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Abstract. — We describe a fractional version of the classical Gehring lemma. As a consequence,

new self-improving regularity properties of solutions to integrodi¤erential equations emerge.
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1. The classical Gehring lemma

The Gehring lemma [7, 9] is a fundamental tool in modern nonlinear analysis,
with crucial implications in several di¤erent fields, ranging from nonlinear ellip-
tic and parabolic equations to the calculus of variations, from quasiconformal
geometry to stability issues [2, 6, 11]. Its ultimate essence relies on a basic, self-
improving property of certain kind of inequalities, called reverse Hölder type
inequalities. This can be described as follows: if one can control the Lp-means
of a given function f a Lp, at all scales, with similar Lq-means, and p > q, then
the function f is necessarily better than just being in Lp. Starting from the origi-
nal work of Gehring, there have been several di¤erent versions of this result; see
[9] for a panorama. The following one, involving reverse inequalities with increas-
ing support, can be for instance found in [8].

Theorem 1.1. Let f a L
p
locðWÞ p > 1 be a non-negative function such that the

following reverse Hölder type inequality holds whenever B is a ball in the open sub-
set WHRn: �Z

B=2

f p dx
�1=p

a c
�Z

B

f q dx
�1=q

;

where 0 < q < p. Then there exists a number d > 0, depending only on n, q and the
constant c appearing in the previous inequality, such that f a L

pþd
loc ðWÞ. Moreover

the following inequality holds whenever BHW is a ball:�Z
B=2

f pþd dx
�1=ðpþdÞ

a ~cc
�Z

B

f q dx
�1=q

;

for a new constant ~ccC ~ccðn; q; cÞ.



In the previous statement, as in the rest of this paper, we are using the stan-
dard notation

ðhÞOC
Z
O

h dm :¼ 1

mðOÞ

Z
O

h dm

to denote the average of an integrable function h with respect to a measure m,
over a measurable set O with positive measure mðOÞ > 0.

The applications of Theorem 1.1 to solutions to linear and nonlinear PDE are
particularly relevant. A model result is about the higher gradient integrability of
weak energy solutions to divergence form equations of the type

�divðAðxÞDuÞ ¼ 0 in WHRn; nb 2:ð1:1Þ

The matrix of coe‰cients Að�Þ is supposed to have measurable entries, and to be
bounded and elliptic, i.e., both

L�1jxja 3AðxÞx; x4 and jAðxÞjaL

hold whenever x a W and x a Rn, where Lb 1. The ultimate outcome in this case
is the higher gradient integrability of energy distributional solutions, that is

u a W 1;2 ) u a W 1;2þdð1:2Þ

holds for some d depending only on n and L. This result was first proved by
Meyers [14] for linear equations; modern proofs extending to nonlinear ones are
indeed based on Theorem 1.1 [5, 8]. The key fact is that weak solutions satisfy
energy inequalities, often called Caccioppoli type inequalities—i.e. inequalities
of the type (1.3) below; in turn these imply higher integrability. This is summa-
rised in the next.

Theorem 1.2. Let u a W 1;2ðRnÞ be a function such that the following Cacciop-
poli type inequality holds for every ball BCBðx0; rÞHRn with centre x0 and
radius r > 0: Z

B

jDðucÞj2 dxa c

r2

Z
B

juðxÞ � ðuÞBj
2
dx;ð1:3Þ

whenever c a Cl
0 ðBðx0; 3r=4ÞÞ is a cut-o¤ function such that jDcja c=r. Then

there exists a positive number d a ð0; 1Þ, depending only on c and n, such that
u a W

1;2þd
loc ðRnÞ.

The route from inequality (1.3) to higher gradient integrability is straight-
forward. Indeed, applying Sobolev-Poincaré inequality we get that the following
reverse type inequality with increasing support holds for a constant that depends
only on n, c and for a new constant c0C c0ðn; cÞ:�Z

B=2

jDuj2 dx
�1=2

a c0

�Z
B

jDuj2n=ðnþ2Þ
dx

�ðnþ2Þ=2n
:
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At this point Theorem 1.1 finally implies that Du a L2þd
loc for some d > 0, depend-

ing only on n, c, but not on the specific function u.

2. The fractional Gehring lemma

Here we are going to report the main facts from [13], to which we refer for a more
complete presentation and for the detailed proofs. With applications to regularity
of solutions to nonlocal problems in mind, we here present a fractional analog of
the classical Gehring’s lemma. For the sake of simplicity, we shall confine our-
selves to a simpler situation. More general cases can be indeed found in [13].

Let us recall that a function v belongs to the fractional Sobolev space
Ws; gðRnÞ, with s a ð0; 1Þ and gb 1 i¤ v a LsðRnÞ and

½v�gs; g :¼
Z
Rn

Z
Rn

jvðxÞ � vðyÞjg

jx� yjnþgs dx dy < l:ð2:1Þ

Local variants of the space Ws; gðRnÞ are defined in the usual way, while in this
paper we shall always consider the case nb 2. The main novelty in our result is the
fact that, on the contrary of what happens in the local case, the self-improvement
happens in the di¤erentiability scale, which is the leading one. As we shall see
later, when applied to solutions to nonlocal equations, this will lead us to dis-
cover a new regularity property of solutions to nonlocal equations that has no
parallel in the theory of classical local elliptic equations; see Remark 3.1 below.
Our fractional version of Gehring’s lemma will show that, starting from a W a;2-
function satisfying the natural Caccioppoli’s inequality, we will observe the im-
provement

W a;2 ) W aþd;2þd:

This a surprising new feature of nonlocal problems, since the natural analog of
(1.2) is in this case

W a;2 ) W a;2þd:ð2:2Þ

See Remark 3.2 below. We indeed have the following:

Theorem 2.1 (Fractional Caccioppoli inequality). Let u a W a;2ðRnÞ be a func-
tion such that the following nonlocal Caccioppoli type inequality holds for every
ball BCBðx0; rÞHRn:

Z
B

Z
B

j½uðxÞ � ðuÞB�cðxÞ � ½uðyÞ � ðuÞB�cðyÞj
2

jx� yjnþ2a
dx dyð2:3Þ

a
c

r2a

Z
B

juðxÞ � ðuÞBj
2
dx

þ c

Z
RnnB

juðyÞ � ðuÞBj
jx0 � yjnþ2a

dy

Z
B

juðxÞ � ðuÞBj dx
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whenever c a Cl
c ðBðx0; 3r=4ÞÞ is a cut-o¤ function such that jDcja c=r. Then

there exists a positive number d a ð0; 1� aÞ, depending only on c and n, such that
u a W aþd;2þd

loc ðRnÞ.

The type of Caccioppoli inequality involved in the previous lemma is the
natural analogue of the local one in display (1.3). We note the presence of an
additional ‘‘tail’’ term on the right hand side of (2.3). The presence of this term
encodes the fact that the problems inequality (2.3) is typically stemming from are
nonlocal and defined on the whole Rn. Ultimately, the last term in (2.3) serves to
take into account the long distance interactions which are typical of nonlocal
problems. In the previous theorem the crucial information is really given by the
di¤erentiability gain. Indeed, assuming that u a W aþd;2 for some d > 0 allows
to deduce, via the fractional version of Sobolev embedding theorem, that
u a W aþd 0;2þd 0 for some positive d 0 < d.

As mentioned above, the key to the proof of the previous theorem is a new
type of fractional Gehring lemma. Rather than holding for functions this new
version holds for what we are going to call ‘‘dual pairs’’. These are introduced
in the following:

Definition 1. Let u a W a;2ðRnÞ and let e a ð0; a=2Þ. Define the function

Uðx; yÞ :¼ juðxÞ � uðyÞj
jx� yjaþe :ð2:4Þ

whenever xA y and the measure

mðAÞ :¼
Z
A

dx dy

jx� yjn�2e
;ð2:5Þ

whenever AHR2n is a measurable subset. The couple ðm;UÞ is called a dual pair
generated by the function u.

The use of the terminology ‘‘dual pair’’ is then motivated by the following
equivalence, which holds whenever u a L2ðRnÞ:

u a W a;2ðRnÞ , U a L2ðR2n; mÞ:

The idea is now the following: the problem of proving self-improving properties
for a function u a W a;2 in Rn is lifted in R2n; we then prove a higher integrability
result for U with respect to the measure m. Essentially, this is a higher integrabil-
ity result for the dual pair ðm;UÞ. This eventually implies the higher di¤erenti-
ability of u. We indeed have

Theorem 2.2 (Fractional Gehring lemma). Let u a W a;2ðRnÞ for a a ð0; 1Þ, and
let ðm;UÞ be the dual pair generated by u in the sense of (2.4)–(2.5) and Definition
1. Assume that the following reverse Hölder type inequality with tail holds for every
s a ð0; 1Þ and for every ball BHRn:
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�Z
B

U 2 dm
�1=2

a
cðsÞ

se1=q�1=2

�Z
2B

Uq dm
�1=q

ð2:6Þ

þ s

e1=q�1=2

Xl
k¼2

2�kða�eÞ
�Z

2kB

Uq dm
�1=q

;

where q a ð1; 2Þ is a fixed exponent and B ¼ B� B. Then there exists a
positive number d a ð0; 1� aÞ, depending only on a, e, q and cðsÞ, such that

U a L2þd
loc ðR2n; mÞ and u a W

aþd;2þd
loc ðWÞ. Moreover, the following inequality holds

whenever BHRn, for a constant cC cðn; a; e; cðsÞ; qÞ:

�Z
B

U 2þd dm
�1=ð2þdÞ

a c
Xl
k¼1

2�kða�eÞ
�Z

2kB

U 2 dm
�1=2

:ð2:7Þ

The main point of the previous theorem is that we are not asserting the higher
integrability of any function U satisfying (2.6). In other words, we are not prov-
ing an extension of Gehring’s lemma with respect to general measures, something
which is on the other hand already available in the literature. Indeed, in the case
of Theorem 2.2, the reverse inequality (2.6) is assumed to hold only on diagonal
balls

BCBðx0; rÞ ¼ Bðx0; rÞ � Bðx0; rÞHR2n;ð2:8Þ

thereby, we do not assume any information on those zones of R2n which are far
from the diagonal, which is here defined by

Diag :¼ fðx; xÞ a R2n : x a Rng:ð2:9Þ

In other words, no reverse inequality holds on non-diagonal balls, or on sets of
the type Bðx0; rÞ � Bðy0; rÞ. What we are really doing with Theorem 2.2 is assert-
ing the higher integrability of U in L2þdðmÞ provided ðm;UÞ is a dual pair, and
this is the crucial point allowing to recover the missing information on non-
diagonal balls. Once Theorem 2.2 is proved, we can then get the higher di¤er-
entiability of functions satisfying a Caccioppoli type inequality with tail, that is
Theorem 2.1.

Sketch of the proof of Theorem 2.1. Let us consider, as in Theorem 2.1, a cut-o¤
function c a Cl

c ðBðx0; 3r=4ÞÞ such that jDcja c=r and cC 1 of Bðx0; r=2Þ; from
now on we shall denote BCBðx0; rÞ and BCB� B. A direct computation using
the definition in (2.5) gives that

mðBÞ ¼ cðnÞrnþ2e

e
:

where cðnÞ is a constant depending only on n, and this holds whenever B is a
diagonal ball as in (2.8). We then have, using the formula in the last display,
that cC 1 on Bðx0; r=2Þ and then inequality (2.3), the estimations below
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r2e

e

Z
B=2

U 2 dma
cðnÞ
jBj

Z
B=2

U 2 dmð2:10Þ

a
c

jBj

Z
B=2

j½uðxÞ � ðuÞB�cðxÞ � ½uðyÞ � ðuÞB�cðyÞj
2

jx� yj2aþ2e
dm

a
c

r2a

Z
B

juðxÞ � ðuÞBj
2
dx

þ c

Z
RnnB

juðyÞ � ðuÞBj
jx0 � yjnþ2a

dy

Z
B

juðxÞ � ðuÞBj dx:

We find an upper bound for the two terms appearing on the right hand side of
(2.10). The fractional version of Sobolev embedding theorem provides us with
the inequality

r�2a

Z
B

juðxÞ � ðuÞBj
2
dxa

cr2e

e2=q

�Z
B

Uq dm
�2=q

ð2:11Þ

for a constant c depending only on n and a, where

q :¼ 2nþ 4e

nþ 2aþ 2e
< 2:

For this see [13, Lemma 4.2]. The estimation of the last term on the right hand
side of (2.10) is similar, and follows taking into account the geometric decay of
the kernel; for this we refer to [13, Proposition 4.2]. The final outcome is the fol-
lowing inequality, which holds whenever s a ð0; 1Þ:Z

RnnB

juðyÞ � ðuÞBj
jx0 � yjnþ2a

dy

Z
B

juðxÞ � ðuÞBj dx

a
cr2e

s2e2=q

�Z
B

Uq dm
�2=q

þ s2r2e

e2=q

Xl
k¼0

2�kða�eÞ
�Z

2kB

Uq dm
�1=q" #2

:

Combining the last estimate with (2.11) and (2.10) yields (2.6). We can therefore
apply Theorem 2.2 that implies the existence of d > 0 such that U a L2þdðB; mÞ
whenever B ¼ B� B and BHRn is a ball centred at the origin. We conclude that
U a L2þd

loc ðR2n; mÞ. We now translate this information in terms of fractional norms
of the original function u. In fact this means that, whenever BHRn is a ball cen-
tred at the origin, then we haveZ

B�B

U 2þd dm ¼
Z
B

Z
B

juðxÞ � uðyÞj2þd

jx� yjnþð2þdÞaþed
dx dy < l:

The last integral can be now written asZ
B

Z
B

juðxÞ � uðyÞj2þd

jx� yjnþð2þdÞ½aþed=ð2þdÞ� dx dy
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and this means that u a W
aþed=ð2þdÞ;2þd
loc ðRnÞ: We have therefore improved the

regularity of u both in the fractional and in the di¤erentiability scale, and Theo-
rem 2.1 follows by renaming the number d considered in its statement and using
the fractional Sobolev embedding theorem. r

3. Nonlocal equations

We now come to nonlocal equations, and report the main facts from [13]. Our
results actually rely on techniques which are nonlinear in nature, and therefore
they hold for nonlinear equations as well. We shall therefore consider forms of
the type

E
j
K ðu; hÞ :¼

Z
Rn

Z
Rn

jðuðxÞ � uðyÞÞ½hðxÞ � hðyÞ�Kðx; yÞ dx dy;ð3:1Þ

where the function j : R ! R satisfies

jjðtÞjaLjtj; jðtÞtb t2; Et a R; Lb 1:ð3:2Þ

The measurable kernel is instead assumed to satisfy

1

Ljx� yjnþ2a
aKðx; yÞa L

jx� yjnþ2a
0 < a < 1:ð3:3Þ

Assumptions (3.1)–(3.3) make the form E
j
K ðu; hÞ coercive in W a;2, and the related

nonlocal equations elliptic. We shall also denote

E
j
K ðu; hÞCEKðu; hÞ for jðtÞ ¼ t:

We are considering solutions u a W a;2ðRnÞ to equations of the type

E
j
K ðu; hÞ ¼ EHðg; hÞ þ

Z
Rn

f h dx Eh a Cl
c ðRnÞ;ð3:4Þ

where, a main point, is that on the right hand side of the previous equation there
appears an operator of order b a ð0; 1Þ in the sense that the kernel Hð�Þ is as-
sumed to satisfy

jHðx; yÞja L

jx� yjnþ2b
0 < b < 1:ð3:5Þ

The family of equations considered in (3.4) allows us to reach the largest nonlocal
generalisation of the classical higher integrability results for solutions to elliptic
equations. These hold for quasilinear non-homogeneous equations of the type

�div aðx;DuÞ ¼ �divðBðxÞgÞ þ f :ð3:6Þ

Note that a main feature of the previous equation is that we have zero and first
order operators on the right. In the nonlocal case this is naturally replaced by
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considering a right hand side that involves the form EHð�Þ with b that can be as-
sumed to be even larger than a, as we shall see in a few moments. The assump-
tions on the data f and g in the right hand side of (3.4) are now as follows; their
optimality will be discussed in Remark 3.3 below. First, we assume that

f a L2�þd0
loc ðRnÞð3:7Þ

for some d0 > 0. The exponent 2� is the conjugate of the relevant fractional
Sobolev embedding exponent, that is

2� :¼
2n

nþ 2a
; 2� :¼ 2n

n� 2a
;

1

2� þ
1

2�
¼ 1:

The terminology is motivated by the fractional version of the classical Sobolev
embedding theorem W a;2 ,! L2�

: Second, we describe the assumptions on g,
which are necessarily more involved. We state them first considering the case
2bb a. In this case we assume the existence of a positive number d0 > 0 such that

g a W 2b�aþd0;2ðRnÞ:ð3:8Þ

Needless to say, we also assume that 2b � aþ d0 a ð0; 1Þ to give ½g�2b�aþd0;2
sense

according to the definition in (2.1); this in particular implies that b < ð1þ aÞ=2.
In the case 0 < 2b < a we instead do not consider any di¤erentiability on g, but
only integrability:

g a Lp0þd0ðRnÞ; p0 :¼
2n

nþ 2ða� 2bÞ :ð3:9Þ

The main result of [13] is then

Theorem 3.1. Let u a W a;2ðRnÞ be a solution to (3.4) under the assumptions
(3.2)–(3.3) and (3.5)–(3.9). Then there exists a positive number d a ð0; 1� aÞ, de-
pending only on n, a, L, b, d0, but otherwise independent of the solution u and of
the kernels Kð�Þ, Hð�Þ, such that

u a W
aþd;2þd
loc ðRnÞ:ð3:10Þ

An immediate corollary follows when considering the case Hð�Þ ¼ Kð�Þ and
jðtÞ ¼ t, thereby considering the linear equation

EKðu; hÞ ¼ EKðg; hÞ þ
Z
Rn

f h dx Eh a Cl
c ðRnÞ:

In this case Theorem 3.1 allows to get the following particularly neat result:

f a L2�þd0
loc ðRnÞ; g a W aþd0;2ðRnÞ ) u a W aþd;2þd

loc ðRnÞ;ð3:11Þ

for some positive d a ð0; d0Þ.
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The proof of Theorem 3.1 is based on an extended version of Theorem 2.2,
that takes into account additional terms stemming from the right hand side of
the equation in (3.4). More precisely, the starting point of the proof of Theorem
3.1 is the following Caccioppoli type inequality:

Z
B

Z
B

juðxÞcðxÞ � uðyÞcðyÞj2

jx� yjnþ2a
dx dyð3:12Þ

a
c

r2a

Z
B

juðxÞj2 dxþ c

Z
RnnB

juðyÞj
jx0 � yjnþ2a

dy

Z
B

juðxÞj dx

þ crnþ2a
�Z

B

j f ðxÞj2� dx
�2=2�

þ crnþ2ðg�2bþaÞ
Xl
k¼0

2ðg�2bÞk
�Z

2kB

Z
2kB

jgðxÞ � gðyÞj p

jx� yjnþpg dx dy
�1=p" #2

:

This holds whenever Bðx0; rÞHRn is a ball, with c a Cl
c ðBðx0; 3r=4ÞÞ being a

cut-o¤ function such that jDcja c=r; the constant c depends only on n, L, a, b
and the exponent p depends on n, a, b, d0, while a < g < 2b � a. Note that (3.12)
reduces to (2.3), when f ¼ g ¼ 0. As in the sketch of the proof of Theorem 2.1,
from (2.3) it follows a reverse inequality of the type in (2.6), but with additional
terms. From this (3.10) follows again by an extension of Theorem 2.2, that takes
into account reverse inequalities with additional terms (in this case, those coming
from f and g). In this note we prefer giving a description of the simpler case of
Theorem 2.2 for the sake of brevity and clarity of exposition.

Remark 3.1 (Peculiarity of the nonlocal case). At first sight, the natural non-
local analog of the results valid for local equations would be to prove that
u a W

a;2þd
loc , for some d > 0. Therefore, Theorem 3.1 reveals a new, unexpected

property of solutions to nonlocal equations that has in fact no analog in the local
case. Indeed, in order to get some higher gradient di¤erentiability of the W 1;2-
solutions to (1.1), it is then necessary to assume that the entries of the matrix
Að�Þ belong themselves to a fractional Sobolev space, as shown for instance in
[12, 15]. To see this already in the one dimensional case n ¼ 1, it is su‰cient to
consider the following equation:

d

dx

�
aðxÞ du

dx

�
¼ 0;

1

L
a aðxÞaL;ð3:13Þ

and to note that

x !
Z x

0

dt

aðtÞ

is a solution with að�Þ being any measurable function satisfying nothing but the
inequalities in (3.13). It is then easy to build similar multidimensional examples.

353a fractional gehring lemma



Remark 3.2 (Previous results). We mention a very recent and interesting paper
of Bass & Ren [1] who considered the function (called Marcinkiewicz integral)

GðxÞ :¼
�Z

Rn

juðxÞ � uðyÞj2

jx� yjnþ2a
dy

�1=2
;

and proved that G a L2ð1þdÞðRnÞ for some positive d depending only on n, a, L
and d0. The equations considered in [1] are of the type

EKðu; hÞ ¼
Z
Rn

f h dx Eh a Cl
c ðRnÞ

with f a L2þd0 , for some d0 > 0. The function Gð�Þ can be interpreted, dimension-
ally speaking, as a fractional gradient of u of order a. Once this result is achieved,
the higher integrability as stated in (2.2) then follows via a deep characterisation
characterisation of fractional Sobolev spaces via Bessel potential spaces that rests
on Littlewood-Paley theory ([4, 16]).

Remark 3.3 (Optimality of the assumptions on f and g). The assumptions on
f and g considered in (3.7)–(3.9) are the natural counterparts of those usually
considered for the classical case (3.6). Their optimality can be checked by using
a few formal arguments applied on the linear model equation

ð�4Þau ¼ ð�4Þbgþ fð3:14Þ

that can be indeed treated by di¤erent means via Fourier analysis or Riesz poten-
tials. Needless to say, the case of (3.14) belongs to the family described by (3.4),

as can be seen by taking Kðx; yÞ ¼ jx� yj�n�2a and Hðx; yÞ ¼ jx� yj�n�2b. The
following arguments will be purely formal; they are only aimed at checking that
the exponents considered for f and g in (3.7)–(3.9) are the right ones. First of
all, since here we are dealing with self-improving properties, and since all the
numbers d0 and d are bound to be small, then with no loss of generality we will
check the optimality of the exponents for f and g in the ‘‘limit case’’ d0 ¼ d ¼ 0.
We start by f , therefore considering the equation ð�4Þau ¼ f , for simplicity
when 2a < 1. In this case we have that f a Lq implies u a W 2a;q. Since on the
other hand we are dealing with equations with measurable coe‰cients, W 2a;q-
regularity is not achievable, and we look for the corresponding W a;2-regularity.
Therefore we recall the imbedding

W 2a;q ,! W a;2 if 2a� n

q
¼ a� n

2
:

This in fact gives q ¼ 2�, that is (3.7) for d0 ¼ 0. As for g, we now consider the
equation ð�4Þau ¼ ð�4Þbg. Let us first observe that in the case a ¼ b it is obvi-
ous to take g a W a;2, as in (3.11) with d0 ¼ 0. In the case 2b > a let us formally
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write qauQ4b�a=2gQq2b�ag a L2: Therefore, in order to obtain that u a W a;2 it
remains to require that g a W 2b�a;2. Finally, in the case 2b < a, we use the same
formal argument, interpreting W 2b�a;2 as the dual of W a�2b;2. The fractional
Sobolev embedding theorem then gives

W a�2b;2 ,! L
2n

n�2ða�2bÞ:

But now

ðL
2n

n�2ða�2bÞÞ0 ¼ L
2n

nþ2ða�2bÞ;

and therefore we conclude that a su‰cient condition for g to belong to the dual of
W a�2b;2 is

g a L
2n

nþ2ða�2bÞ;

that is (3.9) with d0 ¼ 0.

4. Ideas from the proof of Theorem 2.2

The proof of Theorem 2.2 is rather complex, and we can only try to give a brief
sketch of the arguments, referring the reader to [13] for the rest. The whole issue
can be reduced to prove the following level set inequality of the function U :

Z
Bðx0; tÞBfU>lg

U 2 dma cl2�q

Z
Bðx0; sÞBfU>lg

Uq dmþ cl0

ðs� tÞnþ2e
;ð4:1Þ

which is bound to hold whenever Bðx0; %0ÞHBðx0; tÞHBðx0; sÞHBðx0; 3%0=2Þ
with r < t < s < 3r=2, and for those l satisfying

l0 :¼
1

ðs� tÞnþ2e

Xl
k¼1

2�kða�eÞ
�Z

2kB

U 2 dm
�1=2

k l:

The assertion, that is (2.7), then follows using truncation arguments, Cavalieri’s
principle, and an iteration lemma. We therefore briefly discuss the proof of (4.1).
Since the main information at our disposal, that is the reverse inequality (2.6), is
available only on diagonal balls as in (2.8), and not on every ball in R2n, we start
the estimation of the integral on the right hand side of (4.1) by splitting

Z
fU>lg

U 2 dm ¼
Z
fU>lgB‘‘zone close to the diagonal’’

U 2 dmð4:2Þ

þ
Z
fU>lgB‘‘zone far from the diagonal’’

U 2 dm:
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This actually means that we are going to use two di¤erent exit time arguments to
build two Calderón-Zygmund coverings of the level set Bðx0; tÞB fU > lg; the
first is aimed to cover the zone close to the diagonal, while the second to cover
the zone far from the diagonal. The diagonal covering is obtained via a direct
exit time argument based on Vitali’s covering lemma, and is made of a countable
family of diagonal balls fBjg of the type in (2.8), on which it happens that

Z
Bj

U 2 dmQl2:

These balls are aimed at covering that part of the level set surrounding the
diagonal. The second covering is instead obtained directly using the classical
Calderón-Zygmund covering argument and is made of a countable family dyadic
cubes fKg, for it happens that

Z
K

U 2 dmQMl2

and

U aMl holds a:e: in Bðx0; tÞn
[

KAUl

K:

The constant Mb 1 is chosen large enough to make, in a sense, the cubes K
smaller than the balls from the family fBjg.

We then proceed in sorting the cubes from the non-diagonal covering in two
classes: those that are close to the diagonal Diag (defined in (2.9)), and those
cubes which are suitably far from the diagonal. The cubes that are close enough
to the diagonal can be covered by the diagonal balls fBjg coming from the diag-
onal covering. The other ones need a di¤erent treatment. How to decide if a cube
K is far from the diagonal? For us this means that, with lðKÞ denoting the side
length of the cube K, it happens that

distðDiag;KÞb lðKÞ:ð4:3Þ

This condition relates in some sense the size of the exit time cube K with the
distance to the diagonal and, ultimately, to the size of the kernel Kð�Þ on the
cubes K. The analysis then proceeds in two di¤erent stages. In a first one, we
use inequality (2.6) on the diagonal balls fBjg; this, together with a proper use
of the exit time condition to treat the tail terms, allows to deal with the first inte-
gral appearing on the right hand side of (4.2).

In a second stage, we deal with the cubes fKg which are far from the diago-
nal, and that therefore satisfy (4.3). The lack of reverse inequalities on the cubes
K is compensated by the fact that, far from the diagonal, a di¤erent type of re-
verse inequality automatically hold. This inequality reads as
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�Z
K

U 2 dm
�1=2

a c
�Z

K

Uq dm
�1=q

ð4:4Þ

þ c

e1=q

� lðKÞ
distðDiag;KÞ

�aþe�Z
K1�K1

Uq dm
�1=q

þ c

e1=q

� lðKÞ
distðDiag;KÞ

�aþe�Z
K2�K2

Uq dm
�1=q

;

where K, being a dyadic cube in R2n, admits a decomposition K ¼ K1 � K2 and
K1, K2 are themselves dyadic cubes from Rn with the same side lengths. The con-
stant c depends only on n, a and the main point is that the exponent q is such that
q < 2.

Inequality (4.4) is bound to replace (2.6) far from the diagonal, but it unfortu-
nately involves two remainder terms that prevents it to be a real reverse Hölder
inequality. These terms are those in the last two lines of (4.4) and involve inte-
grals on additional dyadic cubes, that are K1 � K1 and K2 � K2. The main prob-
lem is now that these cubes have not been selected via an exit time argument and
therefore there is no control on the average of U over them. In turn, this does
not allow to employ the usual covering arguments. Instead, we make use of very
delicate combinatorial arguments that at the end will work via a subtle combina-
tion of geometric information coming from the sorting of the cubes, the size of
the measure when certain distance conditions from the diagonal are considered,
and finally the size of the coe‰cients appearing on the right hand side of (4.4).
Once this is achieved both integrals appearing on the right hand side of (4.4)
can be estimated, and this opens the way to the proof of (4.1). The details are at
this point extremely technical, and we once again refer to [13].
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