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1. The Lane-Emden equation

1.1. A question of Paul Rabinowitz. Consider for p > 2 the boundary value
problem

�Du ¼ juj p�2
u on WHHRn; nb 3; u ¼ 0 on qW:ð1:1Þ

Recall that for 2 < p < 2� :¼ 2n
n�2 there exists a solution u > 0 of equation

(1.1), either obtained from 0a v a H 1
0 ðWÞ with kvkL p ¼ 1 and minimizing the

Sobolev quotient

QðvÞ ¼ k‘vk2L2

kvk2L p

¼ min
0Aw AH 1

0
ðWÞ

QðwÞ ¼ SpðWÞ;

or obtained as a mountain-pass critical point of the functional

EpðuÞ ¼
1

2

Z
W

j‘uj2 dx� 1

p

Z
W

juj p dx; u a H 1
0 BLpðWÞ:

For p ¼ 2� a dichotomy occurs. On the one hand, by a result of Pohozaev
[30] on any star-shaped domain WHHRn any (smooth) solution u of (1.1) nec-
essarily vanishes. Moreover, the Sobolev quotient S2� ðWÞ is never attained on a
domain WARn.

On the other hand, when W ¼ BR2
nBR1

ð0Þ for some 0 < R1 < R2, then there
exists a radial solution u > 0 of (1.1), which can be obtained as a minimizer of
the Sobolev quotient among radially symmetric functions. In addition we have
the following general existence result of Coron [7].

Theorem 1.1. Suppose 0 B WIBR2
nBR1

ð0Þ, where R2=R1 bRg 1. Then there
exists a solution u > 0 of (1.1).



Coron’s proof uses Struwe’s [33] quantization of the energy levels where the
Palais-Smale condition for E2� fails, coupled with a clever minimax argument.
See also [34] for further background.

Prompted by Coron’s result, as recalled by Brezis [4], Rabinowitz asked:
Suppose W is as in Coron’s theorem. Does there exist a solution u > 0 of (1.1)
for every p > 2�?—Partial results were obtained by Dancer, del Pino, Felmer,
Ge, Jing, Molle, Musso, Pacard, Passaseo, Wei, and others (see [8], [9], [10],
[15], [24], [29]), but so far there is no general theory.

1.2. Good notions of ‘‘solution’’. Should one insist on classical solutions or should
one also admit solutions with ‘‘mild’’ singularities?—Note that when nb 7 by a
result of Jäger-Kaul [19] the singular weakly harmonic map u : x 7! x=jxj is abso-
lutely energy-minimizing among maps u : Bn

1 ð0Þ ! Sn ¼ qBnþ1
1 ð0Þ with boundary

data uðxÞ ¼ x for jxj ¼ 1, where we let Bn
r ðx0Þ ¼ fx a Rn; jx� x0j < rg for any

r > 0, x0 a Rn.
Jointly with Melanie Rupflin [31] we investigated this question in the simple

case of radially symmetric solutions of (1.1). Refining results on the asymptotic
decay of radial solutions of (1.1) due to Fowler [12] and Ni-Serrin [26] we showed
that on the one hand the weak solution (with a suitable constant b� ¼ b�ðn; pÞ > 0)

u�ðxÞ ¼ b�jxj�
2

p�2 a H 1
locBL

p
locðR

nÞ

of (1.1) on Rn is in the H 1
locBL

p
loc-closure of the set of smooth solutions.

On the other hand we observe that for 2� < p < 2 2n�1
n�2 there are oscillating

distribution solutions u a W
1; n

n�1

0 BLp�1ðB1ð0ÞÞ of (1.1) on B1ð0Þ. The latter is in
striking contrast with Pohozaev’s [30] result. A ‘‘good’’ nootion of weak solution
should therefore allow the former but rule out the latter behavior.

1.3. ‘‘Stationary’’ solutions. Prompted by work of Evans [11], Frank Pacard [27]
proposed the following definition. A weak solution u a H 1BLpðWÞ of (1.1) is
stationary, if there holds

d

de

����
e¼0

Epðu � ðid þ etÞÞ ¼ 0; Et a Cl
0 ðWÞ:

He obtained the following result. For given p > 2� let m ¼ mðpÞ ¼ 2p
p�2 < n.

Theorem 1.2 (Pacard [27]). Let ub 0 be a ‘‘stationary’’ weak solution of (1.1),
and suppose that 2� < p < 2þ ¼ 2ðn�1Þ

n�3 . Then u a C2ðWnSÞ, where the singular set
S is closed with Hn�mðSÞ ¼ 0.

Remark 1.3. i) In [31] we observe that the weak solution u�ðxÞ ¼ b�jxj�
2

p�2 of
(1.1) on Rn is stationary.

ii) Alternatively, one could restrict attention to non-negative weak solutions
of class H 1BLpðWÞ. Such a restriction would also seem natural from the point
of view of applications in geometry such as in the Yamabe problem. See also [32].
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1.4. Scaling. The exponent m in Pacard’s result reflects the fact that whenever u
is a solution of (1.1), then so is

uRðxÞ ¼ R
2

p�2uðx0 þ RxÞ; R > 0; x0 a Rn:

This scaling property distinguishes a particular Morrey exponent. Recall that
a function f belongs to the Morrey space Lp;lðWÞ with 0 < l < n if

k f k p

L p; lðWÞ :¼ sup
x0 ARn; r>0

rl�n

Z
Brðx0ÞBW

j f j p dx < l:

Note the invariance of the Morrey norm kuk p

L p; mðRnÞ ¼ kuRk p

L p; mðRnÞ, R > 0.

Pacard’s results in particular yield that any ‘‘stationary’’ solution of (1.1) lies
in the space Lp;mðWÞ.

1.5. Monotonicity. Pacard’s key tool is a novel monotonicity formula; he shows
that for a stationary weak solution u of (1.1) the map

r 7! rm�n

Z
Brðx0Þ

� j‘uj2

2
þ juj p

p

�
dxþ 1

p� 2

d

dr

�
rm�n

Z
qBrðx0Þ

u2do
�

is non-decreasing. Note that the expected minus-sign in the volume integral is
magically changed into a plus-sign at the expense of adding the derivative of a
non-negative term of lower order.

2. Gradient flow

For given smooth initial data u0 a H 1
0 BLpðWÞ, T� al, consider the Cauchy

problem

ut � Du ¼ juj p�2
u on W� ½0;T�½;

u ¼ 0 on qW� ½0;T�½;
ujt¼0 ¼ u0:

ð2:1Þ

2.1. Energy identity. Multiplying (2.1) by ut and integrating, with E ¼ Ep we
obtain the equation

EðuðTÞÞ þ
Z T

0

Z
W

jutj2 dx dt ¼ Eðu0Þ; 0 < T < T�:ð2:2Þ

This fundamental identity shows that the flow (2.1) may be regarded as the
L2-gradient flow for the energy E ¼ Ep.

2.2. Finite-time blow-up and global existence. Again a dichotomy occurs. On the
one hand, as observed by Kaplan [20] and Fujita [14], for data u0 with Eðu0Þ < 0
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the solution to (2.1) blows up in finite-time. To see this, simply multiply (2.1) by u
and use (2.2) to obtain the inequality

1

2

d

dt
kuðtÞk2L2 ¼ �

Z
W�ftg

ðj‘uj2 � juj pÞ dx ¼ �2EðuðtÞÞ þ p� 2

p
kuðtÞk p

L p

b�2Eðu0Þ þ c0kuðtÞk p

L2 b c0kuðtÞk p

L2

for some constant c0 > 0. Hence

kuðtÞkL2 b ðku0kð2�pÞ=2
L2 � c0ðp� 2ÞtÞ�1=ðp�2Þ;

and uðtÞ must blow up at the latest at time T ¼ c�1
0 ðp� 2Þ�1ku0kð2�pÞ

L2 .
On the other hand, for data u0 which are small in the C1-norm the maximum

principle gives global existence, as can be seen by comparing a solution u of (2.1)
with a su‰ciently small multiple u ¼ sj1 of the first eigenfunction j1 > 0 of the
Laplacian on W, satisfying

�Dj1 ¼ m1j1 on W; j1 ¼ 0 on qW:

Note that for su‰ciently small s > 0 we have s p�2kj1k
p�2
Ll < m1 and there holds

�Du� u p�1 ¼ ðm1 � s p�2j
p�2
1 Þu > 0 on W; u ¼ 0 on qW:

Hence if �ua u0 a u initially, the inequality juja u will be preserved by the
flow.

2.3. ‘‘Borderline’’ solutions. Following Ni-Sacks-Tavantzis [25], for data 0a
u0 a C1ðWÞ not vanishing identically and any l > 0 let ul be the solution of
(2.1) with uljt¼0 ¼ lu0. Noting that Eðlu0Þ ! �l as l ! l from the results in
the preceding section we then conclude

0 < l� :¼ supfl > 0; ul is globalg < l:

By the maximum principle, moreover, as l " l� we have monotone convergence
ul " u� al: a ‘‘borderline’’ (weak) solution of (2.1).

Chou-Du-Zheng [6] showed partial regularity of these ‘‘borderline’’ solutions
u�. Their proof uses the (parabolic) monotonicity formulas of Giga-Kohn [16] for
(2.1) and Struwe [34] for the heat flow of harmonic maps, respectively, and the
partial regularity theory from [34].

One might hope that for suitable u0 we have convergence u�ðtÞ ! ul as
t ! l, where ul is a non-trivial solution of (1.1). However, Matano-Merle [23]
observe that radial solutions of (2.1) on a ball or on Rn for compactly supported
initial data u0 always either blow up in finite time or uniformly decay to 0 as
t ! l. Since we already suspect that ‘‘interesting’’ solutions in general need not
be smooth, we are thus led to consider also solutions u to (2.1) that blow up in
finite time.
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3. Recent results

3.1. Results for the flow (2.1). Jointly with Simon Blatt in a recent paper [2] we
obtain a Pacard-type monotonicity formula for the flow (2.1), thereby using the
framework of [34]. More precisely, let j ¼ jðjxjÞ a ClðRnÞ be a compactly sup-
ported cut-o¤ function such that 0a ja 1 and let

Gðx; tÞ ¼ 1

ð4pjtjÞn=2
e
�jxj2

4jtj ; x a Rn; t < 0;

be the fundamental solution to the heat equation with singularity at ð0; 0Þ. For
any ðx0; t0Þ a Rn � R also set

Gðx0; t0Þðx; tÞ ¼ Gðx� x0; t� t0Þ:

Given x0 a W, t0 > 0 define

DjðRÞ ¼ D
j
ðx0; t0ÞðRÞ ¼

Rm

2

Z
W�ft0�R2g

j‘uj2j2ðx� x0ÞGðx0; t0Þ dx

and for qb 2 also let

F j
q ðRÞ ¼

Rm

q

Z
W�ft0�R2g

jujqj2ðx� x0ÞGðx0; t0Þ dx:

Then setting

H jðRÞ ¼ p� 2

pþ 2
ðDjðRÞ þ F j

p ðRÞÞ þ
1

pþ 2

� d

dR
ðRF j

2 ðRÞÞ � A
j
2 ðRÞ

�
;ð3:1Þ

we show that for any x0 a W with a suitable cut-o¤ function j for all R > 0 there
holds

R
d

dR
H jðRÞb Rm

4

Z
W�ft0�R2g

jx � ‘uþ 2ðt� t0Þut þ auj2

jt0 � tj j2Gðx0; t0Þ dxð3:2Þ

þ A
j
0 ðRÞ þ BjðRÞ;

where Bj is a boundary term and where Aj
0 , A

j
2 are error terms induced by local-

ization, containing derivatives of the cut-o¤ function j and involving combina-
tions of u and ‘u of lower order with respect to Dj þ F j

p .
This result improves the Giga-Kohn [16] monotonicity result (which involves

the di¤erence DjðRÞ � F j
p ðRÞ instead of the sum) and shows conservation of the

scale invariant Morrey norm up to blow-up time on domains of size proportional
to remaining time. If W is not convex the boundary term Bj may also be negative.
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For this reason, on a general domain in [2] we derive these Morrey estimates only
locally away from qW; their extension up to the boundary will be treated in our
forthcoming paper [3].

Moreover, by adapting the potential theoretic arguments of Adams [1] we ob-
tain an e-regularity result for weak solutions u a Lp;m of (2.1) with small Morrey
norm, which improves the regularity estimates of Chou-Du-Zheng [6] for smooth
solutions.

We also show that at any first blow-up point ðx0;TÞ a W� �0;l½ for a suitable
cut-o¤ function j and any su‰ciently small R > 0 there holds H

j
ðx0;TÞðRÞb e0,

where e0 > 0 is an absolute constant. Together with (3.2) this allows to show the
existence of a non-trivial, partially regular, self-similar tangent map at any first
blow-up point of type I; moreover, at any first blow-up point of type II (that
is, not of type I) by arguing similar to Hamilton [17] we obtain a non-trivial
tangent map which is a smooth eternal solution of the flow (2.1). This result ex-
tends results of Matano-Merle [23] for radially symmetric solutions to the general
case.

3.2. Results for the time-independent problem (1.1). By applying our e-regularity
result to solutions of (1.1) we are able to improve Pacard’s partial regularity
result as follows.

Theorem 3.1. For any 2� < p < l let u a H 1BLp be a ‘‘stationary’’ weak
solution of (1.1). Then u a C2ðWnSÞ, where S is closed with Hn�mðSÞ ¼ 0.

That is, we are able to remove Pacard’s additional assumption that ub 0 and
his restriction on the range of admissible exponents p in Theorem 1.2.

In fact, by applying the potential theoretic approach of Adams [1] to (not nec-
essarily stationary) weak solutions u a H 1BLp;m of (1.1) we obtain the following
estimates, which together with Pacard’s work imply Theorem 3.1.

Theorem 3.2. Let u a H 1BLp;mðB2ð0ÞÞ with kukL p; mðB2ð0ÞÞ a e be a weak solu-
tion of (1.1). Then u a C1ðB1ð0ÞÞ with

kukLlðB1ð0ÞÞ þ k‘ukLlðB1ð0ÞÞ aCkukL p; mðB2ð0ÞÞ:

Still using ideas and techniques from Adams [1], we also have estimates remi-
niscent of Sobolev’s embedding and the standard Lp-estimates for the Laplace
operator which for any weak solution u a H 1

0 BLp;m of (1.1) yield the bounds

k‘ukL2; mðWÞ aCkDuk
L

p
p�1

; mðWÞ
¼ Ckuk p�1

L p; mðWÞ aCk‘uk p�1
L2; mðWÞ:

In particular, either uC 0 or k‘ukL2; mðWÞ b c1 > 0, which gives a possibly op-
timal threshold result for solutions uA 0 of (1.1). Related to this one might ask
whether there exist minimizers of the Morrey norm ratio and if such minimizers
correspond to solutions of (1.1); moreover, it would be interesting to classify all
such ‘‘ground states’’.
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4. Open problems

If W is convex, and if u0 a H 1
0 BLp;mðWÞ with ‘u0 a L2;mðWÞ for su‰ciently small

e > 0 and suitable r0 > 0 satisfies the condition

sup
x0 ARn;0<r<r0

rl�n

Z
Wrðx0ÞBW

ðj‘u0j2 þ ju0j pÞ dx < e;ð4:1Þ

then our results give the a-priori Ll-bound

kukðtÞkLlðWÞ aCt�
2

p�2ð4:2Þ

on a uniform time interval 0 < t < T for the solutions uk of (2.1) for smooth
initial data u0k ! u0 in H 1

0 BLpðWÞ (k ! l) uniformly satisfying the bound
(4.1). Hence, on any convex domain the Cauchy problem for (2.1) is locally
well-posed for data u0 in this class. In our forthcoming work [3] we extend this
result to a general domain.

For large data u0 a H 1
0 BLp;mðWÞ a-priori bounds like (4.2) are not yet avail-

able. Thus we may ask if (2.1) is locally well-posed for data u0 a H 1
0 BLp;mðWÞ in

general. See [5] for a related study.
Moreover, it would seem desirable to understand and exhaustively classify the

di¤erent ways how solutions to equation (2.1) can blow up, extending the work of
Friedman-McLeod [13], Herrero-Velazquez [18], Matano-Merle [21], [22], Troy
[36], Weissler [37], and others.
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