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1. INTRODUCTION

Let X be a separable Banach space with norm || - ||, endowed with a nondegener-
ate centered Gaussian measure u, with covariance Q and associated Cameron—
Martin space H.

We will construct surface measures, defined on level sets {x € X : G(x) = r}
for suitable G : X — R, and prove several properties including an integration by
parts formula for Sobolev functions, that involves a surface integral.

Surface measures in Banach spaces are not a novelty. The first steps were
made in the case of Hilbert spaces, for instance in the book [22] where a class of
smooth surfaces was considered. To our knowledge, the earliest results in Banach
spaces are due to Uglanov [23], about surface measures on (unions of ) graphs of
smooth functions, and Hertle [13], that deals only with hyperplanes and spherical
surfaces.

The first systematic treatment for a more general class of surfaces was
done by Airault and Malliavin in [1], that concerns level sets of functions
Ge Mkenp=1 Wwkr(X, u) satisfying a nondegeneracy condition, where X is the
classical Wiener space. They considered also manifolds of arbitrary codimension
ne N.

The approach of [1] is through the study of the densities of suitable image
measures. The same approach was considered in the books [3, 17] in more gen-
eral contexts, and in [16] in the special case where X is the space of the tem-
pered distributions in R. The aim of this paper is to give an alternative simpler
and clearer construction and description of surface measures through the
image measures approach, under less regularity assumptions on G with respect
to [1, 3, 17]. Considering only 1-codimensional manifolds allows us to avoid
several complications.
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A completely different approach was followed by Feyel and de La Pradelle in
[11], who defined a Hausdorff-Gauss measure p on the Borel sets of X by finite
dimensional approximations. Another very general surface measure is the perim-
eter measure, defined as the variation measure of the characteristic function of
{x € X : G(x) < r} in the case that such characteristic function is of bounded
variation, see [12] and the following papers [2, 14]. It is known that under some
regularity assumption on G, the perimeter measure coincides with p on the level
surfaces of G, and they coincide with the Airault-Malliavin surface measure
under further assumptions ([5, 4]).

After the construction of the surface measures 6, we show several properties
of them, under minimal assumptions: they are non trivial (namely, ¢%(X) > 0)
for every r € (essinf G, esssup G), the support of ¢¥ is contained in G~!(r), Borel
sets with null Gaussian capacity are negligible with respect to ¢ for every r, and
the integration by parts formula

/ (Drp — Bip) du =/ 9D Gda®, keN,
G (=o0,r) G-'(r)

holds for functions ¢ € C}(X;R). Here we use standard notation: we fix any
orthonormal basis {v; : k € N} of H contained in Q(X*), D¢ denotes the deriv-
ative of ¢ along vy, and o, = O~ 'vx € X*. The integration by parts formula holds
also for Sobolev functions, provided ¢D; G in the surface integral is meant in the
sense of traces. Indeed, traces of Sobolev functions on the level hypersurfaces
G~!(r) are readily defined through this approach.

At the end of the paper we show that, under suitable assumptions, the mea-
sures constructed here coincide with weighted Hausdorff-Gauss surface mea-
sures, namely for every r € R and for every Borel set B < X we have

1
G
s9(B) = / a4y,
(B) BnG-(r) 1P Gy

where p is the above mentioned measure of [11], Dy G is the generalized gradient
of G along H, and |- |, is the H-norm, see Sect. 2. This formula clarifies the
dependence of ¢ on G. Moreover, more refined properties of surface integrals

and traces of Sobolev functions are consequences of the results of [5]. Also, the
examples contained in [5] serve as examples here.

2. NOTATION AND PRELIMINARIES

We denote by X * the dual space of X, and by Q : X* — X the covariance of .
The Cameron—Martin space is denoted by H, its scalar product by <-, >y and
its norm by | - |,;. The closed ball in H centered at &, with radius r is denoted by
By (h07 }’) :

We fix once and for all an orthonormal basis ¥~ = {v : k € N} of H, con-
tained in Q(X*). For every k € N we set &, = Q' (vy).
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We recall that if X is a Hilbert space and X * is canonically identified with X,
then Q is a compact self-adjoint operator with finite trace, and we can choose
a basis {ex : k € N} of X consisting of eigenvectors of Q, Qex = Jrer. The space
H is just Q'/2(X) with the scalar product <, >y = <O 2hy, 0~'2hy>y, the
set {vx := v Akey : k € N} is an orthonormal basis of H and we have o;(x) =
{x, vy /A for each k e N and x € X.

Let us recall the definition of Gaussian Sobolev spaces W*?(X,u) for
k=12 p=>1.

We say that a function f : X — R is H-differentiable at x if there is v € H
such that f(x+h) — f(x) = <v,hyy + o(|h|y), for every he H. In this case
v is unique, and we set Dyf(x):=wv. Moreover for every k € N the direc-
tional derivative Dy f(x) := lim,_o(f(x + tvx) — f(x))/t exists and coincides
with (Dyf(x),vx>y. It is easy to see that if f is Fréchet differentiable at x (as
a function from X to R), then it is H-differentiable. In particular, the smooth
cylindrical functions, namely the functions of the type f(x) = o(/i(x),. .., L(x)),
for some 9 € C;*(R"), I1,...,l, € X*, n € N, are H-differentiable at each x.

Wlr(X,u) and W2P(X,u) are the completions of the smooth cylindrical
functions in the norms

s = 0+ ([ (o0er?) i)

k=1

1/
=Wl + ([ 1Dasrlfutan)

e = Wl + ([ (30 0ur?) " uta) "

h k=1

Such spaces are in fact identified with subspaces of L? (X, u), since if (f,) and (g,)
are Cauchy sequences in the norm of W!”7(X, u) (respectively, in the norm of
W2P(X,u)), and converge to f in L?(X,u), then the sequences (Dgfy), (Dygy)
(respectively, (D%.fy), (D3g,)) have equal limits in L?(X,u; H) (respectively, in
LP(X,u; /), where 7> is the set of all Hilbert-Schmidt bilinear forms in H).
In other words, the operators Dy and D%, defined in the set of the smooth
cylindrical functions with values in L?(X,u; H) and in L?(X, u; #3), are clos-
able in L?(X,u). We still denote by Dy and D? their closures, that are called
H-gradient and H-Hessian.

The spaces W!'»(X,u; H) are defined similarly, using H-valued, instead of
real valued, cylindrical functions. The latter are the elements of the linear span
of functions such as y(x) = ¢(x)h, with any smooth cylindrical ¢ : X — R and
heH.

For p > 1 the Gaussian divergence div, is defined in W7 (X, u; H) by

o0

div, ¥(x) = Z(Dklﬁk — 0ky)s

k=1
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where 1, (x) = {¥(x), vy, and the series converges in L?(X,u) if 1 < p < o0.
See [3, Prop. 5.8.8]. It coincides with (minus) the formal adjoint of the H-
gradient, since we have the integration by parts formula

/ <DH¢7\P>Hd:u: _/ (pdivﬂ\ljdﬂv (S WL[”(X”u)’ Ve Wl,p(X"u;H)’
X X

with p’ = p/(p — 1). Taking in particular ¥(x) = v (constant) for any k € N,
we obtain div, ¥ = O~ 'vx = i, and the integration formula reads as

(21) /Dkgod,u:/ﬁk(/)d,u, k e N.
X X

We refer to [3, Ch. 5] for equivalent definitions and properties.

The surfaces taken into consideration in this paper are level sets
{x € X : G(x) =r} of a sufficiently regular function G. Namely, our G : X — R
is a C,-quasicontinuous function that satisfies

DG

(2.2)
DG},

e W (X, u; H)

for some p > 1. Let us recall that a function G : X — R is C,-quasicontinuous
if for every ¢ > 0 there exists an open set 4, with Gaussian capacity C,(4;) < &,
such that G is continuous at any x ¢ 4.. The Gaussian capacity of an open set
A < X is defined as

Cp(A) = inf{{[glly1r(x 19 = 1 prae.on 4,9 € Whe(X, u)}.

We recall that every element of W!7(X, u) with p > 1 has a C,-quasicontinuous
version ([3, Thm. 5.9.6)).

In addition to the Sobolev spaces, we shall consider the space BUC(X; R) of
the uniformly continuous and bounded functions from X to R, endowed with the
sup norm || - ||, and the space C}(X;R) of the bounded continuously Fréchet
differentiable functions with bounded derivative.

For any Borel function f : X — R we denote by xo f~! the image measure
on the Borel sets of R defined by (uo f~1)(I) = u(f~'(I)). More generally, if
@ : X — R is another Borel function in L'(X, ), we define the signed measure

(ppo f~H(I) = / @ du on the Borel sets 7 of R.
1)

3. CONSTRUCTION OF SURFACE MEASURES

Throughout the paper, p >1 and G: X — R is a fixed version of an element
of WUP(X, u) (still denoted by G), that satisfies (2.2). As pointed out in [20], for
p = 2 an easy sufficient condition for G to satisfy (2.2) is

Ge W (X, p), e L3(X, ),

DGy
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which is generalized to

Ge W*(X,u),

€ LI(X, p),

“ | —
+
IS )
IA
SR

DGy

if p is any number > 1.
In the following, we shall make some further summability assumptions on the
derivatives of G. All of them are satisfied if G fulfills next condition (3.20).

3.1. Continuity of densities

The starting point is the following well known lemma. See [20, Proposition 2.1.1].

LeEMMA 3.1. uo G~ is absolutely continuous, with respect to the Lebesgue mea-

sure dr in R. Moreover the density q, := d(”‘;f ) is given by

. Dy G
(3.1) q1(r) :/ div,| ———= ) du, reR,
G (—o0,r) ,u( |DHG|?_]>

and it is continuous and bounded.

Lemma 3.1 implies that every level surface G~!(r) is negligible, and that for
every ¢ € L'(X, u) the signed measure pu o G~! is absolutely continuous with re-
spect to the Lebesgue measure. In the following we shall need some properties of
the density ¢, of puo G~! when ¢ belongs to a Sobolev space. They are provided
by the following lemma, which is a generalization of Lemma 3.1.

LEMMA 3.2. Let o € Wh'(X, ). Then guo G~ is absolutely continuous with
respect to the Lebesgue measure, and the corresponding density q, is given by

[ DuG DyG
32) ¢ (V)Z/ pdiv,(———= ) +(Dno,— =) |du,
O Jor oo\ e P o),

and it is continuous and bounded. There is C > 0 independent of ¢ such that

(3.3) 95 (N)| < Cllollwrr x,y 7€R
ProOOF. Fix a < f € R and set

0 if r <u,

10 = tap ), )= [ fd =S r—a ifasrsp,
e f—o ifr>p

Since / is Lipschitz continuous, then 4o G € W7 (X, u) and

Dy(ho G) = (f o G)DyG.
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Therefore
{(Dy(hoG),DuG)y
IDrGly;

foG=1y50G=

Assume that ¢ € C}(X). Multiplying by ¢ and integrating both sides yields

/ ¢dﬂ:/¢<DH(hOG)’DHG>Hdu
G (o, ) X |DHG|12L,

. {Dp(hoG),DyGyy
= — ho G)div, d
/X( ) div, <(/’ \DHG|%1 )

Set as before = DHG\DHG|,;2. Then, div,(py) = @div, () + {Dup, ¥ y.
Therefore,

/ Ly = | 0 G)div, ) d
== [ ([ 0w 210 ) v o)) i
== [ 1O [ 16100 vl )
-/ i [ 16y diva o) d

B
—/ dr/XﬂGl(w7,)(¢divﬂlﬁ+<DH¢7‘ﬁ>H)dﬂ

(in the last equality we used the fact that the divergence of any vector field in
WP(X,u; H) has zero mean value). Now, let ¢ € W»' (X, u) and approach
it by a sequence of smooth cylindrical functions ¢,. After applying the above
formula to each ¢,, we may let n — oo in both sides, since ¢, — ¢ and
@, divyy + Dug,, ¥>y — odivey + {Dpe, >y in L'(X, p). Therefore we get

p
(10 G N@p) = [ [ 16l + Dup ) d
namely guo G! has density ¢, given by
)= [ (0dvy Do yuta)

which is continuous and bounded, since ¢ div,y + <Dy, >y € L'(X,u) and
u(G~'(rg)) = 0 for every ry € R. Estimate (3.3) follows just applying the Holder
inequality. |
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3.2. Smoothness of densities

This § is devoted to show that for every uniformly continuous and bounded
¢ : X — R, the function

(3.4) )= [ pdu
G~ (—o0,r)

is continuously differentiable.
A useful tool will be the following disintegration formula, whose proof is
given for the reader’s convenience in the appendix.

THEOREM 3.3. Let X be a Polish space endowed with a Borel probability measure
w Let T : X — R be a Borel function, and set . = uo T\, Then there exists a
Samily of Borel probability measures {my : s € R} on X such that

(3 [ otouta) = [ ([ ptoman)aas),

forall p : X — R bounded and Borel measurable.
Moreover the support of my is contained in T~'(s) for J-almost all s € R.

PROPOSITION 3.4. Let 9 € BUC(X;R). Then F, € C}(R).

ProOOF. To begin with, let ¢ : X — R be Lipschitz continuous. By Lemma 3.2,
for each r € R we have

£ = [ anlo)ds,

where the function ¢, € L'(R) is continuous and bounded. Hence, F, € C}(R).
Taking I' = G and replacing ¢ by ¢l5-1_,, ,) we write the disintegration for-
mula (3.5) as

(3.6) Fo(r) = /_ ' ( /X p(Imy(dx) )1 (s)ds. 1 e R

o0

Therefore, there is a Borel set /, = R such that (xo G~')(I,) = 0 and

FI() = qi() /X p()mi(dx), r¢1,
so that

F,(0l < ai(n)lloll,, ré¢l,.

Since both F (p’ and ¢, are continuous,

(3.7) F,0l < a()lloll.., relR.
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Let now ¢ € BUC(X;R). By [19, Thm. 1], there is a sequence of Lipschitz contin-
uous and bounded functions ¢, that converge uniformly to ¢ on X. Recalling that
[Fo(M) < llell L1 x, ) < lloll, for every r € R, estimate (3.7) yields that (F,) is a
Cauchy sequence in C} (R), and the conclusion follows. O

For every ¢ € BUC(X; R) we still set
(3.8) 4o(r) = Fl(r), reR
Of course, g, is given by (3.2) only if g € W' (X, ).
3.3. Surface measures

Now we are ready to prove the existence of measures on every level surface
G~ 1(r).

THEOREM 3.5. For every r € R there exists a unique Borel measure ¢ on #(X)
such that

(3.9) gy(r) = /X(p(x)af(dx), ¢ € BUC(X;R).

Moreover, the support of aC is contained in G~ (r), and c©(X) = qi(r). Therefore,

cC is nontrivial iff q,(r) > 0.

r

PrOOF. Fix r € R and set
(310)  Llp) == gq,(r) = F)(r), 9 e BUC(X;R) U W'V (X, p).

Since F,, is an increasing function for every ¢ with nonnegative values, then
L(p) =0 if ¢(x) >0 a.e. Linear positive functionals defined on BUC(X;R)
have not necessarily an integral representation such as (3.9). To show that this is
the case, we use the following procedure. We approach X by a sequence of com-
pact sets K, such that lim, ., #(K,) =1 and we consider suitable restrictions
L, of L to C(K,;R). By the Riesz Theorem, such restrictions are represented by
measures defined on the Borel sets of K, readily extended to measures 4, on
all Borel sets of X. Since (4,(B)) is an increasing sequence for every Borel set B,
we set ¢¥(B) := lim,_., 4,(B) and we prove that ¢ is a measure, that satisfies
(3.9).

Let K be a compact subset of X with positive measure. Since the embedding
H < X is compact, we may assume that K contains By (0, 1). Moreover, replac-
ing K by its absolutely convex hull, we may assume that K is symmetric (namely,
K = —K) and convex. The linear span E of K is a measurable subspace of X with
positive measure; by the 0 — 1 law (e.g., [3, Thm. 2.5.5]) it has measure 1. There-
fore, setting

K, :=nkK,
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we have

lim u(K,) = 1.

Now we follow a classical procedure in measure theory, see e.g. [6, Ch. 6]. For
any n € N we consider the restriction L, of L to K, defined for all ¢ > 0 as

L,(p) =1inf{L(y) : y € BUC(X;R),yy =¢pon K,,iy >0on X},
while if ¢ takes both positive and negative values, L, is defined by
Lup = Lop* — Lagp™,

where ¢ and ¢~ denote the positive and the negative part of ¢. The set used in
the definition of L, is not empty, for instance it contains the extension studied
in [18],

X), XEKn,
lp(x>:{¢()

infycx, ﬁ dist(x, K,), x¢ K.

Then, L, is a positive linear functional in C(K,;R). Positivity follows immedi-
ately from the positivity of L, linearity is not immediate although elementary, it
may be proved as in Lemma 6.4 of [6]. Then, there exists a Borel measure 4, on
K, such that

La(p) = /K odi, 9 C(KyiR).

The obvious extension of 4, to #(X), B +— 4,(Bn K,), is still denoted by 4,,.

For every ¢ € BUC(X;R) with nonnegative values the sequence (L,(¢))
is increasing, since {L(Y):y € BUC(X;R),y =ponK, 1,y >0on X} c
{L(¥) : y € BUC(X;R),y =¢pon K,,1Jy >0 on X} for every n e N. It follows
that for every B e #(X) the sequence (4,(B)) is increasing. Setting

c%(B) := lim 1,(B),

n—oo

we claim that ¢ is a measure on #(X) and that (3.9) holds.

Note that if 4, B are Borel sets such that 4 < B, then 0,(4) < g,(B) for
every n, and consequently ¢(4) < ¢%(B). Let now B, B,, € #(X) be such that
B,, T B. Then

im0 (B) = fim, ( fim 7u(B)) = sup ((sup ()

meN “neN
= sup ( sup in(Bm)) = sup A,(B) = a%(B).
neN “YmeN neN
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So, ¢ is a measure. As a next step, we prove that (3.9) holds for ¢ = 1. To this

aim we construct a sequence of lel’/(X , ) functions 6,, such that 8, = 1 on K,
and 0, = 0 outside K5,. The starting point is the Minkowsky functional of K,

m(x):=inf{l>0:xe K}, x€eE,

which is positively homogeneous, sub-additive, and H-Lipschitz since K contains
the unit ball of H. Indeed, for any 4 € H, h # 0, we have

I
1l 1z

that is, /1 € |h|, K, that implies m(h) < |h|,. As a consequence, for any x € E,
heH,

S BH(O, 1) [ K,

m(x +h) < m(x) +m(h) <m(x)+ ||y,
and
m(x) =m(x+h—h) <m(x+h)+m(=h) <m(x+h)+|h|y,
so that
m(x + ) = mx)| < [hl-

The null extension f of m to the whole of X is also H-Lipschitz, because H < E
so that if x 3 E then x + /& > E for every h € H, and f(x) = f(x + h) = 0. There-
fore, it belongs to W19(X, u) for every ¢ > 1 (e.g., [3, Ex. 5.4.10]). Now, let
e CP(R) besuch thata=11in[0,1],x =01in [2,40), 0 <o < 1, and set

o { S e

Then 0, € W4(X, u) for every g > 1. Recalling that for every x € E we have
m(x/n) < 1iff x € K, we obtain §, = 1 in K,,, 6, = 0 outside K;,, and

Jim (16, = Uy, = 0-

Indeed, lim, .. 6,(x)=1 for every xe E and 0<6,(x) <1, so that
lim,_. 0, =11n LP'(X,,u). Moreover,

Dy0,(x) = %oc’(m(x/n))DHm(x/n),

so that lim,,_,., Dyf, = 0 in LP/(X,,u; H).
Then,

cf(X) = lim 4,(X) = lim [ 1dA, = lim L,(1) = lim Ly,(1).

n—oo n—oo X n—aoo n—oo
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On the other hand, for every y € BUC(X) such that y > 1 in K5,, ¥ >0 in X,
we have y > 0, and therefore Ly > L(0,), since L() — L(6,) is the derivative
at r of the increasing function & — p{x : Y(x) — 0,(x) < £}. Taking the infimum,
we get Ly, (1) > L(6,). Since 0, goes to 1 in W' (X, u), by Lemma 3.2 L(0,)
goes to L(1) = ¢, (r) as n — oo. This shows that

(3.11) a,,G(X) =q(r)=L(1).

Now we show that (3.9) holds for any ¢ € BUC(X; R). It is sufficient to prove
that it holds for every ¢ € BUC(X;R) with values in [0,1]. In this case, by
definition,

Lo Lipw) = [ o,

where the right—hand side converges to / (/)darG as n — oo, since the sequence
(Z) weakly converges to o¢. Therefore, /X

Loy > / pda’
b

Now we remark that 1 — ¢ has positive values, and using (3.11) and the above
inequality we get

G —Lo=L(1—p) > /(1 p)daS = q\(r) —/ pdaS
X X
so that

Lo < /(pdcr,G,
X

and (3.9) follows.

It remains to prove that ¢ has support in G~ !(r). To this aim, we
remark that for every ¢ >0 and ¢ € BUC(X;R) with support contained in
G '(—o0,r —&) UG (r+¢,+m), the function F, is constant in (r —&,r+e¢),
and therefore F,(r) =0. By (3.9), /(pdaero. So, the support of ¢ is

b
G lr—er+eé=aG"r). 0

contained in (),

REMARK 3.6. Let m, be the probability measures given by the disintegration
Theorem 3.3. For a.e. r € R such that ¢;(r) > 0 we have
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PrOOEF. Fix any ¢ € BUC(X;R). As we already observed, applying formula
(3.5) to the function ¢1-1(_,, ,) We obtain

F,(r) :/r (/X(/)(x)ms(dx))ql(s) ds, reR.

[e¢]

On the other hand, by (3.9) we have

F,(r) = /_r (/)(go(x)af(dx)) ds, reR.

o]

Therefore, there exists a negligible /, = R such that for every s ¢ I, we have

[ wdaf =) [ otximfa).

We recall that X* is separable with respect to the weak™ topology (e.g., [9, Cor.
3.25])). Let # = {f, : n € N} be any dense subset of X*, and set I = |J, . Lo -
For every r ¢ I we have

/’f“ da —ql(r)/ ) dm, .
X X

Every f € X* is the pointwise limit of a sequence of elements of .%. Using the
Dominated Convergence Theorem, we obtain that if ¢;(r) # 0 the probability
measures ¢”/q;(r) and m, have the same Fourier transform, so that they
coincide. m|

The following proposition shows a class of sets that are negligible with respect
to all measures o°.

PROPOSITION 3.7. Let B = X be a Borel set with C,/(B) = 0. Then c°(B) = 0,
for every r € R.

PrROOF. We partly follow the argument used in [3, Lemma 6.10.1]. For every
e>0 let O, > B be an open set such that C,(0,) <e Then there exists
fi e WHP'(X, ) such that [ fellwrio (x ) < € and ﬂ > 1 a.e. in O,. Replacing f;

by max{f;,0} we may assume that f, > 1o, pu-a.e.

Let us fix a sequence of BUC functions that converge to 1o, pointwise. For
instance, we can take

0, x € X\O,,
0,(x) = ¢ ndist(x, X\O,), 0 <dist(x,X\O,) < 1/n,
1, dist(x, X\O,) > 1/n
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Then, lim,_., 0,(x) = 10,(x), for every x € X. Using the Dominated Conver-
gence Theorem, and then formula (3.9), we get

cf(0,) = / 1o,do® = lim [ 0,ds® = lim gy, (r).
X n—oo

n—oo X

On the other hand, f,(x) > 1p,(x) > 0,(x), for p-a.e. x € X, so that the function
Fy_p, is increasing. In particular, F , (r) = q7,(r) — qo,(r) 2 0 for every r € R.
Therefore, for every r € R, '

UrG(06> < q,(r).

On the other hand, by (3.3) we have

|qfr(r)| < C”fC"”WLI’/(X,u) < C&,
with C independent of &. Therefore, 0°(0,) < Ce, which implies ¢°(B) =0. 0O

Proposition 3.7 clarifies the dependence of the measures ¢ on the version

of G that we have fixed. Two versions of G that coincide outside a set with null
C, capacity give rise to the same measures .

3.4. Integration by parts formulae

To start with, we establish an integration formula for C} functions that is a first
step towards an integration by parts formula. The proof follows arguments from
[7, 5] (in fact, it is a rewriting of a part of [5, Prop. 4.1] in our setting).

PROPOSITION 3.8. Let k € N be such that either DG € W' (X, u) or DiG €
BUC(X,R). Then for every ¢ € CL(X,R) and for every r € R we have

(3.12) /Gl( )(Dkgo — k) dit = qup,6(r).

Moreover, (3.12) holds also for every ¢ € W'4(X , u) provided DG € W'(X, u)
and

1 1 1
(3.13) -+-+-<1

9 s P

PrOOF. Fix ¢ € C}(X;R). For ¢ > 0 we define a function 6, by

17 é < —&,
H{,‘(é) = _%67 —&< f < 07
0, >0

and we consider the function

x = 9(x)0:(G(x) = 1),
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which belongs to W' (X, u). Its derivative along vy is 0!(G(x))DiG(x)p(x) +
0.(G(x))Dro(x). Applying the integration by parts formula (2.1) we get

1
(3.14) /(Dkgﬂ—ﬁkgo)(ﬂgoG) dﬂ:—/ goDkGd,u, k e N.
X &JG(r—e,r)
As & — 0, 0, o G converges pointwise to 1g-1(_ ). Since 0 < 0,0 G < 1, by the
Dominated Convergence Theorem the left hand side converges to

/ (Do — trp) dp.
G 1(—o0,r)

Concerning the right hand side, for every ¢ > 0 we have

1 1 [
L enGau= [ ant@de
€ JG 1 (r—er) & Jr—e

Since ¢D;G belongs to W' (X, u) or to BUC(X;R), by Lemma 3.2 or by
Proposition 3.4 the function ¢,p, ¢ is continuous. Therefore,

lm PDLG i = 4y, (1),
e=0 & JG-1(r—¢,r)
and (3.12) follows.
Let now ¢ € Wh4(X, u), DG € WH5(X, ), with ¢, s satisfying (3.13). Let
¢, € CH(X,u) approach ¢ in W14(X, u), so that ¢,DyG approaches pD;G in
Whr' (X, u). By (3.12), for every r € R and n € N we have

/G ! )(chﬁn — 0xp,) dit = qy,0,6(7).
“—oo,r

Letting n — oo, the left hand side goes to / (Dro, — vkp,) du, while the
right hand side goes to g,p,¢(r) by (3.3). ¢ (-=.r) O

The measures ¢ constructed in Theorem 3.5 are trivial if ¢; (r) = 0. So, it is

important to know for which values of r we have ¢;(r) > 0. This question was
addressed in the paper [15], where it was proved that under the assumptions of
[1], the set I := {r € R: ¢q;(r) > 0} is an interval. Here we improve such a result,
characterizing / under more general assumptions and with a different simpler
proof.

LEMMA 3.9. Assume that for every k € N, DG € W' (X, ) U BUC(X,R).
Then {r e R: q(r) > 0} = (essinf G,esssup G).
ProOOF. By Theorem 3.5, if ¢;(r) =0 then / pdc® =0 for every ¢e

X
BUC(X,R), which implies ¢,(r) =0 for every ¢ € BUC(X,R). Approaching
any ¢ € W' (X, ) by a sequence of C} functions ¢, it follows that g,(r) =0
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for every p € W' (X, u). Taking ¢ = Dy Dy G, with any cylindrical smooth i,
we have ¢g,(r) = 0, and formula (3.12) yields

/G ! )(Dkklﬁ — 0 D) dpu = 0.
“(—co,r

Summing over k and using [3, Thm. 5.8.3, Rem. 5.8.7] we obtain

(3.15) / Ly du =0,
G- (—o0,r)

where L is the realization of the Ornstein—Uhlenbeck operator in L?(X, u). We
recall (e.g., [3, Thm. 5.7.1]) that the domain of L is W?2(X,u), and the graph
norm of L is equivalent to the W??2-norm. This implies that the set of the cylin-
drical smooth functions is a core for L, and then (3.15) holds for every y € D(L).
In other words, the characteristic function 1-1(_, , is orthogonal to the range
of L. Since 0 is an isolated simple eigenvalue of L, the orthogonal space to
the range of L consists of constant a.e. functions. Then, 15-1(_., , is constant
w-a.e., which implies that either u(G~!(—c0,r)) =0 or u(G~'(-0,r)) = 1. So,
¢1(r) = 0 implies that r € (— oo, essinf G] U [esssup G, +o0).

Conversely, the function F| is continuously differentiable, and it is constant
in (—oo,essinf G| and in [esssup G, +0), so that for every r € (—oo,essinf G| U
[esssup G, +00) we have F{(r) = ¢qi(r) = 0. O

Let us go back to Proposition 3.8. We recall that g,(r) = / pdal if

¢ € BUC(X; R). Therefore, if G and ¢ are so smooth that pD;G € BUC(X; R),
(3.12) yields

(3.16) / (Do — k) du = / ¢D;.Gda?.
G 1(—o0,r) G-1(r)

For more general G and ¢ the above formula still holds, but it is not obvious. For
the right hand side of (3.16) to make sense, we need conditions guaranteeing that
@Dy G has a trace at G~ (r), belonging to L'(X,5%). Then, pD;G in the right
hand side integral should be interpreted in the sense of traces.

The starting point is Lemma 3.2 and in particular formula (3.3), applied to the
function |p|, that together with (3.9) yields

31 [ eldef = 45(0) < Clolini,y, 9 e COGR)

Since C}(X;R) is dense in W'?'(X,u), the above estimate is extended to the
whole of Wl”"/(X , 1), and it allows to define the traces of such Sobolev func-
tions at G~'(r). Indeed, approaching any ¢ € W''» (X, 1) by a sequence of c}
functions ¢,, (3.17) 1mp11es that the sequence of the restrictions ¢,g-1(,) to
G~!(r) is a Cauchy sequence in L'(G~!(r),s”), that converges to an element
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of LY(G~!(r),s ). Still by (3.17), such element does not depend on the approxi-
mating sequence.

DEFINITION 3.10. Let 9 € W'?' (X, u). The trace of ¢ at G~'(r) is the limit in
L'(G'(r),a7) of the sequence of the restrictions ¢, -1,y to G~'(r), for every

»r

sequence of C} functions ¢, that converges to ¢ in WLr' (X, u). Tt is denoted by
P1G-1(r)-
By deﬁnition, go‘Gfl(,) € Ll (G71 (}") O'G), and H%G*l(r) ||L1(G*1(r),a'r6) <

Clloll w10 (x> Where C is the constant in (3.17). In other words, the trace is a
bounded operator from W' (X,u) to L'(G™'(r),s%). If p € W4(X, u), with
q > p', then |p|"?" € W'»'(X, 1), and estimate (3.17) applied to |p|””" yields
that the trace of ¢ at G~'(r) belongs to LY?'(G~!(r),s), and the trace operator
is bounded from W 4(X, ) to LY (G (r),5").

The trace operator preserves positivity, as the next lemma shows.

LeEMMA 3.11. Let 9 € W' (X, u) have nonnegative values, pu-a.e. Then for every
r € R the trace of ¢ at G~'(r) has nonnegative values, °%-a.e.

PROOF. Let (p,) be a sequence of C} functions, converging to ¢ in WL*" (X, u).
Possibly replacing (¢,) by a subsequence, we may assume that (¢,) converges to
@ pointwise y-a.e.

We claim that the sequence (¢,) (the positive parts of ¢,) still converges
to ¢ in W' (X, ). Indeed, |p; =0l < 100 — 0l (x> While, recall-
ing that Dyp! = Dyg, in the set {x:¢,(x) >0}, and Dyp, =0 in the set
{x:9,(x) <0}, Dyp = 01in the set {x : p(x) = 0} (|3, Lemma 5.7.7]) we obtain

(3.18) /erwwmw—/ Do — Diolly dp
X (i, (x)>0)

+/ \Dio; — Diolly du
[x:0,(x) <0}

= / |Dug, — Duglly du
{x:0,(x)>0}

+/ Dioll} du
{x:9,(x) <0}

< ||Dup, — DHﬁ””fﬂ’(X,u;H)

+ / \Duolly du.
{x:0,(x) <0,(x)>0}

Setting A4, := {x: ¢,(x) <0,¢(x) > 0}, then pu(A4,) vanishes as n — co. This is
because for every x in the set

.
A::ﬂkg Ag,

n=1
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the sequence (¢,(x)) does not converge to ¢(x), and therefore 0 = u(A4
lim, .o (U, Ax) = limsup,_, . p(A4,). Then, the right hand side of (3
vanishes as n — oo, and this implies that (p,)" converges to ¢ in Wh7' (X, u).
Consequently, the traces of (¢,)" at G~!(r) converge to the trace of ¢ at G~(r),
in L'(G7'(r),a%). Since each (p,)" has nonnegative values at every x € G~!(

then their L' limit has nonnegative values, c°-a.e. 0
Formula (3.9) may now be extended to elements of W2 (X, u).

LEMMA 3.12. For every p € W' (X, 1) and for every r € R we have

(3.19) q,(r) = / P16-1(r) daC.
G-1(r)

ProoOF. It is sufficient to approximate ¢ in W'?'(X, u) by a sequence of func-
tions ¢, € C}(X;R), and to let n — oo in the equality

Q¢” (}") = / (0,, dO'rG7
X

that holds by Theorem 3.5. The left hand side goes to g,(r) by estimate (3.3), the

right hand side goes to / P16-1(r) daC by the above construction of the trace
of ¢. G='(r) O

With the aid of Proposition 3.7 we can prove that the traces of the elements of
W' (X, i) at G~'(r) coincide with the restrictions of their C,-quasicontinuous
versions at G~!(r). In particular, if ¢ is a continuous version of a Sobolev func-
tion, its trace is just the restriction of ¢ at G~!(r). This justifies the notation
91611, for the trace of g at G~'(r).

PropoSITION 3.13. Let ¢ be a C,-quasicontinuous version of an element of
WP (X, u). Then the trace of ¢ at G~'(r) coincides with the restriction of ¢ at
G (r),cf-ae.

PROOF. We use arguments similar to [5, Prop. 4.8]. Let (¢,) be a sequence
of smooth cylindrical functions that converge to ¢ in W1?'(X, x). By [3, Thm.
5.9.6(ii)], applied with the operator 7 = (I — L)fl/ 2 a subsequence (¢,,) con-
verges to ¢(x) for every x except at most on a set with zero Gaussian capacity
C,. By Proposition 3.7, such a subsequence converges ¢-a.e to ¢. On the other
hand, by the definition of the trace, the restrictions of ¢, to G~'(r) converge
to ¢jG-1(,) In L'(G7Y(r),a%). In particular, a subsequence of (¢,,) converges to
P1G-1(r)s oC-a.e. Therefore, Plo-1(r) = P al-ae. O

To extend the integration by parts formula (3.16) to Sobolev functions we
need some further assumptions on G.
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COROLLARY 3.14. Let p € Wh9(X, u) and DG € W'5(X, ), with q, s satisfy-
ing (3.13). Then formula (3.16) holds, with 9Dy G replaced by (9D G) -1

PrROOF. Note that pD;G € W' (X, 1). By Lemma 3.12 we have
L., @Dk a4 = 4o

On the other hand, Proposition 3.8 yields

4p0.6(r) = / (Drop — Orp) dp,
G-l (—o0,r)

and the statement follows. O

Corollary 3.14 yields an integration by parts formula for ¢ € W*(X, u) for
any s > 1, provided G is good enough. In particular, if next assumption (3.20)
holds, then G satisfies (2.2) and the conditions of Corollary 3.14 with any s > 1,
and (3.16) holds for ¢ € W4(X, u) for any ¢ > 1.

3.5. Dependence on G, and relationship with other surface measures

Now we are ready to compare the measures ¢ defined in §3.3 with the perimeter
measure and with the Hausdorff-Gauss surface measure p of Feyel and de La
Pradelle [11].

We use the notation of [2]. We recall that a subset B = X is said to have finite
perimeter if 15 is a bounded variation function, namely there exists a H-valued
measure I such that for every k € N and for every smooth cylindrical function
@ we have

/(Dkw — ) du = / pdyy,
B X

with y, = (I', v >y. In this case, I" is unique, it is called perimeter measure, and
denoted by D,15.

If Ge W>P'(X,u), then for every r € R the set B= G~'(—o0,r) satisfies the
above condition, with D, 11—, ) = Du G‘G—l(r)O'rG . Indeed, by formulae (3.12)
(applied to ¢) and (3.19) (applied to ¢D;G), for every smooth cylindrical ¢ and
for every k € N we have

/ (Drp — brp) dp = /(¢DkG)Gl(r) do,’.
G (—o0,r) X

On the other hand, for smooth cylindrical ¢ the trace of pD;G at the support
G~(r) of ¢ coincides ¢%-a.e. with the restriction of 9D, G at G~(r), where DG
is any C,/-quasicontinuous version of D; G, by Proposition 3.13.
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Let us now recall the assumptions of Feyel [10],

(3.20) Ge [ W*(X,uw),

p>1

1
T~ € ﬂ LP(X, ﬂ))
|DHG|H p>1
under which it was proved that for every g € W 4(X;R) for some ¢ > 1, the
density g, of the signed measure pu o G~! with respect to the Lebesgue measure

is given by

4
3.21 q,(r :/ dp, reR.
( ) ¢( ) G*l(r) |DHG|H

In the right hand side, ¢ and |Dy G|, are quasicontinuous versions of the respec-
tive Sobolev elements. More precisely, ¢ is C,-quasicontinuous and |Dy G|, is
C,-quasicontinuous for every p > 1. See [10, 5].

PROPOSITION 3.15. Let G satisfy (3.20). Then for every Borel set B = X we have

1
G
g’ (B :/ ————dp, reR.
(8) BnG1() [PDuGly

ProOF. Note that if (3.20) holds, then G satisfies (2.2). Comparing (3.21) with
(3.9) yields

% 1
de,G:/ ———dp, ¢e C(X;R),
/X 610 [DuGly b

and the statement holds. O

COROLLARY 3.16. Let Gy, G, satisfy (3.20). Assume that for some ry, r, € R we
have G '(r1) = G5'(r2) :==X. Then

IDuGI(1)| g doft = |DuGa(r)|y dal = ps.

We recall that the assumptions of [1] are

(3.22) Ge [ whr(x,p),
keN,p>1

e L.

1
|DHG|H p>1

and that the measures v, constructed in [1, 3] under such assumptions, for all
r € R such that ¢;(r) > 0, coincide with the restriction of p to G~!(r). This is
because they satisfy the same integration by parts formula,

. oD G oD, G
3.23 / Dip — 0r0) du = / dv, = / dp,
(3.23) G*l(fcfs,r)< ) 61 [DuGy 61 1PuGly

pe () WEXW),
keN,p>1




328 G. DA PRATO, A. LUNARDI AND L. TUBARO

and replacing ¢ by ¢D;G/|Dy G|, and summing up, we obtain

/ wdvr—/ pdp, 9e [ WEI(X,p)
G-'(r) G-1(r)

keN,p>1

which implies the statement.

A. PROOF OF THE DISINTEGRATION THEOREM

We follow here [21]. For any 4 € #(X) we consider the conditional expectation
E[14|T], which may be expressed as f4 o I' for some Borel function f : R +— R.
So, for any I € Z(R) we have

= o = r o TN (dr
J, = [ Uae T dn= [ e T @)
which we rewrite as
(A1) u@mr*un=jﬂvﬂw»

Since X is separable, there exists K = R with 1(K) = 0 and for any r ¢ K a Borel
measure m, on R such that

fa(ry=m,(A), Vré¢K.

See e.g. [8, Theorem 10.2.2]. Replacing in (A.1) we obtain

(A2) WA ~TN(D)) = /1 m(A)(dr), T e BR).

It is enough to prove that (3.5) holds for ¢ =11, with J € #(X). In this
case,

Amnm@o:mw*u»

and integrating with respect to A over R and taking into account of (A.2) with
I = R, yields

p(x)m;(dx) ) Adr) = | m (T~ (1) A(dr) = w(D7'(])),
([ otomao)aian = |

as claimed.
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Let us show that for A-a.e. ry € R, the support of m,, is contained in r! (ro). If
I is any interval, setting 4 = T'"!(R\/) in (A.2), we find

0— /1 (T~ (R\T))A(d),

so that m,(I'"'(R\/)) =0 for A-almost all r e I, say for every r e I\J; with
A(Jr) = 0. Now, let us consider all the open intervals with rational endpoints,
I = (an,b,) with a, < b, € Q. The set J := J,.n J(a,,»,) i still A-negligible, and
we have

neN

(A3)  m(T Y (—0,a,] Uby,+20)) =0, neN, re (a,b,)\J.

For every ry € R\J, fix two subsequences (ay, ), (b,,) such that a,, < ry, b, > ro
and limy_ o, a,, = limy_,, b, = ro. Taking r = ry and replacing a,, b, by a,,, by,
in (A.3), we obtain that m,, has support contained in (ay,, b, ) for every k € N,
and the statement follows.
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