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Abstract. — Let ðW;SÞ be a Coxeter system, S finite, and let GW be the associated Artin group.

One has configuration spaces Y, YW, where GW ¼ p1ðYWÞ, and a natural W-covering fW : Y ! YW.
The Schwarz genus gð fWÞ is a natural topological invariant to consider. In [DS00] it was computed

for all finite-type Artin groups, with the exception of case An (for which see [Vas92], [DPS04]). In
this paper we generalize this result by computing the Schwarz genus for a class of Artin groups,

which includes the a‰ne-type Artin groups. Let K ¼ KðW;SÞ be the simplicial scheme of all subsets

JHS such that the parabolic group WJ is finite. We introduce the class of groups for which dimðKÞ
equals the homological dimension of K , and we show that gð fWÞ is always the maximum possible for

such class of groups. For a‰ne Artin groups, such maximum reduces to the rank of the group. In
general, it is given by dimðXWÞ þ 1, where XW HYW is a well-known CW -complex which has the

same homotopy type as YW.
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1. Introduction

To any Coxeter system ðW;SÞ, S finite, one can naturally associate (see section 2):

– a space Y with a natural free action of W, and an orbit space YW such that the
projection onto the quotient fW : Y ! YW is a regular covering with group W;

– an explicitly constructed CW -complex XHY which is a deformation retract
of Y, whose cells are permuted under the action of W, and a finite orbit CW -
complex XW HYW which is a deformation retract of the orbit space, such that
fW restricts to a regular W-covering fW : X ! XW.

Let K ¼ KðWÞ be the simplical scheme with vertex set S and simplices all
GHS such that the parabolic subgroup WG is finite. Then the complex X is
union of finitely many polyhedra, one for each maximal simplex in K , and
XW is obtained by explicit identifications on the faces of these polyhedra (see
[Sal94]).

The fundamental group of YW (resp. of Y) is the Artin group GW of type W
(resp. the pure Artin group PGW). The quotient GW=PGW is isomorphic to W.
For example, if the group W is the symmetric group Sn with set of Coxeter gen-
erators S :¼ fði; i þ 1Þ : i ¼ 1; . . . ; n� 1g then GW is the braid group Brn and
PGW is the pure braid group Pn. The spaces YW and Y generalize the classical



configuration spaces for the braid group and the pure braid group respectively, so
they can be called the configuration spaces for GW and for PGW respectively.

The Schwarz genus gð f Þ of a locally trivial fibration f : Y ! X is the mini-
mum cardinality of an open covering U of X such that there exists a section of
f over each open set U a U ([Sch61]; see section 3 below). The Schwarz genus
gð fWÞ of the above covering can be considered as a natural topological invariant
of the Artin group.

The main result of this paper is the computation of gð fWÞ for a class of Artin
groups including the a‰ne type groups (i.e., when ðW;SÞ is an a‰ne Coxeter
system).

For any finite Coxeter group W of rank n, it was shown in [DS00] that the
Schwarz genus gð fWÞ reaches the upper bound nþ 1 (coming from an easy argu-
ment in obstruction theory) except when W ¼ An and nþ 1 is not a prime power
(see [Vas92]). For the first non prime power nþ 1 ¼ 6, in [DPS04] it is shown that
gð fA5

Þ ¼ 5, lower than nþ 1. Next, in [Aro05] it is shown by di¤erent methods
that gð fAn

Þ < nþ 1 when nþ 1A pk; 2pk for p prime (so, the case 2pk is still
open, as well as the precise value of the genus).

We introduce the class of a‰ne-like Artin groups, as those groups such that
the homological dimension of KðWÞ equals the topological dimension of KðWÞ.
For a‰ne type Artin groups, KðWÞ turns out to be a sphere, so this condition is
fulfilled. For this class of groups, we show that the genus coincides again with
dimðXWÞ þ 1. For an a‰ne type Artin group of rank nþ 1, dimðXWÞ ¼ n (but
for other a‰ne-like groups, the rank is bigger than dimðXWÞ þ 1).

Notice how the above condition on K contrasts what happens for the finite
type cases, where K is contractible.

2. General pictures

2.1. Topological constructions for Artin groups

We will consider a finitely generated Coxeter system ðW;SÞ (S finite), so

W ¼ 3s a S j ðss 0Þmðs; s 0Þ ¼ 14ð1Þ

where mðs; s 0Þ a NA flg, mðs; s 0Þ ¼ mðs 0; sÞ, mðs; sÞ ¼ 1 (all results in this part
which are not explicitly referred to the literature are taken from [Bou68],
[Hum90], [Vin71]). We recall some general pictures.

The group W can be realized as a group generated by (in general, non-
orthogonal) reflections in Rn, n ¼ jSj. Let A be the reflection arrangement, i.e.

A ¼ fHHRn jH is fixed by some reflection in Wg:

Consider also the stratification into facets F :¼ fFg of Rn induced by A. The
codimension-0 facets, which are the connected components of the complement
to the arrangement, are called chambers. All the chambers are simplicial cones,
the group acting transitively over the set of all them. The Coxeter generator set
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S corresponds to the set of reflections with respect to the walls of a fixed base-
chamber C0.

Let U :¼ W:C0 be the orbit of the closure of the base chamber. U is called the
Tits cone of the Coxeter system.

Notice that the closure of the chamber C0 is endowed with a natural stratifi-
cation into facets (which are still relatively open cones with vertex 0). When C0 is
the standard positive octant, each facet is given by imposing some coordinates
equal to 0, and the remaining coordinates positive.

Each reflection in W is conjugated to a reflection with respect to a wall of C0.
So, the arrangement A consists of the orbits of the walls of C0. Each chamber
contained inside U is of the shape w:C0 for a unique w a W. Of course, A is
not locally finite if W is infinite (e.g. 0 is contained in all the hyperplanes). The
orbits of the facets of C0 give a ‘‘stratification’’ of U into relatively open cells,
also called facets (in general, U is neither open nor closed in Rn).

Recall also:

1. U is a convex cone in Rn with vertex 0.
2. U ¼ Rn i¤ W is finite
3. The stabilizer of a facet F in U is the subgroup WF generated by all the reflec-

tions with respect to hyperplanes (in A) containing F . So, in general WF is not
finite.

4. U 0 :¼ intðUÞ is open in Rn and a (relatively open) facet F HC0 is contained
in U 0 i¤ the stabilizer WF is finite.

By property 4 the arrangement is locally finite in the interior part U 0.
Let HC :¼ H þ iHHCn be the complexification of the hyperplane H, and set

Y :¼ ½U 0 þ iRn�
� [

H AA

HC

which corresponds to complexifying only the interior part of the Tits cone. The
group W acts (as before) diagonally onto Y, and one shows easily (by property 3
above) that the action is free. Therefore, one has an orbit space

YW :¼ Y=W

which is still a manifold, and a regular covering

fW : Y ! YW

with group W.

Definition 2.1. Define

GW :¼ p1ðYW Þ

as the Artin group of type W.
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(see [Bri71, Del70] for the case when W is finite). We recall here some topological
constructions from [Sal94] (see also [Sal87], [CMS08a], [CMS08b], [CMS10],
[Sal05], [MSV12]).

Take x0 a C0 and let Q be the finite CW -complex constructed as follows. For
all maximal subsets GHS such that WG is finite, construct a jGj-cell QG in U 0 as
the convex hull of the WG orbit of x0. Each QG is a finite convex polyhedron
which contains the point x0.

Define

Q :¼
[

QGð2Þ

(a finite union of convex polyhedra).
The k-faces of each QG are also polyhedra, each of them corresponding to a

coset of a parabolic subgroup WD, where DHS is a k-subset of G. The correspon-
dence

ffaces of QGg $ fw:WD;w a G;DHGg

is obtained by taking the polyhedron given by the convex-hull of the orbit WD:x0
and translating it by w.

One also has:

Proposition 2.2. Inside each coset w:WD there exists an unique element of
minimal length.

Here the length is the minimal number of letters (coming from S) in a reduced
expression.

For every face e of QG, which corresponds to a coset w:WD, let bðeÞ a w:WD

be the element of minimal length. Notice that WG permutes faces of the same
dimension. Let XWG

be obtained from QG by identifications on its faces defined
as: each pair of faces e, e 0 belonging to the same orbit is identified by using the
homeomorphism bðeÞbðe 0Þ�1. Define also the finite complex

XW :¼
[
G

XWG
:ð3Þ

Notice that XW is well defined because of the following easy fact.

Remark 2.3. For any common cell eHQGBQG 0 the minimal element bðeÞ is the
same when computed in WG and in WG 0 .

For reader convenience, we also recall the following fact, whose proof is the
same as in [Sal94].

Theorem 1. The CW-complex XW is deformation retract of the orbit space YW.

Proof. First, there exists a regular CW -complex XHY which is deformation
retract of Y, and X is constructed as in [Sal87]. The construction used there

236 d. moroni, m. salvetti and a. villa



(where the starting point was an a‰ne arrangement of hyperplanes) works in
general because one reduces to the finite case around faces with finite stabilizer.

The construction of X can be chosen invariantly with respect to the action of
W, which permutes cells of the same dimension.

The action on X being free, we look at the orbit space X=W. By remark 2.3,
this reduces to finite cases. r

As an immediate corollary of this construction one has a presentation of the
group GW which generalizes the finite type case (see also [vdL83])

GW ¼ 3gs; s a S j gsgs 0gs . . . ¼ gs 0gsgs 0 . . . 4ð4Þ

(same number mðs; s 0Þ of factors on each side) where we have to consider only
pairs such that mðs; s 0Þ is finite.

2.2. Topological constructions for Coxeter groups

We refer here essentially to [DS00].
Consider the subspace arrangement in Rnd G ðRnÞd given by

AðdÞ :¼ fH ðdÞg

where H ðdÞ is the codimensional-d subspace given by ‘‘d-complexification’’ of the
hyperplane H a A:

H ðdÞ :¼ fðX1; . . . ;XdÞ : Xi a Rn;Xi a Hg:

If U 0 is the interior of the Tits cone, as above, then we consider the space

U
ðdÞ
W :¼ U0 � Rn � � � � � Rn

(d � 1 factors equal to Rn), and the configuration space

YðdÞ :¼ U
ðdÞ
W

� [
H AA

H ðdÞ:ð5Þ

As before, the group W acts freely on YðdÞ and we consider the orbit space

Y
ðdÞ
W :¼ YðdÞ=W:

One has:

Theorem 2. The space

Y
ðlÞ
W :¼ lim�!

d

YðdÞ

" #�
W ¼ lim�!

d

Y
ðdÞ
W

" #

is a space of type kðW; 1Þ. r
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So, di¤erent from the case of Artin groups, we always get a kðp; 1Þ space here.
Recall also:

Theorem 3. The space Y
ðdÞ
W contracts over a CW-complex X

ðdÞ
W such that

fk � cells of X
ðdÞ
W g

$ flags G :¼ ðG1 I � � �IGdÞ : G1 HS; WG1
finite;

Xd
i¼1

jGij ¼ k

( )
:

Passing to the limit, Y
ðlÞ
W ¼ kðW ; 1Þ contracts over a CW-complex X

ðlÞ
W such that

fk � cells of X
ðlÞ
W g

$
(
flags G :¼ ðG1 IG2 I � � � Þ : G1 HS;WG1

finite;
X
ib1

jGij ¼ k

)
: r

Notice that X
ðlÞ
W does not have finite dimension but the number of k-cells is

finite, bounded by nþk�1
k

� �
.

2.3. Algebraic complexes for Artin groups

We refer here mainly to [Sal94], [DS96].
We consider the algebraic complex related to the cell structure of XW. It is

given in the following way.
Let Z½GW� be the group algebra of GW. Let ðC�; q�Þ be the algebraic complex

of free Z½GW�-modules such that in degree k it is free with basis eJ corresponding
to subsets JHS such that WJ is finite:

Ck :¼ 0
JHS
jJj¼k

WJ finite

Z½GW�eJð6Þ

Let

qðeJÞ :¼
X
IHJ

jI j¼k�1

½I : J�T J
I :eIð7Þ

where ½I : J� is the incidence number (¼ 0; 1 or �1) of the cells in XW and

T J
I :¼

X
b AW J

I

ð�1ÞlðbÞgb

where

1. WJ
I :¼ fb a WJ : lðbsÞ > lðbÞ; Es a WIg is the set of elements of minimal

length for the cosets WJ

WI
(prop. 2.2);
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2. if b a WJ
I and b ¼ si1 . . . sik is a reduced expression then lðbÞ ¼ k;

3. if b is as in 2 then gb :¼ gsi1 . . . gsik . One shows that this map

c : W ! GWð8Þ

is a well-defined section (not a homomorphism) of the standard surjection
GW ! W.

Remark 2.4. When XW is a space of type kðGW; 1Þ then ðC�; q�Þ gives a free
Z½GW� resolution of Z as a trivial module. In any case, ðC�; q�Þ corresponds to the
cellular complex structure of the universal covering of XW, so they can be used to
compute local systems over XW.

Let R :¼ A½q; q�1� be the ring of Laurent polynomials over a ring A. One can
represent GW by

gs 7! ½multiplication by �q� Es a Sð9Þ

(a AutðRÞ).
The tensor product C� nR has boundary

qðeJÞ ¼
X
IHJ

jI j¼jJj�1

½I : J�WJðqÞ
WI ðqÞ

eIð10Þ

where

WJðqÞ :¼
X
w AWJ

qlðwÞ

is the Poincaré series of the group WJ (here, a polynomial since the stabilizers are
finite). The denominator WI ðqÞ divides the numerator WJðqÞ so the quotient is
still a polynomial.

2.4. Algebraic complexes for Coxeter groups

Consider the algebraic complex ðC�; qÞ of free Z½W�-modules, where

Ck :¼ 0
G:T

ib1jGi j¼k

jWG1
j<l

Z½W�eðGÞ

The generators of C� are in one to one correspondence with the cells of X
ðlÞ
W ,

so with the flags G ¼ ðG1 IG2 I � � � Þ, G1 HS, WG1
finite.

The expression of the boundary is the following:

qeðGÞ ¼
X
ib1

jGij>jGiþ1j

X
t AGi

X
b AW

Gi
Ginftg

b�1Giþ1bHGinftg

ð�1ÞaðG; i; t;bÞbeðG 0Þð11Þ
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where

G 0 ¼ ðG1 I � � �IGi�1 IGinftgI b�1Giþ1bI b�1Giþ2bI � � � Þ

and ð�1ÞaðG; i; t;bÞ is an incidence index. To get a precise expression for aðG; i; t; bÞ,
fix a linear order on S and let

mðGi; tÞ :¼ j j a G s:t: ja tj
sðb;GjÞ :¼ jða; bÞ a Gj � Gj s:t: a < b and bðaÞ > bðbÞj

in other words, mðGi; tÞ is the number of reflections in Gi less or equal to t and
sðb;GjÞ is the number of inversions operated by b on Gj. Then we define:

aðG; i; t; bÞ ¼ ilðbÞ þ
Xi�1

j¼1

jGjj þ mðGi; tÞ þ
Xd
j¼iþ1

sðb;GjÞð12Þ

where l is the length function in the Coxeter group.

Theorem 4. For any finitely generated W, the algebraic complex ðC�; q�Þ gives a
free resolution of the trivial Z½W�-module Z.

The proof follows straightforward from the remark that the limit space Y
ðlÞ
W , so

X
ðlÞ
W , is a space of type kðW; 1Þ.

3. The genus problem for Artin groups

Our main application here is the extension of some of the results found in [DS00],
[DPS04] about the genus of the covering associated to an Artin group.

3.1. Schwarz genera and homological genera

We start recalling the definition of Schwarz genus and discussing briefly some of
its properties (we refer to [Sch61], [Vas92] for details).

Definition 3.1. For a locally trivial fibration f : Y ! X, the Schwarz genus
gð f Þ is the minimal cardinality of an open cover U of X such that f admits a sec-
tion over each set U a U.

Remark. The Schwarz genus is the extension to fibrations of the Lusternik-
Schnirelmann category of a topological space; indeed the category of a path con-
nected topological space coincides with the Schwarz genus of its Serre fibration.

When X has the homotopy type of a finite dimensional CW complex, we have
an upper bound for the genus of any fibration:
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Theorem 5. If X has the homotopy type of a CW complex of dimension N, then
gð f ÞaN þ 1. r

Let now f : Y ! X be a regular G-covering. Then f ¼ a�ðpÞ, where
a : X ! BG is a classifying map into the classifying space BG for G and
p : EG ! BG is the universal G-bundle.

Let M be an arbitrary G-module and a�M be the local system on X induced
by the map a.

Definition 3.2. The homological M-genus of f : Y ! X is the smallest integer
hMð f Þ such that the induced map in cohomology:

a� : H jðBG;MÞ ! H jðX; a�MÞ

is zero in degree j for jb hMð f Þ.
The homological genus is defined as the maximum hð f Þ ¼ maxM hMð f Þ of the

homological M-genera.

Homological genus provides a lower bound for Schwarz genus:

Theorem 6. For any regular covering f : Y ! X, we have gð f Þb hð f Þ. r

3.2. The genus problem for Artin groups

Let W be a Coxeter group and consider the regular covering fW : Y ! YW be-
tween the configuration spaces introduced in part 2.1. We are interested in the
genus gð fWÞ of fW.

We start by some general remarks on the algebraic complexes for GW.
First we denote by K :¼ KðWÞ the simplicial scheme, defined over S, of the

subsets JHS which generate a finite parabolic subgroup WG (we include the
empty set which by definition generates the trivial subgroup). The algebraic
complex which computes the simplicial homology of K with coe‰cients in Z
will be denoted here by

D0
kðWÞ :¼ 0

JJS
jJj¼k

jWJ j<l

Z � e0J

with boundary:

q0ðe0JÞ ¼
X
IHJ

jJj¼jI jþ1

½I : J� e0Ið13Þ

Here we indicate by ½I : J� the incidence number of oriented simplices,
namelye1 or 0, which is the same as that of the corresponding cells appearing
in (10).
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Notice that we found convenient here to graduate D0
� according to the cardi-

nality of the subsets, so there is a degree-1 shift isomorphism with the standard
complex for the simplicial homology of K : HmðD0

�Þ G Hm�1ðKÞ, mb 1.
We also denote by D0

�ðW;BÞ :¼ D0
�ðWÞnB the algebraic complex computing

the homology with trivial coe‰cients a Z-module B. When no module is indi-
cated we mean B ¼ R.

Let us consider the representation r : GW ! AutðRÞ of (2.3), obtained by
sending the standard generators of GW into ð�qÞ-multiplication. Let Rq be the
ring R with the prescribed structure of GW-module. It is convenient to indicate
here by D�ðWÞ the algebraic complex of part 2.3, so

DkðWÞ :¼ 0
JJS
jJj¼k

jWJ j<l

R � eJð14Þ

and the boundary is given by (10).

Remark 3.3. We can formally rewrite the boundary map in (10) as:

q
� 1

WJðqÞ
eJ

�
¼

X
IHJ

jJj¼jI jþ1

½I : J� 1

WI ðqÞ
� eIð15Þ

That means that the fractions eJ=WJðqÞ behave like the cells of the simplicial
scheme K .

Consider the diagonal map:

D : D�ðWÞ ! D0
�ðWÞ; eJ 7! WJðqÞe0J :ð16Þ

It is clear by the previous discussion that D is an injective chain-complex homo-
morphism, so there is an exact sequence of complexes:

0 ! D�ðWÞ !D D0
�ðWÞ !p L�ðWÞ ! 0ð17Þ

where

LkðWÞ :¼ 0
JJS
jJj¼k

jWJ j<l

R

ðWJðqÞÞ
� eJ

is the quotient complex.
Passing to the associated long exact sequence we get:

!p� Hkþ1ðL�Þ !
d
HkðD�Þ !

D�
HkðD0

�Þ !
p�

HkðL�Þ !
d
Hk�1ðD�Þ !

D�ð18Þ

Remark 3.4. It is possible to consider both the data R
ðWJ ðqÞÞ , JHS, jWJ j < l,

and the complex L� as functorial constructions associated to any ( finitely gener-
ated) Artin group. In [MSV12] we introduce a class of ‘‘sheaves over posets’’ called

242 d. moroni, m. salvetti and a. villa



weighted sheaves over posets, and associated weighted complexes, a particular
case being that associated to an Artin group, and we used this construction for
computations of the cohomology (see also [SV13]).

We need some definitions.

Definition 3.5. We define the virtual dimension of an Artin group GW as

vdðGWÞ :¼ dimðKÞ þ 1

where K is the associated simplicial scheme and the dimension is that of a simplicial
complex, so by definition of K:

vdðGWÞ ¼ maxfjJj : JHS; jWJ j < lg

(Equivalently, vdðGWÞ ¼ maxfn : D0
nðW;ZÞA 0g)

Definition 3.6. We define the homological virtual dimension of GW as:

hvdðGWÞ :¼ maxfn : HnðD0
�ðW;ZÞÞA 0g

(Equivalently: hvdðGWÞ :¼ maxfn : HnðK ;ZÞA 0g þ 1, where here we use the
standard graduation for the homology).

By construction one has

dimðXWÞ ¼ vdðGWÞ

and from theorem 5 it follows

gð fWÞa vdðGWÞ þ 1ð19Þ

Definition 3.7. We say that a Coxeter system ðW;SÞ is a‰ne-like type if

vdðGWÞ ¼ hvdðGWÞ

Remark 3.8. Recall that for an a‰ne Coxeter system ðW;SÞ of rank nþ 1, a
parabolic subgroup WJ is finite if and only if J is a proper subset of S. In particular
the poset of finite parabolic subgroups is isomorphic to the poset of proper subsets
of Inþ1 ¼ f1; . . . ; nþ 1g (that is the boolean lattice minus its maximum). Then the
homology of D0

�ðWÞ is the reduced homology of a ðn� 1Þ-sphere modulo a degree
shift:

HkðD0
�ðWÞÞ G ~HHk�1ðSn�1;RÞ G 0 if kA n

R if k ¼ n

�

Therefore ðW;SÞ is a‰ne-like.

We can now state the main result of the paper.
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Theorem 7. Let ðW;SÞ be an a‰ne-like Coxeter system. Then for the Schwarz
genus of the fibration

fW : Y ! YW

it holds

gð fWÞ ¼ vdðGWÞ þ 1

Proof. Inequality (19) gives the upper bound which we need. To obtain the
lower bound we will use homological methods.

First we prove:

Theorem 8. Let M ¼ Z½�1� be the GW-module Z with the action given by the
sign representation. Let

F 0
k :¼ FHkðD0

�ðW;ZÞÞ :¼ HkðD0
�ðW;ZÞÞ=TorsðHkðD0

�ðW;ZÞÞ

be the free component of the integral k-th homology of D0
� . Assume that

F 0
k A 0

for some k.
Then also the free part

FHkðXW ;MÞA 0:

Proof of theorem 8. The homology of XW in the sign representation is com-
puted by specializing the complex (14) to q ¼ 1. We obtain sequences analog to
(17) and (18) respectively, where in this case D0

�ðW;ZÞ computes the homology
of K with trivial integer coe‰cients.

By definition F 0
k A 0. Let z0 a D0

k be any no-torsion k-cycle,

z0 ¼
X
jJj¼k

eJe
0
J ; eJ a Z:

Notice that the map D is injective, being diagonal with all non-vanishing en-
tries given by WJð1ÞA 0, jJj ¼ k.

Let m :¼ lcmðWJð1ÞÞjJj¼k. Then

m:z0 ¼ DðzÞ

where

z :¼
X
jJj¼k

eJ
m

WJð1Þ
eJ :

It follows that z is a no-torsion cycle in HnðXW;MÞ. r
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From theorem 8 we deduce:

Corollary 3.9. Let ðW;SÞ be an a‰ne-like Coxeter system and let

n :¼ vdðGWÞ ¼ hcdðGWÞ:

Let M ¼ Z½�1� be the sign representation.
Then the Z-rank of HnðXW;MÞ is bigger than 0.

Proof of corollary 3.9. In top dimension n we have (we drop the coe‰-
cients):

0 ! HnðD�Þ !
D�

HnðD0
�Þ !

p�
HnðL�Þ !

d
Hk�1ðD�Þ !

D�ð20Þ

By definition HnðD0
�ÞA 0, and since we are in top dimension such group is

a free Z-module. Then we apply theorem 8 and the thesis follows by passing to
cohomology. r

Recall that we have an inclusion i : XW ,! X
ðlÞ
W and that XW may be identified

with the subcomplex of X
ðlÞ
W consisting of cells of type G ¼ ðG1 K jK jK � � � Þ.

Let M be a W-module and M 0 the local coe‰cient system on XW induced by
M via i. Equivalently, we can consider the natural surjection

GW ! W ! 1:

The associated map of cochains

i� : C �ðW;MÞ ! C �ðXW;M 0Þ

is described as the restriction of c a C �ðW;MÞ to the chains for XW. Let n be the
maximal cardinality of a subset JHS s.t. jWJ j < l. Then in degree n we have:

���! Cn�1ðW;MÞ ���! CnðW;MÞ ���! Cnþ1ðW;MÞ ���!???y
???y

???y
���! Cn�1ðXðWÞ;M 0Þ ���! CnðXW;M 0Þ ���! 0 ���!

ð21Þ

The above sign representation Z½�1� is clearly induced by the analog sign rep-
resentation of W. We have:

Theorem 9. Let M ¼ Z½�1� be the sign representation as above. Then the map
i� : HkðW;MÞ ! HkðXW;M 0Þ is an epimorphism, for all kb 0.

Proof of theorem 9. The proof is entirely analog to [DS00], where only the
case k ¼ n is considered. We include it here for reader convenience.

We consider the diagram 21 at vertical level k.
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Let S
ðlÞ
k be the set of (infinite) flags of total cardinality k (see part 2.4) so that

we identify CkðW;MÞ with the set of functions f : S
ðlÞ
k ! M, denoted MS

ðlÞ
k .

Analogously we identify CkðXW;M 0Þ with the set of such functions defined only
over the flags of length 1, i.e. such that Gi ¼ j for i > 1.

It is su‰cient to consider functions f a MS
ðlÞ
n such that

f ðG ¼ ðG1 IG2 I � � � ÞÞ ¼ 0 if jGij > 0 for some i > 1

(equivalently, if jG2j > 0). Let us compute the coboundary of f .

(a) dkð f ÞðG1 IG2 I � � � Þ ¼ 0 if jG2j > 1 or jG3j > 0.
In fact, by formula (11) we get a linear combination of f computed on chains
with jG2j > 0.

(b) If G1 ¼ fsj1 < � � � < sjkg, G2 ¼ fsjmg then

dkð f ÞðG1 IG2 I jI � � � Þ ¼
X

b2 AWsjm

ð�1ÞaðG;2;1;b2Þrðb2Þ: f ðG1Þð22Þ

¼ ð�1Þkþ1
f ðG1Þ þ ð�1Þkþ1rðsjkÞ: f ðG1Þ

¼ ð�1Þkþ1ð1þ rðsjmÞÞ: f ðG1Þ

It immediately follows from (22) that each cocycle f a CkðXW;M 0Þ can be
extended to a cocycle in CkðW;MÞ, which concludes the proof. r

End of proof of theorem 7. From Theorem 8, we know that the top-
cohomology of XW with coe‰cients in the sign representation does not vanish.
Using theorem 9, the homological genus hð fWÞ is greater than vdðGWÞ þ 1. Since
XW has dimension vdðGWÞ, the result follows from theorems 6 and 5. r

We have immediately (see rmk 3.8):

Corollary 3.10. Let Wa be an a‰ne Weyl group of rank nþ 1. Then the
Schwarz genus of the fibration YWa

! XWa
is precisely nþ 1. r

In case hvdðGWÞ is strictly lower than vdðGWÞ we can get an estimate by
slightly modifying the definitions.

Definition 3.11. We define the rational homological virtual dimension of GW,
written rhvdðGWÞ, as

rhvdðGWÞ :¼ maxfn : HnðD0
�ðW;QÞÞA 0g:

Then a straightforward modification of the proof of theorem 7 implies:

Theorem 10. For any finitely generated Coxeter system ðW;SÞ one has

gð fWÞb rhvdðGWÞ þ 1: r
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