ffiffiffiffiffiffi
kn0

p
xÞ; b cosð

ffiffiffiffiffiffi
kn0

p
xÞÞ ðx a WÞð3:9Þ

(see (3.6)) is an eigenvector of the linearized operator Al0 with eigenvalue 0, if kn0
and l0 are related by equality (2.15) and

a a Rnf0g; b :¼ kn0 � Fu

Fv

a:ð3:10Þ

Observe that in this case the first equality in (3.5) reads

kn0 � Fu �Fv

�wvkn0 � Gu kn0l0 � Gv

				
				¼ 0:ð3:11Þ

It has been already observed that the eigenvalue 0 is simple, thus the kernel
NðAl0ÞJY of the operator Al0 coincides with the linear span of the vector E.

Consider also any vector E � a Y ,

E �C ðe�1 ; e�2 Þ :¼ ða� cosð
ffiffiffiffiffiffi
kn0

p
xÞ; b� cosð

ffiffiffiffiffiffi
kn0

p
xÞÞ ðx a WÞ;ð3:12Þ

with kn0 and l0 related by equality (2.15) and

a� a Rnf0g b� :¼ Fv

kn0l0 � Gv

a�:ð3:13Þ

It is easily checked that E � is an eigenvector with eigenvalue 0 of the formal
adjoint A�

l0
of Al0 ,

A�
l0
:¼

d 2

dx2
þ Fu �wv

d 2

dx2
þ Gu

Fv l0
d 2

dx2
þ Gv

0
BB@

1
CCA:

It is also easily seen that

ððE �;ZÞÞ ¼ 0 for any Z a RðAl0Þ;ð3:14Þ
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where RðAl0ÞJX denotes the range of the operator Al0 and ðð� ; �ÞÞ the scalar
product in L2ðWÞ � L2ðWÞ, namely

ððF ;GÞÞ :¼
Z 1

0

f f1g1 þ f2g2g dx

for any F C ð f1; f2Þ, GC ðg1; g2Þ a L2ðWÞ � L2ðWÞ. In fact, let ZC ðz1; z2Þ a
RðAl0Þ. Then there exists W C ðw1;w2Þ a Y such that Z ¼ Al0W , namely

w 00
1 þ Fuw1 þ Fvw2 ¼ z1

l0w
00
2 � wvw 00

1 þ Guw1 þ Gvw2 ¼ z2 in W:

�

Since w 0
1ð0Þ ¼ w 0

2ð0Þ ¼ w 0
1ð1Þ ¼ w 0

2ð1Þ ¼ 0, by the definition of b (see (3.10)) and
equality (3.11) there holds

ððE �;ZÞÞ ¼ 1

2
fa�½ðFu � kn0Þaþ Fvb�

þ b�½ðwvkn0 þ GuÞaþ ðGv � kn0l0Þb�g ¼ 0:

Further, observe that

ððE �;EÞÞ ¼ ðaa� þ bb�Þ
Z 1

0

cos2ð
ffiffiffiffiffiffi
kn0

p
xÞ dx

¼ aa�

2
1þ kn0 � Fu

kn0l0 � Gv

� �
:

Then choosing

a� :¼ 2

a

kn0l0 � Gv

kn0ðl0 þ 1Þ � ðFu þ GvÞ
ð3:15Þ

we have

ððE �;EÞÞ ¼ 1:ð3:16Þ

Without loss of generality, hereafter we suppose

a > 0ð3:17Þ

and b, b�, a� chosen as in (3.10), (3.13) and (3.15), respectively. Observe that by
equalities (2.3), (2.11) and (2.15)

kn0l0 � Gv ¼ � jFujl0 þ Gv þ wvjFvj
2

< 0:ð3:18Þ
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Then by assumption ðA0Þ, equality (2.3) and inequality (3.18) there holds

b < 0; a� < 0; b� < 0:ð3:19Þ

Now we can prove Proposition 3.1.

Proof of Proposition 3.1. Consider the second Fréchet derivative

FlU ðl;UÞ ¼
0 0

0
d 2

dx2

0
@

1
A

(observe that FlUðl;UÞ a LðR;LðY ;X ÞÞULðY ;X Þ). By the Lyapunov-
Schmidt theorem (e.g., see [1, Theorem 26.13]), the result will follow if we prove
that

FlU ðl;UÞ½NðAl0Þ�URðAl0Þ;ð3:20Þ

where NðAl0ÞJY denotes the kernel of the operator Al0 and
FlUðl;UÞ½NðAl0Þ� its image under the operator FlUðl;UÞ.

Let E, E � be the vectors defined in (3.9) and (3.12). Clearly, there holds

FlUðl;UÞE ¼ ð0;�bkn0 cosð
ffiffiffiffiffiffi
kn0

p
xÞÞ;

whence by (3.19)

ððE �;FlUðl0;UÞEÞÞ ¼ �bb�kn0

Z 1

0

cos2ð
ffiffiffiffiffiffi
kn0

p
xÞ dx ¼ � bb�kn0

2
< 0:ð3:21Þ

Since NðAl0Þ coincides with the linear span of the vector E, by equality (3.14)
and inequality (3.21) we obtain (3.20). Then the conclusion follows. r

It is easily seen that for any U1C ðu1; v1Þ and U2C ðu2; v2Þ a Y

FUUðl;UÞU1U2

¼
Fuuu1u2 þ Fuvðu1v2 þ u2v1Þ þ Fvvv1v2

�w½ðu 0
2v1Þ

0 þ ðu 0
1v2Þ

0� þ Guuu1u2 þ Guvðu1v2 þ u2v1Þ þ Gvvv1v2

� �
;

where FuCFuðu; vÞ and so on, whereas

FUUU ðl;UÞU1U2U3

¼ Fuuuu1u2u3 þ Fuuva1ðU1;U2;U3Þ þ Fuvva2ðU1;U2;U3Þ þ Fvvvv1v2v3

Guuuu1u2u3 þ Guuva1ðU1;U2;U3Þ þ Guvva2ðU1;U2;U3Þ þ Gvvvv1v2v3

� �
;

where

a1ðU1;U2;U3Þ ¼ u1u2v3 þ u1v2u3 þ v1u2u3;

a2ðU1;U2;U3Þ ¼ u1v2v3 þ v1u2v3 þ v1v2u3
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for any U1C ðu1; v1Þ, U2C ðu2; v2Þ and U3C ðu3; v3Þ a Y . Observe that
FUUðl;UÞ a LðY ;LðY ;X ÞÞUL2ðY � Y ;XÞ and FUUUðl;UÞ a
LðY ;L2ðY � Y ;XÞÞUL3ðY � Y � Y ;XÞ (LnðW ;ZÞ, n a N, denoting the
space of bounded multilinear operators from the Banach space W :¼
Y � � � � � Y|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

n times

to the Banach space X ). If U1 ¼ U2 ¼ U3 we write FUUðl;UÞU 2
1

and FUUUðl;UÞU 3
1 , with obvious meaning of the symbols.

Now we can complete the proof of Theorem 2.3.

Proof of Theorem 2.3. In view of Proposition 3.1, we only have to prove
statement (iii).

Let us first prove that the bifurcation is subcritical. Let l : ð�e; eÞ ! Rþ
(e > 0), l0 ¼ lð0Þ be the smooth map which appears in the parametrization of
the bifurcation curve ðlðsÞ;UðsÞÞJRþ � Y (see Remark 2.1). By [1, Remark
27.6] and the proof of [1, Proposition 27.7], we have:

l 0ð0Þ ¼ � 1

2

ððE �;FUUðl0;UÞE2ÞÞ
ððE �;FlUðl0;UÞEÞÞ

;ð3:22Þ

l 00ð0Þ ¼ � 1

3

ððE �;FUUU ðl0;UÞE3ÞÞ
ððE �;FlUðl0;UÞEÞÞ

:ð3:23Þ

Then by [1, Proposition 27.7] and (3.20) the claim will follow, if we prove that

l 0ð0Þ ¼ 0; l 00ð0Þ < 0:ð3:24Þ

Recalling equality (3.9) and the definition of the functions F , G (see (2.1)), from
the above expressions of FUUðl;UÞU1U2 and FUUUðl;UÞU1U2U3 we obtain

FUUðl0;UÞE2 ¼ Fuue
2
1 þ 2Fuve1e2 þ Fvve

2
1

�2wðe 01e2Þ
0 þ Guue

2
1 þ 2Guve1e2 þ Gvve

2
2

� �
ð3:25Þ

¼ 2

�e21 � e1e2

�wðe 01e2Þ
0 þ d� g

ð1þ tvÞ2

" #
e1e2 þ

gtu

ð1þ tvÞ3
e22

0
B@

1
CA;

respectively

FUUU ðl0;UÞE3 ¼ Fuuue
3
1 þ 3Fuuve

2
1e2 þ 3Fuvve1e

2
2 þ Fvvve

3
2

Guuue
3
1 þ 3Guuve

2
1e2 þ 3Guvve1e

2
2 þ Gvvve

3
2

� �

¼
0

6gt

ð1þ tvÞ3
e1e

2
2 �

6gt2u

ð1þ tvÞ4
e32

0
@

1
A:
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It is easily checked that

ððE �;FUUðl0;UÞE2ÞÞ ¼ 2

(
�a2a� � aa�bþ d� g

ð1þ tvÞ2

" #
abb�

þ gtu

ð1þ tvÞ3
b2b�

)Z 1

0

cos3ð
ffiffiffiffiffiffi
kn0

p
xÞ dx

� 2wabb�kn0

Z 1

0

sin2ð
ffiffiffiffiffiffi
kn0

p
xÞ cosð

ffiffiffiffiffiffi
kn0

p
xÞ dx ¼ 0;

whence l 0ð0Þ ¼ 0 by equality (3.22). Moreover, there holds

ððE �;FUUUðl0;UÞE3ÞÞ ¼ 6gtb2b�

ð1þ tvÞ3
�
a� tu

1þ tv
b
�Z 1

0

cos4ð
ffiffiffiffiffiffi
kn0

p
xÞ < 0

(here use of (3.17) and (3.19) has been made). Then by (3.21) and (3.23) we obtain
that l 00ð0Þ < 0. This proves (3.24), whence the claim follows.

Let us now prove that the stationary bifurcating solutions UðsÞC ðuðsÞ; vðsÞÞ
(see (2.17)) are asymptotically stable. By [1, Proposition 26.24] there exists a
unique continuation kðsÞ a sðFUðlðsÞ;UðsÞÞÞ of the zero eigenvalue of Al0 C
FUðl0;UÞ along the curve fUðsÞ j s a ð�e; eÞg of bifurcating solutions—namely,
there exists a smooth function ðk; ~EEÞ : ð�e; eÞ ! R� Y , with kð0Þ ¼ 0 and
~EEð0Þ ¼ E, such that

FU ðlðsÞ;UðsÞÞ ~EEðsÞ ¼ kðsÞ ~EEðsÞ for any s a ð�e; eÞ:

By [1, Theorem 27.2] there exists (possibly for some smaller e) a function a a
Cðð�e; eÞ;RÞ such that

kðsÞ ¼ aðsÞsl 0ðsÞ for any s a ð�e; eÞ;ð3:26Þ

moreover,

að0Þ ¼ �ððE �;FlUðl0;UÞEÞÞ:ð3:27Þ

Since l 0ð0Þ ¼ 0; by (3.26) we have

kðsÞ ¼ aðsÞ½s2l 00ð0Þ þ oðs2Þ� as s ! 0;ð3:28Þ

where oðs2Þ denotes a term of higher order with respect to s2. On the other hand,
by (3.21) and (3.27) there holds að0Þ > 0: Then by continuity of the að�Þ and
the inequality in (3.24), from (3.28) we obtain that kðsÞ < 0 for any jsj a ð0; eÞ
su‰ciently small. Hence the conclusion follows. r
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4. Nonlocal interaction: proofs

Consider the open subset of the space Y

B :¼ UC ðu; vÞ a Y

				
Z 1

0

vðxÞ dxA 0

� �
;

and consider the map ~FF : Rþ � Rþ � B ! X ,

~FFðl; w;UÞ :¼ u 00 þ F ðu; vÞ
lv 00 � wðu 0vÞ0 þ ~GGðu; vÞ

� �
;

for any l > 0, wb 0 and UC ðu; vÞ a B; here

~GGðu; vÞ :¼ �g
uv

1þ tv
þ d

3u; v4

31; v4
v

¼ Gðu; vÞ þ d
3u; v4

31; v4
� u

� �
v:

Then problem (1.1) can be given the abstract form

Ut ¼ ~FFðl; w;UÞ in Rþ
Uð0Þ ¼ U0:

�
ð4:1Þ

Observe that

~FFðl; w;UÞ ¼ Fðl; w;UÞ þ d
0 0

HðUÞ � uv 0

� �
;ð4:2Þ

where

H : B̂B :¼ UC ðu; vÞ a X

				
Z 1

0

vðxÞ dxA 0

� �
! CðWÞ; U ! HðUÞ :¼ 3u; v4

31; v4
v:

By H 0ðUÞ a LðX ;CðWÞÞ, H 00ðUÞ a L2ðX ;CðWÞÞ, H 000ðUÞ a L3ðX ;CðWÞÞ we
shall denote the first three derivatives of HðUÞ evaluated at some U a B̂B. The
following technical lemma will be used in the sequel (in particular, to obtain the

expression (2.24) of the Fréchet derivative ~AAlC ~FFUðl; w;UÞ).

Lemma 4.1. Let UC ðu; vÞ a B̂B. Then:

(i) for any U1C ðu1; v1Þ a X

H 0ðUÞU1 ¼
3u; v14þ 3u1; v4

31; v4
vþ 3u; v4

31; v4
v1 �

3u; v431; v14

31; v42
v;
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(ii) for any U1C ðu1; v1Þ and U2C ðu2; v2Þ a X

H 00ðUÞU1U2 ¼
3u2; v14þ 3u1; v24

31; v4
v

þ 3u; v14þ 3u1; v4

31; v4
v2 þ

3u; v24þ 3u2; v4

31; v4
v1

� ½3u; v14þ 3u1; v4�31; v24þ ½3u; v24þ 3u2; v4�31; v14
31; v42

v

� 3u; v431; v24

31; v42
v1 �

3u; v431; v14

31; v42
v2 þ

23u; v431; v1431; v24

31; v43
v;

(iii) for any U1C ðu1; v1Þ, U2C ðu2; v2Þ and U3C ðu3; v3Þ a X

H 000ðUÞU1U2U3

¼ 3u2; v34þ 3u3; v24

31; v4
v1 þ

3u1; v34þ 3u3; v14

31; v4
v2

þ 3u1; v24þ 3u2; v14

31; v4
v3 �

½3u; v14þ 3u1; v4�31; v34
31; v42

v2

� ½3u1; v34þ 3u3; v14�31; v24þ ½3u2; v34þ 3u3; v24�31; v14
31; v42

v

� ½3u; v14þ 3u1; v4�31; v24þ ½3u; v24þ 3u2; v4�31; v14
31; v42

v3

� ½3u2; v14þ 3u1; v24�31; v34
31; v42

v� ½3u; v24þ 3u2; v4�31; v34
31; v42

v1

� ½3u; v34þ 3u3; v4�31; v24
31; v42

v1 �
½3u; v34þ 3u3; v4�31; v14

31; v42
v2

þ 23u; v431; v2431; v34

31; v43
v1 þ

23u; v431; v1431; v34

31; v43
v2

þ 2f½3u; v14þ 3u1; v4�31; v24þ ½3u; v24þ 3u2; v4�31; v14g31; v34
31; v43

v

þ 2½3u; v34þ 3u3; v4�31; v1431; v24
31; v43

vþ 23u; v431; v2431; v14

31; v43
v3

� 63u; v431; v1431; v2431; v34

31; v44
v:

Proof. We only prove claim (i); the lengthy proof of (ii)–(iii) is similar, thus
we omit it. For any UC ðu; vÞ a B̂B, U1C ðu1; v1Þ a X and e > 0 su‰ciently small
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there holds U þ eU1 a B̂B. Then, denoting by oðeÞ any term of higher order with
respect to e, we have that

HðU þ eU1Þ ¼
3uþ eu1; vþ ev14

31; vþ ev14
ðvþ ev1Þ

¼ 3u; v4þ e½3u; v14þ 3u1; v4� þ oðeÞ

31; v4
�
1þ e

31; v14

31; v4

� ðvþ ev1Þ

¼ 3u; v4þ e½3u; v14þ 3u1; v4� þ oðeÞ
31; v4

�
1� e

31; v14

31; v4
þ oðeÞ

�
ðvþ ev1Þ

¼ 3u; v4þ e½3u; v14þ 3u1; v4� þ oðeÞ
31; v4

�
vþ ev1 � e

31; v14

31; v4
vþ oðeÞ

�

¼ Hðu; vÞ þ e½3u; v14þ 3u1; v4�
31; v4

vþ e
3u; v4

31; v4
v1

� e
3u; v431; v14

31; v42
vþ oðeÞ:

Hence the claim follows. r

Now we can show that the linearized operator ~AAlC ~FFU ðl; w;UÞ at the con-
stant stationary solution U has the expression given by (2.24). In fact, applying
the Fréchet derivative of the operator-valued matrix in equality (4.2) to any
U1C ðu1; v1Þ a X we get

0 0

H 0ðUÞU1 � uv1 � vu1 0

� �
:ð4:3Þ

Since u and v are constant, there holds

31; u4 ¼ u; 31; v4 ¼ v:

Then by Lemma 4.1 we plainly obtain

H 0ðUÞU1 ¼
3u; v14þ 3u1; v4

31; v4
vþ 3u; v4

31; v4
v1 �

3u; v431; v14

31; v42
v

¼ u31; v14þ v31; u14þ uv1 � u31; v14

¼ v31; u14þ uv1;

thus

H 0ðUÞU1 � uv1 � vu1 ¼ v½31; u14� u1�:
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By (4.2) and the above equality we obtain

~AAl ¼ Al þ d
0 0

v½31; �4� 1� 0

� �
;ð4:4Þ

whence equality (2.24) follows. In particular, equality (4.4) shows that the opera-
tor ~AAl has compact resolvent (since this holds for Al), thus its spectrum consists
of eigenvalues.

In view of (2.24), the eigenvalue equation ~AAlF ¼ zF ðFC ðj1; j2Þ a Y Þ reads

j 00
1 þ Fuj1 þ Fvj2 ¼ zj1

lj 00
2 � wvj 00

1 þ Guj1 þ dv½31; j14� j1� þ Gvj2 ¼ zj2 in W

j 0
1ð0Þ ¼ j 0

2ð0Þ ¼ j 0
1ð1Þ ¼ j 0

2ð1Þ ¼ 0:

8><
>:ð4:5Þ

As for system (3.8), choose

FnC ðjn
1 ; j

n
2 Þ ¼ ða cosð

ffiffiffiffiffi
kn

p
xÞ; b cosð

ffiffiffiffiffi
kn

p
xÞÞ;

with kn :¼ n2p2 ðn a NA f0gÞ and a; b a R to be fixed, as trial functions. Observe
that

31; j0
14 ¼ a ) ½31; j0

14� j0
1 � ¼ 0;

31; jn
14 ¼ 0 ) ½31; jn

14� jn
1 � ¼ �jn

1 for any n a N:ð4:6Þ

Hence F0C ða; bÞ is an eigenfunction of ~AAl if and only if z is a root of the
equation

z� Fu �Fv

�Gu z� Gv

				
				¼ 0;ð4:7Þ

namely an eigenvalue of the linearized operator (2.6) without space dependence.
By assumption ðA0Þ both eigenvalues of this operator have negative real part.
Therefore, to have Turing destabilization of the stationary solution U we must
consider eigenvalues of system (4.5) with n a N. By (4.6), these are the roots of
the equation

zþ kn � Fu �Fv

�wvkn � Gu þ dv zþ lkn � Gv

				
				¼ 0ð4:8Þ

, z2 þ fðl; knÞzþ ~ccðl; w; knÞ ¼ 0;

where fðl; kÞ and ~ccðl; w; kÞ are defined by (2.14) and (2.20), respectively.
Let us now prove Theorem 2.4.

Proof of Theorem 2.4. As in the proof of Theorem 2.2, by (4.8) a necessary
condition for the Turing destabilization of U is the existence of real positive
solutions of the equation

z2 þ fðl; kÞzþ ~ccðl; w; kÞ ¼ 0 ðk > 0Þ:ð4:9Þ
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Since fðl; kÞ > 0, such solutions exist if and only if ~ccðl; w; kÞ < 0, namely if
and only if 0 < k < ~kkðl; wÞ (see Figure 2.5). Therefore, a positive eigenvalue
of system (4.5) exists if and only if 0 < kn < ~kkðl; wÞ for some n a N. Since
0 < k1 < � � � < kn < � � � , for any wb 0 this happens if and only if

0 < k1 < ~kkðl; wÞ , l a ð0; l1Þ:

Then the conclusion follows. r

The following analogue of Proposition 3.1 holds true.

Proposition 4.2. Let the assumptions of Theorem 2.5 be satisfied. Then ðl1;UÞ
is a bifurcation point of nonconstant stationary solutions of problem (1.1).

The proof of the above proposition is almost verbatim the same of Proposi-
tion 3.1 (observe that FlU ðl;UÞ ¼ ~FFlUðl;UÞ by equality (4.2)), thus we omit it.
Let us only mention for future reference that in the present case the vectors E, E �

are replaced by the vectors D;D� a Y ,

DC ðd1; d2Þ :¼ ðc cosð
ffiffiffiffiffi
k1

p
xÞ; d cosð

ffiffiffiffiffi
k1

p
xÞÞ ðx a WÞð4:10Þ

with

c a Rnf0g; d :¼ k1 � Fu

Fv

c;ð4:11Þ

and

D�C ðd �
1 ; d

�
2 Þ :¼ ðc� cosð

ffiffiffiffiffi
k1

p
xÞ; d � cosð

ffiffiffiffiffi
k1

p
xÞÞ ðx a WÞ;ð4:12Þ

with

c� :¼ 2

c

k1l1 � Gv

k1ðl1 þ 1Þ � ðFu þ GvÞ
d � :¼ Fv

k1l1 � Gv

c�:ð4:13Þ

By the above choice in (4.11) and (4.13), there holds ððD�;DÞÞ ¼ 1: Without loss
of generality, we assume that

c > 0:ð4:14Þ

Then, by equalities (2.3) and assumption ðA0Þ, from (4.11) and (4.13) we get

d < 0; d � ¼ 2

c

Fv

k1ðl1 þ 1Þ � ðFu þ GvÞ
< 0:ð4:15Þ

Now we can prove Theorem 2.5.
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Proof of Theorem 2.5. By Proposition 4.2, we only have to prove that the
bifurcation is subcritical, and the bifurcating nonconstant stationary solutions
are asymptotically stable.

By the same notations used in the proof of Theorem 2.3, now we have (see
(3.22)–(3.23))

l 0ð0Þ ¼ � 1

2

ððD�; ~FFUUðl1;UÞD2ÞÞ
ððD�; ~FFlUðl1;UÞDÞÞ

;ð4:16Þ

l 00ð0Þ ¼ � 1

3

ððD�; ~FFUUUðl1;UÞD3ÞÞ
ððD�; ~FFlU ðl1;UÞDÞÞ

:ð4:17Þ

By equality (4.2) there holds

~FFUUðl1;UÞD2 ¼ FUUðl1;UÞD2 þ d
0 0

H 00ðUÞD2 � 2d1d2 0

� �
:ð4:18Þ

Since U is constant and

31; d14 ¼ c

Z 1

0

cosð
ffiffiffiffiffi
k1

p
xÞ dx ¼ 0 ¼ 31; d24

(see (4.10)), from Lemma 4.1-(ii) plainly we get

H 00ðUÞD2 ¼ 2

Z 1

0

d1ðxÞd2ðxÞ dx:

Then from (4.18) and the above equality we obtain

~FFUUðl1;UÞD2 ¼ 2

�d 2
1 � d1d2

�wðd2d 0
1Þ

0 þ d

Z 1

0

d1d2 dx� g

ð1þ tvÞ2
d1d2 þ

gtu

ð1þ tvÞ3
d 2
2

0
B@

1
CA

(see (3.25)). Then there holds

ððD�; ~FFUUðl1;UÞD2ÞÞ

¼ 2 �c2c� � cc�d � g

ð1þ tvÞ2
cdd � þ gtu

ð1þ tvÞ3
d 2d �

( )Z 1

0

cos3ð
ffiffiffiffiffi
k1

p
xÞ dx

þ 2dcdd �
Z 1

0

cos2ð
ffiffiffiffiffi
k1

p
xÞ dx

Z 1

0

cosð
ffiffiffiffiffi
k1

p
xÞ dx

� 2k1wcdd
�
Z 1

0

sin2ð
ffiffiffiffiffi
k1

p
xÞ cosð

ffiffiffiffiffi
k1

p
xÞ dx ¼ 0;

thus l 0ð0Þ ¼ 0 by (4.16).
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On the other hand, from Lemma 4.1-(iii) we easily obtain

H 000ðUÞD3 ¼ 6

v
cd 2

�Z 1

0

d1ðxÞd2ðxÞ dx
�
d2:

Then by (4.18) and the above equality we have

~FFUUUðl1;UÞD3 ¼
0

6gt

ð1þ tvÞ3
d1d

2
2 � 6gt2u

ð1þ tvÞ4
d 3
2 þ 6d

v
cd 2

�Z 1

0

d1d2 dx
�
d2

0
@

1
A;

whence

ððD�; ~FFUUU ðl1;UÞD3ÞÞ ¼ 6gtd 2d �

ð1þ tvÞ3
�
c� tu

1þ tv
d
�Z 1

0

cos4ð
ffiffiffiffiffi
k1

p
xÞ

þ 6d

v
cd 2d �

�Z 1

0

cos2ð
ffiffiffiffiffi
k1

p
xÞ
�2

< 0

(here use of (4.14)–(4.15) has been made). Moreover, arguing as for (3.21) we have

ððD�; ~FFlUðl1;UÞDÞÞ ¼ �dd �k1

Z 1

0

cos2ð
ffiffiffiffiffi
k1

p
xÞ dx < 0;ð4:19Þ

thus l 00ð0Þ < 0 by equality (4.17). Then the same argument used in the proof of
Proposition 3.1 proves that the bifurcation is subcritical.

Finally, replacing equality (3.27) by

að0Þ ¼ �ððD�; ~FFlU ðl1;UÞDÞÞð4:20Þ

and inequality (3.21) by (4.19), the above calculations and the same arguments
used in the proof of Theorem 2.3 prove that the stationary bifurcating solutions
are asymptotically stable. This completes the proof. r
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