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ABSTRACT. — Motivated by conjectures of Beauville and Voisin on the Chow ring of Hyperkédhler
varieties we will prove some basic results on the rational equivalence class of modified diagonals of
projective varieties.
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0. INTRODUCTION

Let X be an n-dimensional variety over a field K and a e X(K). For
Ic{l,...,m} we let

(0.0.1) A/ (X;a):={(x1,....,xm) e X"|x;=x;ifi,jelTand x;, = aif i ¢ I}.
The m-th modified diagonal cycle associated to a is the n-cycle on X given by

(0.0.2) M"Xia):= Y (-)""A7(X;0)
O#I={1,2,...,m}

if >0, and equal to 0 if = 0. Gross and Schoen [6] proved that if X is a
(smooth projective) hyperelliptic curve and « is a fixed point of a hyperelliptic
involution then I'*(X; @) represents a torsion class in the Chow group of X3. On
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the other hand it is known that if X is a generic complex smooth plane curve and
m is small compared to its genus then I'"(X; a) is not algebraically equivalent to
0, whatever « is, see [11] (for the link between vanishing of I'"'(X; a) and Voisin’s
result on the Beauville decomposition of the Abel-Jacobi image of a curve see the
proof of Prop. 4.3 of [3]). Let X be a complex projective K3 surface: Beauville
and Voisin [3] have proved that there exists ¢ € X such that the rational equiva-
lence class of I'*(X; ¢) is torsion. A natural question arises: under which hypoth-
eses a modified diagonal cycle on a projective variety represents a torsion class
in the Chow group? We should point out that such a vanishing can entail
unexpected geometric properties: if X is a smooth projective variety of dimen-
sion n and T"*!(X;a) is torsion in the Chow group then the intersection of
arbitrary divisor classes Dy,...,D, on X is rationally equivalent to a multiple
of a. A set of conjectures put forth by Beauville [2] and Voisin [10] predict
exactly such a degenerate behaviour for the intersection product of divisors on
hyperkéhler varieties i.e. complex smooth projective varieties which are simply
connected and carry a holomorphic symplectic form whose cohomology class
spans H>? (see [7, 9] for more results on those conjectures). Our interest in
modified diagonals has been motivated by the desire to prove the conjecture
on hyperkdhler varieties stated below. From now on the notation 4 = B for
cycles 4, B on a variety X means that for some integer d # 0 the cycle d4
is rationally equivalent to dB, i.e. we will work with the rational Chow group
CH(X)q := CH(X) ®; Q.

CONJECTURE 0.1. Let X be a Hyperkdhler variety of dimension 2n. Then there
exists a € X such that T*""\(X;a) = 0.

In the present paper we will not prove Conjecture 0.1, instead we will establish
a few basic results on modified diagonals. Below is our first result, see Section 2.

ProrosITION 0.2. Let X, Y be smooth projective varieties. Suppose that
there exist a € X(IK), b e Y(IK) such that T'"(X;a) =0 and I'"(Y;b) = 0.
Then T Y(X % Y;(a,b)) = 0.

We will apply the above proposition in order to show that if 7" is a complex
abelian surface and a € T then I'°(T;a) = 0. Notice that if E is an elliptic curve
and a € E then I'*(E; a) = 0 by Gross and Schoen [6]. These results are particular
instances of a Theorem of Moonen and Yin [8] which asserts that T'*9*1(4; p) = 0
for A an abelian variety of dimension g and p € A(K) (and more generally for
an abelian scheme of relative dimension g). A word about the relation between
Moonen-Yin’s result and Conjecture 0.1. Beauville and Voisin proved that the
relation T'*(X; ¢) = 0 for X a complex projective K3 surface (and a certain ¢ € X)
follows from the existence of an elliptic surface ¥ dominating X and the relation
I'3(E;;a) =0 for the fibers of the elliptic fibration on Y. We expect that the
theorem of Moonen and Yin can be used to prove that Conjecture 0.1 holds for
Hyperkéhler varieties which are covered generically by abelian varieties, this is
the subject of work in progress. (It is hard to believe that every Hyperkéhler
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variety of dimension greater than 2 is covered generically by abelian varieties, but
certainly there are interesting codimension-1 families which have this property,
viz. lagrangian fibrations and Hilbert schemes of K3 surfaces, moreover Lang’s
conjectures on hyperbolicity would give that a hyperkihler variety is generically
covered by varieties birational to abelian varieties.) In Section 3 we will prove
that, in a certain sense, Proposition 0.2 holds also for P" fibrations over smooth
projective varieties if certain hypotheses are satisfied, then we will apply the result
to prove vanishing of classes of modified diagonals of symmetric products of
curves of genus at most 2. In Section 4 we will prove the following result.

PropoSITION 0.3. Let Y be a smooth projective variety and V < Y be a
smooth subvariety of codimension e. Suppose that there exists b e V(K) such
that T" "N (Y;6) =0 and T" "\ (V;b) =0. Let X — Y be the blow-up of V and
a € X(K) such that f(a) = b. Then T"'(X;a) = 0.

We will apply Proposition 0.3 and Proposition 0.2 in order to show that
Conjecture 0.1 holds for S where S is a complex K3 surface and n = 2, 3, see
Proposition 4.7. In Section 5 we will consider double covers f : X — Y where
X is a projective variety. We will prove that if a € X(K) is a ramification point
and T"(Y; f(a)) =0 then T*""!(X;a) =0, provided m = 2,3. The proof for
m = 2 is the proof, given by Gross and Schoen, that if X is a hyperelliptic curve
then I'*(X;a) = 0 for a € X(K) a fixed point of a hyperelliptic involution; we ex-
pect that our extension will work for arbitrary m but we have not been able to
carry out the necessary linear algebra computations. The result for m = 3 allows
us to give another proof that I'°(7T;a) =0 for a complex abelian surface 7'
the equality T°(7T;a) =0 follows from our result on double covers and the
equality I'*(7'/{—1);¢) = 0 proved by Beauville and Voisin [3].

0.1. Conventions and notation. Varieties are defined over a base field K. A point
of X is an element of X(IK). We denote the small diagonal Afj . (X;a) by
A™(X) and we let 7" : X" — X be the i-th projection—we will drop the super-
script m if there is no potential for confusion. We let X be the n-th sym-
metric product of X i.e. X := X"/S, where S, is the symmetryc group on n
elements.

0.2. Acknowledgments. It is a pleasure to thank Lie Fu, Ben Moonen and
Charles Vial for the interest they took in this work.

1. PRELIMINARIES

1.1. Let X be an n-dimensional projective variety over a field K, a € X (K) and &
a hyperplane class on X. Let 1: A”(X) — X" be the inclusion map. If m <n
then

(111 T™Xsa)-mi(h) - mi(h) .1 (h) - () = 1, (h").
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Since degi.(h") # 0 it follows that I'"(X;a) # 0 if m < n. Now suppose that
I"*(X;a) =0. Let Dy, ..., D, be Cartier divisors on X: then

(1.1.2) 0=my1 (T (X;a)-7;Dy ... 7Dy
=Dy-...-D,—deg(Dy-...-Dy)a

REMARK 1.1. Equation (1.1.2) shows that if I"*!(X;a) = 0 and T"*!(X;5) = 0
then a = b.

ExaAMPLE 1.2. The intersection product between cycle classes of complementary
dimension defines a perfect pairing on CH((P")™). Let a € P": since I'""! (P"; q)
pairs to O with any class of complementary dimension it follows that

(P a) = 0.

1.2. In the present subsection we will assume that X is a complex smooth projec-
tive variety of dimension n. Let @ € X. Let o,...,a, € Hpr(X) be De Rham
homogeneous cohomology classes such that > " dega; = 2n. Thus it makes
sense to integrate 7; oy A - -+ AT, 0, on I (X5 a). Let

(1.2.1) s:= {1 <i<m|dego; =0}

A straightforward computation gives that

m—1
S
1.2.2 / TO A AT Oy = —1 /< )/ocl/\~~-/\ocm.
(1.2.2) i > (=1 /) ).

/=0

PrROPOSITION 1.3. Let X be a smooth complex projective variety and a € X. Let
n be the dimension of X and d be its Albanese dimension. The homology class of
I'"(X;a) is torsion if and only if m > (n+d).

PRrOOF. If n =0 the result is obvious. From now on we assume that n > 0. By
(1.1.1) we may assume that m > n. The homology class of I'"(X;a) is torsion
if and only if the left-hand side of (1.2.2) vanishes for every choice of ho-
mogeneous oy, ..., %, € Hpr(X) such that > dego; = 2n. Suppose first that
n<m< (n+d) and let m =n+e: thus 0 < e <d. Choose a point of X and
let alby : X — Alb(X) be the associated Albanese map. Let 0 be a Kéhler form
on Alb(X): by hypothesis dim(Imalby) = d and hence there exist holomorphic
1-forms y, ..., ¥, on Alb(X) such that

(1.2.3) / Wi A AP AU A AP, A0 >0,
I (alb,\')

Fori=1,... e let ¢, := alby y; and 7 := alb} 0. Let w € H3x(X) be a Kéhler
class. Equations (1.2.2) and (1.2.3) give that
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* * * 1 * T *
(1.2.4) / TGIA - AT P AT, by A AT B, AT, 1]
I'"(X;a)
* * *
Ao AT N AT g O A - AT

—/¢1/\~--/\¢e/\¢_1/\---/\gb_e/\nd_e/\w"_d>O
b

It follows that the homology class of I'”*(X; a) is not torsion. Lastly suppose that
m > (n+d). Let s be given by (1.2.1): then s < (m — 1) because n > 0. It follows
that if s > 0 the right-hand side of (1.2.2) vanishes (by the binomial formula).
Now assume that s = 0: by (1.2.2) we have that

(1.2.5) / nfal/\~-~/\n;am:/oqA~~~Ao¢,,,.
I"(X;a) X

Let

(1.2.6) =l <i<ml|dego; = 1}|.

If t > 2d then the right-hand side of (1.2.5) vanishes because every class in
H},(X) is represented by the pull-back of a closed 1-form on Alb(X) via the
Albanese map and by hypothesis dim(Imalby) = d. Now suppose that ¢ < 2d.
Then

(1.2.7) deg(njoy A+ AT o) =t +2(m—1) >2n+2d —t>2n

and hence the right-hand side of (1.2.5) vanishes because the integrand is
identically zero. This proves that if m > (n + d) the homology class of I'"(X’; a)
is torsion. O

1.3. Let f: X — Y be a map of finite non-zero degree between projective vari-
eties. Let a € X and b := f(a). Then f.I'"(X;a) = (deg /)['™(Y;b). It follows
that if " (X;a) =0 then I'"(Y;b) = 0.

2. PrRoDUCTS

We will prove Proposition 0.2 and then we will prove that if 7" is a complex
abelian surface then I'’(T;a) = 0 forany a € T.

2.1. Preliminary computations. Let X and Y be projective varieties and a € X,
beY.Let 0#1<{l,....,r} and 0 #J < {1,...,s}. Thus Aj(X;a) = X" and
A} (Y;b) < Y*5: we let

(2.1.1) Ary(X, Yia,b) = Aj(X;a) x Aj(Y;b) =« X" x Y7
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We let A™(X,Y) = Af{f AL s) (X, Y;a,b). For the remainder of the present
section we let T

(2.1.2) e:=m+n—1.
We will constantly make the identification

(X xY) S X xY*

(2.1.3)
(X1, 21)5 s (Xes o)) = (X1, oy Xy Y1y e vy Ve)

With the above notation Proposition 0.2 is equivalent to the following rational
equivalence:

(2.1.4) S (=) VA (X, Yia,b) = 0.
0#£Ic{l,.. e}

PROPOSITION 2.1. Let X be a smooth projective variety and a € X. Suppose that
I'"(X;a) =0. Then

m+r—1—1J|
r

(215 A™x)= Y (_l)m—l—n(

<< (m—1)

Jarea)

for every r > 0.

PrOOF. By induction on r. If r = 0 then (2.1.5) is equivalent to I'"'(X;a) = 0.
Let’s prove the inductive step. Since I'”'(X;a) = 0 we have that

(2.1.6) A™7TH(X)

= n;F m+rAm+r(X) ‘T, Az (X)

..... m-+r,m+r+1

—1-1J )
ol <—1>""1"'(’”” | ')A;"*’(x;co

J{l,...,m+r} r

1</ <(m—1)
.t A2(X)
m+r,m—+r+1 .

Next notice that

(2.1.7) n AT (X;a) - w A%(X)

*
m+r,m+r+1

B ATT(Xa) if (m+r)¢J,
= A}nj{r;irﬂ}()(;a) if m+r)ed,

ey AT
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Thus A 1(X) is rationally equivalent to a linear combination of cycles
AT (X a) with |J] < (m — 1) and of cycles AR (X; a) where

(2.1.8) K| =m, {m+rm+r+1}cKk.

Let K be such a subset and write K = {ij,...,i,} where ij < --- <i,. Let
1: X" — X"+l be the map which composed with the j-th projection of
X+l s equal to the constant map to a if j ¢ K, and is equal to the /-th pro-
jection of X if j =i. Then A% (X;a) = 1,A™ and hence the equivalence
" (a) = 0 gives that

(2.1.9) AT (Xa) = > ()"TYIAPTT (X a).
lél.}l\z{fnfl)

Putting everything together we get an equivalence

(2.1.10) ATy = Y (=) e AP (X a)
1<|J[<(m—1)

m—+r—

In order to prove that ¢; = ( rilv |) we distinguish four cases: they are indexed

by the intersection
(2.1.11) Jo{m+r,m+r+1}.

Suppose that (2.1.11) is empty. We get a contribution (to ¢,) of (m+r—rl—\1 |) from
the first case in (2.1.7), and a contribution of

21.12) W u{m+rm+r+1})c K c{l,....m+r+1}||K| =m}|
(mAr=1=J\  [(m+tr—1-J|
S\ m=2—J] - r+1

from the subsets K satisfying (2.1.8). This proves that ¢, = (’”t_’;lv ‘) in this case.
The proof in the other three cases is similar. O

COROLLARY 2.2. Let X be a smooth projective variety and a € X. Suppose that
I'"(X;a)=0. Let s >0and I = {1,...,m+ s} be a subset of cardinality at least
m. Then

QL13) AP (Xa= Y (—1)’”_1‘“('1_|J|_1>A’J’”+S(X;a).

Tl 1| —m
1< |/ < (m—1)

PrOOF. Let g:=|I|and I = {i|,...,i,} where ij <--- <i, Let1: X9 — X"
be the map which composed with the j-th projection of X" is equal to the con-
stant map to « if j ¢ I, and is equal to the /-th projection of X if j = i;. Then
A" (X;a) = 1,AY(X) and one gets (2.1.13) by invoking Proposition 2.1. O
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COROLLARY 2.3. Let X, Y be smooth projective varieties and a € X, b € Y.
Suppose that T"(X;a) =0 and T"(Y;a) =0. Assume that m <n. Let I <
{1,...,e} (recall that e =m+n —1).

(1) If n < |I| then

(2.1.14)  Ap(X,Yiab)= Y (_1)m+n|JK|(|I|—|J|—1>

(JUK)<T m—|J] =1
I1<|J|<(m-1)
1<|K|<(n-1)
|1| - |K| -1 ee
X ( n— K| 1 Ayx(X, Y;a,b).
(2) If m < |I| < n then
(2.1.15)  Ayj(X,Y;a,b)
metpg (M= =1Y o
= Y ! J|<m— o ASS(X, Ysa,b).
Jcl

1</ < (m—1)

PROOF. By definition A;'7(X, Y;a,b) = Aj(X;a) x Aj(Y;b). Now suppose that
n < |I|. By Corollary 2.2 the first factor is rationally equivalent to a linear com-
bination of Aj(X;a)’s with J = I and 1 <|J| < (m— 1), the second factor is
rationally equivalent to a linear combination of Ag(Y;b)’s with K < I and
1 < |K| < (n— 1): writing out the product one gets (2.1.14). The proof of (2.1.15)
is similar. O

2.2. Linear relations between binomial coefficients. The following fact will be
useful:

(2.2.1) Zn:(—l)'p(t) <’Z> =0 Vp e Q[x]such that degp < n.
=0
In order to prove (2.2.1) let d < n: then we have
(2.2.2) Z(—l)’(é) (’Z) - (Z) Z(—n’(’::j) —(1-1"“=o.

t=0 t=d

Since {(5), M-, (nf 1)} is a basis of the vector space of polynomials of degree
at most (n — 1) Equation (2.2.1) follows.

2.3. Proof of the main result. 'We will prove Proposition 0.2. As noticed above it
suffices to prove that (2.1.4) holds. Without loss of generality we may assume that
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m < n. Corollary 2.3 gives that for each 1 <7 <e and J,K < {l,
|[J| < (m—1), |K| < (n—1) there exists ¢y x(¢) such that

(2.3.1) SATIX, Yiab)= Y e k(DATY(X, Yia,b).
[7]=t JK<{l,.. e}
L<|J| < (m—1)
1<|K|<(n—1)

It will suffice to prove that for each J, K as above we have

e

(2.3.2) > (=1)'es k(1) =0.

=1

257

...,e} with

Equations (2.1.14) and (2.1.15) give that ¢; () = 0 if # < |/ U K| and that

k[ t=W =1\ [t=|K|=1\[e—|JUK]|
23 _ (_p)mn-lI-IK|
(23.3) ¢y k() =(=1) m—1|J—1)\n—|K|-1)\t—|JUK|)’

max{|J UK|,n} <t<e.
We distinguish between the four cases:

1) J K.

2) J = K and m < |K|.

3) JcK,J#K and |K| < m.
4) J =K and |K| < m.

(
(
(
(

Suppose that (1) holds. Then Corollary 2.3 gives that c¢; g(¢) =0 if < n. Let

p € Q[x] be given by

el G Y [ Y

We must prove that

(2.3.5) Z (—1)fp(z)<e_|JUK|>—o.

t=max{|JUK]|,n} 1= ‘JUK|

If n < |JUK]| then (2.3.5) follows at once from (2.2.1) (notice that degp <
(e —|JUK])), if n < |JUK]| then (2.3.5) follows from (2.2.1) and the fact that
p(i) =0 for |JUK| <i< (n—1). This proves (2.3.2) if Item (1) above holds.
Now let’s assume that Item (2) above holds. Then |J U K| = |K| < n: it follows
that if n < ¢ then ¢, g(¢) is given by (2.3.3). On the other hand Corollary 2.3 gives

that if # < n and ¢ # |K| then ¢; () = 0, and

(2.3.6) csk(|K|) = (=)=t < K| =] =1 )

m—|J|—1
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Thus we must prove that

(23.7) (=1)S(=nmt ( |Z|__||JJ||__11> DISIT <j: ||j:)§||> !

where p is given by (2.3.4). Now notice that 0 = p(|K|+1)=---=p(n—1):
thus (2.2.1) gives that

S5 o) =-omrn(< )

t=n
_ (_1)m+n—1—\l| |K| - |J| -1 -1
m—|J|—1 n—|K|l—1

= (~1yVI-IK < |5|:|!}’||:11 )

This proves that (2.3.7) holds. If Item (3) above holds one proves (2.3.2) arguing
as in Item (1), if Item (4) holds the argument is similar to that given if Item (2)
holds. m|
2.4. Stability. We will prove a result that will be useful later on.

PROPOSITION 2.4. Let X be a smooth projective variety and a € X. Suppose that
I"(X;a)=0. If s >0 then T (X;a) = 0.

PrOOF. If dim X = 0 the result is trivial. Assume that dim X > 0. By definition

(24.1) r(Xia) = Y (=1)"A (X a).,
O#£I{1,2,...,m+s}

Replacing A" (X;a) for m < |I| < (m + s) by the right-hand side of (2.1.13) we
get that

(2.4.2) " (Xa)= Y c/( S (-DAPTX; a>)
/< (m—1

1</ ) =

where

g e —/—14+r\/m+s—/ _
2.4. , — g —_1)m (—l4s—r [ M | m+s (.
(243) e r:O( ) < m—{¢—1 s—r +(=1)

Thus it suffices to prove that ¢, =0 for 1 </ < (m — 1). Letting t = 5 — r we get
that



COMPUTATIONS WITH MODIFIED DIAGONALS 259

244) (=) 'e, = i(_l)t<m —{—14+s5- t) (m—i—s— /) ey

pury m—<{—1 t
:m+Zsf(1)[<m—f—1+s—t><m+s—/> _ 0
— m—1{—1 t
where the last equality follows from (2.2.1). O

2.5. Applications.

PROPOSITION 2.5. Suppose that C is a smooth projective curve of genus g and
that there exists a degree-2 map f : C — P! ramified at p € C. Then

(1) T (C% (po.. ) =0,
(2) T2H(CW; gp) =0, and
(3) T2+ (Pic(C); a) = 0 for any a € Pic’(C).

PRrOOF. By Proposition 4.8 of [6] we have I'*(C; p) = 0. Repeated application of
Proposition 0.2 gives the first item. The quotient map C¢ — C is finite and the
image of (p,..., p) is gp: thus Item (2) follows from Item (1) and Subsection 1.3.
Let u, : C'% — Pic’(C) be the map D — [D — gp]: since u, is birational Item (2)
and Subsection 1.3 give that T'2*!(Pic’(C);0) = 0 where 0 is the origin of
Pic’(C). Acting by translations we get that T (Pic’(C);a) =0 for any
a € Pic (). O

COROLLARY 2.6. If T is a complex abelian surface then T°(T;a) =0 for any
aeT.

PRrROOF. There exists a principally polarized abelian surface J and an isogeny
J — T. By Subsection 1.3 it suffices to prove that I'°(J;») = 0 for any b € J.
The surface J is either a product of two elliptic curves E;, E, or the Jacobian
of a smooth genus-2 curve C. Suppose that the former holds. Let a = (pi, p2)
where p; € E; for i = 1,2. Then I'*(E;; p;) = 0 by Proposition 4.8 of [6] and hence
Proposition 0.2 gives that I'°(E| x Ey; (p1, p2)) =0. If J is the Jacobian of a
smooth genus-2 curve C the corollary follows at once from Proposition 2.5. [

3. P'-FIBRATIONS

Let Y be a smooth projective variety. Let # be a locally-free sheaf of rank
(r+1) on Y and X := P(#). Thus the structure map p: X — Y is a P’-
fibration. Let Z := ¢;(0x (1)) e CH'(X). Suppose that there exists » € ¥ such
that T™(Y;b) =0 and let a € p~!(b). If P(F) is trivial then

(3.0.1) "™ (X;a) = 0

by Example 1.2 and Proposition 0.2. In general (3.0.1) does not hold. In fact
suppose that Y is a K3 surface and hence I'*(Y;b) = 0 where b is a point lying
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on a rational curve [3]. If T**"(X;a) = 0 then the top self-intersection of any
divisor class on X is a multiple of [a], see Subsection 1.1: considering Z"*? we
get that ¢,(F) is a multiple of [b]. We will prove the following results.

ProposITION 3.1. Keep notation as above and suppose that dimY = 1. If
I"(Y;b) =0 then T (X;a) = 0.

PrRoOPOSITION 3.2. Keep notation as above and suppose that dimY = 2. If
["(Y;6) =0, or T"(Y;b) =0 and both ¢(F)*, ¢2(F) are multiples of [b],
then T (X;a) = 0.

As an appplication we will prove the following.

PrROPOSITION 3.3. Suppose that C is a smooth projective curve of genus g < 2
over an algebralcally closed field K and that p € C is such that dim|O¢(2p)| > 1
Then T91(C W dp) = 0 for any d > 0.

3.1. Comparing diagonals. Let p" : X" — Y" be the n-th cartesian product of
p. Let m; : X" — X be the i-th projection and Z; := n/Z. Given a multi-index
E=(e,...,e,) withO < ¢ forl <i<nwelet ZE :=Z"-...- Z% We let

(3.1.1) max E := max{ej,...,e,}, |E|:=e+- - +ey

Let d := dim Y and [A"(X)] € CH,,(X") be the class of the (smallest) diagonal.
Since p" is a (P")"-fibration we may write

(312) "X = 3 (0" e #)) - 25, welF) € CHigprasun) (Y7).

max E<r

In order to describe the classes wg we let 0y : ¥ — Y" and 0% : X — X" be the
diagonal embeddings.

PrOPOSITION 3.4. Let r >0 and E = (ey, ..., e,) be a multi-index. There exists
a universal polynomial Pg € Q[x,...,x,], where q :== (r(n — 1) — |E|), such that
the following holds. Let  be a locally-free sheaf of rank (r+1) on Y: then
(notation as above) wg(F) = 0y (Pe(c1(F), ..., cq(F)).

PROOEF. Let 5;(7) be the i-th Segre class of # and EV := (r—ey,...,r —e,).
Then

(3.13) P - ZE) = 8 (5151 (F)).

(By convention s;(#) = 0 if i < 0.) On the other hand let J = (ji,...,j,) be a
multi-index: then

aray (X e eaF)-2") - 27)

max H <r

= > () A ) T Sh ).

max H <r
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Equations (3.1.3) and (3.1.4) give that
(.15) 6% (5p(F) = p(A"(X)] - Z5°)

= S W) (he) e ()

max H <r

=we(Z)+ Y wulF) wi(sn-e) - 7 (5, ,)-
|H|>|E|
r>max H

Starting from the highest possible value of |E| i.e. rn and going through descend-
ing values of |E| one gets the proposition. O

REMARK 3.5. The proof of Proposition 3.4 gives an iterative algorithm for the
computation of wg(F). A straightforward computation gives the formulae

0 if |[E|>r(n—1),
[A"(Y)] if |[E|=r(n—1),
we(7) =4 (Ae(l) = 1)dy (a(F)) if [E|=r(n—1)—1,
Le(1) = D) (e(1) = 2)0% (a(Z)?)
+ (46(2) = 1)dYy (c2(F)) if [E|=r(n—1) -2,
where
(3.1.6) ie(p) =|{l <i<n|e+p<r}|.

3.2. Comparing modified diagonals. We will compare I'"""(X;a) and
[”*(Y;b). In the present subsection O #7<{l,....m+r} and I¢:=
({1,...,m+r\I); we let 7; : X" — X/I be the projection determined by 1.
We also let H = (hy, ..., hytr) be a multi-index. If max H < r we let Top H :=
{1 <i < n|h; =r}. Applying Proposition 3.4 and Remark 3.5 we get that

(321) A;n+r(X; a) — (perr)*(A;n-‘rr(Y; b)) . Z ZH
max H <r
|H |=r(m+r—1)
I1°cTopH

+ (p"7)" (n,*é,’,’*(cl (7)) xmje(bx---x b))
7|

S () - 1)z"

max H <r
|H|=r(m+r—1)—1
I1¢cTopH

+ (pmny* (n}*é;y*(q (F)) x mhu(b X - % b))
4
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>

max H <r
|H|=r(m+r—1)-2
I¢cTopH

(2u(1) = 1)(Ar (1) = 2)Z2"

N —

+(pmy (n;‘é'ﬁ,xcz(%) X (b X e X b,))
[7¢|

Yo w@-1Z" + 2

max H <r
|H|=r(n—1)-2
I1¢cTopH
where
(3.2.2) A= > Quz"
max H <r
|H|<r(n—1)-2

and each Qp appearing in (3.2.2) vanishes if the Chern classes of % of degree
higher than 2 are zero. It follows that

(323) F’”*"(X;a) _ Z (pm+r)* Z (_1)m+r*|1|A;n+r(Y; b)) ~ZH

max H <r I¢cTopH
|H|=r(m+r—1)
* m+r—|1
oD e > ey
max H <r I¢cTopH
[H|=r(m+r—1)—1

x (nié,’,’*(cl (F)) x (b x - X b))) ey ZH
i

max H <r
|H|=r(m+r—1

+ Z (pm+r)* Z (_1)m+r—|1|
- I¢cTopH

x (n;5§7*(c1 (F)) x mf(bx - x b))) A
17|

max H <r I¢cTopH
|H|=r(m+r—1

)2

x (n;(s;,*(cz(g;)) X (b X - X b))) A
[7¢]



COMPUTATIONS WITH MODIFIED DIAGONALS 263

where ey = (Au(1) — 1), wuy:= Au(l) = 1)(Ag(1) —2)/2, vy := (Au(2) — 1),
and 7 has an expansion similar to that of %, see (3.2.2) and the comment follow-
ing it.

REMARK 3.6. Suppose that T"*(Y;b) = 0. Then the first addend on the right-
hand side of (3.2.3) vanishes. In fact it is clearly independent of the rank-r
locally-free sheaf & and it is O for trivial &# by Proposition 0.2: it follows that
it vanishes.

3.3. P"-bundles over curves. We will prove Proposition 3.1. We start with an
auxiliary result.

CramM 3.7. Let Y be a smooth projective variety and b € Y. Suppose that
I'"(Y;b) =0. Let 3 € CH(Y): then

(3.3.1) (D)ol ) x wj(b,....b) = 0.
Ic{l.Z,(ml)} —

’ |7¢]
ProOOF. Let 7wy (m-1)y: Y™ — Y"1 be the projection to the first (m — 1)
coordinates. Then

(3.3.2) Tt m-1} (L (Y3 0) - m,3) = 0.

The claim follows because the left-hand side of (3.3.2) equals the left-hand side
of (3.3.1) multiplied by (—1)". 0

By (3.2.3) and Remark 3.6 we must prove that if H = (hy, ..., hy,) is a multi-
index such that max H < rand |H| =r(m+r—1) — 1 then

(3.3.3) (=)™ Mgl (o) (7)) x 7(b, ..., b) = 0.
Iz c;pH ' T

A straightforward computation shows that [Top H| > (m — 1): thus (3.3.3) holds

by Claim 3.7. O

3.4. P"-bundles over surfaces. We will prove Proposition 3.2. Notice that
I'"(Y;b) =0: in fact it holds either by hypothesis or by Proposition 2.4 if
I'"~1(Y;b) = 0. Moreover (3.3.3) holds in this case as well, the argument is that
given in Subsection 3.3. Thus (3.2.3) and Remark 3.6 give that we must prove
the following: if H = (hy,...,hy,,) is a multi-index such that max H < r and
|H| =r(m+r—1)—2 then

3.4.1 )l sl F) + F))xai(b,....b) | =0.
(3.4.1) [(;OPH( ) 719y (ugei(F)" +vuea(F)) x ape( : )
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A straightforward computation shows that |Top H| > (m — 2) and that equality
holds if and only if (r—1) < h; <rfor all 1 <i < (m+r) (and thus the set of
indices 7 such that /; = (r — 1) has cardinality (r 4 2)). If T""!(Y;b) = 0 then
(3.4.1) holds by Claim 3.7. If both ¢ (%)%, ¢,(#) are multiples of b then each
term in the summation in the left-hand side of (3.4.1) is a multiple of b and the
coefficients sum up to 0. |

3.5. Symmetric products of curves. 1f the genus of C is 0 then C¥) =~ P“ and
hence the result holds trivially, see Example 1.2. Suppose that the genus of C
is 1. If d =1 then T'*(C;p) =0 by [6]. Let d > 1 and let u; : C¥ — Pic’(C)
be the map sending D to [D —dp]. Since u; is P? !fibration we get that
[¥*2(C;dp) =0 by Proposition 3.3 and the equivalence I'*(C;p) = 0. Lastly
suppose that the genus of C is 2. If d =1 then I'*(C;p) =0 by [6] and if
d = 2 then T°(C?;2p) = 0 by Proposition 2.5. Now assume that d > 2 and let
ug : C'9 — Pic’(C) be the map sending D to [D — dp]. Then u is P4 2-fibration
and we may write C9) =~ P(&,) where &, is a locally-free sheaf on Pic(C) such
that

(3.5.1) ci(a) = —[{lx —pllx e C}],  a(éa) =[0],

see Example 4.3.3 of [5]. By Proposition 2.5 we have I'°(J(C);0) = 0; since
c1(64)* = 2[0] we get that T*2(C@); dp) = 0 by Proposition 3.3.

4. BLow-UPS

We will prove Proposition 0.3. A comment regarding the hypotheses of Proposi-
tion 0.3. Let Y be a complex K3 surface and X — Y be the blow-up of y € Y.
We know (Beauville and Voisin) that there exists ¢ € ¥ such that I'3(Y;¢) =0,
but if y is not rationally equivalent to ¢ then there exists no a € X such that
I*(X;a) =0, this follows from Remark 1.1. If ¢ = 0, 1 then Proposition 0.3 is
trivial, hence we will assume that e > 2. We let /' : X — Y be the blow-up of V'
and E < X the exceptional divisor of /. Thusa € E. Let g : E — V be defined by
the restriction of f to E, and (E/V)' be the t-th fibered product of g : E — V.
Let (E/V)" be the t-th fibered product of g : E — V. The following commutative
diagram will play a role in the proof of Proposition 0.3

o

— T
(E/V)! —— E' — X'

(4.0.2) l /J ' f’l

AWV) — VI — Y!

(The maps which haven’t been defined are the natural ones.) Whenever there is
no danger of confusion we denote o;((E/V)") by (E/V)".
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4.1. Pull-back of the modified diagonal. On E we have an exact sequence of
locally-free sheaves:

(4.1.1) 0— Op(=1) = g"Ny;y = Q—0.

For i=1,...,t let Q;(¢) be the pull-back of Q to E’ via the i-th projection
E' — E: thus Q;(1) is locally-free of rank (e — 1).

PROPOSITION 4.1. Keep notation as above and let d(t) := (t — 1)(e — 1) — 1. We
have the following equalities in CHgim x (X7):

412) (A =12 yi=1
(@12 VAT = M0 + B, () (A V) - can (@D, 0(1) iF 15 1.

PrOOF. The equality of schemes f'A!(Y)=A'(X) gives (4.1.2) for r= 1.
Now let’s assume that # > 1. The closed set (/') 'A’(Y) has the following de-
composition into irreducible components:

(4.1.3) (fHA(Y) = AUX) U (E/ V).

The dimension of (E/V)" is equal to (dim X + (¢ —1)(e — 1) — 1) and hence
is larger than the expected dimension unless unless 2 = ¢ = e. It follows that
if 1=2 and e =2 then (f2)*A*(Y) =aA*(X)+b(E/V)* one checks easily
that 1 =a =5 and hence (4.1.2) holds if =2 and e =2. Now suppose that
t>1 and (t,e) # (2,2). Let U := (X'\(A'(X)n(E/V)")) and Z := (E/V)"
U= (E/V)\A'(X). Notice that (E/V)" is smooth and hence the open subset
% is smooth as well. Let 1: Z — U be the inclusion. The restriction of
(f)*A'(Y) to U is equal to

(4.1.4) [AY(X) A U]+ 1.(ca(t)(N))

where 4" is the obstruction bundle (see [5], Cor. 8.1.2 and Prop. 6.1(a)). One
easily identifies ./ with the restriction of (—Dj’:] Q;(t) to Z. It follows that the

restrictions to U of the left and right hand sides of (4.1.2) are equal. The prop-
osition follows because the dimension of (X'\U) = A"(X) n (E/V)" is equal to
(dim X — 1), which is strictly smaller than dim X. 0

COROLLARY 4.2. Keep notation and assumptions as above. Let I < {l,...,
(n+1)} be non-empty and 1° = ({1,...,(n+1)}\I). Let Q; denote Q;(n+1)
and let t == |I|. Then
Ar(X;a) il =1,
. nt1y\* .
(415> (fnJrl)*AI(Y;b) — AI(Xva)_"ﬁnJrl,*((g ) AI(va)

can(@DQ) T en(@)) ifl1l>1.

Jjel Jele
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PROOF. For 1<i<(n+1) let p;,: X"*!' — X be the i-th projection. Let
J={j1,...,jm} where 1 <j; <---<j,<(n+1), in particular t = |J|. We
let 7; : X" — X' be the map such that the composition of the i-th projec-
tion X' — X with 7; is equal to p;. The two maps s X" — X' and
mre s X' — X711 define an isomorphism A;: X" 5 X1 x X" We
have

(4.1.6) (/™) AN(Y5h) = Af () A(Y) x (™) ({(D,....b)})).
n+1—t

(Here x denotes the exterior product of cycles, see 1.10 of [5].) An obstruction
bundle computation gives that

@17 U =B T (@1 -1)

1t I<j<(n+1-1)

The corollary follows from the above equations and Proposition 4.1. |

Let I {l,....,(n+1)} be non-empty and let 7:=|I|. We let Q; €
CHim x (E™*1) be given by

0 if |[7] =1,
(4.1.8) Q=1 (gn1y A (V:b) - (@Qj). T co1(Q)) if 1] > 1.

jel jel¢

By Corollary 4.2 we have (/"1)"A;(Y;b) = Aj(X;a) + B, .(€) and hence

(@19) () YE) =T e + (YD (1)),

1< <(n41)

4.2. The proof- By (4.1.9) it suffices to prove that the following equality holds in
CHdimX(EnJrl)@:

(4.2.1) > (-1 =o0.

1<|I|<(n+1)

Let I = {1,...,(n+ 1)} be of cardinality strictly greater than (n — ¢): Corollary
2.2 allows us to express the class of A;(V;b) as a linear combination of the
As(V;b)’s with J =1 of cardinality at most (n—e). Moreover Whitney’s
formula allows us to write the Chern class appearing in the definition of Q;
as a sum of products of Chern classes of the Q;’s. It follows that for each
Ic{l,...,(n+1)} we may express the class of Q; as a linear combination of
the classes
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n+1

(422) (") A (Vib) - [[en (@), T<I<(n—e)
s=1

kit k= d(n+ 1) =ne—1) - 1.

DEFINITION 4.3. Z,(e) is the set of (n+ 1)-tuples ki, ..., k,1 of natural num-
bers 0 < ky; < (e — 1) whose sum equals d(n + 1).

Summing over all 7 < {l,...,(n+ 1)} of a given cardinality z we get the
following.

CLAIM 4.4. Let 1 <t < (n+1). There exists an integer cy g(t) for each couple
(J,K)with® #J < {1,...,(n+ 1)} of cardinality at most (n — e) and K € 2,(e)
such that

n+1
(423) Y= Y x0T A1) []e(0).
[I]=t 1<|J[<(n—e) s=1

KeZ,(e)
It will be convenient to set ¢y x(0) = 0. We will prove that
n+l1
(4.2.4) > (=1)'es k(1) =0.

t=0

That will prove Equation (4.2.1) and hence also Proposition 0.3. Applying Cor-
ollary 2.2 to (V,b) we get the following result.

Cram 4.5. LetI <= {1,...,n+ 1} be of cardinality t > (n+ 1 — e). Then

425 A= Y (_1)"-8-"'<t[__n|f|1_+le)A;+1(Y;b).

1<|J| < (n—e)
Given K € Z,(e) we let

(4.2.6) TK)={l<i<(n+1)|ki=(e—1)}.

A simple computation gives that

(4.2.7) (n+1—e) <|T(K)|.

PrROPOSITION 4.6. Let 0 #J < {l,...,(n+ 1)} be of cardinality at most
(n—e),let K € Z,(e)and 0 <t < (n+1). Then

428 o x(t) = (_l)n”( t— -1 ) (lT(K) me!)

n—|J|—e n+1—t
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PRrOOF. Suppose first that 0 < ¢ < (n—e). Then ¢, () =0 unless |J| = ¢ and
J¢=T(K ) if the latter holds then c¢; x(f) = 1. Assume that the right-hand side
of (4.2.8) is non-zero: then the first binomal coefficient is non-zero and hence
t < |J|. Of course also the second binomal coefficient is non-zero: it follows that

(4.2.9) (n+1—1)<|TK)AJ| < =n+1-]J].

Since 7 < |J| it follows that |J| = ¢ and hence |T(K) nJ¢| = |J| i.e. J¢ = T(K):
a straightforward computation gives that under these assumptions the right-
hand side of (4.2.8) equals 1. It remains to prove that (4.2.8) holds for
(n+1—e) <t<(n+1). Looking at (4.1.8) and Claim 4.5 we get that

(4.2.10) crk(t) = (=)W <tt__n|i| 1_+le>

< {I e {1,...,(n+ D} I° = (T(K) A ), 1] = 1}
Since the right-hand side of (4.2.10) is equal to the right-hand side of (4.2.8) this

finishes the proof. O
Let
n—|J| —x
4.2.11 = .
@2.1) o= (0 70)

Then deg p < |T(K) nJ¢| because deg p = (n — |J| — ¢) and because (4.2.7) gives
that

(4212) |T(K)nJ|=m+1—-e)+n+1—-|J|)—(n+1)=n—|J|—e+1.
Thus (2.2.1) and (4.2.8) give that

4213) 0= 'Hl(—l)*'p(s)('T(Ki“Jcl)
5=0
ntl o ¢
_ (_I)HI;(_I),(;J&” (1T
1 el Z CJ K
This finishes the prooof of Proposition 0.3. |

4.3. Application to Hilbert schemes of K3’s. Let S be a complex K3 surface. By
Beauville and Voisin [3] there exists ¢ € S such that I'*(S;¢) = 0. We let S be
the Hilbert scheme parametrizing length-n subschemes of S; Beauville [1] proved
that S is a hyperkéhler variety.
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PROPOSITION 4.7. Keep notation as above and assume that n =2,3. Let
a, € SV represent a scheme supported at c. Then T'*'*! (S a,) =0.

ProoF. First assume that n=2. Let 7; : X — S x S be the blow-up of the
diagonal A and p,: X — S® the composition of 7; and the quotient map
S x § — S . There is a degree-2 map ¢, : X — S fitting into a commutative
diagram

x 2, s

(4.3.14) ‘\Yi P

where »,([Z]) =>_,.5/(0z, p) is the Hilbert-Chow morphism. Let x € X" such
that ¢,(x) = a»; by Subsection 1.3 it suffices to prove that I'°(X;x) = 0. By
commutativity of (4.3.14) we have 7;(x) = (c,¢). Now I'°(S x S;(c,¢)) =0 by
Proposition 0.2, and since cod(A,S x §) =2 it follows from Proposition 0.3
that T°(X; x) = 0. Next assume that n = 3. Let 7, : ¥ — S x § be the blow-
up with center the tautological subscheme 25 = S x S and p;: ¥ — S© the
composition of 7, and the natural map S x § — S®). There is a degree-3 map
,: Y — SP fitting into a commutative diagram

y ., sB

(4.3.15) \Nl P

where y is the Hilbert-Chow morphism. (See for example Proposition 2.2 of [4].)
On the other hand let p; : S x S — S be projection to the first factor; the map

(4.3.16) (¢, prom)): X — S xS

is an isomorphism onto Z5. Let y € Y be such that ¢;(y) = as; by Subsection 1.3
it suffices to prove that I'’(Y; y) = 0. Notice that 75(y) = (a2, ¢) where a; € S
is supported at ¢. By the case n = 2 (that we just proved) and Proposition 0.2 we
have T7(SP2 x S;(as,¢)) = 0. Let x € X such that ¢,(x) = a,. In the proof for
the case n = 2 we showed that I'°(X;x) = 0; since (4.3.16) is an isomorphism it
follows that T°(Z5; (az,¢)) = 0. Since T7(SP x S; (a2, ¢)) = 0 and %, is smooth
of codimension 2, we get I'’(Y; y) = 0 by Proposition 0.3. O

Let 2, c S" x S be the tautological subscheme. The blow-up of S x §
with center %, has a natural regular map of finite (non-zero) degree to SI*!l
and in turn %, may be described starting from the tautological subscheme
%,y < S x S, Thus one may hope to prove by induction on n that
2"1(SW: a) = 0 for any n: the problem is that starting with 23 the tautological
subscheme is singular.
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5. DOUBLE COVERS

In the present section we will assume that X is a projective variety over a field
[ and that 7 € Aut(X) is a (non-trivial) involution. We let Y := X/<{:) and
f : X — Y be the quotient map. We assume that there exists ¢ € X (IK) which is
fixed by 1 and we let b := f(a).

CONJECTURE 5.1. Keep hypotheses and notation as above and suppose that
I"(Y:b) =0. Then T*""(X;a) = 0.

The above conjecture was proved for m = 2 by Gross and Schoen, see Prop.
4.8 of [6]. We will propose a proof of Conjecture 5.1 and we will show that the
proof works for m = 2,3. Of course the proof for m = 2 is that of Gross and
Schoen (with the symmetric cube of the curve replaced by the cartesian cube).

5.1. A modest proposal. There is a well-defined pull-back homomorphisms
(5.1.1) (fN" :Z(Yg — Z(X)g
compatible with rational equivalence (see Ex. 1.7.6 of [5]): thus we have an

induced homomorphism ()" : CH.(Y?), — CH.(X)g. Let n:=dim X and
En € Z,(X™)q the cycle defined by

[1]

(512) m = (fm)*rm(Y; b)

We will show that E,, is a linear combination of cycles of the type
(5.1.3) {(x, o), ox, o x,a, .. 0(X), .. ya, .. ) [ x € X}

Notice that the A;(X;a)’s are of this type. Consider the inclusions of X
in X! which map (x1,...,%n) to (x1,...,%m,v(1),...,v(m—1)) where
vio{l,....(m—1)} —{a,x1,...,xm,1(x1),...,1(x;)} is an arbitrary list. Let
®,(E,,) be the symmetrized image of Z,, in Z,(X?"!) for the inclusion deter-
mined by v: it is a linear combination of cycles (5.1.3). By hypothesis E,, =0
and hence any linear combination of the cycles ®,(Z,,) is rationally equivalent
to 0. One gets the proof if a suitable linear combination of the ®,(E,,)’s is a linear
combination of the A;(X;a)’s with the appropriate coefficients (so that it is
equal to a non-zero multiple of T?"~!(X;a)). We will carry out the proof for
m=2,3.

5.2. Preliminaries. Since the involution of X is non-trivial the dimension of X is
strictly positivei.e.n > 0. Let g : {1,..., ¢} — {a,x,1(x)}. If s is not the sequence

u(l) =---=pulg) = a welet

(52.1)  Qu1),....u(q) ={(x1,...,x4) € X |x; = u(i),x € X},
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and we let Q(a,...,a):=0. Thus Q(u(1),...,u(d)) is an n-cycle on X“. For
example Q(x,...,x) € X is the small diagonal. Let ., be the symmetric group
on {1,...,q}: of course it acts on X7. Forr+s+ = ¢ let

(5.2.2) Q(r,s,t) = ,;% a(Qa,...,a,x,...,x,1(x),...,1(x))).

r N t
Thus Q(r, s, 7) is an n-cycle on X ¢ invariant under the action of .%,. Notice that

(5.2.3) Q(r,s,t) = Q(r,1,5).

With this notation

, 3 =D's
(524> Fq(X7 a) = ; V!S! Q(}"’ Sa 0)
<r,s
r+s=q

Let &, be the cycle on X given by (5.1.2). A straightforward computation gives
that

- -2)'5
(5.2.5) 28, = OZ o s 1),
<r.st

r+s+t=m

(Equality (5.2.3) is the reason for the factor of 2 in front of =,,.) For

vi{l,...,(m=1} = {a,x1,...,xm1(x1),...,1(xp)}

we let

xm /_‘> XZm—l

(5.2.6)
(X1, ey xm) = (X1, 0oy X, v(1), .oy v(m — 1)

and @, : Z,(X™) — Z,(X*"1) be the homomorphism

(5.2.7) D,() = > 0.(jus).

€S-

Notice that @, does not change if we reorder the sequence .

5.3. The case m = 2. A straightforward computation (recall (5.2.3)) gives that

(5.3.1) D,(Z,) = Q(1,2,0) — 4Q(2,1,0) + Q(1,1,1),
(5.3.2) @, (5,) = Q(0,3,0) — 2Q(1,2,0) — 2Q(2,1,0) + Q(0,2,1),
(5.3.3) D, (E2) = —2Q(2,1,0) — 2Q(1,1,1) +29Q(0,2, 1).
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Thus
(534) 0= —Zq)a(Ez) -+ 2(I)x1 (52) — (I)z(xl)(EZ)

=20(0,3,0) — 6Q(1,2,0) + 6Q(2,1,0) = 12I'*(X; a).
5.4. The case m =3. For every v: {1,2} — {a,x;,x2,x3,1(x1),1(x2),1(x3)} the
cycle ®@,(E;) is equal to the linear combination of the classes listed in the first
column of Table (1) with coefficients the numbers in the corresponding column

of Table (1). For such a v let i(v) be its position in the first row of Table (1):
thus i((a,a)) = 1,...,i((«(x1),1(x2)) = 9. Table (1) allows us to rewrite

(5.4.1) Zz W (E3)

as an integral linear combination of the classes listed in the first column of Table

(1), with coefficients Fy,...,Fy which are linear functions of ;,...,49. Let’s
impose that 0 = F; = --- = Fg: solving the corresponding linear system we get
that

(5.4.2) A %( 8¢ — 227 — 84 — 849),

(5.4.3) A2 %(14&6 + 847 + 1443 + 2049),

(5.4.4) Ay = %( 646 — 647 — 643 — 1219),

(5.4.5) A4 %(/16 207 4 A3 +449),

(5.4.6) As = %( 546 — 227 — 54 — 849).

For such a choice of coefficients 4, ..., 9 we have that

4 _ _
(547) 0= Zz W(B) = =3V + 7+ 25+ 19)(Q(0,5,0) — 50(1,4,0)
+10Q(2,3,0) — 10Q(3,2,0) + 5Q(4,1,0)).
Choosing integers A, . . ., A9 such that (1 + A7 + 4g + 49) = —3 we get that

(5.4.8) 0= Z} J(B) =4-5°(X;a).

This concludes the proof of Conjecture 5.1 for m = 3.
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