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1. Introduction

Let X be a separable Banach space with norm k � k, endowed with a nondegener-
ate centered Gaussian measure m, with covariance Q and associated Cameron–
Martin space H.

We will construct surface measures, defined on level sets fx a X : GðxÞ ¼ rg
for suitable G : X 7! R, and prove several properties including an integration by
parts formula for Sobolev functions, that involves a surface integral.

Surface measures in Banach spaces are not a novelty. The first steps were
made in the case of Hilbert spaces, for instance in the book [22] where a class of
smooth surfaces was considered. To our knowledge, the earliest results in Banach
spaces are due to Uglanov [23], about surface measures on (unions of ) graphs of
smooth functions, and Hertle [13], that deals only with hyperplanes and spherical
surfaces.

The first systematic treatment for a more general class of surfaces was
done by Airault and Malliavin in [1], that concerns level sets of functions
G a

T
k AN;pb1 Wk;pðX ; mÞ satisfying a nondegeneracy condition, where X is the

classical Wiener space. They considered also manifolds of arbitrary codimension
n a N.

The approach of [1] is through the study of the densities of suitable image
measures. The same approach was considered in the books [3, 17] in more gen-
eral contexts, and in [16] in the special case where X is the space of the tem-
pered distributions in R. The aim of this paper is to give an alternative simpler
and clearer construction and description of surface measures through the
image measures approach, under less regularity assumptions on G with respect
to [1, 3, 17]. Considering only 1-codimensional manifolds allows us to avoid
several complications.



A completely di¤erent approach was followed by Feyel and de La Pradelle in
[11], who defined a Hausdor¤–Gauss measure r on the Borel sets of X by finite
dimensional approximations. Another very general surface measure is the perim-
eter measure, defined as the variation measure of the characteristic function of
fx a X : GðxÞ < rg in the case that such characteristic function is of bounded
variation, see [12] and the following papers [2, 14]. It is known that under some
regularity assumption on G, the perimeter measure coincides with r on the level
surfaces of G, and they coincide with the Airault–Malliavin surface measure
under further assumptions ([5, 4]).

After the construction of the surface measures sG
r , we show several properties

of them, under minimal assumptions: they are non trivial (namely, sG
r ðX Þ > 0)

for every r a ðess inf G; ess supGÞ, the support of sG
r is contained in G�1ðrÞ, Borel

sets with null Gaussian capacity are negligible with respect to sG
r for every r, and

the integration by parts formulaZ
G�1ð�l; rÞ

ðDkj� v̂vkjÞ dm ¼
Z
G�1ðrÞ

jDkG dsG
r ; k a N;

holds for functions j a C1
b ðX ;RÞ. Here we use standard notation: we fix any

orthonormal basis fvk : k a Ng of H contained in QðX �Þ, Dkj denotes the deriv-
ative of j along vk, and v̂vk ¼ Q�1vk a X �. The integration by parts formula holds
also for Sobolev functions, provided jDkG in the surface integral is meant in the
sense of traces. Indeed, traces of Sobolev functions on the level hypersurfaces
G�1ðrÞ are readily defined through this approach.

At the end of the paper we show that, under suitable assumptions, the mea-
sures constructed here coincide with weighted Hausdor¤–Gauss surface mea-
sures, namely for every r a R and for every Borel set BHX we have

sG
r ðBÞ ¼

Z
BBG�1ðrÞ

1

jDHGjH
dr;

where r is the above mentioned measure of [11], DHG is the generalized gradient
of G along H, and j � jH is the H-norm, see Sect. 2. This formula clarifies the
dependence of sG

r on G. Moreover, more refined properties of surface integrals
and traces of Sobolev functions are consequences of the results of [5]. Also, the
examples contained in [5] serve as examples here.

2. Notation and preliminaries

We denote by X � the dual space of X , and by Q : X � 7! X the covariance of m.
The Cameron–Martin space is denoted by H, its scalar product by 3� ; �4H and
its norm by j � jH . The closed ball in H centered at h0 with radius r is denoted by
BHðh0; rÞ.

We fix once and for all an orthonormal basis V ¼ fvk : k a Ng of H, con-
tained in QðX �Þ. For every k a N we set v̂vk ¼ Q�1ðvkÞ.
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We recall that if X is a Hilbert space and X � is canonically identified with X ,
then Q is a compact self–adjoint operator with finite trace, and we can choose
a basis fek : k a Ng of X consisting of eigenvectors of Q, Qek ¼ lkek. The space
H is just Q1=2ðX Þ with the scalar product 3h1; h24H ¼ 3Q�1=2h1;Q

�1=2h24X , the
set fvk :¼

ffiffiffiffiffi
lk

p
ek : k a Ng is an orthonormal basis of H and we have v̂vkðxÞ ¼

3x; vk4X=lk for each k a N and x a X .
Let us recall the definition of Gaussian Sobolev spaces Wk;pðX ; mÞ for

k ¼ 1; 2, pb 1.
We say that a function f : X 7! R is H-di¤erentiable at x if there is v a H

such that f ðxþ hÞ � f ðxÞ ¼ 3v; h4H þ oðjhjHÞ, for every h a H. In this case
v is unique, and we set DH f ðxÞ :¼ v. Moreover for every k a N the direc-
tional derivative Dk f ðxÞ :¼ limt!0ð f ðxþ tvkÞ � f ðxÞÞ=t exists and coincides
with 3DH f ðxÞ; vk4H . It is easy to see that if f is Fréchet di¤erentiable at x (as
a function from X to R), then it is H-di¤erentiable. In particular, the smooth
cylindrical functions, namely the functions of the type f ðxÞ ¼ jðl1ðxÞ; . . . ; lnðxÞÞ,
for some j a Cl

b ðRnÞ, l1; . . . ; ln a X �, n a N, are H-di¤erentiable at each x.
W 1;pðX ; mÞ and W 2;pðX ; mÞ are the completions of the smooth cylindrical

functions in the norms

k f kW 1; pðX ;mÞ :¼ k f kL pðX ;mÞ þ
�Z

X

�Xl
k¼1

ðDk f ðxÞÞ2
� p=2

mðdxÞ
�1=p

¼ k f kL pðX ;mÞ þ
�Z

X

jDH f ðxÞj pHmðdxÞ
�1=p

;

k f kW 2; pðX ;mÞ :¼ k f kW 1; pðX ;mÞ þ
�Z

X

� Xl
h;k¼1

ðDhk f ðxÞÞ2
� p=2

mðdxÞ
�1=p

:

Such spaces are in fact identified with subspaces of LpðX ; mÞ, since if ð fnÞ and ðgnÞ
are Cauchy sequences in the norm of W 1;pðX ; mÞ (respectively, in the norm of
W 2;pðX ; mÞ), and converge to f in LpðX ; mÞ, then the sequences ðDH fnÞ, ðDhgnÞ
(respectively, ðD2

H fnÞ, ðD2
HgnÞ) have equal limits in LpðX ; m;HÞ (respectively, in

LpðX ; m;H2Þ, where H2 is the set of all Hilbert-Schmidt bilinear forms in H).
In other words, the operators DH and D2

H , defined in the set of the smooth
cylindrical functions with values in LpðX ; m;HÞ and in LpðX ; m;H2Þ, are clos-
able in LpðX ; mÞ. We still denote by DH and D2

H their closures, that are called
H-gradient and H-Hessian.

The spaces W 1;pðX ; m;HÞ are defined similarly, using H-valued, instead of
real valued, cylindrical functions. The latter are the elements of the linear span
of functions such as cðxÞ ¼ jðxÞh, with any smooth cylindrical j : X 7! R and
h a H.

For p > 1 the Gaussian divergence divm is defined in W 1;pðX ; m;HÞ by

divm CðxÞ ¼
Xl
k¼1

ðDkck � v̂vkckÞ;
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where ckðxÞ ¼ 3CðxÞ; vk4H , and the series converges in LpðX ; mÞ if 1 < p < l.
See [3, Prop. 5.8.8]. It coincides with (minus) the formal adjoint of the H-
gradient, since we have the integration by parts formulaZ

X

3DHj;C4H dm ¼ �
Z
X

j divm C dm; j a W 1;p 0 ðX ; mÞ; C a W 1;pðX ; m;HÞ;

with p 0 ¼ p=ðp� 1Þ. Taking in particular CðxÞ ¼ vk (constant) for any k a N,
we obtain divmC ¼ Q�1vk ¼ v̂vk, and the integration formula reads asZ

X

Dkj dm ¼
Z
X

v̂vkj dm; k a N:ð2:1Þ

We refer to [3, Ch. 5] for equivalent definitions and properties.
The surfaces taken into consideration in this paper are level sets

fx a X : GðxÞ ¼ rg of a su‰ciently regular function G. Namely, our G : X 7! R
is a Cp-quasicontinuous function that satisfies

DHG

jDHGj2H
a W 1;pðX ; m;HÞð2:2Þ

for some p > 1. Let us recall that a function G : X 7! R is Cp-quasicontinuous
if for every e > 0 there exists an open set Ae with Gaussian capacity CpðAeÞ < e,
such that G is continuous at any x B Ae. The Gaussian capacity of an open set
AHX is defined as

CpðAÞ :¼ inffkgkW 1; pðX ;mÞ : gb 1 m-a:e: on A; g a W 1;pðX ; mÞg:

We recall that every element of W 1;pðX ; mÞ with p > 1 has a Cp-quasicontinuous
version ([3, Thm. 5.9.6]).

In addition to the Sobolev spaces, we shall consider the space BUCðX ;RÞ of
the uniformly continuous and bounded functions from X to R, endowed with the
sup norm k � kl, and the space C1

b ðX ;RÞ of the bounded continuously Fréchet
di¤erentiable functions with bounded derivative.

For any Borel function f : X 7! R we denote by m � f �1 the image measure
on the Borel sets of R defined by ðm � f �1ÞðIÞ ¼ mð f �1ðIÞÞ. More generally, if
j : X 7! R is another Borel function in L1ðX ; mÞ, we define the signed measure

ðjm � f �1ÞðIÞ :¼
Z
f �1ðIÞ

j dm on the Borel sets I of R.

3. Construction of surface measures

Throughout the paper, p > 1 and G : X 7! R is a fixed version of an element
of W 1;pðX ; mÞ (still denoted by G), that satisfies (2.2). As pointed out in [20], for
p ¼ 2 an easy su‰cient condition for G to satisfy (2.2) is

G a W 2;4ðX ; mÞ; 1

jDHGjH
a L8ðX ; mÞ;
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which is generalized to

G a W 2; sðX ; mÞ; 1

jDHGjH
a LqðX ; mÞ; 1

s
þ 2

q
a

1

p

if p is any number > 1.
In the following, we shall make some further summability assumptions on the

derivatives of G. All of them are satisfied if G fulfills next condition (3.20).

3.1. Continuity of densities

The starting point is the following well known lemma. See [20, Proposition 2.1.1].

Lemma 3.1. m � G�1 is absolutely continuous with respect to the Lebesgue mea-
sure dr in R. Moreover the density q1 :¼ dðm�G�1Þ

dr
is given by

q1ðrÞ ¼
Z
G�1ð�l; rÞ

divm

� DHG

jDHGj2H

�
dm; r a R;ð3:1Þ

and it is continuous and bounded.

Lemma 3.1 implies that every level surface G�1ðrÞ is negligible, and that for
every j a L1ðX ; mÞ the signed measure jm � G�1 is absolutely continuous with re-
spect to the Lebesgue measure. In the following we shall need some properties of
the density qj of jm � G�1 when j belongs to a Sobolev space. They are provided
by the following lemma, which is a generalization of Lemma 3.1.

Lemma 3.2. Let j a W 1;p 0 ðX ; mÞ. Then jm � G�1 is absolutely continuous with
respect to the Lebesgue measure, and the corresponding density qj is given by

qjðrÞ ¼
Z
G�1ð�l; rÞ

j divm

� DHG

jDHGj2H

�
þ DHj;

DHG

jDHGj2H

* +
H

 !
dm;ð3:2Þ

and it is continuous and bounded. There is C > 0 independent of j such that

jqjðrÞjaCkjkW 1; p 0 ðX ;mÞ; r a R:ð3:3Þ

Proof. Fix a < b a R and set

f ðrÞ :¼ 1½a;b�ðrÞ; hðrÞ ¼
Z r

�l
f ðsÞ ds ¼

0 if ra a;

r� a if aa ra b;

b � a if rb b

8<:
Since h is Lipschitz continuous, then h � G a W 1;pðX ; mÞ and

DHðh � GÞ ¼ ð f � GÞDHG:
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Therefore

f � G ¼ 1½a;b� � G ¼ 3DHðh � GÞ;DHG4H

jDHGj2H

Assume that j a C1
b ðX Þ. Multiplying by j and integrating both sides yieldsZ

G�1ða;bÞ
j dm ¼

Z
X

j
3DHðh � GÞ;DHG4H

jDHGj2H
dm

¼ �
Z
X

ðh � GÞ divm
�
j
3DHðh � GÞ;DHG4H

jDHGj2H

�
dm:

Set as before c ¼ DHGjDHGj�2
H . Then, divmðjcÞ ¼ j divmðcÞ þ 3DHj;c4H .

Therefore,Z
G�1ða;bÞ

j dm ¼ �
Z
X

ðh � GÞ divmðjcÞ dm

¼ �
Z
X

�Z
R

1f�l;GðxÞgðrÞ f ðrÞ dr
�
divmðjcÞðxÞ dm

¼ �
Z
R

f ðrÞ
�Z

X

1G�1ðr;þlÞ divmðjcÞ dm
�
dr

¼ �
Z b

a

dr

Z
X

1G�1ðr;þlÞ divmðjcÞ dm

¼
Z b

a

dr

Z
X

1G�1ð�l; rÞðj divm cþ 3DHj;c4HÞ dm

(in the last equality we used the fact that the divergence of any vector field in
W 1;pðX ; m;HÞ has zero mean value). Now, let j a W 1;p 0 ðX ; mÞ and approach
it by a sequence of smooth cylindrical functions jn. After applying the above
formula to each jn, we may let n ! l in both sides, since jn ! j and
jn divm cþ 3DHjn;c4H ! j divm cþ 3DHj;c4H in L1ðX ; mÞ. Therefore we get

ðjm � G�1Þðða; bÞÞ ¼
Z b

a

dr

Z
X

1G�1ð�l; rÞðj divm cþ 3DHj;c4HÞ dm;

namely jm � G�1 has density qj given by

qjðrÞ ¼
Z
G�1ð�l; rÞ

ðj divm cþ 3DHj;c4HÞmðdxÞ;

which is continuous and bounded, since j divm cþ 3DHj;c4H a L1ðX ; mÞ and
mðG�1ðr0ÞÞ ¼ 0 for every r0 a R. Estimate (3.3) follows just applying the Hölder
inequality. r
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3.2. Smoothness of densities

This § is devoted to show that for every uniformly continuous and bounded
j : X 7! R, the function

FjðrÞ :¼
Z
G�1ð�l; rÞ

j dmð3:4Þ

is continuously di¤erentiable.
A useful tool will be the following disintegration formula, whose proof is

given for the reader’s convenience in the appendix.

Theorem 3.3. Let X be a Polish space endowed with a Borel probability measure
m. Let G : X ! R be a Borel function, and set l ¼ m � G�1. Then there exists a
family of Borel probability measures fms : s a Rg on X such thatZ

X

jðxÞmðdxÞ ¼
Z
R

�Z
X

jðxÞmsðdxÞ
�
lðdsÞ;ð3:5Þ

for all j : X ! R bounded and Borel measurable.
Moreover the support of ms is contained in G�1ðsÞ for l-almost all s a R.

Proposition 3.4. Let j a BUCðX ;RÞ. Then Fj a C1
b ðRÞ.

Proof. To begin with, let j : X 7! R be Lipschitz continuous. By Lemma 3.2,
for each r a R we have

FjðrÞ ¼
Z r

�l
qjðsÞ ds;

where the function qj a L1ðRÞ is continuous and bounded. Hence, Fj a C1
b ðRÞ.

Taking G ¼ G and replacing j by j1G�1ð�l; rÞ we write the disintegration for-
mula (3.5) as

FjðrÞ ¼
Z r

�l

�Z
X

jðxÞmsðdxÞ
�
q1ðsÞ ds; r a R:ð3:6Þ

Therefore, there is a Borel set IjHR such that ðm � G�1ÞðIjÞ ¼ 0 and

F 0
jðrÞ ¼ q1ðrÞ

Z
X

jðxÞmrðdxÞ; r B Ij;

so that

jF 0
jðrÞja q1ðrÞkjkl; r B Ij:

Since both F 0
j and q1 are continuous,

jF 0
jðrÞja q1ðrÞkjkl; r a R:ð3:7Þ
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Let now j a BUCðX ;RÞ. By [19, Thm. 1], there is a sequence of Lipschitz contin-
uous and bounded functions jn that converge uniformly to j on X . Recalling that
jFjðrÞja kjkL1ðX ;mÞ a kjkl for every r a R, estimate (3.7) yields that ðFjnÞ is a

Cauchy sequence in C1
b ðRÞ, and the conclusion follows. r

For every j a BUCðX ;RÞ we still set

qjðrÞ :¼ F 0
jðrÞ; r a R:ð3:8Þ

Of course, qj is given by (3.2) only if j a W 1;p 0 ðX ; mÞ.

3.3. Surface measures

Now we are ready to prove the existence of measures on every level surface
G�1ðrÞ.

Theorem 3.5. For every r a R there exists a unique Borel measure sG
r on BðXÞ

such that

qjðrÞ ¼
Z
X

jðxÞsG
r ðdxÞ; j a BUCðX ;RÞ:ð3:9Þ

Moreover, the support of sG
r is contained in G�1ðrÞ, and sG

r ðX Þ ¼ q1ðrÞ. Therefore,
sG
r is nontrivial i¤ q1ðrÞ > 0.

Proof. Fix r a R and set

LðjÞ :¼ qjðrÞ ¼ F 0
jðrÞ; j a BUCðX ;RÞAW 1;p 0 ðX ; mÞ:ð3:10Þ

Since Fj is an increasing function for every j with nonnegative values, then
LðjÞb 0 if jðxÞb 0 a.e. Linear positive functionals defined on BUCðX ;RÞ
have not necessarily an integral representation such as (3.9). To show that this is
the case, we use the following procedure. We approach X by a sequence of com-
pact sets Kn such that limn!l mðKnÞ ¼ 1 and we consider suitable restrictions
Ln of L to CðKn;RÞ. By the Riesz Theorem, such restrictions are represented by
measures defined on the Borel sets of Kn, readily extended to measures ln on
all Borel sets of X . Since ðlnðBÞÞ is an increasing sequence for every Borel set B,
we set sG

r ðBÞ :¼ limn!l lnðBÞ and we prove that sG
r is a measure, that satisfies

(3.9).
Let K be a compact subset of X with positive measure. Since the embedding

HHX is compact, we may assume that K contains BHð0; 1Þ. Moreover, replac-
ing K by its absolutely convex hull, we may assume that K is symmetric (namely,
K ¼ �K) and convex. The linear span E of K is a measurable subspace of X with
positive measure; by the 0� 1 law (e.g., [3, Thm. 2.5.5]) it has measure 1. There-
fore, setting

Kn :¼ nK ;
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we have

lim
n!l

mðKnÞ ¼ 1:

Now we follow a classical procedure in measure theory, see e.g. [6, Ch. 6]. For
any n a N we consider the restriction Ln of L to Kn defined for all jb 0 as

LnðjÞ ¼ inffLðcÞ : c a BUCðX ;RÞ;c ¼ j on Kn;cb 0 on Xg;

while if j takes both positive and negative values, Lnj is defined by

Lnj ¼ Lnj
þ � Lnj

�;

where jþ and j� denote the positive and the negative part of j. The set used in
the definition of Ln is not empty, for instance it contains the extension studied
in [18],

cðxÞ ¼
jðxÞ; x a Kn;

infu AKn

jðuÞ
kx�uk distðx;KnÞ; x B Kn:

(

Then, Ln is a positive linear functional in CðKn;RÞ. Positivity follows immedi-
ately from the positivity of L, linearity is not immediate although elementary, it
may be proved as in Lemma 6.4 of [6]. Then, there exists a Borel measure ln on
Kn such that

LnðjÞ ¼
Z
Kn

j dln; j a CðKn;RÞ:

The obvious extension of ln to BðX Þ, B 7! lnðBBKnÞ, is still denoted by ln.
For every j a BUCðX ;RÞ with nonnegative values the sequence ðLnðjÞÞ

is increasing, since fLðcÞ : c a BUCðX ;RÞ;c ¼ j on Knþ1;cb 0 on XgH
fLðcÞ : c a BUCðX ;RÞ;c ¼ j on Kn;cb 0 on Xg for every n a N. It follows
that for every B a BðX Þ the sequence ðlnðBÞÞ is increasing. Setting

sG
r ðBÞ :¼ lim

n!l
lnðBÞ;

we claim that sG
r is a measure on BðX Þ and that (3.9) holds.

Note that if A, B are Borel sets such that AHB, then snðAÞa snðBÞ for
every n, and consequently sG

r ðAÞa sG
r ðBÞ. Let now B, Bm a BðX Þ be such that

Bm " B. Then

lim
m!l

sG
r ðBmÞ ¼ lim

m!l

�
lim
n!l

lnðBmÞ
�
¼ sup

m AN

�
sup
n AN

lnðBmÞ
�

¼ sup
n AN

�
sup
m AN

lnðBmÞ
�
¼ sup

n AN
lnðBÞ ¼ sG

r ðBÞ:
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So, sG
r is a measure. As a next step, we prove that (3.9) holds for jC 1. To this

aim we construct a sequence of W 1;p 0 ðX ; mÞ functions yn, such that ynC 1 on Kn

and ynC 0 outside K2n. The starting point is the Minkowsky functional of K ,

mðxÞ :¼ infflb 0 : x a lKg; x a E;

which is positively homogeneous, sub-additive, and H-Lipschitz since K contains
the unit ball of H. Indeed, for any h a H, hA 0, we have

h

jhjH
a BHð0; 1ÞHK;

that is, h a jhjHK, that implies mðhÞa jhjH . As a consequence, for any x a E,
h a H,

mðxþ hÞamðxÞ þmðhÞamðxÞ þ jhjH ;

and

mðxÞ ¼ mðxþ h� hÞamðxþ hÞ þmð�hÞamðxþ hÞ þ jhjH ;

so that

jmðxþ hÞ �mðxÞja jhjH :

The null extension f of m to the whole of X is also H-Lipschitz, because HHE
so that if x C E then xþ h C E for every h a H, and f ðxÞ ¼ f ðxþ hÞ ¼ 0. There-
fore, it belongs to W 1;qðX ; mÞ for every q > 1 (e.g., [3, Ex. 5.4.10]). Now, let
a a Cl

c ðRÞ be such that aC 1 in ½0; 1�, aC 0 in ½2;þlÞ, 0a aa 1, and set

ynðxÞ
¼ aðmðx=nÞÞ; x a E;

¼ 0; x B E:

�
Then yn a W 1;qðX ; mÞ for every q > 1. Recalling that for every x a E we have
mðx=nÞa 1 i¤ x a Kn, we obtain ynC 1 in Kn, ynC 0 outside K2n, and

lim
n!l

kyn � 1kW 1; p 0 ðX ;mÞ ¼ 0:

Indeed, limn!l ynðxÞ ¼ 1 for every x a E and 0a ynðxÞa 1, so that

limn!l yn ¼ 1 in Lp 0 ðX ; mÞ. Moreover,

DHynðxÞ ¼
1

n
a 0ðmðx=nÞÞDHmðx=nÞ;

so that limn!lDHyn ¼ 0 in Lp 0 ðX ; m;HÞ.
Then,

sG
r ðXÞ ¼ lim

n!l
lnðXÞ ¼ lim

n!l

Z
X

1 dln ¼ lim
n!l

Lnð1Þ ¼ lim
n!l

L2nð1Þ:
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On the other hand, for every c a BUCðX Þ such that cb 1 in K2n, cb 0 in X ,
we have cb yn and therefore LcbLðynÞ, since LðcÞ � LðynÞ is the derivative
at r of the increasing function x 7! mfx : cðxÞ � ynðxÞa xg. Taking the infimum,

we get L2nð1ÞbLðynÞ. Since yn goes to 1 in W 1;p 0 ðX ; mÞ, by Lemma 3.2 LðynÞ
goes to Lð1Þ ¼ q1ðrÞ as n ! l. This shows that

sG
r ðX Þ ¼ q1ðrÞ ¼ Lð1Þ:ð3:11Þ

Now we show that (3.9) holds for any j a BUCðX ;RÞ. It is su‰cient to prove
that it holds for every j a BUCðX ;RÞ with values in ½0; 1�. In this case, by
definition,

LjbLnðjjKn
Þ ¼

Z
X

j dln

where the right–hand side converges to

Z
X

j dsG
r as n ! l, since the sequence

ðlnÞ weakly converges to sG
r . Therefore,

Ljb

Z
X

j dsG
r

Now we remark that 1� j has positive values, and using (3.11) and the above
inequality we get

q1ðrÞ � Lj ¼ Lð1� jÞb
Z
X

ð1� jÞ dsG
r ¼ q1ðrÞ �

Z
X

j dsG
r

so that

Lja

Z
X

j dsG
r ;

and (3.9) follows.
It remains to prove that sG

r has support in G�1ðrÞ. To this aim, we
remark that for every e > 0 and j a BUCðX ;RÞ with support contained in
G�1ð�l; r� eÞAG�1ðrþ e;þlÞ, the function Fj is constant in ðr� e; rþ eÞ,

and therefore F 0
jðrÞ ¼ 0. By (3.9),

Z
X

j dsG
r ¼ 0. So, the support of sG

r is

contained in
T

e>0 G
�1½r� e; rþ e� ¼ G�1ðrÞ. r

Remark 3.6. Let mr be the probability measures given by the disintegration
Theorem 3.3. For a.e. r a R such that q1ðrÞ > 0 we have

sG
r ¼ q1ðrÞmr:
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Proof. Fix any j a BUCðX ;RÞ. As we already observed, applying formula
(3.5) to the function j1G�1ð�l; rÞ we obtain

FjðrÞ ¼
Z r

�l

�Z
X

jðxÞmsðdxÞ
�
q1ðsÞ ds; r a R:

On the other hand, by (3.9) we have

FjðrÞ ¼
Z r

�l

�Z
X

jðxÞsG
s ðdxÞ

�
ds; r a R:

Therefore, there exists a negligible Ij HR such that for every s B Ij we haveZ
X

j dsG
s ¼ q1ðsÞ

Z
X

jðxÞmsðdxÞ:

We recall that X � is separable with respect to the weak� topology (e.g., [9, Cor.
3.25]). Let F ¼ f fn : n a Ng be any dense subset of X �, and set I ¼

S
n AN Ieifn .

For every r B I we haveZ
X

eifnðxÞ dsG
r ¼ q1ðrÞ

Z
X

eifnðxÞ dmr:

Every f a X � is the pointwise limit of a sequence of elements of F. Using the
Dominated Convergence Theorem, we obtain that if q1ðrÞA0 the probability
measures sG

r =q1ðrÞ and mr have the same Fourier transform, so that they
coincide. r

The following proposition shows a class of sets that are negligible with respect
to all measures sG

r .

Proposition 3.7. Let BHX be a Borel set with Cp 0 ðBÞ ¼ 0. Then sG
r ðBÞ ¼ 0,

for every r a R.

Proof. We partly follow the argument used in [3, Lemma 6.10.1]. For every
e > 0 let Oe IB be an open set such that Cp 0 ðOeÞ < e. Then there exists
fe a W 1;p 0 ðX ; mÞ such that k fekW 1; p 0 ðX ;mÞ a e and fe b 1 a.e. in Oe. Replacing fe
by maxf fe; 0g we may assume that fe b 1Oe

, m-a.e.
Let us fix a sequence of BUC functions that converge to 1Oe

pointwise. For
instance, we can take

ynðxÞ ¼
0; x a XnOe;

n distðx;XnOeÞ; 0 < distðx;XnOeÞ < 1=n;

1; distðx;XnOeÞb 1=n

8<:
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Then, limn!l ynðxÞ ¼ 1Oe
ðxÞ, for every x a X . Using the Dominated Conver-

gence Theorem, and then formula (3.9), we get

sG
r ðOeÞ ¼

Z
X

1Oe
dsG

r ¼ lim
n!l

Z
X

yn ds
G
r ¼ lim

n!l
qynðrÞ:

On the other hand, feðxÞb 1Oe
ðxÞb ynðxÞ, for m-a.e. x a X , so that the function

Ffe�yn is increasing. In particular, F 0
fe�yn

ðrÞ ¼ qfeðrÞ � qynðrÞb 0 for every r a R.
Therefore, for every r a R,

sG
r ðOeÞa qfeðrÞ:

On the other hand, by (3.3) we have

jqfeðrÞjaCk fekW 1; p 0 ðX ;mÞ aCe;

with C independent of e. Therefore, sG
r ðOeÞaCe, which implies sG

r ðBÞ ¼ 0. r

Proposition 3.7 clarifies the dependence of the measures sG
r on the version

of G that we have fixed. Two versions of G that coincide outside a set with null
Cp 0 capacity give rise to the same measures sG

r .

3.4. Integration by parts formulae

To start with, we establish an integration formula for C1
b functions that is a first

step towards an integration by parts formula. The proof follows arguments from
[7, 5] (in fact, it is a rewriting of a part of [5, Prop. 4.1] in our setting).

Proposition 3.8. Let k a N be such that either DkG a W 1;p 0 ðX ; mÞ or DkG a
BUCðX ;RÞ. Then for every j a C1

b ðX ;RÞ and for every r a R we haveZ
G�1ð�l; rÞ

ðDkj� v̂vkjÞ dm ¼ qjDkGðrÞ:ð3:12Þ

Moreover, (3.12) holds also for every j a W 1;qðX ; mÞ provided DkG a W 1; sðX ; mÞ
and

1

q
þ 1

s
þ 1

p
a 1:ð3:13Þ

Proof. Fix j a C1
b ðX ;RÞ. For e > 0 we define a function ye by

yeðxÞ :¼
1; xa�e;

� 1
e
x; �e < x < 0;

0; xb 0:

8<:
and we consider the function

x 7! jðxÞyeðGðxÞ � rÞ;
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which belongs to W 1;p 0 ðX ; mÞ. Its derivative along vk is y 0
eðGðxÞÞDkGðxÞjðxÞþ

yeðGðxÞÞDkjðxÞ. Applying the integration by parts formula (2.1) we getZ
X

ðDkj� v̂vkjÞðye � GÞ dm ¼ 1

e

Z
G�1ðr�e; rÞ

jDkG dm; k a N:ð3:14Þ

As e ! 0, ye � G converges pointwise to 1G�1ð�l; rÞ. Since 0a ye � Ga 1, by the
Dominated Convergence Theorem the left hand side converges toZ

G�1ð�l; rÞ
ðDkj� v̂vkjÞ dm:

Concerning the right hand side, for every e > 0 we have

1

e

Z
G�1ðr�e; rÞ

jDkG dm ¼ 1

e

Z r

r�e

qjDkGðxÞ dx:

Since jDkG belongs to W 1;p 0 ðX ; mÞ or to BUCðX ;RÞ, by Lemma 3.2 or by
Proposition 3.4 the function qjDkG is continuous. Therefore,

lim
e!0

1

e

Z
G�1ðr�e; rÞ

jDkG dm ¼ qjDkGðrÞ;

and (3.12) follows.
Let now j a W 1;qðX ; mÞ, DkG a W 1; sðX ; mÞ, with q, s satisfying (3.13). Let

jn a C1
b ðX ; mÞ approach j in W 1;qðX ; mÞ, so that jnDkG approaches jDkG in

W 1;p 0 ðX ; mÞ. By (3.12), for every r a R and n a N we haveZ
G�1ð�l; rÞ

ðDkjn � v̂vkjnÞ dm ¼ qjnDkGðrÞ:

Letting n ! l, the left hand side goes to

Z
G�1ð�l; rÞ

ðDkjn � v̂vkjnÞ dm, while the
right hand side goes to qjDkGðrÞ by (3.3). r

The measures sG
r constructed in Theorem 3.5 are trivial if q1ðrÞ ¼ 0. So, it is

important to know for which values of r we have q1ðrÞ > 0. This question was
addressed in the paper [15], where it was proved that under the assumptions of
[1], the set I :¼ fr a R : q1ðrÞ > 0g is an interval. Here we improve such a result,
characterizing I under more general assumptions and with a di¤erent simpler
proof.

Lemma 3.9. Assume that for every k a N, DkG a W 1;p 0 ðX ; mÞABUCðX ;RÞ.
Then fr a R : q1ðrÞ > 0g ¼ ðess inf G; ess supGÞ.

Proof. By Theorem 3.5, if q1ðrÞ ¼ 0 then

Z
X

j dsG
r ¼ 0 for every j a

BUCðX ;RÞ, which implies qjðrÞ ¼ 0 for every j a BUCðX ;RÞ. Approaching
any j a W 1;p 0 ðX ; mÞ by a sequence of C1

b functions jn, it follows that qjðrÞ ¼ 0
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for every j a W 1;p 0 ðX ; mÞ. Taking j ¼ DkcDkG, with any cylindrical smooth c,
we have qjðrÞ ¼ 0, and formula (3.12) yieldsZ

G�1ð�l; rÞ
ðDkkc� v̂vkDkcÞ dm ¼ 0:

Summing over k and using [3, Thm. 5.8.3, Rem. 5.8.7] we obtainZ
G�1ð�l; rÞ

Lc dm ¼ 0;ð3:15Þ

where L is the realization of the Ornstein–Uhlenbeck operator in L2ðX ; mÞ. We
recall (e.g., [3, Thm. 5.7.1]) that the domain of L is W 2;2ðX ; mÞ, and the graph
norm of L is equivalent to the W 2;2-norm. This implies that the set of the cylin-
drical smooth functions is a core for L, and then (3.15) holds for every c a DðLÞ.
In other words, the characteristic function 1G�1ð�l; rÞ is orthogonal to the range
of L. Since 0 is an isolated simple eigenvalue of L, the orthogonal space to
the range of L consists of constant a.e. functions. Then, 1G�1ð�l; rÞ is constant

m-a.e., which implies that either mðG�1ð�l; rÞÞ ¼ 0 or mðG�1ð�l; rÞÞ ¼ 1. So,
q1ðrÞ ¼ 0 implies that r a ð�l; ess inf G�A ½ess supG;þlÞ.

Conversely, the function F1 is continuously di¤erentiable, and it is constant
in ð�l; ess inf G� and in ½ess supG;þlÞ, so that for every r a ð�l; ess inf G�A
½ess supG;þlÞ we have F 0

1ðrÞ ¼ q1ðrÞ ¼ 0. r

Let us go back to Proposition 3.8. We recall that qjðrÞ ¼
Z
X

j dsG
r if

j a BUCðX ;RÞ. Therefore, if G and j are so smooth that jDkG a BUCðX ;RÞ,
(3.12) yields Z

G�1ð�l; rÞ
ðDkj� v̂vkjÞ dm ¼

Z
G�1ðrÞ

jDkG dsG
r :ð3:16Þ

For more general G and j the above formula still holds, but it is not obvious. For
the right hand side of (3.16) to make sense, we need conditions guaranteeing that
jDkG has a trace at G�1ðrÞ, belonging to L1ðX ; sG

r Þ. Then, jDkG in the right
hand side integral should be interpreted in the sense of traces.

The starting point is Lemma 3.2 and in particular formula (3.3), applied to the
function jjj, that together with (3.9) yieldsZ

G�1ðrÞ
jjj dsG

r ¼ qjjjðrÞaCkjkW 1; p 0 ðX ;mÞ; j a C1
b ðX ;RÞ:ð3:17Þ

Since C1
b ðX ;RÞ is dense in W 1;p 0 ðX ; mÞ, the above estimate is extended to the

whole of W 1;p 0 ðX ; mÞ, and it allows to define the traces of such Sobolev func-
tions at G�1ðrÞ. Indeed, approaching any j a W 1;p 0 ðX ; mÞ by a sequence of C1

b

functions jn, (3.17) implies that the sequence of the restrictions jnjG�1ðrÞ to
G�1ðrÞ is a Cauchy sequence in L1ðG�1ðrÞ; sG

r Þ, that converges to an element
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of L1ðG�1ðrÞ; sG
r Þ. Still by (3.17), such element does not depend on the approxi-

mating sequence.

Definition 3.10. Let j a W 1;p 0 ðX ; mÞ. The trace of j at G�1ðrÞ is the limit in
L1ðG�1ðrÞ; sG

r Þ of the sequence of the restrictions jnjG�1ðrÞ to G�1ðrÞ, for every

sequence of C1
b functions jn that converges to j in W 1;p 0 ðX ; mÞ. It is denoted by

jjG�1ðrÞ.

By definition, jjG�1ðrÞ a L1ðG�1ðrÞ; sG
r Þ, and kjjG�1ðrÞkL1ðG�1ðrÞ;sG

r Þ a

CkjkW 1; p 0 ðX ;mÞ, where C is the constant in (3.17). In other words, the trace is a
bounded operator from W 1;p 0 ðX ; mÞ to L1ðG�1ðrÞ; sG

r Þ. If j a W 1;qðX ; mÞ, with
q > p 0, then jjjq=p

0
a W 1;p 0 ðX ; mÞ, and estimate (3.17) applied to jjjq=p

0
yields

that the trace of j at G�1ðrÞ belongs to Lq=p 0 ðG�1ðrÞ; sG
r Þ, and the trace operator

is bounded from W 1;qðX ; mÞ to Lq=p 0 ðG�1ðrÞ; sG
r Þ.

The trace operator preserves positivity, as the next lemma shows.

Lemma 3.11. Let j a W 1;p 0 ðX ; mÞ have nonnegative values, m-a.e. Then for every
r a R the trace of j at G�1ðrÞ has nonnegative values, sG

r -a.e.

Proof. Let ðjnÞ be a sequence of C1
b functions, converging to j in W 1;p 0 ðX ; mÞ.

Possibly replacing ðjnÞ by a subsequence, we may assume that ðjnÞ converges to
j pointwise m-a.e.

We claim that the sequence ðjþ
n Þ (the positive parts of jn) still converges

to j in W 1;p 0 ðX ; mÞ. Indeed, kjþ
n � jkL p 0 ðX ;mÞ a kjn � jkL p 0 ðX ;mÞ, while, recall-

ing that DHj
þ
n ¼ DHjn in the set fx : jnðxÞ > 0g, and DHj

þ
n ¼ 0 in the set

fx : jnðxÞa 0g, DHj ¼ 0 in the set fx : jðxÞ ¼ 0g ([3, Lemma 5.7.7]) we obtainZ
X

jDHj
þ
n �DHjj p

0

H dm ¼
Z
fx:jnðxÞ>0g

jDHj
þ
n �DHjj p

0

H dmð3:18Þ

þ
Z
fx:jnðxÞa0g

jDHj
þ
n �DHjj p

0

H dm

¼
Z
fx:jnðxÞ>0g

jDHjn �DHjj p
0

H dm

þ
Z
fx:jnðxÞa0g

jDHjj p
0

H dm

a kDHjn �DHjk p 0

L p 0 ðX ;m;HÞ

þ
Z
fx:jnðxÞa0;jðxÞ>0g

jDHjj p
0

H dm:

Setting An :¼ fx : jnðxÞa 0; jðxÞ > 0g, then mðAnÞ vanishes as n ! l. This is
because for every x in the set

A :¼
\l
n¼1

[
kbn

Ak;
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the sequence ðjnðxÞÞ does not converge to jðxÞ, and therefore 0 ¼ mðAÞ ¼
limn!l mð

S
kbn AkÞb lim supn!l mðAnÞ. Then, the right hand side of (3.18)

vanishes as n ! l, and this implies that ðjnÞ
þ converges to j in W 1;p 0 ðX ; mÞ.

Consequently, the traces of ðjnÞ
þ at G�1ðrÞ converge to the trace of j at G�1ðrÞ,

in L1ðG�1ðrÞ; sG
r Þ. Since each ðjnÞ

þ has nonnegative values at every x a G�1ðrÞ,
then their L1 limit has nonnegative values, sG

r -a.e. r

Formula (3.9) may now be extended to elements of W 1;p 0 ðX ; mÞ.

Lemma 3.12. For every j a W 1;p 0 ðX ; mÞ and for every r a R we have

qjðrÞ ¼
Z
G�1ðrÞ

jjG�1ðrÞ ds
G
r :ð3:19Þ

Proof. It is su‰cient to approximate j in W 1;p 0 ðX ; mÞ by a sequence of func-
tions jn a C1

b ðX ;RÞ, and to let n ! l in the equality

qjnðrÞ ¼
Z
X

jn ds
G
r ;

that holds by Theorem 3.5. The left hand side goes to qjðrÞ by estimate (3.3), the

right hand side goes to

Z
G�1ðrÞ

jjG�1ðrÞ ds
G
r by the above construction of the trace

of j. r

With the aid of Proposition 3.7 we can prove that the traces of the elements of
W 1;p 0 ðX ; mÞ at G�1ðrÞ coincide with the restrictions of their Cp 0-quasicontinuous
versions at G�1ðrÞ. In particular, if j is a continuous version of a Sobolev func-
tion, its trace is just the restriction of j at G�1ðrÞ. This justifies the notation
jjG�1ðrÞ for the trace of j at G�1ðrÞ.

Proposition 3.13. Let j be a Cp 0 -quasicontinuous version of an element of
W 1;p 0 ðX ; mÞ. Then the trace of j at G�1ðrÞ coincides with the restriction of j at
G�1ðrÞ, sG

r -a.e.

Proof. We use arguments similar to [5, Prop. 4.8]. Let ðjnÞ be a sequence
of smooth cylindrical functions that converge to j in W 1;p 0 ðX ; mÞ. By [3, Thm.
5.9.6(ii)], applied with the operator T ¼ ðI � LÞ�1=2, a subsequence ðjnkÞ con-
verges to jðxÞ for every x except at most on a set with zero Gaussian capacity
Cp 0 . By Proposition 3.7, such a subsequence converges sG

r -a.e to j. On the other
hand, by the definition of the trace, the restrictions of jn to G�1ðrÞ converge
to jjG�1ðrÞ in L1ðG�1ðrÞ; sG

r Þ. In particular, a subsequence of ðjnkÞ converges to
jjG�1ðrÞ, s

G
r -a.e. Therefore, jjG�1ðrÞ ¼ j, sG

r -a.e. r

To extend the integration by parts formula (3.16) to Sobolev functions we
need some further assumptions on G.
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Corollary 3.14. Let j a W 1;qðX ; mÞ and DkG a W 1; sðX ; mÞ, with q, s satisfy-
ing (3.13). Then formula (3.16) holds, with jDkG replaced by ðjDkGÞjG�1ðrÞ.

Proof. Note that jDkG a W 1;p 0 ðX ; mÞ. By Lemma 3.12 we haveZ
G�1ðrÞ

ðjDkGÞjG�1ðrÞ ds
G
r ¼ qjDkGðrÞ:

On the other hand, Proposition 3.8 yields

qjDkGðrÞ ¼
Z
G�1ð�l; rÞ

ðDkj� v̂vkjÞ dm;

and the statement follows. r

Corollary 3.14 yields an integration by parts formula for j a W 1; sðX ; mÞ for
any s > 1, provided G is good enough. In particular, if next assumption (3.20)
holds, then G satisfies (2.2) and the conditions of Corollary 3.14 with any s > 1,
and (3.16) holds for j a W 1;qðX ; mÞ for any q > 1.

3.5. Dependence on G, and relationship with other surface measures

Now we are ready to compare the measures sG
r defined in §3.3 with the perimeter

measure and with the Hausdor¤-Gauss surface measure r of Feyel and de La
Pradelle [11].

We use the notation of [2]. We recall that a subset BHX is said to have finite
perimeter if 1B is a bounded variation function, namely there exists a H-valued
measure G such that for every k a N and for every smooth cylindrical function
j we have Z

B

ðDkj� v̂vkjÞ dm ¼
Z
X

j dgk;

with gk ¼ 3G; vk4H . In this case, G is unique, it is called perimeter measure, and
denoted by Dm1B.

If G a W 2;p 0 ðX ; mÞ, then for every r a R the set B ¼ G�1ð�l; rÞ satisfies the
above condition, with Dm1G�1ð�l; rÞ ¼ DHGjG�1ðrÞs

G
r . Indeed, by formulae (3.12)

(applied to j) and (3.19) (applied to jDkG), for every smooth cylindrical j and
for every k a N we haveZ

G�1ð�l; rÞ
ðDkj� v̂vkjÞ dm ¼

Z
X

ðjDkGÞjG�1ðrÞ ds
G
r :

On the other hand, for smooth cylindrical j the trace of jDkG at the support
G�1ðrÞ of sG

r coincides sG
r -a.e. with the restriction of jgDkGDkG at G�1ðrÞ, where gDkGDkG

is any Cp 0 -quasicontinuous version of DkG, by Proposition 3.13.
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Let us now recall the assumptions of Feyel [10],

G a
\
p>1

W 2;pðX ; mÞ; 1

jDHGjH
a
\
p>1

LpðX ; mÞ;ð3:20Þ

under which it was proved that for every j a W 1;qðX ;RÞ for some q > 1, the
density qj of the signed measure jm � G�1 with respect to the Lebesgue measure
is given by

qjðrÞ ¼
Z
G�1ðrÞ

j

jDHGjH
dr; r a R:ð3:21Þ

In the right hand side, j and jDHGjH are quasicontinuous versions of the respec-
tive Sobolev elements. More precisely, j is Cq-quasicontinuous and jDHGjH is
Cp-quasicontinuous for every p > 1. See [10, 5].

Proposition 3.15. Let G satisfy (3.20). Then for every Borel set BHX we have

sG
r ðBÞ ¼

Z
BBG�1ðrÞ

1

jDHGjH
dr; r a R:

Proof. Note that if (3.20) holds, then G satisfies (2.2). Comparing (3.21) with
(3.9) yields Z

X

j dsG
r ¼

Z
G�1ðrÞ

j

jDHGjH
dr; j a C1

b ðX ;RÞ;

and the statement holds. r

Corollary 3.16. Let G1, G2 satisfy (3.20). Assume that for some r1, r2 a R we
have G�1

1 ðr1Þ ¼ G�1
2 ðr2Þ :¼ S. Then

jDHG1ðr1ÞjH dsG1
r1

¼ jDHG2ðr2ÞjH dsG2
r2

¼ rjS:

We recall that the assumptions of [1] are

G a
\

k AN;p>1

Wk;pðX ; mÞ; 1

jDHGjH
a
\
p>1

LpðX ; mÞ;ð3:22Þ

and that the measures nr constructed in [1, 3] under such assumptions, for all
r a R such that q1ðrÞ > 0, coincide with the restriction of r to G�1ðrÞ. This is
because they satisfy the same integration by parts formula,Z

G�1ð�l; rÞ
ðDkj� v̂vkjÞ dm ¼

Z
G�1ðrÞ

jDkG

jDHGjH
dnr ¼

Z
G�1ðrÞ

jDkG

jDHGjH
dr;ð3:23Þ

j a
\

k AN;p>1

Wk;pðX ; mÞ;
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and replacing j by jDkG=jDHGjH and summing up, we obtainZ
G�1ðrÞ

j dnr ¼
Z
G�1ðrÞ

j dr; j a
\

k AN;p>1

Wk;pðX ; mÞ

which implies the statement.

A. Proof of the disintegration theorem

We follow here [21]. For any A a BðX Þ we consider the conditional expectation
E½1AjG�, which may be expressed as fA � G for some Borel function fA : R 7! R.
So, for any I a BðRÞ we haveZ

G�1ðIÞ
1A dm ¼

Z
G�1ðIÞ

ð fA � GÞ dm ¼
Z
I

fAðrÞðm � G�1ÞðdrÞ

which we rewrite as

mðABG�1ðIÞÞ ¼
Z
I

fAðrÞlðdrÞ:ðA:1Þ

Since X is separable, there exists KHR with lðKÞ ¼ 0 and for any r B K a Borel
measure mr on R such that

fAðrÞ ¼ mrðAÞ; Er B K :

See e.g. [8, Theorem 10.2.2]. Replacing in (A.1) we obtain

mðABG�1ðIÞÞ ¼
Z
I

mrðAÞlðdrÞ; I a BðRÞ:ðA:2Þ

It is enough to prove that (3.5) holds for j ¼ 1G�1ðJÞ with J a BðXÞ. In this
case, Z

X

jðxÞmrðdxÞ ¼ mrðG�1ðJÞÞ

and integrating with respect to l over R and taking into account of (A.2) with
I ¼ R, yieldsZ

R

�Z
X

jðxÞmrðdxÞ
�
lðdrÞ ¼

Z
R

mrðG�1ðJÞÞlðdrÞ ¼ mðG�1ðJÞÞ;

as claimed.
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Let us show that for l-a.e. r0 a R, the support of mr0 is contained in G�1ðr0Þ. If
I is any interval, setting A ¼ G�1ðRnIÞ in (A.2), we find

0 ¼
Z
I

mrðG�1ðRnIÞÞlðdrÞ;

so that mrðG�1ðRnIÞÞ ¼ 0 for l-almost all r a I , say for every r a InJI with
lðJI Þ ¼ 0. Now, let us consider all the open intervals with rational endpoints,
I ¼ ðan; bnÞ with an < bn a Q. The set J :¼

S
n AN Jðan;bnÞ is still l-negligible, and

we have

mrðG�1ðð�l; an�A ½bn;þlÞÞÞ ¼ 0; n a N; r a ðan; bnÞnJ:ðA:3Þ

For every r0 a RnJ, fix two subsequences ðankÞ, ðbnkÞ such that ank < r0, bnk > r0
and limk!l ank ¼ limk!l bnk ¼ r0. Taking r ¼ r0 and replacing an, bn by ank , bnk
in (A.3), we obtain that mr0 has support contained in ðank ; bnkÞ for every k a N,
and the statement follows.
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