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ABSTRACT. — Extended thermodynamics of rarefied polyatomic gases is characterized by two hi-
erarchies of equations for moments of a suitable distribution function in which the internal degrees
of freedom of a particle is taken into account. To obtain the closed set of the field equations for the
system with many moments and for an arbitrary entropy functional that includes degenerate gases,
the entropy principle and maximum entropy principle are studied and the equivalence of these two
methods is shown as in the well-established case of the monatomic gas. In addition the recent results
of the present theory are summarized. On the basis of physical considerations, the truncation orders
of the two hierarchies are seen to be not independent on each other. The equilibrium characteristic
velocities of the emerging hyperbolic system of partial differential equations are analyzed and com-
pared to those of monatomic gases. Inspection shows that the lower bound estimate of the maximum
equilibrium characteristic velocity valid for monatomic gases, which increases as the truncation
order increases, is valid for any rarefied polyatomic gas.

Key worps: Extended thermodynamics, maximum entropy principle, rarefied polyatomic gas,
maximum characteristic velocity, moments equation.
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1. INTRODUCTION

Extended thermodynamics [16] is a phenomenological theory whose main aim
is to bridge the gap between the two classical approaches to the study of non-
equilibrium phenomena in which steep gradients and rapid changes occur,
namely the continuum approach and the kinetic approach. One of the main limita-
tions of Extended thermodynamics (ET), inherited from the kinetic theory to
which ET is strictly connected, is its range of applicability, restricted to the study
of monatomic rarefied gases.

Recently a 14-moments ET theory for dense gases and for rarefied polyatomic
ones has recently been developed by Arima, Taniguchi, Ruggeri and Sugiyama
[3]- This theory provides two parallel hierarchical structures of equations for the
independent fields, one hierarchy consisting of balance equations for mass den-
sity, momentum density and momentum flux (momentum-like hierarchy), the
other one consisting of balance equations for energy density and energy flux
(energy-like hierarchy). These hierarchies cannot be merged, since the existence
of the dynamic pressure (non-equilibrium pressure) breaks the equivalence of
the energy density and trace-part of momentum flux, in contrast to what is true
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in the monatomic gas case. By means of the closure procedure typical of ET
theory, in particular of the entropy principle (EP), the constitutive equations are
determined explicitly with the thermal and caloric equations of state. This theory
has been thoroughly investigated [2, 4, 5, 8, 20] and its validity has been con-
firmed by comparing its predictions to experimental evidence in several test cases
[6, 7, 21]. Moreover, Pavi¢, Ruggeri and Simi¢ have recently proven [17] that the
maximum entropy principle (MEP) [9, 14, 15] with the kinetic model for rarefied
polyatomic gases presented by Borgnakke et al. [11] and by Bourgat et al. [12]
yields appropriate macroscopic balance laws in agreement with the 14-moment
theory presented in [3]. In particular, the momentum-like and the energy-like
hierarchies obtained in the continuum-approach are related, respectively, to the
moments of the distribution function f and to the moments of f in which an
additional continuous variable representing the internal degrees of freedom of a
particle is considered.

The purpose of the present paper is to summarize some recent contributions to
the development and understanding of the new ET theory of rarefied polyatomic
gases for any number of moments based on the above-mentioned kinetic model.
The following points are studied: (i) It is discussed how, on the basis of physical
arguments (Galilean invariance and the requirement that the characteristic veloc-
ities depend on the degrees of freedom of a particle), the relation between the
orders of truncation of the momentum-like and energy-like hierarchies turn out
not to be independent; (ii) For the truncated system of moment equations, fol-
lowing the methodology of the case of monatomic gases [9], the two equivalent
closures, i.e. EP and MEP, are introduced and the general framework of these
closures are studied; (iii) The characteristic velocities in the equilibrium state are
analyzed, playing these quantities an important role in several processes, as the
propagation of acceleration waves, the determination of the phase velocity of lin-
ear waves in the high-frequency limit, and subshock formation. With this regard,
it will be discussed how the characteristic velocities of the system depend on the
degrees of freedom and on the truncation order of the hierarchies, taking also
into account the limit cases of monatomic gases and of a gas with infinite internal
degrees of freedom; and (iv) It will be discussed how the lower bound estimate
for the maximum characteristic velocity established for monatomic gases [9] and
recently used by Slemrod in his analysis of the hydrodynamic limit of the Boltz-
mann equation and Hilbert’s 6th problem [19], still holds independently from the
degrees of freedom of a particle, leading to the conclusion that also for polya-
tomic gases the maximum characteristic velocity increases as the order of the hi-
erarchies tends to infinity and is unbounded.

The proofs of the theorems as well as a more thorough analysis of the re-
sults presented here are presented and discussed elsewhere [1]. In this paper, dif-
ferent from the paper [1], the equivalence between EP and MEP is given for
an arbitrary entropy functional that includes degenerate gases (Bose and Fermi
gases).

The paper is organized as follows. In Section 2, the generalization to the
case of the truncation order of momentum-like moments N and of energy-like
moments M of the recently developed ET theory of 14-moment for rarefied
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polyatomic gases is outlined. First, in order for a system describing a rarefied
polyatomic gas to be well-behaved from a physical point of view, the principle
of Galilean invariance is used to gain understanding on the relation that must
exist between the orders N and M (Section 2.1), then the closures for Galilean
invariant system by EP and MEP are introduced and the equivalence of those
is discussed (Section 2.2), and to show clearly the procedure to obtain the consti-
tutive equations the distribution function is expanded in the neighborhood of a
local equilibrium state (Section 2.3). In Section 2.4, the calculation of the charac-
teristic velocities of the system with many moments for rarefied polyatomic gases
is outlined.

In Section 3 a thorough discussion of the features of the equilibrium charac-
teristic velocities for gases with different degrees of freedom of the gas particles is
provided.

In Section 4, the dependence of the maximum equilibrium characteristic veloc-
ity on the truncation order is considered and the existence of a lower bound valid
for any rarefied gas is discussed.

Finally, some concluding remarks are offered in Section 5.

2. THE DOUBLE-HIERARCHY SYSTEM FOR RAREFIED POLYATOMIC GASES

The kinetic theory is based on the assumption that the state of the gas can be
described by the velocity distribution function. For rarefied polyatomic gases, a
kinetic model in which the velocity distribution function depends not only on
time #, position x and velocity of particles ¢ but also on a non-negative parameter
I which takes into account the influence of particles internal degrees of freedom
on energy transfer during collisions, was proposed by Bourgat et al. [12] in the
framework of the Borgnakke-Larsen procedure [11], and then applied to chemi-
cally reacting mixtures [13]. In this model, the velocity distribution function
f = f(x,¢,1,1) defined by the number density of particles f(x,¢,7,1)dxdcdl at
time 7 in a phase space dxdcdl centered in (x,¢,7) € R® x R? x [0, c0) obey the
Boltzmann equation in the absence of external forces:

(1) 0f +adif = Q(f),

where the symbols 0, and 0; denote partial derivatives with respect to time ¢
and space variables x; (i = 1,2,3), respectively’, and the collision integral Q(f)
represents the rate of change of the distribution function f due to collisions
including the influence of internal degrees of freedom through collisional cross
section.

! Throughout the paper summation with respect to repeated indices is assumed, where the range
of the sum is to be understood from the context: when the index represents a spatial coordinate, the
range of the sum is between 1 and 3; in all the other cases the sum is intended over the range of
variability of the repeated index.
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Focusing on the case of rarefied polyatomic gases characterized by the follow-
ing thermal and the polytropic caloric equations of state at equilibrium:

k Dk
2 — )T, ==
(2) p=_pT, ¢

)

T 2m
where k, m and D are, respectively, the Boltzmann constant, mass of a particle
and the degrees of freedom of a particle. The hydrodynamic variables p (mass

density), pv; (momentum) and pe (internal energy) are defined in terms of the col-
lision invariants m, mc; and mc?/2 + I as follows:

o0 o]
p= || mronarde. poi= [ [ mpotnarae
R?Jo R Jo

1, * I
pe+§pv —/R3/0 mf(iJrE)(p(I)dldc,

where the non-negative measure ¢([) dI is a property of the model aimed at re-
covering the classical (polytropic) caloric equation of state for polyatomic gases
at equilibrium (2),. To this aim, it can be shown that:

o(I) =1I°, P 0> —1).

Introducing for the sake of compactness the following symbol

1 for4=0
€= Cip .. Ciy fOI’lSASN

where the indices ij < i, < --- < iy take the values 1, 2, 3, and defining the mo-
ments of the distribution function f as the following quantities? [17]:

2 An equivalent notation for the moments defined in (3) is the following:

F:{F for 4=0 G :{G” for 4’ =0
4 Fyi forl<a<nN ™ Guy.i, forl<d' <M
Fo = {F,- for 4 =0 Ginar — {G//i for A’ =0
! Fij.;, forl<A<N ! Gui,..i, forl <A’ <M
0 for 4=0 0 for A’ =0
Pyi=<0 for 4 =1 , Ona = { Ouyi, forl<A' <M

P, for2<A4<N (with P, =0)

In the following, the capital and primed capital indices, respectively, run from 0 to N and 0 to M.
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o 0 27 i
F, = / / mchI(; dlde, Gy = / / mf(cZ —F—)CA/IO dl de,
R J0 R* J0 m

«© . « 21 .
(3) Fu= / / mfc,»cAI() dlde, Gy :/ / mf(c2 —|——> cicq I dl de,
R*J0o rR* Jo m

P, :/R}/OOOWIQ(J[)CAlédqu Q”A’:/R3/anmQ(f)(czwL?%—l)cAJ‘sdldc,

it is possible to build two hierarchies of moments that, after truncation, read as
follows:

(4) 0F4+ 0iFiyu =Py, 0,Gua + 0iGliar = Oua,
(0<A4<N) 0<A4"'<M)

being N and M the truncation orders of the F-hierarchy (momentum-like hierar-
chy) and of the G-hierarchy (energy-like hierarchy), respectively. System (4) will
be denoted as “(N, M)-system”, being N and M a priori independent. It is worth
noting that the first two equations of the F-hierarchy represent the conservation
of mass and momentum (P = 0, P; = 0), the first equation of the G-hierarchy rep-
resents the conservation of energy (Qy = 0), and in each of the two hierarchies
the flux in one equation appears as density in the following one—a feature in
common with the single hierarchy of monatomic gases [16].

It is noted that the Euler equations (5-moment system) and the 14-moment
system [3, 17] are particular cases of (4) obtained, respectively, with N =1,
M =0,and with N =2, M = 1.

2.1. Galilean invariance

It is reasonable to wonder whether a restriction exists on how the two hierarchies
introduced in the previous section are truncated. In the spirit of ET, the applica-
tion of the universal principles—in the present case, the Galilean invariance
[18]—Tleads to the conclusion that in order to have a physically acceptable model,
the truncation orders N and M cannot be chosen independently. The following
theorem, proven in [1], holds:

THEOREM 1. In order for the (N, M)-system (4) to be Galilean invariant, it must
be M <N — 1.

2.2. Closure of the system

In the case of rarefied monatomic gases, the system of moment equations are
closed by the method of the entropy principle or maximum entropy principle,
and the equivalence of these two closures have been proved by Boillat and
Ruggeri. Following the methodology outlined in [9], the Galilean invariant sys-
tem of moment equations (4) is closed by EP or MEP, and the equivalence of
EP and MEP is shown. In the following, the general frameworks of EP and
MEP are discussed, and then for the usual entropy density the system is closed.
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2.2.1. Entropy principle. The closure of the (N, M)-system is achieved by mak-
ing use of the entropy principle. This consists in requiring that all the solutions of
(4) satisfy the entropy inequality:

(5) 0h + 0ih; =% > 0,

where the entropy density /4, entropy flux /4; and entropy production X are the
constitutive functions:

(6) h=h(F4,Gy), hi=hi(Fs,Gq), Z=X(Fy,Gy).
The results of EP are summarized as follows:

THEOREM 2. The necessary and sufficient condition for all solutions of balance
equations of (N, M)-system (4) to satisfy the entropy inequality (5) is that the dis-
tribution function f(y ) depends only on the scalar variable

21
v,y = WaCa+ <C2 + ;) vCar,
where u'; and v';, are the so-called main fields defined in [10]. In this case,
h= / / m(x . ayH' — H)I° dl de,
R* J0 ’
o N
(7) hi = / / m(x o anH' — H)eI° dl de,
R J0O '
Y= /W /0 mO(f)x . 1’ dl de,

where H = H (y(y, ) is a function which satisfies

dH
dyn, m)

(8) H' = = Jov.mn (v, )

Moreover, with the condition that H" < 0, the system is rewritten into the sym-
metric hyperbolic form by adopting the main field as independent fields.

PROOE. The requirement that all solutions of (4) satisfy (5) can be expressed, by
introducing the main fields «/; and v/,,, as

0h + 3ih; — u!((0,F4 + 0iFiy — Pa) — v, (0:Guar + 0;Gpiar — Quar) = 0.
Since & and /; are the constitutive function as (6),

(9) dh:u; dFA—f‘U;/dGA/, dh, :u;, dEA-f'U;‘/dGiAf,
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and

(10) ZZM(I“PA—FU;‘/QA' >0,

From (9) the expressions of the main fields are obtained:

Oh , _ Oh
oF, M TG,

[
uA—

In order to transform the independent variables from F4 and G4 to u/, and v/;,,
the following new variables are introduced:

(11) W =u\Fq+0,Gy —h, hl=u'\Fy+0Gu —h.
The derivatives of these variables are as follows:

dh' = Fydu', + Gy dv'y, dh! = Fydu'y + Gy dv'y.,
and then the original variables are given as

on’ on’ on!

!/
P A = A F'iA:i/a ahl
ou', vy, ou’,

o'y,

(12) Fy= Giar

As the densities Fy and G, are expressed by the distribution function (3), drop-
ping the subscript (N, M) of f and y for the sake of compactness, dh’ and dh! are
expressed as

I * I 2 21 I 0
dh’ = mf cAduA—|-<c —i——)cA/dv 4 | I°dl de
R J0O m

—/ /“mfdxﬁdldc—d// mHI? dI de.
R3Jo R3Jo

The introduction of H(y) which satisfy (8) indicates that /' = f(y). As a conse-
quence,

(13) h’—/ /umHI"‘dIdc.
R*JO

Similarly, for the new flux,

(14) h,{Z// me;HI? dI de.
R* JO

Therefore, inserting (13) and (14) into (11), the expressions of the entropy density
and flux in (7) are deduced. For the entropy production (10) is equal to the
expression in (7).
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The system (4) may be rewritten with respect to the independent fields «/; and
v, by using (12) as follows:

(15) (JAQB I )8,<u/3>+<J’(’)“B T )al(u’z;) _ ( Py )
J/l‘/B Ji'B/ UIB’ JA’B JI%‘I'B/ UIB’ Q[lA/ ’

where

2 /
0°h
Jip= 7 u] / / mH"cqcpl’ dl de,
B R
2 !
21
(16) iy = = gv / 3 / H”cACB/ —)15d1dc,
40U R’
o°n’ 21
Ji,B/:a 20 / / mH' cAch/(c + )I"dldc
A/ B’ Rz

By the requirement that the system is symmetric hyperbolic, the coefficient matrix
of 0,(uy v ) must be negative definite. With any variables X4 and X, the qua-
dratic form associated to the matrix is expressed as

0 1
(X4 XAr)<Jf‘B J§B’><XB>
JA’B JA/B/ XB’
% 21 2
:/ / mH”(cAXA+(cz+—>cA«XA/> 1°dl de.
r3 Jo m

This concludes that when H” < 0, the matrix is negative definite. O
2.2.2. Maximum entropy principle. As an alternative approach to close the
(N, M)-system, the maximum entropy principle (MEP) requires the distribution

function fy ) to maximize the entropy / under the constraints that the mo-
ments F4 and Gy4 are given as in (3). For the generic form of entropy density:

h= /R} /me‘P(f)I‘sdldc,

the variational problem of the functional

o0 o0
y(N.M)(f,AA,ﬂA,):/J m‘P(f)I‘sdIdc—kAA(FA—/}/ mchI‘SdIdc)
R 0 R 0

* 21 S
+'LtA/ (G[]A’ _/ / mf(C2 +7)CA/IO d[dc),
r* Jo m

where A4 and u,, are the Lagrange multipliers of the system. The first and sec-
ond variations with respect to f are obtained as
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21 .
N M) / / {—— Aycy _,uA/(Cz +_)CA’}5fI(5dldc)
R} m
d*¥
i’ / / (0f)21° dI de.
(N, M) - df2 (9f)

As a necessary condition for a extremum,

d¥ B , 21
? =x=ANscy +,MAr(C +;)CA'7

and therefore

(17) v=yf - [ 1dr

As a necessary condition for a maximum, the inequality ‘;j‘f < 0 must be held,
and from (17) the following inequality is obtained:

af
d_X<0

As Boillat and Ruggeri have proven [9], considering that f = H’, the maximi-
zation of entropy derive the same result with the method of EP. The converse is
also true. The Lagrange multipliers turn out to be identified as the main field:
uy =Ayand vy, = uy.

2.2.3. The closure for classical entropy density. If it is required that / is the usual
entropy density defined as follows:

h:—k//flogﬂ‘;dldc,
R*.JO

it can be shown [1] that the sought distribution function f(y, ) has the following
form:

(18) f:exp(—l—%)().

In this case the entropy flux /; and the entropy production X can be expressed as

h,-:—k// cif log fI°dl de, z:—k// O(f)log fI° dI de.
R Jo R Jo

Making use of (18) and of the expressions for F, and Gy, the Lagrange multi-
pliers are evaluated in terms of F, and Gy and, plugging (18) into the last flux
and production term, the system can be closed.



284 T. ARIMA, A. MENTRELLI AND T. RUGGERI

In this case, the symmetric conditions of the system (15) is satisfied and the
coefficients (16) may be expressed as follows:

m2 o0
Jy=—— / / feacsl? dI de,
k Jw Jo

2 0
(19) Ji,=-= / feacn (c2 + 2—1) 1°dl de,
k R3

JA/B/ = k /R3/ fCA/CB/ ) ](sdldc

2.3. The distribution function in the neighborhood of a local equilibrium state

The distribution function (18) is expanded in the neighborhood of a local equilib-
rium state:

S, m (. 21N - -
fsz{l—E<ugcA+<cz+E)v;1,cA/>} iy =u,—uf, v,=v, -],

where the superscript “E” denotes that a quantity is evaluated in the equilibrium
state, i.e. involving the local equilibrium distribution function f £ given as follows
[17]:

(20) ft= q(lT) " (JZT)W exP(‘ 7 (€ %))

where C? = C;C; with the peculiar velocity C; = ¢; — v; and the normalization
function ¢(T) is defined as

o(T) = /OOC exp(- é)r" dI = (kT)™T(1 46),

and ' denotes the gamma function. All the Lagrange multipliers (main field)
at equilibrium vanish, except those corresponding to the hydrodynamic vari-

ables p, v;, €. After some manipulation [1], a linear algebraic system that permits

to evaluate the main field (u/f,v'f) in terms of the densities F4 and Gy is

obtained:
Tl T <a;) :< Fi—F} >
Tog i )\ Guar = Gy
Plugging (20) into (19), it is also possible to obtain the following useful rela-

tions:

‘]A?‘lf - J/i//I/% ‘]Jlll]'?f’ ‘]uAB’ + ZC (1 +5)‘]A[l/?’a
21E
I3 = T 4R+ 0) (il g + Q2O ),
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where ¢, = /£ T, J .4 is defined as:
2
/ m
M _ Vi
JAB__7/3f CACBdC,
R

and f” denotes the Maxwellian.
Once the main field (u/;,v/;,) has been calculated in terms of F4 and Gy, the
constitutive functions necessary to close the system are finally obtained.

2.4. Equilibrium characteristic velocities

The set of the characteristic velocities of the system (15) at equilibrium in the di-
rection of propagation having unit vector n = (n’), denoted as /5 (v, m)» 18 the set of
the roots of the characteristic polynomial 7% v, M) given by:

0|E 1|1E 0|E 1|E
- (5 Yo )] o
5 11E 2|E 5 1|1E 2|E :
JiA"B Ji/i’B’ ‘]Al’B JA"B’

Without loss of generality, for the sake of simplicity, the one-dimensional case is
studied. After some manipulations [1], the previous expression can be written as:

| &4
1) T = det( Tings Torarion > —0
7 JI;/JiquJrSUrl Jj;{{kr’,q’+s’+2 + 4Cs (1 + 5)‘]17/{%; q'+s

being
a _ M p+l , q+s
Jp+r qts / f de.

where the indexes p, ¢, p’, and ¢’ are the non-negative integers satisfying:
0<p+2¢<N, 0<p'4+2<M (M<N-1).

Analyzing the features of the polynomial T( v ar)» 1t seems that, as expected, the
equilibrium characteristic velocities /1( N, M) depend on the the parameter 6 and, in
turn, on the degrees of freedom D. Nonetheless it can be easily seen that this is
not always the case [1]. Upon inspection of the features of T’ (1]5\,‘ M) the following

holds:

THEOREM 3. If M < N — 1, the equilibrium characteristic velocities of a (N, M )-
system, )»5\,_’ w)» are independent from the degrees of freedom of a particle D. More
specifically, the equilibrium characteristic velocities coincide with those of a (N)-
system, )»5\,), and those of a (M )-system, /15,[), of monatomic gases:

Avon) = vy Y Ao

Moreover, the maximum equilibrium characteristic velocity of the (N, M)-system,
/iE max , does not depend on M and coincides with the one of the (N)-system for
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monatomic gases:

E,max E,max
}N&)—A(N)“.

It can be seen that Theorem 3 is true for the (N, M)-system with M < N
where N7 truncation order denotes that in addition to the first N tensorial equa-
tions the trace part of the N + 1 tensorial equation is considered.

Combining the results of Theorem 1 and Theorem 3, the following conclusion
holds:

THEOREM 4. The (N, M)-system is Galilean invariant and its equilibrium charac-
teristic velocities depend on the degrees of freedom D if and only if M = N — 1.

Physical examples are given by the Euler system and by the 14-moment
theory, which are obtained, respectively, with N =1, M =0, and with N =2,
M=1.

3. CHARACTERISTIC VELOCITIES OF (N, N — 1)-SYSTEMS

The maximum equilibrium characteristic velocities of a (N, N — 1)-system of
polyatomic rarefied gases is limited by those of monatomic gases as pointed out
by the following:

THEOREM 5. The maximum equilibrium characteristic velocity of a (N, N — 1)-
system of a polyatomic gas, /l(mj\?_rfol), is bounded by the maximum equilibrium char-
acteristic velocities of the (N)-system and of the (N)-system of monatomic gases
as follows:

max 7 max

In order to prove the above Theorem, it suffices to notice that both the upper
and the lower bounds are obtained from Theorem 3 and the subcharacteristic
conditions [10]:

max ax ma:

AN = ANy = AN N1 = AN -1y, TM <N
izn,\ixN,l > i“,ﬁXM) = A“}j‘x, VM < N — 1.
The influence of the degrees of freedom D on the characteristic velocities is
described in the following.

The limit case D — 3. It has been proven for the 14-moment theory in [5] and
for the general theory of (N, M)-system in [8] that in the limit case D — 3 the
solutions of the (N ,N — 1)-system for rarefied polyatomic gases (which is com-
posed by niy,y_1) =1 (N + 1)(N +2)(2N + 3) equations) converge to those of
the (NT)- system for rareﬁed monatomic gases (which is composed by n(y+) =

L(N +1)(N? + 6N + 6) equations), and the differences between the F-hierarchy
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and G-hierarchy,

I, = gnl3<F”a — G/]a) (0 <au<N - 2)

which are governed by the n(y_») :%(N —1)N(N +1) = niy n—1) — ny+) bal-
ance equations:

(22) Oy + 0iliy = })im}(P/la — Ouy),

vanish under suitable initial condition for rarefied monatomic gases, therefore the
double-hierarchy is regarded as the single-hierarchy of rarefied monatomic gases.
As a consequence of the convergence of the solution of polyatomic gases towards
those of monatomic gases, the characteristic velocities follow the same rule. It
is noted that when the characteristic polynomial (21) is calculated in this limit,
the obtained characteristic velocities are those of the (N *)-system augmented by
those of (N — 2)-system:

(23) lim Ay N1y = w9 Aoy

However, the characteristic velocities of the (N — 2)-system are related to the
balance equations (22), which vanish in this limit. It is noted (see Theorem 3)
that when D — 3, the maximum characteristic velocity of the (N, N — 1)-system
coincides with the one of the (N *)-system for rarefied monatomic gases, which in
turn coincides with that of the (N, M)-system for any M < N, i.e.

. max _ gmax __ qmax
11)111?3 A(N,Nfl) = ;°(N+) = A(N*,M)? VM < N.

The limit case D — oo. In the case D — oo, the following Theorem holds

[1]:

THEOREM 6. When D — oo, the niy y—1) = (N + 1)(N 4+ 2)(2N +3) charac-
teristic velocities of the (N,N — 1)-system coincide with the nipy =1(N +1)-
(N + 2)(N + 3) ones of the (N)-system and with the ny_y) = tN(N + 1)(N +2)
ones of the (N — 1)-system, i.e.

: E E E
DILI& }V(NﬁNil) - }“(N) v }"(Nfl)'

In particular, the maximum characteristic velocity of the (N, N — 1)-system coin-
cides with the one of the (N)-system for monatomic gases which is in turn coinci-
dent with the one of the (N, M )-system for any M < N — 1, i.e.

lim AR ) = AR = A, VM <N -1,

The case 3 < D < 0. In the case 3 < D < oo the following is obtained as a
corollary of previous results.
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THEOREM 7. For any truncation order N, the maximum equilibrium characteristic
velocity of a (N, N — 1)-system of polyatomic gases is bounded as follows:

max

max
hm/lNN1< NN1)<11m/1

N-1)*

4, DEPENDENCE OF THE MAXIMUM EQUILIBRIUM CHARACTERISTIC VELOCITIES
ON THE TRUNCATION ORDER

As a consequence of Theorem 5, the following result is obtained.

THEOREM 8. The maximum equilibrium characteristic velocity of a (N,N — 1)-
system of polyatomic gases has the same lower bound as a (N)-system of mona-
tomic gases [9):

N /lmax B ;bmax 1
(24) jmax WN-1) o A 6(N_ )

(N,N-1) = = =\/3 B

o €)
where ¢y = 1/% %T is the sound velocity in the rarefied monatomic gas case at an
equilibrium state.

A major consequence of the previous Theorem is that maximum equilibrium
characteristic velocity is unbounded as N — co.

In Figure 1 the dependence of /lr‘]\;"jv ) on N is shown for D = 50, and for the
values D — 3, D — oo, as well as for the lower bound given by (24). From the
figure, it is ev1dent that for a given D, A< _y gets closer and closer to the limit

1 -

1 5 N 10 15

Figure 1: Nondimensional equilibrium maximum characteristic velocity of the
(N,N — 1)-system, /1<“;V“’§V n= AN n-1)/¢o, as a function of N for a polyatomic gas with
D = 50 (dots). The limits for D — 3 and D — oo are represented by the continuous curves
immediately above and below the dots, respectively. The bottom curve represents the
lower bound given by (24).
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velocity corresponding to the case D — 3. For what concerns the characteristic
velocities, this numerical result supports the conjecture according to which as
the order of the system increases, the monatomic gas model allows to describe
with reasonable accuracy also polyatomic gases.

Moreover the dependence of A/y"y_ ;) on N has also the feature that—as
seen from Theorem 5 and the subcharacteristic conditions—the ranges of variation
of )L“;}‘ﬁv_ with respect to D, for different values of N are non-overlapping, e.g.,

7 max 1 max

AN.N-1) < A(N+1,ny), foranyD.
In other words, with (23) and Theorem 6, the following inequality holds:

max . max
Lim Ay v-1) < m Aivi -

5. SUMMARY AND CONCLUSIONS

In the framework of Extended thermodynamics, the results that in recent decades
have been obtained for rarefied monatomic gases are extended to rarefied polya-
tomic gases.

In the kinetic model of polyatomic gases adopted now, the velocity distribu-
tion function depends not only on position, velocity and time as in the mon-
atomic gas case, but also on an internal energy parameter accounting for the
energy transfer during binary collisions. Correspondingly, Extended thermody-
namics of polyatomic gases is based on the balance laws obtained as moments
of the velocity distribution function and consist of a double hierarchical structure,
that is, a momentum-like and a energy-like hierarchies. One of the question of
Extended thermodynamics for rarefied polyatomic gases is what is the appropri-
ate choice of the orders of truncation for these two hierarchies? In this paper the
answer has been found by means of the universal principle of Galilean invariance
which restricts this relation as follows: once the order of truncation N of the
momentum-like hierarchy is given, the order of truncation M of the energy-like
hierarchy is automatically forced to respect the inequality M < N — 1. More-
over, by means of the requirement that the characteristic velocities of the system
cannot be independent on the degrees of freedom of a particle D, it has been
pointed out that once the order N is given, the order M must be exactly equal
to N — 1.

The closure of the truncated system has been also discussed. The two equiva-
lent methods, that is, the entropy principle and the maximum entropy principle,
which are well-established for the monatomic gas case, are adopted also in the
polyatomic gas case. For the usual entropy density, the explicit expression of the
velocity distribution function is obtained and the closed set of the equations have
been shown.

Moreover, an analysis on the dependence of the maximum characteristic
velocity of the rarefied polyatomic gas model has been proposed: it has been
pointed out that the maximum characteristic velocity of the rarefied polyatomic
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gas is always bounded by the limit value obtained for the rarefied monatomic gas
(D — 3) and by the limit value of a gas whose particles have infinite degrees
of freedom (D — o0). The analysis of the influence of the order of truncation N
of the two hierarchies on the maximum characteristic velocity suggests that as
the order N increases, the maximum characteristic velocity approaches the limit
value of the rarefied monatomic gas case.
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