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Abstract. — In this paper we study convergence results and rate of approximation for a family of

linear integral operators of Mellin type in the frame of BV jðRN
þ Þ. Here BV jðRN

þ Þ denotes the space
of functions with bounded j-variation on RN

þ , defined by means of a concept of multidimensional

j-variation in the sense of Tonelli.
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1. Introduction

The importance of Mellin operators in approximation theory is well-known: they
are widely studied (see, e.g., [33, 22]) and they have important applications in
several fields. For example, we recall that Mellin analysis has deep connections
with Signal Processing, in particular with the so-called Exponential Sampling
(see [23]).

In this paper we study approximation properties for a family of linear integral
operators of Mellin type of the form

ðTw f ÞðsÞ ¼
Z
RN
þ

KwðtÞ f ðstÞ3t4�1 dt; s a RN
þ ; w > 0;ðIÞ

with respect to the multidimensional j-variation in the sense of Tonelli intro-
duced in [10]. Here fKwgw>0 is a family of approximate identities (see Section
2), 3t4 :¼

QN
i¼1 ti and st :¼ ðs1t1; . . . ; sNtNÞ, s; t a RN

þ .
The class of the above operators (I) contains, as particular cases, several

families of well-known integral operators (see Section 4): among them, for exam-
ple, the moment-type or average operators, the Mellin Picard operators and
others.

Due to the homothetic structure of our operators, it seems that the most
natural way to frame the theory is to work with the Haar measure in RN

þ , i.e.,

mðAÞ :¼
Z
A

3t4�1 dt, where A is a Borel subset of RN
þ . Results about homothetic-

type operators in various settings can be found, for example, in [19, 33, 45, 18, 40,



17, 15, 16, 3, 10, 11, 12, 21], while for similar results about classical convolution
operators see, e.g., [24, 42, 34, 14, 20, 6, 7, 8, 2, 4].

The main results are presented in Sections 3 and 4. We first study the problem
of the convergence in j-variation: in particular, after some estimates for our
integral operators, we prove that, if f a AC jðRN

þ Þ (the space of j-absolutely
continuous functions), there exists a constant m > 0 such that

lim
w!þl

V j½mðTw f � f Þ� ¼ 0:ðIIÞ

Then we face the problem of the rate of approximation and we prove that, if f
belongs to a Lipschitz class V jLipNðaÞ, a > 0, under suitable assumptions on the
kernels fKwgw>0 (see Section 4), there exists a constant l > 0 such that

V j½lðTw f � f Þ� ¼ Oðw�aÞ;

for su‰ciently large w > 0.
An important step in order to achieve (II) is to prove the convergence for

the j-modulus of smoothness in the present setting; this problem was solved in
[10]. This result extends to the multidimensional case an analogous one for the
(one-dimensional) Musielak-Orlicz j-variation ([40]). In the case of the classical
variation (see, e.g., [14] for translation operators) such result is an easy conse-
quence of the integral representation of the variation for absolutely continuous
functions; on the contrary, in the case of the j-variation, due to the lack of an
integral representation, it requires a more delicate direct construction.

2. Notations

We will study approximation results in BV jðRN
þ Þ, namely the space of functions

f : RN
þ ! R of bounded j-variation introduced in [10]. Such a concept of multi-

dimensional j-variation on RN
þ has the purpose to provide a j-variation in the

sense of Musielak-Orlicz ([37]) in the multidimensional frame, following the
Tonelli approach ([43]), generalized in dimension Nb 2 by T. Radó ([38]) and

C. Vinti ([44]). Here we endow RN
þ with the Haar measure mðAÞ ¼

Z
A

3t4�1 dt,

where A is a Borel subset of RN
þ , 3t4 :¼

QN
i¼1 ti, t ¼ ðt1; . . . ; tNÞ a RN

þ , which
seems to be the natural setting working with homothetic operators. We recall
that, under some properties of approximate continuity, the multidimensional
version in the sense of Tonelli of the classical variation is equivalent to the distri-
butional variation (see, e.g., [25, 28, 29]).

We denote by F the class of all the functions j : Rþ
0 ! Rþ

0 such that

1. j is convex and jðuÞ ¼ 0 if and only if u ¼ 0;
2. u�1jðuÞ ! 0 as u ! 0þ.

From now on we will assume that j a F.
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We now recall some notations of the multidimensional setting in which we
work (see, e.g., [14]). For f : RN

þ ! R and x ¼ ðx1; . . . ; xNÞ a RN
þ , N a N, if we

want to focus the attention on the j-th coordinate, j ¼ 1; . . . ;N, we will write

x 0
j ¼ ðx1; . . . ; xj�1; xjþ1; . . . ; xNÞ a RN�1

þ ; x ¼ ðx 0
j ; xjÞ; f ðxÞ ¼ f ðx 0

j ; xjÞ:

Given I ¼
QN

i¼1½ai; bi�HRN
þ , by I 0j :¼ ½a 0

j ; b
0
j � we will denote the ðN � 1Þ-

dimensional interval obtained deleting by I the j-th coordinate, so that

I ¼ ½a 0
j ; b

0
j � � ½aj; bj�:

In order to define the multidimensional j-variation, we first recall that the
j-variation of a function g : ½a; b� ! R is defined as

V
j
½a;b�½g� :¼ sup

D

Xn

i¼1

jðjgðsiÞ � gðsi�1ÞjÞ;

where D ¼ fs0 ¼ a; s1; . . . ; sn ¼ bg is a partition of ½a; b� ([37, 36]), and g is said to
be of bounded j-variation (g a BV jð½a; b�Þ) if V j

½a;b�½lg� < þl, for some l > 0.

The j-variation was introduced by L. C. Young ([48]) as a generalization of
the concept of p-variation, pb 1 ([47, 31]), which extends Wiener’s quadratic
variation ([46]). However the main developments of this concept are due to J.
Musielak and W. Orlicz and their school: we refer to [37] for the main properties
of the (one-dimensional) j-variation. For results concerning the j-variation, the
reader can see, e.g., [37, 30, 36, 32, 35, 39, 1, 26, 41].

Now we consider the Musielak-Orlicz j-variation of the j-th section of f , i.e.,
V

j
½aj ;bj �½ f ðx

0
j ; �Þ�, for x 0

j a I 0j , and then the ðN � 1Þ-dimensional integrals

F
j
j ð f ; IÞ :¼

Z b 0
j

a 0
j

V
j
½aj ;bj �½ f ðx

0
j ; �Þ�

dx 0
j

3x 0
j4

;

where 3x 0
j4 :¼

QN
i¼1; iAj xi.

We now denote by

Fjð f ; IÞ :¼
XN
j¼1

½Fj
j ð f ; IÞ�

2

( )1
2

;

the euclidean norm of ðFj
1 ð f ; IÞ; . . . ;F

j
Nð f ; IÞÞ, where we put Fjð f ; IÞ ¼ þl if

F
j
j ð f ; IÞ ¼ þl for some j ¼ 1; . . . ;N. Then the multidimensional j-variation of

f on an interval I HRN
þ is defined as

V
j
I ½ f � :¼ sup

Xm
i¼1

Fjð f ; JiÞ;
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where the supremum is taken over all the finite families of N-dimensional inter-
vals fJ1; . . . ; Jmg which form partitions of I . Finally by

V j½ f � :¼ sup
IHRN

þ

V
j
I ½ f �;

where the supremum is taken over all the intervals I HRN
þ , we will denote the

j-variation of f over the whole space RN
þ .

We will say that a function f is of bounded j-variation on RN
þ if there exists a

constant l > 0 such that V j½lf � < þl and BV jðRN
þ Þ will denote the space of

functions of bounded j-variation on RN
þ , namely

BV jðRN
þ Þ :¼ f f a M : bl > 0 s:t: V j½lf � < þlg;

where M is the space of all the measurable functions f : RN
þ ! R. For the main

properties of the multidimensional j-variation, see [10].
Finally by AC

j
locðRN

þ Þ we will denote the space of functions f : RN
þ ! R

which are locally j-absolutely continuous, namely which are locally (uniformly)
j-absolutely continuous in the sense of Tonelli. This means that, for every
I ¼

QN
i¼1½ai; bi�HRN

þ and for every j ¼ 1; 2; . . . ;N, the j-th sections of f ,
f ðx 0

j ; �Þ : ½aj; bj� ! R, are (uniformly) j-absolutely continuous for almost every
x 0
j a ½a 0

j ; b
0
j � (see, e.g., [13, 27]), i.e., there exists l > 0 such that, for every I ¼QN

i¼1½ai; bi�HRN
þ , the following property holds:

for every e > 0, there exists d > 0 such that

Xn

i¼1

jðlj f ðx 0
j ; b

iÞ � f ðx 0
ja

iÞjÞ < e;

for a.e. x 0
j a ½a 0

j ; b
0
j � and for all finite collections of non-overlapping intervals

½a i; b i�H ½aj; bj�, i ¼ 1; . . . ; n, for which

Xn

i¼1

jðb i � a iÞ < d:

The space AC jðRN
þ Þ of the j-absolutely continuous functions will be the

space of the functions f a M which are of bounded j-variation and locally
j-absolutely continuous on RN

þ .
Strictly related to convergence problems is the notion of modulus of smooth-

ness: in this paper we will use the concept of j-modulus of smoothness of
f a BV jðRN

þ Þ defined as

ojð f ; dÞ :¼ sup
j1�tjad

V j½tt f � f �;
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0 < d < 1, which is the natural generalization, in the present setting of BV jðRN
þ Þ,

of the classical modulus of continuity (see, e.g., [36, 17, 8, 10]). Here ðtt f ÞðsÞ :¼
f ðstÞ, for every s; t a RN

þ , is the homothetic operator, 1 :¼ ð1; . . . ; 1Þ is the unit
vector of RN

þ and st :¼ ðs1t1; . . . ; sNtNÞ, s; t a RN
þ .

The class of Mellin integral operators that we study is the following:

ðTw f ÞðsÞ ¼
Z
RN
þ

KwðtÞ f ðstÞ3t4�1 dt; w > 0; s a RN
þ ;ðIÞ

for f a D, where D denotes the space of f : RN
þ ! R for which ðTw f ÞðsÞ exists

and is finite for every s a RN
þ , w > 0 (domain of the operators). We remark that

D contains a large class of functions, among them, for example, all the bounded
functions or, in case of bounded kernels fKwgw>0, all the L1

mðRN
þ Þ-functions,

where L1
mðRN

þ Þ :¼
�
f : RN

þ ! R s:t: k f kL1
m
:¼

Z
RN
þ

j f ðtÞj3t4�1 dt < þl

�
.

Throughout all the paper we will assume that the functions that we consider
belong to the domain D, so that ðTw f ÞðsÞ is well defined for every s a RN

þ ,
w > 0.

As concerns the kernel functions fKwgw>0, we assume that:

Kw.1) Kw : RN
þ ! R is a measurable function such that Kw a L1

mðRN
þ Þ,

kKwkL1
m
aA for an absolute constant A > 0 and

Z
RN
þ

KwðtÞ3t4�1 dt ¼ 1,
for every w > 0;

Kw.2) for every fixed 0 < d < 1,

Z
j1�tj>d

jKwðtÞj3t4�1 dt ! 0, as w ! þl,

i.e., fKwgw>0 is an approximate identity (see, e.g., [24]). We will say that
fKwgw>0 HKw if Kw:1Þ and Kw:2Þ are fulfilled.

3. Main convergence results

The first result is an estimate for the family of integral operators (I), which shows
that our operators map BV jðRN

þ Þ into itself.

Proposition 1. Let f a BV jðRN
þ Þ and let fKwgw>0 be such that Kw:1Þ holds.

Then there exists l > 0 such that

V j½lðTw f Þ�aV j½z f �;ð1Þ

where z > 0 is the constant for which V j½z f � < þl. Therefore, for every w > 0,
Tw : BV jðRN

þ Þ ! BV jðRN
þ Þ.

Proof. Let us fix an interval I ¼
QN

i¼1½ai; bi�HRN
þ and a partition of I ,

fJ1; . . . ; Jmg, with Jk ¼
QN

j¼1½ðkÞaj; ðkÞbj �, k ¼ 1; . . . ;m. Let fsoj ¼ ðkÞaj; . . . ; s
n
j ¼

ðkÞbjg be a partition of the interval ½ðkÞaj; ðkÞbj�, for every j ¼ 1; . . .N, k ¼ 1; . . .m.
Then, for every l > 0, s 0

j a I 0j ,
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Sj :¼
Xn

m¼1

jðljðTw f Þðs 0
j ; s

m
j Þ � ðTw f Þðs 0

j ; s
m�1
j ÞjÞ

¼
Xn

m¼1

j

�
l

����
Z
RN
þ

KwðtÞ f ðs 0
jt

0
j ; s

m
j tjÞ3t4�1 dt

�
Z
RN

þ

KwðtÞ f ðs 0
jt

0
j ; s

m�1
j tjÞ3t4�1 dt

����
�

a
Xn

m¼1

j
�
l

Z
RN

þ

jKwðtÞj j f ðs 0
jt

0
j ; s

m
j tjÞ � f ðs 0

jt
0
j ; s

m�1
j tjÞj3t4�1 dt

�
:

Using Jensen’s inequality and assumption Kw:1Þ,

Sj aA�1

Z
RN

þ

jKwðtÞj
Xn

m¼1

jðlAj f ðs 0
jt

0
j ; s

m
j tjÞ � f ðs 0

jt
0
j ; s

m�1
j tjÞjÞ3t4�1 dt

aA�1

Z
RN

þ

jKwðtÞjV j

½ðkÞaj ; ðkÞbj �½lAf ðs
0
jt

0
j ; �tjÞ�3t4�1 dt;

and therefore, passing to the supremum over all the partitions of ½ðkÞaj; ðkÞbj�,

V
j

½ðkÞaj ; ðkÞbj �½lðTw f Þðs 0
j ; �Þ�aA�1

Z
RN
þ

jKwðtÞjV j

½ðkÞaj ; ðkÞbj �½lAf ðs
0
jt

0
j ; �tjÞ�3t4�1 dt:

Then, by the Fubini-Tonelli theorem,

F
j
j ðlðTw f Þ; JkÞ

:¼
Z ðkÞb 0

j

ðkÞa 0
j

V
j

½ðkÞaj ; ðkÞbj �½lðTw f Þðs 0
j ; �Þ�3s 0

j4
�1 ds 0

j

aA�1

Z ðkÞb 0
j

ðkÞa 0
j

Z
RN

þ

jKwðtÞjV j

½ðkÞaj ; ðkÞbj �½lAf ðs
0
jt

0
j ; �tjÞ�3t4�1 dt

( )
3s 0

j4
�1 ds 0

j

¼ A�1

Z
RN
þ

Z ðkÞb 0
j

ðkÞa 0
j

V
j

½ðkÞaj ; ðkÞbj �½lAf ðs
0
jt

0
j ; �tjÞ�3s 0

j4
�1 ds 0

j

( )
jKwðtÞj3t4�1 dt

¼ A�1

Z
RN
þ

F
j
j ðlAtt f ; JkÞjKwðtÞj3t4�1 dt;

for every j ¼ 1; . . . ;N. Now, applying a Minkowski-type inequality, for every
k ¼ 1; . . . ;m there holds:
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FjðlðTw f Þ; JkÞ :¼
XN
j¼1

½Fj
j ðlðTw f Þ; JkÞ�2

( )1
2

aA�1
XN
j¼1

�Z
RN
þ

F
j
j ðlAtt f ; JkÞjKwðtÞj3t4�1 dt

�2( )1
2

aA�1

Z
RN
þ

XN
j¼1

½Fj
j ðlAtt f ; JkÞ�

2

( )1
2

jKwðtÞj3t4�1 dt

¼ A�1

Z
RN
þ

FjðlAtt f ; JkÞjKwðtÞj3t4�1 dt:

Summing over k ¼ 1; . . . ;m and passing to the supremum over all the partitions
fJ1; . . . ; Jmg of the interval I , we obtain that

V
j
I ½lðTw f Þ�aA�1

Z
RN

þ

V
j
I ½lAtt f �jKwðtÞj3t4�1 dt;ð2Þ

and hence, by the arbitrariness of I HRN
þ and by Kw:1Þ,

V j½lðTw f Þ�aA�1kKwkL1
m
V j½lAf �aV j½lAf �:

Therefore the thesis follows for 0 < laA�1z, since V j½z f � < þl. r

Remark 1. We point out that, in case of jðuÞ ¼ u, u a Rþ
0 , and non-negative

kernels fKwgw>0, then A ¼ kKwkL1
m
¼ 1, w > 0, and we can take l ¼ z ¼ 1. Hence

the previous result gives a non-augmenting property of j-variation.

The following estimate of the error of approximation ðTw f � f Þ with respect
to the j-variation will be crucial for the main convergence result (Theorem 3).

Proposition 2. Let f a BV jðRN
þ Þ and let fKwgw>0 be such that Kw:1Þ is satis-

fied. Then for every l > 0, d a �0; 1½ and w > 0,

V j½lðTw f � f Þ�aojðlAf ; dÞ þ A�1V j½2lAf �
Z
j1�tj>d

jKwðtÞj3t4�1 dt:

Proof. Similarly to Proposition 1 (following an analogous reasoning for

ðTw f � f Þ, instead of Tw f , and recalling that

Z
RN

þ

KwðtÞ3t4�1 dt ¼ 1), it is

possible to reach an analogous estimate to (2), i.e., for every l > 0,

V
j
I ½lðTw f � f Þ�aA�1

Z
RN

þ

V
j
I ½lAðtt f � f Þ�jKwðtÞj3t4�1 dt;
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and hence, for every d a �0; 1½,

V
j
I ½lðTw f � f Þ�aA�1

�Z
j1�tjad

þ
Z
j1�tj>d

�
V

j
I ½lAðtt f � f Þ�jKwðtÞj3t4�1 dt:

About the second integral, let us recall that, for every g; h a BV jðRN
þ Þ, l > 0,

V j½lðgþ hÞ�a 1
2 ðV j½2lg� þ V j½2lh�Þ (see property (A) in [10] and also Proposi-

tion 1 of [2]). Therefore

V
j
I ½lðTw f � f Þ�aA�1

Z
j1�tjad

V
j
I ½lAtt f � f �jKwðtÞj3t4�1 dt

þ A�1

2

Z
j1�tj>d

ðV j
I ½2lAtt f � þ V

j
I ½2lAf �ÞjKwðtÞj3t4�1 dt:

Finally, by the arbitrariness of I HRN
þ and Kw:1Þ, we conclude that

V j½lðTw f � f Þ�aA�1

�Z
j1�tjad

jKwðtÞjV j½lAjtt f � f j�3t4�1 dtð3Þ

þ V j½2lAf �
Z
j1�tj>d

jKwðtÞj3t4�1 dt

�

aojðlAf ; dÞ þ A�1V j½2lAf �
Z
j1�tj>d

jKwðtÞj3t4�1 dt: r

We are now ready to state the main convergence result.

Theorem 3. Let f a AC jðRN
þ Þ and fKwgw>0 HKw. Then there exists a constant

m > 0 such that

lim
w!þl

V j½mðTw f � f Þ� ¼ 0:

Proof. By Proposition 2, for every m > 0, d a �0; 1½,

V j½mðTw f � f Þ�aojðmAf ; dÞ þ A�1V j½2mAf �
Z
j1�tj>d

jKwðtÞj3t4�1 dt:

Now, using Theorem 4.3 of [10], for every fixed e > 0 there exist l > 0
and 0 < d < 1 such that ojðlf ; dÞ < e if j1� tja d. This imples that

ojðmAf ; dÞ < e for 0 < maA�1l. Moreover for every d a �0; 1½, by Kw:2Þ,Z
j1�tj>d

jKwðtÞj3t4�1 dt < e, for w > 0 large enough. Finally, V j½z f � < þl,
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for some z > 0, since f a BV jðRN
þ Þ. Therefore, if we consider 0 < ma

min
l

A
;
z

2A

� �
, then

V j½mðTw f � f Þ�aojðlf ; dÞ þ eA�1V j½z f �a e
�
1þ A�1V j½z f �

	
;

for su‰ciently large w > 0. Hence the theorem is proved, since e > 0 is arbitrary.
r

Remark 2. We point out that the assumption that f a AC jðRN
þ Þ in Theorem 3

is essential and cannot be relaxed. For example, the result is no more true, in gen-
eral, if we just assume that f a BV jðRN

þ Þ. Indeed, let us consider, for example in
the case N ¼ 1, the function

f ðxÞ ¼ 0; 0 < x < 1;

1; xb 1;

�

which is of bounded j-variation on Rþ, but not j-absolutely continuous, and the
Mellin Gauss-Weierstrass kernels (see, e.g., [22] and [10] for their multidimen-

sional version) defined as GwðtÞ ¼ wffiffi
p

p e�w2 log2 t, t > 0, w > 0. Then fGwgw>0 are
approximate identities, i.e., fGwgw>0 HKw,

ðTw f ÞðsÞ ¼
1ffiffiffi
p

p
Z þl

w log 1
sð Þ
e�u2 du; s > 0;

and therefore f a D since ðTw f ÞðsÞ < þl, for every s;w > 0. Moreover, for
every m > 0,

V j½mðTw f � f Þ�bV
j
�0;1½½mðTw f � f Þ� ¼ j m lim

s!0þ
ðTw f ÞðsÞ � lim

s!1�
ðTw f ÞðsÞ

����
����

� �

¼ j
� mffiffiffi

p
p

Z þl

0

e�u2 du
�
¼ j

� m

2

�
> 0;

for every w > 0, and therefore V j½mðTw f � f Þ� n 0, as w ! þl, for every
m > 0.

4. Order of approximation

In this section we will study the problem of the rate of approximation for the
family of operators (I). Before giving the main result, we introduce some defini-
tions.

We say that fKwgw>0 is an a-singular kernel, for a > 0, ifZ
j1�tj>d

jKwðtÞj3t4�1 dt ¼ Oðw�aÞ; as w ! þl;ð4Þ

for every d a �0; 1½.
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As it is usual in this kind of problems, we have to introduce a Lipschitz class
V jLipNðaÞ defined as

V jLipNðaÞ
:¼ f f a BV jðRN

þ Þ : bm > 0 s:t: V j mDt f½ � ¼ Oðjlog tjaÞ; as j1� tj ! 0g;

where Dt f ðxÞ :¼ ðtt f � f ÞðxÞ ¼ f ðxtÞ � f ðxÞ, for x; t a RN
þ , and log t :¼

ðlog t1; . . . ; log tNÞ.

Theorem 4. Let us assume that fKwgw>0 HKw is an a-singular kernel and that
there exists 0 < ~dd < 1 such thatZ

j1�tja~dd

jKwðtÞj jlog tja3t4�1 dt ¼ Oðw�aÞ; as w ! þl:ð5Þ

Then if f a V jLipNðaÞ, there exists l > 0 such that

V j½lðTw f � f Þ� ¼ Oðw�aÞ;

for su‰ciently large w > 0.

Proof. By (3) of Proposition 2 we have that, for every l > 0, d a �0; 1½ and
w > 0,

V j½lðTw f � f Þ�aA�1

�Z
j1�tjad

V j½lAjtt f � f j�jKwðtÞj3t4�1 dt

þ V j½2lAf �
Z
j1�tj>d

jKwðtÞj3t4�1 dt

�

:¼ A�1ðJ1 þ J2Þ:

Since f a V jLipNðaÞ, there exist N > 0 and d a �0; 1½ such that
V j½lAjtt f � f j� < V j½mDt f �aNjlog tja; if j1� tja d and 0 < l < mA�1.

Now, (5) ensures that, if 0 < daminf~dd; dg, then

J1 aN

Z
j1�tjad

jKwðtÞj jlog tja3t4�1 dt ¼ Oðw�aÞ;

for su‰ciently large w > 0.
Finally, there exist l > 0, M > 0 such that V j½lf �aM, since in particular

f a BV jðRN
þ Þ. Then, if 0 < l < lð2AÞ�1, by (4),

J2 aM

Z
j1�tj>d

jKwðtÞj3t4�1 dt ¼ Oðw�aÞ;
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for su‰ciently large w > 0. Hence we conclude that

V j½lðTw f � f Þ� ¼ Oðw�aÞ;

as w ! þl, for 0 < l < min
m

A
;
l

2A

� �
. r

Remark 3. We point out that it is possible to obtain a more general version
of Theorem 4 replacing the functions jlog tja and w�a by tðtÞ and xðwÞ, respec-
tively, where t : RN

þ ! Rþ
0 is a continuous function at t ¼ 1 and such that

tðtÞ ¼ 0 if and only if t ¼ 1, and x : Rþ
0 ! Rþ

0 is such that xðwÞ ! 0 as
w ! þl. The Lipschitz class has to be now defined as

V jLipNðtÞ
:¼ f f a BV jðRN

þ Þ : bm > 0 s:t: V j mDt f½ � ¼ OðtðtÞÞ; as j1� tj ! 0g;

and (5) has to be replaced by

Z
j1�tja ~dd

jKwðtÞjtðtÞ3t4�1 dt ¼ OðxðwÞÞ; as w ! þl;ð5 0Þ

for some ~dd a �0; 1½. Finally, a-singularity becomes now x-singularity, i.e.,

Z
j1�tj>d

jKwðtÞj3t4�1 dt ¼ OðxðwÞÞ; as w ! þl;

for every d a �0; 1½. Then, similarly to Theorem 4 it is possible to prove that

V j½lðTw f � f Þ� ¼ OðxðwÞÞ;

as w ! þl, for f a V jLipNðtÞ and assuming that (5 0) holds and that the family
fKwgw>0 is a x-singular kernel.

It is not di‰cult to find examples of kernel functions which fulfill all the
assumptions of Theorem 4. For example, in [12] it is proved that the moment-
type kernels defined as

MwðtÞ :¼ wN3t4ww�0;1½N ðtÞ; t a RN
þ ; w > 0;

satisfy all the previous assumptions.
Moreover, in the classical case, as it is well known, an important class of

kernels which satisfy all the assumptions for the rate of approximation is given
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by the Fejér-type kernels with finite absolute moments of order a (a > 0). The
same holds in the present setting, where the Fejér-type kernels are kernel func-
tions of the form

KwðtÞ ¼ wNKðtwÞ; t a RN
þ ; w > 0;ð6Þ

where K a L1
mðRN

þ Þ is such that

Z
RN

þ

KðtÞ3t4�1 dt ¼ 1, tw :¼ ðtw1 ; . . . ; twNÞ, and

the absolute moments of order a are defined as

mðK ; aÞ :¼
Z
RN

þ

jlog tjajKðtÞj3t4�1 dt:

Indeed in [12] the following Proposition is proved:

Proposition 5. Let fKwgw>0 be of the form (6) and assume that mðK ; aÞ < þl.
Then

(a)

Z
j1�tj>d

jKwðtÞj3t4�1 dt ¼ Oðw�aÞ, as w ! þl, for every d a �0; 1½;

(b)

Z
j1�tjad

jKwðtÞj jlog tja3t4�1 dt ¼ Oðw�aÞ, as w ! þl, for every d a �0; 1½.

Finally we point out that there are many examples of Fejér-type kernels for
which the absolute moments are finite. Among them, there are the Mellin-Gauss-
Weierstrass kernels (see [12] and also [9]), defined as

GwðtÞ :¼
wN

p
N
2

e�w2jlogtj2 ; t a RN
þ ; w > 0;

they are of Fejér-type and their absolute moments of order a are finite ([12]).
Another example are the Mellin Picard kernels, defined as

PwðtÞ :¼
wN

2p
N
2

G N
2

� 	
GðNÞ e

�wjlog tj; t a RN
þ ; w > 0;

where G is the Euler function. Such kernel functions are setted in the frame
of RN

þ from the classical Picard kernels (see, e.g., [24, 14, 5]), and they are an
example of kernels which fulfill all the previous assumptions. First of all they

are of Fejér-type since PwðtÞ ¼ wNPðtwÞ with PðtÞ ¼ G N
2ð Þ

2p
N
2GðNÞ

e�jlog tj, t a RN
þ

and

Z
RN

þ

PðtÞ3t4�1 dt ¼ 1. Indeed

I :¼
Z
RN

þ

PðtÞ3t4�1 dt ¼
G N

2

� 	
GðNÞ

Z
RN

þ

e�jlog tj3t4�1 dt ¼
G N

2

� 	
2p

N
2GðNÞ

Z
RN

e�juj du:
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Passing to polar coordinates

u1 ¼ r sin f1 . . . sin fN�1;

u2 ¼ r sin f1 . . . cos fN�1;

� � �
uN ¼ r cos f1;

8>><
>>:

and taking into account that, by the Wallis’integrals formula,

Z p
2

0

sinn x dx ¼
G nþ1

2ð ÞG 1
2ð Þ

2G nþ2
2ð Þ , then

Z
RN

e�juj du ¼
Z þl

0

e�rrN�1 dr

Z p

0

sinN�2 f1 df1 . . .

Z 2p

0

dfN�1

¼ 2N�1pGðNÞ
Z p

2

0

sinN�2 f1 df1 . . .

Z p
2

0

sin fN�2 dfN�2

¼ 2p
N
2
GðNÞ
G N

2

� 	 ;
and so I ¼ 1.

Moreover, putting u ¼ log t,

mðP; aÞ ¼
Z
RN

þ

jlog tjajPðtÞj3t4�1 dt ¼
G N

2

� 	
2p

N
2GðNÞ

Z
RN

þ

jlog tjae�jlog tj3t4�1 dt

¼
G N

2

� 	
2p

N
2GðNÞ

Z
RN

jujae�juj du < þl;

and hence fPwgw>0 are an example of kernel functions to which our results can be
applied.
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[38] T. Radò, Length and Area, Amer. Math. Soc. Colloquium Publications, 30, 1948.

[39] A. R. K. Ramazanov, On approximation of functions in terms of F-variation, Anal.
Math., 20 (1994), 263–281.

[40] S. Sciamannini - G. Vinti, Convergence and rate of approximation in BVj for a class

of integral operators, Approx. Theory Appl., 17 (2001), 17–35.

[41] S. Sciamannini - G. Vinti, Convergence results in BVj for a class of nonlinear

Volterra-Hammerstein integral operators and applications, J. Concrete Appl. Anal.,
1(4) (2003), 287–306.

[42] J. Szelmeczka, On convergence of singular integrals in the generalized variation metric,
Funct. Approx. Comment. Math., 15 (1986), 53–58.

[43] L. Tonelli, Su alcuni concetti dell’analisi moderna, Ann. Scuola Norm. Super. Pisa,
11(2) (1942), 107–118.

[44] C. Vinti, Perimetro—variazione, Ann. Scuola Norm. Sup. Pisa, 18(3) (1964),
201–231.

[45] G. Vinti, The Generalized j-Variation in the sense of Vitali: Estimates for Integral

Operators and Applications in Fractional Calculus, Comment. Math. Prace Mat., 34
(1994), 199–213.

[46] N. Wiener, The quadratic variation of a function and its Fourier coe‰cients, Massachu-
setts J. of Math., 3 (1924), 72–94.

231convergence and rate of approximation
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