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Abstract. — Extended thermodynamics of rarefied polyatomic gases is characterized by two hi-

erarchies of equations for moments of a suitable distribution function in which the internal degrees
of freedom of a particle is taken into account. To obtain the closed set of the field equations for the

system with many moments and for an arbitrary entropy functional that includes degenerate gases,
the entropy principle and maximum entropy principle are studied and the equivalence of these two

methods is shown as in the well-established case of the monatomic gas. In addition the recent results
of the present theory are summarized. On the basis of physical considerations, the truncation orders

of the two hierarchies are seen to be not independent on each other. The equilibrium characteristic
velocities of the emerging hyperbolic system of partial di¤erential equations are analyzed and com-

pared to those of monatomic gases. Inspection shows that the lower bound estimate of the maximum
equilibrium characteristic velocity valid for monatomic gases, which increases as the truncation

order increases, is valid for any rarefied polyatomic gas.
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1. Introduction

Extended thermodynamics [16] is a phenomenological theory whose main aim
is to bridge the gap between the two classical approaches to the study of non-
equilibrium phenomena in which steep gradients and rapid changes occur,
namely the continuum approach and the kinetic approach. One of the main limita-
tions of Extended thermodynamics (ET), inherited from the kinetic theory to
which ET is strictly connected, is its range of applicability, restricted to the study
of monatomic rarefied gases.

Recently a 14-moments ET theory for dense gases and for rarefied polyatomic
ones has recently been developed by Arima, Taniguchi, Ruggeri and Sugiyama
[3]. This theory provides two parallel hierarchical structures of equations for the
independent fields, one hierarchy consisting of balance equations for mass den-
sity, momentum density and momentum flux (momentum-like hierarchy), the
other one consisting of balance equations for energy density and energy flux
(energy-like hierarchy). These hierarchies cannot be merged, since the existence
of the dynamic pressure (non-equilibrium pressure) breaks the equivalence of
the energy density and trace-part of momentum flux, in contrast to what is true



in the monatomic gas case. By means of the closure procedure typical of ET
theory, in particular of the entropy principle (EP), the constitutive equations are
determined explicitly with the thermal and caloric equations of state. This theory
has been thoroughly investigated [2, 4, 5, 8, 20] and its validity has been con-
firmed by comparing its predictions to experimental evidence in several test cases
[6, 7, 21]. Moreover, Pavić, Ruggeri and Simić have recently proven [17] that the
maximum entropy principle (MEP) [9, 14, 15] with the kinetic model for rarefied
polyatomic gases presented by Borgnakke et al. [11] and by Bourgat et al. [12]
yields appropriate macroscopic balance laws in agreement with the 14-moment
theory presented in [3]. In particular, the momentum-like and the energy-like
hierarchies obtained in the continuum-approach are related, respectively, to the
moments of the distribution function f and to the moments of f in which an
additional continuous variable representing the internal degrees of freedom of a
particle is considered.

The purpose of the present paper is to summarize some recent contributions to
the development and understanding of the new ET theory of rarefied polyatomic
gases for any number of moments based on the above-mentioned kinetic model.
The following points are studied: (i) It is discussed how, on the basis of physical
arguments (Galilean invariance and the requirement that the characteristic veloc-
ities depend on the degrees of freedom of a particle), the relation between the
orders of truncation of the momentum-like and energy-like hierarchies turn out
not to be independent; (ii) For the truncated system of moment equations, fol-
lowing the methodology of the case of monatomic gases [9], the two equivalent
closures, i.e. EP and MEP, are introduced and the general framework of these
closures are studied; (iii) The characteristic velocities in the equilibrium state are
analyzed, playing these quantities an important role in several processes, as the
propagation of acceleration waves, the determination of the phase velocity of lin-
ear waves in the high-frequency limit, and subshock formation. With this regard,
it will be discussed how the characteristic velocities of the system depend on the
degrees of freedom and on the truncation order of the hierarchies, taking also
into account the limit cases of monatomic gases and of a gas with infinite internal
degrees of freedom; and (iv) It will be discussed how the lower bound estimate
for the maximum characteristic velocity established for monatomic gases [9] and
recently used by Slemrod in his analysis of the hydrodynamic limit of the Boltz-
mann equation and Hilbert’s 6th problem [19], still holds independently from the
degrees of freedom of a particle, leading to the conclusion that also for polya-
tomic gases the maximum characteristic velocity increases as the order of the hi-
erarchies tends to infinity and is unbounded.

The proofs of the theorems as well as a more thorough analysis of the re-
sults presented here are presented and discussed elsewhere [1]. In this paper, dif-
ferent from the paper [1], the equivalence between EP and MEP is given for
an arbitrary entropy functional that includes degenerate gases (Bose and Fermi
gases).

The paper is organized as follows. In Section 2, the generalization to the
case of the truncation order of momentum-like moments N and of energy-like
moments M of the recently developed ET theory of 14-moment for rarefied
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polyatomic gases is outlined. First, in order for a system describing a rarefied
polyatomic gas to be well-behaved from a physical point of view, the principle
of Galilean invariance is used to gain understanding on the relation that must
exist between the orders N and M (Section 2.1), then the closures for Galilean
invariant system by EP and MEP are introduced and the equivalence of those
is discussed (Section 2.2), and to show clearly the procedure to obtain the consti-
tutive equations the distribution function is expanded in the neighborhood of a
local equilibrium state (Section 2.3). In Section 2.4, the calculation of the charac-
teristic velocities of the system with many moments for rarefied polyatomic gases
is outlined.

In Section 3 a thorough discussion of the features of the equilibrium charac-
teristic velocities for gases with di¤erent degrees of freedom of the gas particles is
provided.

In Section 4, the dependence of the maximum equilibrium characteristic veloc-
ity on the truncation order is considered and the existence of a lower bound valid
for any rarefied gas is discussed.

Finally, some concluding remarks are o¤ered in Section 5.

2. The double-hierarchy system for rarefied polyatomic gases

The kinetic theory is based on the assumption that the state of the gas can be
described by the velocity distribution function. For rarefied polyatomic gases, a
kinetic model in which the velocity distribution function depends not only on
time t, position x and velocity of particles c but also on a non-negative parameter
I which takes into account the influence of particles internal degrees of freedom
on energy transfer during collisions, was proposed by Bourgat et al. [12] in the
framework of the Borgnakke-Larsen procedure [11], and then applied to chemi-
cally reacting mixtures [13]. In this model, the velocity distribution function
f C f ðx; c; t; IÞ defined by the number density of particles f ðx; c; t; IÞ dx dc dI at
time t in a phase space dx dc dI centered in ðx; c; IÞ a R3 � R3 � ½0;lÞ obey the
Boltzmann equation in the absence of external forces:

qt f þ ciqi f ¼ Qð f Þ;ð1Þ

where the symbols qt and qi denote partial derivatives with respect to time t
and space variables xi (i ¼ 1; 2; 3), respectively1, and the collision integral Qð f Þ
represents the rate of change of the distribution function f due to collisions
including the influence of internal degrees of freedom through collisional cross
section.

1Throughout the paper summation with respect to repeated indices is assumed, where the range

of the sum is to be understood from the context: when the index represents a spatial coordinate, the
range of the sum is between 1 and 3; in all the other cases the sum is intended over the range of

variability of the repeated index.
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Focusing on the case of rarefied polyatomic gases characterized by the follow-
ing thermal and the polytropic caloric equations of state at equilibrium:

p ¼ k

m
rT ; e ¼ D

2

k

m
T ;ð2Þ

where k, m and D are, respectively, the Boltzmann constant, mass of a particle
and the degrees of freedom of a particle. The hydrodynamic variables r (mass
density), rvi (momentum) and re (internal energy) are defined in terms of the col-
lision invariants m, mci and mc2=2þ I as follows:

r ¼
Z
R3

Z l

0

mf jðIÞ dI dc; rvi ¼
Z
R3

Z l

0

mfcijðIÞ dI dc;

reþ 1

2
rv2 ¼

Z
R3

Z l

0

mf
�c2
2
þ I

m

�
jðIÞ dI dc;

where the non-negative measure jðIÞ dI is a property of the model aimed at re-
covering the classical (polytropic) caloric equation of state for polyatomic gases
at equilibrium ð2Þ2. To this aim, it can be shown that:

jðIÞ ¼ I d; d ¼ D� 5

2
ðd > �1Þ:

Introducing for the sake of compactness the following symbol

cA ¼ 1 for A ¼ 0

ci1 . . . ciA for 1aAaN

�

where the indices i1 a i2 a � � �a iA take the values 1, 2, 3, and defining the mo-
ments of the distribution function f as the following quantities2 [17]:

2An equivalent notation for the moments defined in (3) is the following:

FA ¼
F for A ¼ 0

Fi1 ...iA for 1aAaN

�
GllA 0 ¼

Gll for A 0 ¼ 0

Glli1 ...iA 0 for 1aA 0 aM

�

FiA ¼
Fi for A ¼ 0

Fi i1 ...iA for 1aAaN

�
GlliA 0 ¼

Glli for A 0 ¼ 0

Gllii1 ...iA 0 for 1aA 0 aM

�

PA ¼
0 for A ¼ 0

0 for A ¼ 1

Pi1 ...iA for 2aAaN ðwith Pll ¼ 0Þ

8><
>: ; QllA 0 ¼

0 for A 0 ¼ 0

Qlli1 ...iA 0 for 1aA 0 aM

�

In the following, the capital and primed capital indices, respectively, run from 0 to N and 0 to M.
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FA ¼
Z
R3

Z l

0

mfcAI
d dI dc; GllA 0 ¼

Z
R3

Z l

0

mf
�
c2 þ 2I

m

�
cA 0I d dI dc;

FiA ¼
Z
R3

Z l

0

mfcicAI
d dI dc; GlliA 0 ¼

Z
R3

Z l

0

mf
�
c2 þ 2I

m

�
cicA 0I d dI dc;ð3Þ

PA ¼
Z
R3

Z l

0

mQð f ÞcAI d dI dc; QllA 0 ¼
Z
R3

Z l

0

mQð f Þ
�
c2 þ 2I

m

�
cA 0I d dI dc;

it is possible to build two hierarchies of moments that, after truncation, read as
follows:

qtFA þ qiFiA ¼ PA;

ð0aAaNÞ
qtGllA 0 þ qiGlliA 0 ¼ QllA 0 ;

ð0aA 0aMÞ
ð4Þ

being N and M the truncation orders of the F -hierarchy (momentum-like hierar-
chy) and of the G-hierarchy (energy-like hierarchy), respectively. System (4) will
be denoted as ‘‘ðN;MÞ-system’’, being N and M a priori independent. It is worth
noting that the first two equations of the F -hierarchy represent the conservation
of mass and momentum (PC 0, Pi C 0), the first equation of the G-hierarchy rep-
resents the conservation of energy (Qll C 0), and in each of the two hierarchies
the flux in one equation appears as density in the following one—a feature in
common with the single hierarchy of monatomic gases [16].

It is noted that the Euler equations (5-moment system) and the 14-moment
system [3, 17] are particular cases of (4) obtained, respectively, with N ¼ 1,
M ¼ 0, and with N ¼ 2, M ¼ 1.

2.1. Galilean invariance

It is reasonable to wonder whether a restriction exists on how the two hierarchies
introduced in the previous section are truncated. In the spirit of ET, the applica-
tion of the universal principles—in the present case, the Galilean invariance
[18]—leads to the conclusion that in order to have a physically acceptable model,
the truncation orders N and M cannot be chosen independently. The following
theorem, proven in [1], holds:

Theorem 1. In order for the ðN;MÞ-system (4) to be Galilean invariant, it must
be MaN � 1.

2.2. Closure of the system

In the case of rarefied monatomic gases, the system of moment equations are
closed by the method of the entropy principle or maximum entropy principle,
and the equivalence of these two closures have been proved by Boillat and
Ruggeri. Following the methodology outlined in [9], the Galilean invariant sys-
tem of moment equations (4) is closed by EP or MEP, and the equivalence of
EP and MEP is shown. In the following, the general frameworks of EP and
MEP are discussed, and then for the usual entropy density the system is closed.
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2.2.1. Entropy principle. The closure of the ðN;MÞ-system is achieved by mak-
ing use of the entropy principle. This consists in requiring that all the solutions of
(4) satisfy the entropy inequality:

qthþ qihi ¼ Sb 0;ð5Þ

where the entropy density h, entropy flux hi and entropy production S are the
constitutive functions:

hC hðFA;GA 0 Þ; hi C hiðFA;GA 0 Þ; SCSðFA;GA 0 Þ:ð6Þ

The results of EP are summarized as follows:

Theorem 2. The necessary and su‰cient condition for all solutions of balance
equations of ðN;MÞ-system (4) to satisfy the entropy inequality (5) is that the dis-
tribution function fðN;MÞ depends only on the scalar variable

wðN;MÞ ¼ u 0
AcA þ

�
c2 þ 2I

m

�
v 0A 0cA 0 ;

where u 0
A and v 0A 0 are the so-called main fields defined in [10]. In this case,

h ¼
Z
R3

Z l

0

mðwðN;MÞH
0 �HÞI d dI dc;

hi ¼
Z
R3

Z l

0

mðwðN;MÞH
0 �HÞciI d dI dc;ð7Þ

S ¼
Z
R3

Z l

0

mQð f ÞwðN;MÞI
d dI dc;

where H ¼ HðwðN;MÞÞ is a function which satisfies

H 0 ¼ dH

dwðN;MÞ
¼ fðN;MÞðwðN;MÞÞ:ð8Þ

Moreover, with the condition that H 00 < 0, the system is rewritten into the sym-
metric hyperbolic form by adopting the main field as independent fields.

Proof. The requirement that all solutions of (4) satisfy (5) can be expressed, by
introducing the main fields u 0

A and v 0A 0 , as

qthþ qihi � u 0
AðqtFA þ qiFiA � PAÞ � v 0A 0 ðqtGllA 0 þ qiGlliA 0 �QllA 0 Þb 0:

Since h and hi are the constitutive function as (6),

dh ¼ u 0
A dFA þ v 0A 0 dGA 0 ; dhi ¼ u 0

A dFiA þ v 0A 0 dGiA 0 ;ð9Þ
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and

S ¼ u 0
APA þ v 0A 0QA 0 b 0;ð10Þ

From (9) the expressions of the main fields are obtained:

u 0
A ¼ qh

qFA

; v 0A 0 ¼
qh

qGA 0
:

In order to transform the independent variables from FA and GA 0 to u 0
A and v 0A 0 ,

the following new variables are introduced:

h 0 ¼ u 0
AFA þ v 0A 0GA 0 � h; h 0

i ¼ u 0
AFiA þ v 0A 0GiA 0 � hi:ð11Þ

The derivatives of these variables are as follows:

dh 0 ¼ FA du 0
A þ GA 0 dv 0A 0 ; dh 0

i ¼ FiA du 0
A þ GiA 0 dv 0A 0 ;

and then the original variables are given as

FA ¼ qh 0

qu 0
A

; GA 0 ¼ qh 0

qv 0A 0
; FiA ¼ qh 0

i

qu 0
A

; GiA 0 ¼ qh 0
i

qv 0A 0
:ð12Þ

As the densities FA and GA 0 are expressed by the distribution function (3), drop-
ping the subscript ðN;MÞ of f and w for the sake of compactness, dh 0 and dh 0

i are
expressed as

dh 0 ¼
Z
R3

Z l

0

mf

�
cA du 0

A þ
�
c2 þ 2I

m

�
cA 0 dv 0A 0

�
I d dI dc

¼
Z
R3

Z l

0

mf dw I d dI dc ¼ d

Z
R3

Z l

0

mHI d dI dc:

The introduction of HðwÞ which satisfy (8) indicates that f ¼ f ðwÞ. As a conse-
quence,

h 0 ¼
Z
R3

Z l

0

mHI d dI dc:ð13Þ

Similarly, for the new flux,

h 0
i ¼

Z
R3

Z l

0

mciHI d dI dc:ð14Þ

Therefore, inserting (13) and (14) into (11), the expressions of the entropy density
and flux in (7) are deduced. For the entropy production (10) is equal to the
expression in (7).
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The system (4) may be rewritten with respect to the independent fields u 0
A and

v 0A 0 by using (12) as follows:

J 0
AB J 1

AB 0

J 1
A 0B J 2

A 0B 0

� �
qt

u 0
B

v 0B 0

� �
þ J 0

iAB J 1
iAB 0

J 1
iA 0B J 2

iA 0B 0

� �
qi

u 0
B

v 0B 0

� �
¼ PA

QllA 0

� �
;ð15Þ

where

J 0
AB ¼ q2h 0

qu 0
Aqu

0
B

¼
Z
R3

Z l

0

mH 00cAcBI
d dI dc;

J 1
AB 0 ¼

q2h 0

qu 0
Aqv

0
B 0

¼
Z
R3

Z l

0

mH 00cAcB 0

�
c2 þ 2I

m

�
I d dI dc;ð16Þ

J 2
A 0B 0 ¼

q2h 0

qv 0A 0qv 0B 0
¼
Z
R3

Z l

0

mH 00cA 0cB 0

�
c2 þ 2I

m

�2
I d dI dc:

By the requirement that the system is symmetric hyperbolic, the coe‰cient matrix
of qtðu 0

B v 0B 0 Þ must be negative definite. With any variables XA and XA 0 , the qua-
dratic form associated to the matrix is expressed as

ðXA XA 0 Þ J 0
AB J 1

AB 0

J 1
A 0B J 2

A 0B 0

� �
XB

XB 0

� �

¼
Z
R3

Z l

0

mH 00
�
cAXA þ

�
c2 þ 2I

m

�
cA 0XA 0

�2

I d dI dc:

This concludes that when H 00 < 0, the matrix is negative definite. r

2.2.2. Maximum entropy principle. As an alternative approach to close the
ðN;MÞ-system, the maximum entropy principle (MEP) requires the distribution
function fðN;MÞ to maximize the entropy h under the constraints that the mo-
ments FA and GllA 0 are given as in (3). For the generic form of entropy density:

h ¼
Z
R3

Z l

0

mCð f ÞI d dI dc;

the variational problem of the functional

LðN;MÞð f ;LA; mA 0 Þ ¼
Z
R3

Z l

0

mCð f ÞI d dI dcþLA

�
FA �

Z
R3

Z l

0

mfcAI
d dI dc

�

þ mA 0

�
GllA 0 �

Z
R3

Z l

0

mf
�
c2 þ 2I

m

�
cA 0I d dI dc

�
;

where LA and mA 0 are the Lagrange multipliers of the system. The first and sec-
ond variations with respect to f are obtained as
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dLðN;MÞ ¼
Z
R3

Z l

0

m
dC

df
�LAcA � mA 0

�
c2 þ 2I

m

�
cA 0

� �
dfI d dI dc;

d2LðN;MÞ ¼
Z
R3

Z l

0

m
d 2C

df 2
ðdf Þ2I d dI dc:

As a necessary condition for a extremum,

dC

df
¼ wCLAcA þ mA 0

�
c2 þ 2I

m

�
cA 0 ;

and therefore

C ¼ w f �
Z

f dw:ð17Þ

As a necessary condition for a maximum, the inequality d 2C
df 2 < 0 must be held,

and from (17) the following inequality is obtained:

df

dw
< 0:

As Boillat and Ruggeri have proven [9], considering that f ¼ H 0, the maximi-
zation of entropy derive the same result with the method of EP. The converse is
also true. The Lagrange multipliers turn out to be identified as the main field:
u 0
A ¼ LA and v 0A 0 ¼ mA 0 .

2.2.3. The closure for classical entropy density. If it is required that h is the usual
entropy density defined as follows:

h ¼ �k

Z
R3

Z l

0

f log fI d dI dc;

it can be shown [1] that the sought distribution function fðN;MÞ has the following
form:

f ¼ exp
�
�1�m

k
w
�
:ð18Þ

In this case the entropy flux hi and the entropy production S can be expressed as

hi ¼ �k

Z
R3

Z l

0

ci f log fI d dI dc; S ¼ �k

Z
R3

Z l

0

Qð f Þ log fI d dI dc:

Making use of (18) and of the expressions for FA and GllA 0 , the Lagrange multi-
pliers are evaluated in terms of FA and GllA 0 and, plugging (18) into the last flux
and production term, the system can be closed.
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In this case, the symmetric conditions of the system (15) is satisfied and the
coe‰cients (16) may be expressed as follows:

J 0
AB ¼ �m2

k

Z
R3

Z l

0

fcAcBI
d dI dc;

J 1
AB 0 ¼ �m2

k

Z
R3

Z l

0

fcAcB 0

�
c2 þ 2I

m

�
I d dI dc;ð19Þ

J 2
A 0B 0 ¼ �m2

k

Z
R3

Z l

0

fcA 0cB 0

�
c2 þ 2I

m

�2
I d dI dc:

2.3. The distribution function in the neighborhood of a local equilibrium state

The distribution function (18) is expanded in the neighborhood of a local equilib-
rium state:

f Q f E 1�m

k

�
~uu 0
AcA þ

�
c2 þ 2I

m

�
~vv 0A 0cA 0

�� �
; ~uu 0

A ¼ u 0
A � u 0E

A ; ~vv 0A 0 ¼ v 0A 0 � v 0EA 0 ;

where the superscript ‘‘E ’’ denotes that a quantity is evaluated in the equilibrium
state, i.e. involving the local equilibrium distribution function f E given as follows
[17]:

f E ¼ 1

qðTÞ
r

m

� m

2pkT

�3=2
exp

�
� m

2kT

�
C2 þ 2I

m

��
;ð20Þ

where C2 ¼ CiCi with the peculiar velocity Ci ¼ ci � vi and the normalization
function qðTÞ is defined as

qðTÞ ¼
Z l

0

exp
�
� I

kT

�
I d dI ¼ ðkTÞ1þdGð1þ dÞ;

and G denotes the gamma function. All the Lagrange multipliers (main field)
at equilibrium vanish, except those corresponding to the hydrodynamic vari-
ables r, vi, e. After some manipulation [1], a linear algebraic system that permits
to evaluate the main field ðu 0E

A ; v 0EA 0 Þ in terms of the densities FA and GllA 0 is
obtained:

J
0jE
AB J

1jE
AB 0

J
1jE
A 0B J

2jE
A 0B 0

 !
~uu 0
B

~vv 0B 0

� �
¼ FA � F E

A

GllA 0 � GE
llA 0

� �
:

Plugging (20) into (19), it is also possible to obtain the following useful rela-
tions:

J
0jE
AB ¼ JM

AB; J
1jE
AB 0 ¼ JM

iiAB 0 þ 2c2s ð1þ dÞJM
AB 0 ;

J
2jE
A 0B 0 ¼ JM

iijjA 0B 0 þ 4c2s ð1þ dÞðJM
iiA 0B 0 þ c2s ð2þ dÞJM

A 0B 0 Þ;
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where cs ¼
ffiffiffiffiffiffiffiffi
k
m
T

q
, JM

AB is defined as:

JM
AB ¼ �m2

k

Z
R3

f McAcB dc;

and f M denotes the Maxwellian.
Once the main field ðu 0

A; v
0
A 0 Þ has been calculated in terms of FA and GllA 0 , the

constitutive functions necessary to close the system are finally obtained.

2.4. Equilibrium characteristic velocities

The set of the characteristic velocities of the system (15) at equilibrium in the di-
rection of propagation having unit vector nC ðniÞ, denoted as lE

ðN;MÞ, is the set of
the roots of the characteristic polynomial TE

ðN;MÞ given by:

TE
ðN;MÞ ¼ det

J
0jE
iAB J

1jE
iAB 0

J
1jE
iA 0B J

2jE
iA 0B 0

 !
ni � lE

ðN;MÞ
J
0jE
AB J

1jE
AB 0

J
1jE
A 0B J

2jE
A 0B 0

 !" #
¼ 0:

Without loss of generality, for the sake of simplicity, the one-dimensional case is
studied. After some manipulations [1], the previous expression can be written as:

TE
ðN;MÞ ¼ det

ĴJM
pþr;qþs ĴJM

p 0þr;q 0þsþ1

ĴJM
pþr 0;qþs 0þ1 ĴJM

p 0þr 0;q 0þs 0þ2 þ 4c4s ð1þ dÞĴJM
p 0þr 0;q 0þs 0

 !
¼ 0;ð21Þ

being

JM
pþr;qþs ¼ �m2

k

Z
R3

f Mc
pþr
1 ðc2Þqþs

dc:

where the indexes p, q, p 0, and q 0 are the non-negative integers satisfying:

0a pþ 2qaN; 0a p 0 þ 2q 0
aM ðMaN � 1Þ:

Analyzing the features of the polynomial TE
ðN;MÞ, it seems that, as expected, the

equilibrium characteristic velocities lE
ðN;MÞ depend on the the parameter d and, in

turn, on the degrees of freedom D. Nonetheless, it can be easily seen that this is
not always the case [1]. Upon inspection of the features of TE

ðN;MÞ, the following
holds:

Theorem 3. If M < N � 1, the equilibrium characteristic velocities of a ðN;MÞ-
system, lE

ðN;MÞ, are independent from the degrees of freedom of a particle D. More

specifically, the equilibrium characteristic velocities coincide with those of a ðNÞ-
system, lE

ðNÞ, and those of a ðMÞ-system, lE
ðMÞ, of monatomic gases:

lE
ðN;MÞ ¼ lE

ðNÞ A lE
ðMÞ:

Moreover, the maximum equilibrium characteristic velocity of the ðN;MÞ-system,
lE;max
ðN;MÞ, does not depend on M and coincides with the one of the ðNÞ-system for
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monatomic gases:

lE;max
ðN;MÞ ¼ lE;max

ðNÞ :

It can be seen that Theorem 3 is true for the ðNþ;MÞ-system with M < N
where Nþ truncation order denotes that in addition to the first N tensorial equa-
tions the trace part of the N þ 1 tensorial equation is considered.

Combining the results of Theorem 1 and Theorem 3, the following conclusion
holds:

Theorem 4. The ðN;MÞ-system is Galilean invariant and its equilibrium charac-
teristic velocities depend on the degrees of freedom D if and only if M ¼ N � 1.

Physical examples are given by the Euler system and by the 14-moment
theory, which are obtained, respectively, with N ¼ 1, M ¼ 0, and with N ¼ 2,
M ¼ 1.

3. Characteristic velocities of ðN;N � 1Þ-systems

The maximum equilibrium characteristic velocities of a ðN;N � 1Þ-system of
polyatomic rarefied gases is limited by those of monatomic gases as pointed out
by the following:

Theorem 5. The maximum equilibrium characteristic velocity of a ðN;N � 1Þ-
system of a polyatomic gas, lmax

ðN;N�1Þ, is bounded by the maximum equilibrium char-

acteristic velocities of the ðNþÞ-system and of the ðNÞ-system of monatomic gases
as follows:

lmax
ðNÞ a lmax

ðN;N�1Þ a lmax
ðNþÞ:

In order to prove the above Theorem, it su‰ces to notice that both the upper
and the lower bounds are obtained from Theorem 3 and the subcharacteristic
conditions [10]:

lmax
ðNþÞ ¼ lmax

ðNþ;MÞ ¼ lmax
ðNþ;N�1Þ b lmax

ðN;N�1Þ; EM < N

lmax
ðN;N�1Þ b lmax

ðN;MÞ ¼ lmax
ðNÞ ; EM < N � 1:

The influence of the degrees of freedom D on the characteristic velocities is
described in the following.

The limit case D ! 3. It has been proven for the 14-moment theory in [5] and
for the general theory of ðN;MÞ-system in [8] that in the limit case D ! 3 the
solutions of the ðN;N � 1Þ-system for rarefied polyatomic gases (which is com-
posed by nðN;N�1Þ ¼ 1

6 ðN þ 1ÞðN þ 2Þð2N þ 3Þ equations) converge to those of
the ðNþÞ-system for rarefied monatomic gases (which is composed by nðNþÞ ¼
1
6 ðN þ 1ÞðN 2 þ 6N þ 6Þ equations), and the di¤erences between the F -hierarchy
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and G-hierarchy,

IaC lim
D!3

ðFlla � GllaÞ ð0a aaN � 2Þ

which are governed by the nðN�2Þ ¼ 1
6 ðN � 1ÞNðN þ 1Þ ¼ nðN;N�1Þ � nðNþÞ bal-

ance equations:

qtIa þ qiIia ¼ lim
D!3

ðPlla �QllaÞ;ð22Þ

vanish under suitable initial condition for rarefied monatomic gases, therefore the
double-hierarchy is regarded as the single-hierarchy of rarefied monatomic gases.
As a consequence of the convergence of the solution of polyatomic gases towards
those of monatomic gases, the characteristic velocities follow the same rule. It
is noted that when the characteristic polynomial (21) is calculated in this limit,
the obtained characteristic velocities are those of the ðNþÞ-system augmented by
those of ðN � 2Þ-system:

lim
D!3

lE
ðN;N�1Þ ¼ lE

ðNþÞ A lE
ðN�2Þ:ð23Þ

However, the characteristic velocities of the ðN � 2Þ-system are related to the
balance equations (22), which vanish in this limit. It is noted (see Theorem 3)
that when D ! 3, the maximum characteristic velocity of the ðN;N � 1Þ-system
coincides with the one of the ðNþÞ-system for rarefied monatomic gases, which in
turn coincides with that of the ðNþ;MÞ-system for any M < N, i.e.

lim
D!3

lmax
ðN;N�1Þ ¼ lmax

ðNþÞ ¼ lmax
ðNþ;MÞ; EM < N:

The limit case D ! l. In the case D ! l, the following Theorem holds
[1]:

Theorem 6. When D ! l, the nðN;N�1Þ ¼ 1
6 ðN þ 1ÞðN þ 2Þð2N þ 3Þ charac-

teristic velocities of the ðN;N � 1Þ-system coincide with the nðNÞ ¼ 1
6 ðN þ 1Þ �

ðN þ 2ÞðN þ 3Þ ones of the ðNÞ-system and with the nðN�1Þ ¼ 1
6NðN þ 1ÞðN þ 2Þ

ones of the ðN � 1Þ-system, i.e.

lim
D!l

lE
ðN;N�1Þ ¼ lE

ðNÞ A lE
ðN�1Þ:

In particular, the maximum characteristic velocity of the ðN;N � 1Þ-system coin-
cides with the one of the ðNÞ-system for monatomic gases which is in turn coinci-
dent with the one of the ðN;MÞ-system for any M < N � 1, i.e.

lim
D!l

lmax
ðN;N�1Þ ¼ lmax

ðNÞ ¼ lmax
ðN;MÞ; EM < N � 1:

The case 3 < D < l. In the case 3 < D < l the following is obtained as a
corollary of previous results.
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Theorem 7. For any truncation order N, the maximum equilibrium characteristic
velocity of a ðN;N � 1Þ-system of polyatomic gases is bounded as follows:

lim
D!l

lmax
ðN;N�1Þ a lmax

ðN;N�1Þ a lim
D!3

lmax
ðN;N�1Þ:

4. Dependence of the maximum equilibrium characteristic velocities

on the truncation order

As a consequence of Theorem 5, the following result is obtained.

Theorem 8. The maximum equilibrium characteristic velocity of a ðN;N � 1Þ-
system of polyatomic gases has the same lower bound as a ðNÞ-system of mona-
tomic gases [9]:

l̂lmax
ðN;N�1ÞC

lmax
ðN;N�1Þ
c0

b
lmax
ðNÞ
c0

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

5

�
N � 1

2

�r
;ð24Þ

where c0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
5
3

k
m
T

q
is the sound velocity in the rarefied monatomic gas case at an

equilibrium state.

A major consequence of the previous Theorem is that maximum equilibrium
characteristic velocity is unbounded as N ! l.

In Figure 1 the dependence of l̂lmax
ðN;N�1Þ on N is shown for D ¼ 50, and for the

values D ! 3, D ! l, as well as for the lower bound given by (24). From the
figure, it is evident that for a given D, lmax

ðN;N�1Þ gets closer and closer to the limit

Figure 1: Nondimensional equilibrium maximum characteristic velocity of the
ðN;N � 1Þ-system, l̂lmax

ðN;N�1Þ ¼ lmax
ðN;N�1Þ=c0, as a function of N for a polyatomic gas with

D ¼ 50 (dots). The limits for D ! 3 and D ! l are represented by the continuous curves
immediately above and below the dots, respectively. The bottom curve represents the
lower bound given by (24).
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velocity corresponding to the case D ! 3. For what concerns the characteristic
velocities, this numerical result supports the conjecture according to which as
the order of the system increases, the monatomic gas model allows to describe
with reasonable accuracy also polyatomic gases.

Moreover the dependence of lmax
ðN;N�1Þ on N has also the feature that—as

seen from Theorem 5 and the subcharacteristic conditions—the ranges of variation
of lmax

ðN;N�1Þ with respect to D, for di¤erent values of N are non-overlapping, e.g.,

lmax
ðN;N�1Þ a lmax

ðNþ1;NÞ; for any D:

In other words, with (23) and Theorem 6, the following inequality holds:

lim
D!3

lmax
ðN;N�1Þ a lim

D!l
lmax
ðNþ1;NÞ:

5. Summary and conclusions

In the framework of Extended thermodynamics, the results that in recent decades
have been obtained for rarefied monatomic gases are extended to rarefied polya-
tomic gases.

In the kinetic model of polyatomic gases adopted now, the velocity distribu-
tion function depends not only on position, velocity and time as in the mon-
atomic gas case, but also on an internal energy parameter accounting for the
energy transfer during binary collisions. Correspondingly, Extended thermody-
namics of polyatomic gases is based on the balance laws obtained as moments
of the velocity distribution function and consist of a double hierarchical structure,
that is, a momentum-like and a energy-like hierarchies. One of the question of
Extended thermodynamics for rarefied polyatomic gases is what is the appropri-
ate choice of the orders of truncation for these two hierarchies? In this paper the
answer has been found by means of the universal principle of Galilean invariance
which restricts this relation as follows: once the order of truncation N of the
momentum-like hierarchy is given, the order of truncation M of the energy-like
hierarchy is automatically forced to respect the inequality MaN � 1. More-
over, by means of the requirement that the characteristic velocities of the system
cannot be independent on the degrees of freedom of a particle D, it has been
pointed out that once the order N is given, the order M must be exactly equal
to N � 1.

The closure of the truncated system has been also discussed. The two equiva-
lent methods, that is, the entropy principle and the maximum entropy principle,
which are well-established for the monatomic gas case, are adopted also in the
polyatomic gas case. For the usual entropy density, the explicit expression of the
velocity distribution function is obtained and the closed set of the equations have
been shown.

Moreover, an analysis on the dependence of the maximum characteristic
velocity of the rarefied polyatomic gas model has been proposed: it has been
pointed out that the maximum characteristic velocity of the rarefied polyatomic
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gas is always bounded by the limit value obtained for the rarefied monatomic gas
(D ! 3) and by the limit value of a gas whose particles have infinite degrees
of freedom (D ! l). The analysis of the influence of the order of truncation N
of the two hierarchies on the maximum characteristic velocity suggests that as
the order N increases, the maximum characteristic velocity approaches the limit
value of the rarefied monatomic gas case.
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