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ABSTRACT. — We study the subspace of the exterior algebra of a simple complex Lie algebra
linearly spanned by the copies of the little adjoint representation or, in the case of the Lie algebra
of traceless matrices, by the copies of the n-th symmetric power of the defining representation. As
main result we prove that this subspace is a free module over the subalgebra of the exterior algebra
generated by all primitive invariants except the one of highest degree.
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1. INTRODUCTION

Let g be a simple Lie algebra (over C) of rankr. In [3], the isotypic component
A =Homyg(g, /\ g) of the adjoint representation in the exterior algebra of g has
been studied. Recall that the invariant algebra (/\ g)° is an exterior algebra
/\(P1, ..., P,) over primitive generators P; of degree 2m; + 1, where the integers
m; (with m; < --- < m,) are the exponents of g. The main result of [3] states that
A is a free algebra of rank 2r over the algebra /\(Pl, ..., P,_1). The purpose of
this short paper is to single out other instances of this special behavior. We prove
that the space Homgy(L, /\ g) is a free algebra of dimension twice the dimension
of the 0-weight space of L in the following remarkable cases:

(1) L is the little adjoint representation L(0), i.e. the g-module with highest
weight the highest short root of g;

(2) gis of type A,—1 and L = S"(V) is the n-th symmetric power of the defining
representation V. Clearly, also its dual representation shares this property.

In order to build up free generators in the little adjoint case we are going to use a
result of Broer [2]. Once we have the correct candidates, the proof of the state-
ment will follow by slight modifications of the machinery developed in [3] for
the adjoint representation. The case of S” (V) is dealt with by using classical in-
variant theory.

The adjoint representation, the little adjoint representation, S”(7) and its
dual are examples of small representations (see Section 2). For a small represen-
tation, and in fact only for a small representation, one has (see [9]) that its multi-
plicity in /\ g equals 2" times the dimension of its zero weight space, a fact that
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we are going to use below. It is natural to ask whether covariants of small mod-
ules have the nice behavior described above. It is easy to provide counterexam-
ples. In this respect, using a result of Stembridge, we are able to show that in
type A the adjoint representation, (V) and S"(V)" are the only small modules
whose covariants are freely generated over /\(Pi,...,P,_;). Computer compu-
tations show that no other example arises among small modules for any Lie al-
gebra of rank at most 5.

The analysis of covariants of the little adjoint representation when g is of
classical type has been also performed in [4] using classical invariant theory.

2. THE LITTLE ADJOINT MODULE

Let g be a simple Lie algebra (over C) of rank r. Fix a Cartan subalgebra b in g.
Let A be the corresponding root system, W the Weyl group, A™ a positive system
and IT the corresponding simple system. Let A;, A; denote the sets of long and
short roots, respectively; set also A" =A;n A", A = A nA*Y, TI; = A;n T,
I, = A;n 11, ry = [T, r; = |TT]. Let (-, -) denote the Killing form. If o € h*, we
let &1, be the unique element of b such that (4, h) = a(h) for all i € ). We use this
form (-, -) to identify g and g* when convenient.

Assume that g is not simply laced. Let 0, be the highest (w.r.t. A™) short root.
The irreducible g-module L(0;) of highest weight 0 is called the little adjoint
representation.

We are interested in the study of

LA := Homg(L(0y), /\ g)-

LA is the space of g-equivariant maps from L(0;) to the space of multilinear
alternating functions on g. Clearly LA is a (left or right) module over (/\ g)°.

If L is a g-module, we denote by L its zero weight subspace. We shall prove
the following:

THEOREM 2.1. LA is freely generated over \(Pi,...,P,_i) by 2dim L(0;),
generators, which can be explicitly described.

As an application, we can recover the following result of Bazlov [1].

COROLLARY 2.2. The Poincaré polynomial GMy, (q), describing the dimension of
LA in each degree, is given by

r—1

. I
_ -1 2mi+1y  m+1=2(rs—1)r
(21)  GMy(q)=(1+q )Q(Hq )a T

4rrg

As explained in the Introduction, our main tools are a result of Broer on
covariants of small modules and the machinery developed in [3] to prove the
analogue of Theorem 2.1 for the adjoint representation.
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Let us describe Broer’s result. Recall that a finite dimensional g-module L is
called small if twice a root is not a weight of L.

THEOREM 2.3 [2, Theorem 1]. Let L be a small g-module. Then Homg(L, S(g)) is
isomorphic by restriction to Homy (Lo, S(b)) as a module for S(h)" ~ S(g)*.

It is easy to check (see [9]) that an highest weight module (1) is small if and
only if 2 # 25 for any dominant root # of g. In particular, both the adjoint and
the little adjoint representations are small. In order to apply Theorem 2.3, we
start with a simple observation. Let H be the subgroup of W generated by the
reflections s, with « long.

LEMMA 2.4. H acts trivially on L(0y),.

PRrOOF. The weights of L(6;) are precisely A; U {0}. It follows that, if o is a long
root, and e, f, are root vectors in g, g, Trespectively, then
exp(e,) exp(—f,) exp(e,) acts trivially on L(0;),,. O

Let W be the reflection subgroup of W generated by the reflections s, with
o € I1;.

LEMMA 2.5.

(1) W= W, x H so W/H is canonically isomorphic to Wij.
(2) The isomorphism in (1) turns L(0y), into a Wy-module isomorphic to the reflec-
tion representation of Wi.

ProOOF. The proof of (1) is given in [7], Proposition 2.1. We now prove (2). By
Lemma 2.4, L(0;), is a W/H-module. The isomorphism given in (1) is the one
induced by the embedding of W, in W. To prove our claim we need to provide
a bijective map Span(Il;) — L(0,), and check that this map intertwines the
action of W,. We realize L(0,), explicitly as follows: g is the fixed point sub-
algebra of a diagram automorphism ¢ of a larger simple Lie algebra a. Let k
be the order of o (k = 2 or 3). Let ¢ be a primitive k-th root of unity. Then L(0;)
is the &-eigenspace of ¢ in a. Let i’ be a o-stable Cartan subalgebra of a contain-
ing b. Since there is no root « of a such that « = 0, we have that L(0;), is the
¢-eigenspace of o). Let IT" be the set of simple roots of a and II|, the subset
of simple roots fixed by o. Let I/ be a connected component of IT'\ITj. Then
the map o — oy, identifies Span(IT)) with Span(II,). Let 7 be the orthogonal
projection b’ — L(6;),. We define a map Span(Il,) — L(6y), by

L
oy = 7(hy) = EZ{’J""(/@).

i=0

If o € Span(IT)), then the o'(«) are pairwise orthogonal, hence the above formula
implies that the map is injective. Since dim L(6;), = k%l (rank(a) — rank(g)), it is
easy to check that dim Span(Ily) = dim L(0;),,. It follows that our map is bijective.
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If y € I, then y = oy, with o € TI]. Then e, = Z;:ol €qi(yy and f, = Z fg, ()
Since the roots in the g-orbit of o are orthogonal, we see that

s, = exp(e,) exp(—f,) exp(e H Seri(x)

so the action of s, on )’ commutes with . It follows that, if § € Span(Il;) and
B = /3“) with g’ € T1., then

s,(f) = ”(hsy(/z’)) = Sy(n(hﬂ’»' u

By [7],I=b@® > g, isa semisimple equal rank subalgebra of g whose Weyl
e
group is H. ObVlously, the action of H on I is the reflection representatlon

Let Jy = (I)) Since H is a normal subgroup of W, it is clear that Jy is W-
stable.

PROPOSITION 2.6. dim Homyy (L(6y)y,J1/J3) = 1 and dim(Jy /J})" =

PrROOF. The proof is a case by case check. In each case we will provide an
explicit realization of the reflection representation of W in a suitable W -stable
space of basic invariants for H.

Type C.. In this case [ is the product of r copies of 4, so H = (Z/27)". Let

={pi,....p}. Clearly Jy/Jj; ~Span(hj ,...,hj ). It is easy to check that
W S, and its action on [ is glven by the permutatlon representation on the
basis {/}. It follows that Jy /J7 is the sum of the reflection representation of
S, and a 1-dimensional invariant space.

Type B,. In this case | is of type D,, so Jy = C|[po, p1,--., pr—1], Where p; is
a basic invariant for B, of degree 2/ if i=1,2,...,r—1 and po =[] cp+ ha-
Since W, has order 2, generated by the reflection s, w.r.t. the unique short simple
root o, We see that Cpy affords the reflection representation of W, and that
(‘]H/‘]IZ{) Nspan(plv"'aplfl)

Type G,. In this case [ is of type A,, so there are basic invariants p;, p» for
H in degree 2 and 3 respectively. We can choose p; to be the basic invariant of
degree 2 for W. In this case W, ~ 7/27. Since Ji 1 S3(b) = Cp, we see that Cp,
is Wi-stable. Since p; is not W-invariant, we see that W acts on Cp, by its reflec-
tion representation.

Type Fy. In this case | is of type D4 and Wy ~ S3. Let hy, fi, f>, hy be basic
invariants for H of degree 2, 4, 4, 6 respectively. The basic invariants for W
occur in degrees 2, 6, 8, 12. We can choose /4, h, to be basic invariants for
W. We claim that the action of W, on Span(f}, f2) is given by its reflection
representation. Indeed, since Span(fi, f>) cannot contain invariants for W, the
only other possibility is that W acts on f;, f> by the sign representation. If
this were the case, we would have that dimS%(h)"” > 5. But we know that
dim $8(p) " = 3. O
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PROOF OF THEOREM 2.1. Choose ¢ € Homy (L(6y),, i) so that ¢ induces the
embedding of L(6;), in Jy/J% provided by Proposition 2.6. We can choose ¢ to
be homogeneous and we let ny be the degree of g. We can write

Tu/Th = q(L(0,)0) ® (Ju/T5)"

as a W-module. Using the fact that Jy = S(Jy/J%) and Lemma 2.4, we can
write

(2.2)  Homy (L(0y)y,S(bH)) = Homy (L(0s)y, Ju)
= S((Ju/JT7)") ® Homy, (L(0y),, S(g(L(0s),)))-

Since the action of W, on L(@ )o is the reflection representation and W; is a
reflection group of type 4, it is known (see [5]) that Homyy, (L(0),, S(L(0; ) ) is
freely generated over S(L(@ )0) * by r, homogeneous generators gi,---,gr inde-
grees 1,2,...,r. It follows from (2.2) that ¢(g;) (i = 1,...,r,) are free generators
for Homyy (L(0y),, S(b)) over S(bh) " in degrees ny, 2n0, e ,rsno.

Theorem 2.3 now provides free generators £, ..., F, for Homg(L(0s),S(g))
over S(g)% in degrees ny, 2ng, ..., rshg. Letd: /\'g — A’+ g be the Koszul differ-
ential. Let s: S(g) — /\ g be the map extending 14 : g — /\ g to S(g). Since
s is a g- equrvarrdnt map, composing with s defines a map Homg(L, S(g)) —
Homgy(L, A\ ). Set f; = so F;and u; = 0 o f;. Here 0 = /6

We claim that f;, u; are free generators for Homg(L(0,),/\g) over
/\(P1,...,P._1). From now on, we may proceed as in [3]. Let us sketch the
main steps. By [9, Corollary 4.2], we have that dim L4 = 2" dim L(0;),, hence
it suffices to prove that f;, u; are linearly independent over A(Pi,...,P.1).
Writing a linear combination of f;, u; with coefficients in /\(Py,...,P._;) and
applying 0 one readily reduces to prove that the f; are independent. Identify
Homy(L(0y), /\ ) with (/\ g® L(6;))® and fix a symmetric invariant bilinear
form <-,-) on L(0y). For a,b € /\ g, x, y € L(0;) we set

e(a®@x,b® y) =<x,yyanb.
If instead a, b € S(g), then we set
(@a®x,b® y) = {x, ydab.

Now, as in [3, Lemma 2.6], the claim about the independence of the f; boils
down to showing that

(2.3) e(fi,uy—iv1) = ciPr, ¢ #0.
Letd : S(g) — S(g) ® g be the usual differential on functions and m : /\ g®g—
/\ ¢ the multiplication map. Define 7: S(g) — /\ g setting mo (s® 1) od. The

argument given in [3] to prove formula (2. 21) therein shows that, up to a nonzero
constant,

e(f%v er,l‘Jr]) = t((E7 Frx*i‘k‘l ))
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Now observe that, by inspection, we have

my+1 .
5 if ry=1,
(24> no = m,«2+1 o . !
5 T (Vs — 1)1’[ =2r if rg > 1.

This implies that 2ngi + 2ng(ry — i+ 1) — 1 =2no(ry + 1) = 1 = 2m, + 1.

Recall that the range of the map 7, when restricted to S(g)?, is, by e.g. [6, The-
orem 64], the space of primitive elements in /\ g, so it is enough to check that
t((F;, Fr,—it1)) # 0. This is equivalent to checking that, 1f J 7 is the ideal in S(g )8
of elements of positive degree, then (F;, Fy_i11) ¢ (J +) As in Lemma 2.8 in [3],
we see that the restriction of (F;, F,_;y1) to b is (¢(gi),q(gr—i+1)). In the proof of
Proposition 2.6, we identified Jp /J7 with {(x1,...,%.+1) € C*"'| 3, x; = 0} in
such a way that the action of W on Jy/ J%, intertwines with the standard action
of the symmetric group S, | on the latter space. With this identification, the gen-

erators g; can be chosen to correspond precisely to the differentials of normalized
rtl

Newton polynomials ., := 1 Z x’+1 We can conclude using the formula

rs+1

(dg,diyg) = X972 = (k+9— 2y o
i=1

(see [3]). O
PROOF OF COROLLARY 2.2. The proof of Theorem 2.1 shows that

r—1
GMy () = (1+q ) [T+ g (14 g7 4 4 g2 Dm).
i=1

Now formula (2.1) follows from (2.4). O

3. THE MODULE S™(V)

In this section, V' is a n-dimensional complex vector space and g = sl(}'). We
sometimes assume to have chosen a trivialization A" V' ~ C, although for a for-
mal step it is better not to think in this form.
We are interested in studying the isotypic component of type S"(V") (resp.
Sn( in Ag or the g-invariants of S"(V*) ® /\ g*, (resp. S"(V) ® /\ g*)
As we w111 see in the next Section, S”(¥) is a small representation, hence we can
use [9, Corollary 4.2] to deduce that

(3.1) dim((S"(V*) ® /\ g%)%) = dim((S"(V) ® A\ ¢")°

We think of A g* as the space of multilinear alternating functions in 7 vari-
ables from g to C and of \'g* ® A V' as the space of multilinear alternating
functions in i variables from g to /\" V' (similarly for /\" V*)
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Recall that the primitive generators of the ring of invariants (/\ g*)? are the
functions 7} defined by

T; == tr(Strir1(A1, Ao, . . ., Azi, Arit1)),

where St,(x1,...,X,) = >, s, €0Xa(1) - - - Xg(n) 18 the standard polynomial.
We 1ntroduce equivariant maps

O:S"(V) = Ng'® AV, WSV /\g ® AV
by assigning homogeneous polynomial maps (cf. [8, §5, 2.3])

vi— O(v /\q ®AV v—YPo)e ANg*® AV
defined, for v € V, as

Q) (A1,...,4y) = AjvA A0 A~ A Ay_10A Ao,
Y()(A4y,...,4,-1) == AjoA Ao A A Ay v AL

Asmnlar formula holds for maps ®@* : S"(V Ag ® /\V* SNV —
/\g ®/\V*:Whenye V* we set
O () (A1, An) = Ay Ay A N AL YA AY,
W) (Ary .oy Aper) = Ay AASy A=A ALy Ay

We use the same symbols ®, ¥ to denote the corresponding elements in
(S"(V*) ® /\ g*)". Notice that we have an equivariant pairing S"(V) x S"(V'*)
— C, which gives, by duality, a canonical map 7: C — S"(V) ® S*(V*), and
which induces an equivariant pairing

(,9): Hom(S”(V),/\g*@ KV) X Hom(S” ), \g* ® AV )
~ Ao ® AV AV =Ag

in the following way. We let {:|-> denote the natural pairing between V" and V*.
We extend this pairing to define the canonical trivialization A" V® /\" V*— C
by setting

(3.2) or AL A AU [ YL AP A Ay = det(vi | 7))
The pairing (a, b) is then defined by computing in 1 the composition

cLsmnesr) ® Ade Ave Aee A

i+j i+J

—ﬁA9®AV®AV“ﬁA9
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Here m is exterior multiplication and the isomorphism 7 is given by the canonical
trivialization (3.2).
Restricting to invariants we have finally a pairing

Hom(S"(V*),/\g* ® A V*)g x Hom(S"(V),Ag* ® A V)g — (/\g")*

We want to compute (W, ®"), so we want to understand the composed map

oL smes )= Ny e Ave Ay e Ar
LA9*® As

For this we can polarize, getting the following commutative diagram

c L smes ) B Ne e Ave Aae AV — Aa® Ag

IR | |

n—1

c_1. Ven® (1) ®n W®¢ A ®/\V®Aq ®AV* (g®2n_1)*

The map p(v" ® y") := v®" ® y®" is polarization, the map i is the embedding of
multilinear functions alternating in two blocks of variables into multilinear func-
tions, the map 7 is the (external) multiplication of multilinear functions composed
with the canonical trivialization. The polarized maps ¢ and i are given by

l//(l]l, e ,U,,)(Al, N A,,_l)
l’l') Z A]U )y A Azl) Q)N /\Anflva(nfl) A Ug(n)s

geS,

¢*(y17'~~7yn)(317"'7Bn)
-1
= (l’l') Z Bltyr(l) A Béyr(Z) ARERRA B}i—lyr(nfl) A Brtzyr(n)a

TeS,

thus

oW P ) 1y Uny P15y V) (Aly vy Ap1, B1, ..., By)
= <¢(Ul7“‘7UH)(A17"'7AI1*1)|¢*(yl7"'7yn)(Bl7"'7Bn)>

2 (Aov| By

g,T€S,

where for shortness we have set 4,0 = A105(1) A A2Vg02) A+ A Ap—1Us(n—1) A Ug(n)s
and By = Biy, 1y A By o) A A B Ve (nm1) A BiYe(n)-
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We have also, setting 4, = 1y,

(33) <A(7U | Bry> = Z €) H <A/1 yrol(/1)>
LeS,  h=
=> & H By AnVo(ny | Veonn)
LeS, h=1

Consider {A,v| B;y) as a function on V®” ® (V*)®" = End(V)®". The image of
the canonical element 7 in End(7)®" is 19" and we want to compute {A,v| B.y)
on this canonical element.

For this define formally matrix variables Y; =v; ® y, We first compute
{Asv|B;yy on all elements V1 ® V> ® -+ ® Y, € End( ) ; then we set all
Y; = 1y in order to perform the desired computation.

More in detail, we proceed as follows. For X7,..., X, € g, set

Iy, = H {Xivg(i) |VT(,-)> = H <X(rl(i)vi | Vo6 1( )>
h=1 h=1

In order to explicit this formula set w; = X,-1;v; and Z7 = X150 ¥; =
1)U ® y; = w; ® 7;. We have

I T = H <Wi | y‘roafl( )>
i=1

Recall that, if we take matrix variables W; := w; ® y; and a permutation g,
then []; {wi|7,(;> is the multilinear invariant of n matrices ¢,(W1,..., Wy) :=
IT tr(M ), Where the monomials M; are the products of the W; over the indices i
appearing in the cycles of . It follows that we have the formula

(3.4) Gy Wetys -+ Wew) = oyt (W, oo, W),
Clearly,
(3.5) Lo = (20,25, 27).

When we compute this invariant on the canonical element, this is equivalent
to setting all ¥; = 1y, hence Z7 = X,1(; o Y¥; becomes X, ;) and we get as
evaluation

Do (Xa-—l(l), Xo-102)5 - - - ,ngl(n)) = ¢y 10:(X1, Xo, ..., Xp).
In the last equality we have used (3.4). Setting X; = B;(;y4; we find

CAgv | Byy(I) = Z &10510001(Bi1)A1, By2) A2, - - - Biu—1)An-1, Bin))
LES,
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so that
(3.6) mo(p@y")oI(l)
= (n!)? Z82%—1010;.(3;.(1)14173; Az, By An—1, Biw)
g,7, 2

Recall that (, d>*) (mono(WY®®*)oI)(1). For any vector space U we

identify the space /\ U* with the subspace of (U *)®k formed by the alter-
nating multilinear functions. Under this embedding, a decomposable element
¢ A+ A ¢ corresponds to the function

SOr - xi) =) ey (Xo(1)) - - b1 (Xath)-

gE Sk
The alternator operator on (U*)®" is
Alt: yl® ®yn'_> *Zg(ryg ® - ®ya
‘oeS,

The relation between exterior multiplication of alternating functions and of
multilinear functions is given by the following commutative diagram

which in our setting reads

2n—1
® . A g
J a]

where C, = (" '"' . Thus

(3.7) (¥,®%) = C, ' Altoro (¢ @y*) o I(1).
We need therefore to apply Alt to the right hand side of (3.6). For shortness set
f(o-a T, j') = ¢a lotol (Bf( )Al ) B/l(Z)A27 s 7Bi(n—1)An71 ) Bi(n))'

Let us apply the procedure of alternation to a term f(a,7,4). If 6= 070 A s
not a full cycle, then Alt(f(o,7,4)) = 0. To check this we need only to find an
odd permutation in S5, ; that fixes the term f(g,7,4). Let ¢;...c, be the cycle
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decomposition of ¢! o 7o 1. We can assume that ¢; = (i1 ...i) is a cycle that
does not contain A(n). It follows that, if M>, ..., M, are the products of matrices
corresponding to cycles ¢, . .., ¢;,

f(G, T, /1) = tr(Bﬂ(il)AilBi(iz)Aiz e B),(ik)Aik) tI‘(Mz) - tI‘(MS)
= tI‘(A,'] B;_([2>Ai2 R B).(ik)Aikal(il)) tI'(Mz) R tI'(MS)

and the last equality gives an odd permutation (a cycle of length 2k) in S5, that

fixes f(g,7,2). If 6= o7 o L is a full cycle (j; ... j,), we can assume that j, = n.
Then

&.f(0,7,2) = e te(Bj)Aj BijnyAjs - - - Bij, ) Aju 1 Bimy)-

Let u € Sy, be defined by p(i) =n+1fori=1,...,n—1and u(i)=i—n+1
fori=n,...,2n— 1. If ® € S, we can consider w as an element of S, (fixing
n+1,...,2n—1). Let v € S, be defined by v(i) = j;. Then (vo,u‘1 olo VO,u)*1
is the permutation mapping tr(B; ;4 Bi;)A), - - Bigj, A Biw) 1o
tr(B1A1ByA, ... B, 1A, 1B,). Since the sign of (vou~'olovo ,u) s &;, we see
that, if ¢! o 70 A is a full cycle,

(3.8) Alt(e,f(0,1,4)) = tr(Stoy_1(By, A1, By, Aoy ..., By 1, An_1, By)).

(2n —1)!

We are now ready to prove the key result of this section.

(-n()

n!

THEOREM 3.1. (¥,®") =

Tnfl-

PrOOF. Combining (3.6), (3.7), and (3.8) we have

. C
(P, 0") = — tr(Sto,_1(B1, A1, By, Ay, ..., By1, An_1, By)).
(n))"(n—1)!

where C is the number of triples o, 7, A such that 6~ o 7o 4 is a full cycle. There
are (n!)*(n — 1)! such triples. O
THEOREM 3.2. Homy(S"(V), Ag*®@ \'V) = (S"(V*) ® /\ ¢*)% is a free mod-
ule on the two generators CI) ‘P over /\ (Ty,..., Tn 2).

PRrROOF. We first prove that ¥ and 0¥ freely generate (S"(V*) ® /\ g*)® over
(T, ..., T,—2). Using the formula (3.1) it is enough to prove that the two
elements are linearly independent over A(71,..., T)-2).

Let {e;} be a basis of weight vectors for V' with e; a highest weight vector. Let
{E;} be the basis of End(V) of elementary matrices and {E?} the dual basis.
Then it is not hard to check that, up to a constant depending on the choice of a
trivialization of /\" V, we have

We)=E* A AE™.
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Since [Eji,Ej] =0 if 7, j # 1, we see that 0(‘¥(e;)) = 0. By equivariance, we
obtain that 6‘1’ 0. Recall (see [6, (94)]) that the Laplacian 00 + 00 equals
22‘1”‘“‘«9( :)?, where {z;} is an orthonormal basis of g with respect to the
Killing form and 0 is the extension of ad to A\ g. It follows that d0¥ =
(00 + 00)¥ = c¥ with ¢ a non-zero scalar. We can then argue as in the pre-
vious section and deduce that is enough to prove that an identity a A'Y = 0,
ae /\(Ti,...,T,—2), implies @ = 0. For this, we compute (a AW, @) and have,
by Theorem 3.1, that O:(aA‘I‘,(ID*):(7;>,(2>a/\ T,_1. Since the relation
anT,_1 =0withae /\ Tl,... T 2) implies @ = 0, we have proven that ¥ and
OV freely generate (S"(V ® Ag*)? over \(T1,...,T,>). This in particular

proves that dim Homg(S"(V A g) = 1, thus 0¥ is a multiple of @, hence the
proof is complete. |

4. SMALL REPRESENTATIONS IN TYPE A

For sl(n, C), one can show that an highest weight module V" is small if and only
if the highest Weight of either V" or V* comes from a partition of n. This means
the followmg given a partmon ==y of n, the corresponding highest
weight 4 is 0 if 4} = =A,=1or /1 = Z 1 ajw; where wy,...,w, | are the
fundamental weights and a; is the number of columns of length i of the parti-
tion. For such weights, Stembridge has proved the following formula (cf. [10,
Corollary 6.2]), yielding the graded multiplicities M;(g) of the corresponding
modules in /\sl(n, C). Display the Young diagram in the English way, label the
boxes as matrix entries and denote by /(i, j) the hook length of the box (i, j), i.e
the number of boxes strictly on the right of box (i, ) pllusn the number of boxes
?fllctly below box (i, j) plus one. Set, as usual, [n], = ﬁ and [n],! = []L,[d,.
en

n],! g gy

_ 42h(i))
Utq e, 1-¢)

(4.1) M;(q) =

Notice that, since we are dealing with sl(n, C) rather than gl(n, C), there is an
extra factor 1/(1 + ¢) in the right hand side of (4.1) w.r.t. the formula displayed
in [10].

ProrosITION 4.1. If g = sl(V') and V(1) is an irreducible non-trivial representa-
tion of g with A corresponding to a partition of n = dim V, then Homg(V (1), /\ g)
is free over /\(Pi,...,Py_2) if and only if V(A) is either S"(V) or the adjoint
representation.

PROOF. The fact that the adjoint representation and S”(7") have the desired
property has been shown in [3] and in Section 3 above, respectively. Assume
now that A corresponds to a partition of n. We can assume n > 4: if n < 3 the
result is trivially verified. If Homg(V'(4), /\ g) is free over A\(Py, ..., P,_2), the
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polynomial affording its graded multiplicities in /\ g has to be divisible by
[17-2(1 4 ¢**1). Use now formula (4.1). Look at the highest term 1+ ¢23 i
the graded multiplicities of /\(Pi,...,P,_»). The only possible 51mp11ﬁcat1on
occurs in the term [, e)(qz"‘1 +¢¥72) of (4.1). This can happen just in the
following three cases:

(1) i=n,j=1
(2)i=n—-1,j=1;
3)i=1,j=n.

The first case gives the partition corresponding to the trivial representation,
which is excluded. In the second case, since we are excluding the case where
Jn = 1, the partition is necessarily (2,1"72), corresponding to the adjoint repre-
sentation. In the third case the partition is necessarily (n), which corresponds
to S"(V). O
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