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Mechanics — Heat and mass transfer by convection in multicomponent Navier-
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ABSTRACT. — Because of its great geophysical relevance (engineering geology, volcanism, subsur-
face fluid motions, ...) and the frequent applications (industrial processes, crystal growth, thermal
engineering, air and water pollution, .. .) in the past as nowadays, the heat and mass transfer by con-
vection in horizontal layers has attracted the attention of many scientists. In the present paper, this
problem is investigated in the general case of a horizontal layer L—filled by a Navier-Stokes multi-
component fluid mixture—heated from below and salted (partly from below and partly from above)
by m e N salts Sy, Ss,...,S,. Generalizing the Auxiliary System Method (AS Method), recently
introduced for the Darcy fluid mixtures in porous layers [32]-[34], it is shown that: i) for each
Fourier component of the perturbation fields there exists an own nonlinear evolution system (auxil-
iary system); ii) via the auxiliary system, a linearization principle can be obtained; iii) the absence of
subcritical instabilities and the property of the linear stability conditions to guarantee also the global
nonlinear L?-stability hold; iv) the Routh-Hurwitz stability conditions are characterized ¥m € N and
handled for m < 2; v) the looking for hidden symmetries and skew-symmetries allows to guaran-
tee—via simple algebraic conditions in closed form—the global nonlinear stability.
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1. INTRODUCTION

Let L be a horizontal layer, filled by a multicomponent Navier-Stokes fluid mix-
ture, heated from below and salted by m chemical species (“salts”) Sy, Sa, ..., Sy,
partly from above and partly from below. For its importance in the geophysical
and industrial applications, a great attention has been payed, in the past as
nowadays, to the onset of convection in L {see [1]-[16], [38] and the references
therein}. In particular, for m < 2 very relevant results have been obtained inves-
tigating, either linearly or nonlinearly, the stability of the thermal conduction
solution {see [1]-[31] and the references therein}. But, for m > 1, only rarely it
has been obtained that the linear instability captures completely the physics of
the phenomenon i.e. the: a) absence of subcritical instabilities; b) global nonlinear
stability guaranteed by the conditions of linear stability.

In fact, although many efforts and relevant procedures have been introduced,
the absence of subcritical instabilities has generally been obtained under restric-
tive conditions, especially on the initial data {see, for instance, [3], [7]-[9], [31],
[38]}. On the contrary, in the case of porous layers filled by Darcy fluid mixtures,
recently, it has been obtained that the linear instability captures completely the
physics of the onset of convection. This result is due to the introduction, {see
[32]-[34]}, of a new approach named Auxiliary System Method (AS Method).
Our aim is to generalize the AS Method to the Navier-Stokes fluid mixtures in
order to obtain that, also for them (for any number of salts dissolved in), the
physics of the problem is completely captured by the linear instability. We begin
by considering, in the present paper, the free-free case.

2. PRELIMINARIES

Let Oxyz be an orthogonal frame of reference with fundamental unit vectors
i, j, k (k pointing vertically upwards). We assume that m different chemical spe-
cies S, («=1,2,...,m), have dissolved in the fluid and have concentrations C,
(. =1,2,...,m), respectively and that the equation of state is

m

p=po|l = AT = To) + > 4,(C,— C,)|,

=1
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N

where py, To, C, (2 =1,2,...,m), are reference values of the density, tempera-
ture and salt concentrations, while the constants 4, A4, denote the thermal and
solute S, expansion coefficients respectively. Combining the Navier-Stokes law
with energy and mass balance together with the Boussinesq approximation, one
obtains the fundamental Navier-Stokes equations governing the isochoric mo-
tions given by

Po(Vi + V- Vv) = —=Vp + pyvAv
m
—gpo |1 = A(T = To) + Y A,(C, = Co) |,
(2.1) o=l
V-v=0,
T, +v-VT = kAT,
Cyu+v-VC,=k,AC,, a=1,2,....m,

where v, p, v, g, k, k, represent velocity, pressure, viscosity, gravity, thermal
diffusivity and solutal diffusivity respectively. To (2.1) we append the boundary
conditions

TO)=T,, T(d) =T,
0)=0C,, Cyd)=C,, a=1,2,....m
k=0, onz=0,d.

(2.2)

T 0

The boundary value problem (2.1)—(2.2) admits the thermal conduction solution
(v=10)

_ oT _
T=T -7z Ci=Cy-

(551)27
o=1,2....m, 6T=T,—T, 6Ci=C,—C,,

(2.3)

to which it is associated the pressure p determined from the equation

d— _ m _ R
(24) L —pg|1 = AT = To) + 3 Au(C, - G|,
a=1
We set
(25) vV=vV+u p=p+mn, T:T+97 C1:6a+q)a

and introduce the non dimensional scalings
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d2

_ T . ) —x* — 0 T*
t_tk, u ud, T = ndz, x=x"d, 0=0"T7,
3 12 30C,| Py \1/2
(2.6) o= (@ T <Agkd3> (@) ( Aygkd? ) ’
' Agd®|T]| AgdP|3C,| P, 12
R () = ()
Pr = %7 Poc :kk H= Sgn(5T>7 Hfl = Sgn(éca)’

where R and R, are thermal and solute Rayleigh numbers while P, and P, are the
fluid and salts Prandtl numbers. The non dimensional non linear perturbation
equations are then (dropping the asterisks)

m
Pr‘lu, 4+u-Vu=—-Vr+ Au+ (RH — ZR%(D“)I(,
a=1
(2.7) V.u=0,
0, + Pu-VO = HRw + A0,
P,(®,+ Pu-VO,) = H,Rw+AD,, o=12,....m

under the boundary conditions
(2.8) w=0=®,=0 onz=0,1, a=12...,m,

with w = u - k. We assume (as usually done, in stability problems in layers) that

i) the perturbations (u, v, w, 0, ®;, @y, ..., d,,) are periodic in the x and y direc-
tions, respectively of periods 27/a,,2n/ay;
ii) Q=1[0,2%/ay] x [0,27/a,] x [0,1] is the periodicity cell;
iii) u, @y, dy,..., D, 0 are such that together with all their first derivatives and
second spatial derivatives are square integrable in Q, V¢ € R" and can be ex-
panded in a Fourier series uniformly convergent in Q

and denote by L;(Q) the set of functions such that
1) @:(x,0) e Qx RT — ®(x,1) e R, ® e W>2(Q), Vte R", @ is periodic in
o . 2m 2 .
the x and y directions of period —n, i respectively and (®),_, = (®)._, =0;
a’ ay

2) @, together with all the first derivatives and second spatial derivatives, can be
expanded in a Fourier series absolutely uniformly convergent in Q, Vi € R*.

Since the sequence {sinnznz}, (n=1,2,...) is a complete orthogonal system for
L*(0,1), by virtue of periodicity, it turns out that V® e L2(Q), there exists a
sequence {®,(x, y, 1)} such that
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= i:(ibn sinnnz, a—q) isi sinnnz,

(2.9)
A = a0, AD = — an&),, sinnznz,
o
with
22 o 2 o2
(2.10) ¢, =a’+n’n’, @’ =a;+a;, A= A1+82’ Al:ﬁ—i_ﬁ

and the series being absolutely uniformly convergent.
Finally, setting

v du

the horizontal components of u are given by {see [1], p. 24}
1 1
(2.12) u= E(sz +{), V=3 (wy- = y)

ov, duy,

o0
and in view of u = Z u,, (, = F I it follows that
n=1

10w O, 1w,
(2.13) un:?(axgﬁoﬁ_y)’ v":_(ayvavz_5>

1
V-u, = (;Alwn + W">z =0.

REMARK 2.1. Since the stability of the null solution of (2.7)—(2.8) makes sense
only in a class of solutions in which it is unique, we eliminate any other rigid
solution by requiring the “average velocity condition”

(2.14) /udQ—/de—O.
Q Q

3. NONLINEAR SYSTEM GOVERNING THE NTH-FOURIER COMPONENT
OF THE PERTURBATION FIELDS

Let (IT,u, 0, ®y,...,®,) be solution of (2.7)—(2.8) with

0 0 o
H:;Hn, u:;un, 0= 0,, ‘I)azzq)am

n=1 n=1
V-u, =0,
w,=u,-k=0,=0,=0, z=0,1, a=1,..

NgE

(3.1)

.m
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and
o0
W)y =0, (W), =u® =3 "u?,
n=1
o0
(3.2) On)icg =0, (0),cg =0 =0,
n=1
( Wl)t 0 (D;g ) ((Dfx)t:O = (Do(tO) = Z (Do(zg)ﬂ
n=1

), 00, éo) being assigned arbitrary initial data such that V-u(® = 0. In view
f (2 7)-(2.8) and (3.1)—(3.2) the i.b.v. problem at stake can be written

m

Au, + (Re -y Rﬂ)w,)k

a=1

o0 . ., 0
> (r5) =X
00 o0
—ZVH,,—Zqun,

n=1 n=1

(3.3) )
Zv u, =0, Zae —ZHRW,H—AQ — P, u-V0,
n=1 n=1
Za— =Y _(HRw, + ADy,) — P,P, Y " u- Vb,
n=1 n=1 n=I

under the initial boundary conditions

0
(3.4> (un)z:O:“'(I)v (H,I)ZZOZH}EO), (CDW')IO_(DO(M)’ a=1,....m,
u,-k=0,=0,, =0, z=0,1, a=1,...,m.

According to the guideline of the AS Method [34], to (3.3)—(3.4) we associate the
auxiliary system

ou _ m _ _
P _ Ag, (R - R“CI)m)k Vi1, — u -V,
r u, + (RO ; \% u-Vu,,
0 - _ _
(3:5) VoG, =0, =0, = HRW,+ A0, - Pu-Vi,
0 - _ _ _
P, a_q)m = H,R,w, + ADy, — P,Pu- Vo,
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under the i.b.c. (a=1,...,m)

36) {(‘ o =al Beo =0 (Bag =00 o=t
u, -k=0,=0,,=0, z=0,1, a=1,.
The following basic theorem holds.
THEOREM 3 1. Le (u,,,H,,,dDM, ..., ®,,) be,Yn e N, solution of (3.5)—(3.6). Then
the series Z u,, Z 0,, Z d)om, (o« =1,...,m) are convergent and it follows that

0] o0 o0
37) > u,=u, > 0,=0, Y By =0, (x=1,...,m).

n=1 n=1 n=1

PRrROOF. Setting

:zq:ﬁm Uq:zq:ﬁn; Sq:zq:é’” SW:ZL]:&)
n=1

n=1 n=1 n=1

one obtains that the following i.b.v.p. holds

P! a;iq = AT, + (RSq - iROEW,)k —VP,—u-VU,,

a=1
. o -
(3.9) V.U, =0, +0,=HRU, k+A0, - Pu-V0,
0 —
P, =S, = H,RU, -k +AS,, — P,Pu-VS,,
T a0 S S0
(Ug)mo = Z“r(z ), (Sq) im0 = Zgr(l )
n=1 n=1
3.10 _ q
( ) (Suq)[:() == Z(Dig)7 o= 17 ,m,
n=1
(U)q-k:@:@q:o, z=0,1, a=1,....,m
Setting
y u,—1u, forn=12,...,4q - . —
3.11 = U* = U)'=u-—-U
I Z( j=u-T,
y 0, —0, forn=1,2,...,q
3.12 0" = ) S -
(3.12) " {0,,, forn>gq Z !
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on?

T o 0
(313) \P* :{q)aﬂ_q)oﬂh forn_1727"‘7q’ \I];:Z\Px
n=1

o D, forn>gq
I A it A S8
by virtue of (3.5)—(3.6) and (3.8)—(3.10) one obtains
P! aﬁU* =AU + (RO, - Zm:Ra‘P;)k — VP* —u- VU,
! =1
(3.15) V.U =0, %0*:HRU*-k+AH*—P,u~VH*,
Pa%‘l’;‘ — H,R,U" -k +A¥; — P,Pu- V¥,
0 q
(U)mg=>_uw” (0= 0,
n=1 =1
(310 (Wm0 = zq:‘f’;?a a=1...,m,
|
U k=0"=¥,=0, z=0,1, a=1,....m
Since
) fm St 30 = lim 3w =0

n=q+1 n=q+1 n=q+1

and (3.15) under the zero i.b.c. admits only the null solution, it follows that

(3.18) lim (u—U,) = lim (0 — §,) = lim (®, — S,,) =0

g— o0 q— 0 q— 0

and (3.7) holds.

REMARK 3.1. i) Since in L;(Q) the Fourier components are a.e. uniquely deter-
mined, it follows that in L;(Q)

_ = N _ & _ T ; +
u,=1u, 0,=0, b,=0,, I,=I, aecinQxR

and the system (3.5)—(3.6) can be written
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Py Ve, = VIl +(R9 —zm:Rq) )k+Au
T ot n n n - o Fon ns
V-u, =0,

(3.19) "
2 + P.u-V0,= HRu, -k + A0,,

0
Pm(aq)om + Pru : Vq)ocn) = HecRrxun -k + ACDDU’U

(3.20) {(u")zo = u'(lO)v (Hn),:o = er(zO)’ ((Dtm>t:0 = (Da(tg)’ a=1,...,m,

w,=u, - k=6,=0,=0, z=0,1, a=1,...,m;

ii) the global asymptotic stability of the null solution of (3.19)—(3.20) is guaran-
teed by the global asymptotic stability, Vn € N, of the null solution of (2.7)—
(2.8);

iii) the instability of the null solution of (3.19)—(3.20), for at least one n € N,
implies the instability of the null solution of (2.7)—(2.8);

iv) the nonlinear “auxiliary system” (3.19)-(3.20) of the Navier-Stokes-
Boussinesq fluid mixtures, as far as we know, has never been introduced
before in the existing literature and appears to be the system governing the
evolution of the nth-Fourier component of the solution (u, &, @y, ..., D,,).

4. PRELIMINARIES TO THE LINEARIZATION PRINCIPLE
We denote by <-,-» and || - || respectively the scalar product and the norm of

L;(Q). Further we introduce the energy E," of the n-th Fourier component of
the perturbation fields on setting

m 1 — 2 2 « 2
(4.1 P = (P w2+ 10012 + 3 Pall ),
a=1
with
2 2 2 2
(4.2) [Junl| ™ = [[unl|” =+ [[oall = + [Iwall
and denote by O\ the quadratic form
(4.3) o = —¢, (u,z, top w0+ Y ®§n)
a=1

(1 + H)RH;,, — Z(l - Hc{)fo(Dom

a=1

+ Wy
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To (3.19)—(3.20) we associate the linear system

(31_1 _ m _
P! ”z(R@A— Rﬂmak Au,
"ot ; ‘ + Al
44 V-u,=0,
4.4 -
w”:HRm~k+A@,
ot
&%5M:Hmmwk+5%m a=1,...,m,

under the i.b.c. of (3.19)—(3.20) i.e.

Denoting by ( 7

respectively along the solutions of (3.19)—(3.20) and (4.4)—(4.5), it easily follows
that

(m) dE™
" )NL and ( " ) the time derivative of E,Ym evaluated
9

dE"N [

(4.6) (w)m_ég(%%wﬁmmmﬁMﬂL
dES™ TR _

(47) ( dt )L - /QQn (unvvn;anenv(blnw“;q)mn)dg~

The linearization principle is based on the following two theorems.

THEOREM 4.1. Let

( dE™

(4.8) -

)<Q Ve [0, ol
L
for arbitrary initial data. Then

(4.9)

(dE,,(m)

0 )NL <0, Vtel0, ol

PRrROOF. In fact (4.8), at 1 = 0, gives

(4.10) / 0 (@, 50, w0
Q
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for arbitrary initial values. On choosing for any fixed 7 € [0, 00|

@11) 7% =u(r), 79 =v,(1), 0 =0,(1), BV = Dpu(t), a=1,...

n

(4.10) becomes
(4.12) / O (s g, Wy Oy P -, D) dQ < 0
Q

and, in view of (4.6), (4.9) immediately follows.
By virtue of theorem 4.1, the following linearization principle holds.

THEOREM 4.2. The conditions guaranteeing

(m)
( dE,

(4.13) 7

)L<0, Vte[0,0], Yne N,

for arbitrary initial data, guarantee

1) the linear asymptotic stability of the thermal conduction solution;

379

2) the absence of subcritical instability and the nonlinear asymptotic stability in the

L?(Q)-norm.

PrOOF. Let (4.13) hold. Then by virtue of the previous theorem, E\™ Vn e N—
along the solution of (3.3)—(3.4)—is a decreasing function of time. Therefore, by

virtue of ii) of remark 3.1, either 1) or 2) are immediately obtained.

5. LINEARIZATION PRINCIPLE

It remains to obtain the conditions able to satisfy (4.12). One easily obtains

V x (ROn—f:RaQDW)k :(Ron—ika%)yi
a=1 a=1
(5.1) e _
(RO =3 R}

k-Vx(Vxu,)=—-Aw,

k-V x [V x (Ren - iRaCDm>k
a=1

— _A (RHn - zm: R“(Dm).
oa=1

Therefore—in view of (4.4)—(4.5)—omitting the bars and taking the vertical com-

ponent of the double curl of u,, one obtains (« = 1,...,m)
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a n 0 n
P! gf = Au,, P

0Aw,
ot
00, 0D

= HRw, + A0,, P,—2= = H,R,w, + AD,,
ot ot

or Avn,

(5.2) P! = A (RH,, - iRaCDm) + AAw,,
=1

and hence, by virtue of (2.9)—(2.10), it follows that

u v
—1 G ~1%n _
Pr ot Enlin, Pr ot Enn,
0w, d? n
(5.3) P= (RO, =" Ri®u) —
n a=1
00, 0D,
= HRw, — nYn, P, —=H,R,w, — ncDocm
ot Wi = <nl ot Wi =
under the b.c.
(5.4) w,=0,=0,,=0, onz=0,1, a=1,...,m.
In view of (5.3);—(5.3),, one obtains
1, .4 2 2 2 2
(5:5) P (™ + Nloall) = =&a(lfall™ + lfeall ) <0, ¥m e N.
Therefore, (4.12) is verified when
(m)
(5.6) di;’[ <0, Vtel0,0], VneN,
with
m _ 1 2 10112 . . |I2
(5.7) & ) [[wall ™ + 1160l +ZPO<” anll”)-
a=1
Setting
2
a
(58) My = av

in view of (5.3), one obtains
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0 . m
% = 7’]”Pr (Rgn - Z Raq)om) - énPrwm
=1
(5.9) agtn = HRw, — &,0,,

6®d}’1 HOfRZ én
ot p, " P,

D, a=12,...,m,

under the boundary conditions (5.4).
On setting

(510) p=m+2, Y =w, Y, =0, “P3:q)1,...,‘“Pp:q)m,

(5.9) can be written

381

lPln \Pln
0 Yo, Yo,
(5.11) =1 . [=2" |
Yo ¥om
with
all P alp
(5.12) gn(l)): T B
dpl App
an =—P<,, apn= PR, ay3z=—-Pun,Ry,..., aip = P, Ry,
ay = HR, ap = —¢,, ax=ay=---=ay; =0,
1 én
6131:pr1, ay =0, a3 = =5, du=d3s ==y =
1 |
(5.13) i
ay = ERZ, ap =ap3 =0, ayy=——-, a45s=as = - =dag =0,
H,, Sn
ap1 = P—mRnn Ap2 = ap3 = =ap(p-1) =0, ay _P_m.
Let
. br = Apr + 1D, 1= 1, yers Dy
5.14 y! A ‘B, 1,2

be the eigenvalues of %) and let

1 1 =
(5.15) 6 =5 ¥l =5 (¥, T,
r=1 r=1
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where now the over bar designates the complex conjugate. Then the following
theorem holds.

THEOREM 5.1. Let the eigenvalues A, v € {1,2,..., p}, have all negative real
parts, i.e.

(5.16) Ay <0, Vre{l,2,...,p}.

Then there exists a positive constant K,, such that, along the solutions of (5.11),
it follows that

d

(5.17) 76w = ~Kip oy Enps

with

(5.18) pp = min|Ay [, re{l,2,..., p}.

PRrROOF. In the case R=R; =---=R,, =0 (formally in the case p =1 and
hence m = —1), (5.11) reduces to

(5.19) Mi_ pew

ot
and immediately it follows that

Ld

(5.20) S

1> < —P& ¥ |12 < =P,

i.e. (5.17), for p = 1, holds with
(5.21) Ky = —P,, 5 =nr*=min(a® +n’n?).

Therefore—since (5.17) holds for p = 1—it is enough to show that if it holds for
p = s — 1, then it holds also for p = s. For p =, (5.11) becomes

0
alpnl = aIILPnI + alZanZ + -+ als\yns;
0

(5.22) o Y =an¥u +an¥n + - + a3V,

0
E\Pns =agq¥u +ap¥p + -+ au¥y,.

Let

(5.23) A0 =AW 4B Jy = Ay + B,
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be an eigenvalue of ,fn(l) and U, = (1, Uy, ..., Uy,) an associate eigenvector i.e.
let (1, Uy, ..., Uy,) (generally complex) verifies the system

an +anUy +ai3Us, + -+ a Uy, = A,
a + an Uy, + axUs, + - - + ar, Uy, = 21 Uay,

(524)

ag + ap Uy +agUsy + - + agUgy = 2t Ugy.
Setting
(5.25) Zn =Y, Zy=Wy— U, j=2....5
Le.
(5.26) VY. =2, Y)y=2Zy+UpZn, j=2,...,s,

it follows that

0

EZH] == allznl + Z(an + l]jnan)

=

S S
= (an +>_aj an)an + Y ayZy
j=2 j=2

and in view of (5.24);, it follows that

0 n .
(5.27) 5 4m = 2 Z + Zaljznj-
=

Analogously, in view of (5.25); one obtains

0 0 0 J
_Zn = _\Pn - U n_Zn = Zn j Zn' U'nZn
5,5 =5, Y — Ung Zn = 1+JZ2:5’2/( j + UnZn)
- U2n <}V5(;1>Zn1 + Zaljznj)
=

s
(aZI + Za2j ljjn) - U2n/1§;l)
J=2

Zn + Z(ij — ayj U2n)Zn‘
Jj=2

and—in view of (5.24),—it follows that

a A
(5.28) Ean = Z(azj — a1;Us)Zy;.
J=2
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Since in general it follows that for o € {2,...,s}
0Zn <
(5.29) 23 (s~ ayUan) Zy
J=2
setting
(530) bcg = Uy _aliju (xaj € {2737°"}7

one obtains

aZn S
=0 Za Y anZy,
)
(5.31) oz s /
5;(%:21711'2?1]'7 a:273,,,.,S.
=2

Setting

1
(532) an = — Inl,

one obtains

Y, . s
(533) atll — l_gl)Ynl ‘|‘,u,,za1,Zm
j=2
and the system
Zn2 Znp
J . o (s—1) .
(534 ot =Z-n| |
Zns Zys
with
by b by
(5.35) -1y _ | b2 bn b3
by bg by,

To (5.33)—(5.34) one has to add the boundary conditions

(5.36) Zwy =0, onz=0,1, Vae(2,3,...,5).

S. RIONERO
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Since the eigenvalues are invariant with respect to the linear transformations, the
eigenvalues of 3,55’1) are given by the eigenvalues

(5.37) Iy = Apy + iBpy, a€{2,..., s},
of £ and hence
(5.38) Ay <0, Voed{2,...,s}.

Therefore, by assumption, one has

d -
(539) E@@n(s—l) < _Kn(s—l)/“n(g_l)gn(s—l)v

with K1) positive constant and

(540) }.,;(S_D — min‘Am‘|, r = 2, 3, “e . ,p,
1< =
(541) gn(s—l) :§Z<Znowznoc>-
=2
Setting
(5.42) Ty = Poy + iOmy 00=1,2,...,s

and denoting by rp the real part, it follows that
”P</1A§'11)Zn1 ) an > = Ag <an ) an >7
— 0Zu 1d -
543 N2 2
( ) ”P<Zn17 ot > D) dl<anvzn1>7
Vp<an,Zn1>:<Pn1,Pnj>+<Qn1,an>, j:27"'as
and, in view of (5.33), one obtains

1 d - ) _
(544) §E<Ynlyynl>:A§1)<YnlaYnl>

+ i, Za1a<<P1mPun> + {Q1n, Qom>)'
=2

Since

Py Py + Oty Qo> < = (1Pl + [|1Ponl> + 1 Q1all* + 1 Qo))

(<Zlm Z1n> + <Zo<na Zocn>)a

N — N —
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setting
(5.45) m* = - max|a,|, «=2,...,p,

one obtains

1d 7 * ~ * @
(5.46) 5 E<Zlnazln> < —([Aw] = m*pp,){Z1n, Z1n) + ,m"* Epp1)
and hence

1dd — . _
(547) § EZ Ly Lan) < _(|Aln‘ —m Sﬂn)<Zln’ Ziyy+
=1
— (=™ + K517, V6uts-1)-
Choosing
. |Aln| Kn(S—l);”;:(sfl)

5.48 < ( , )
(5.49) p < min( 1210, 27

it follows that there exist positive constants Kj,; such that

d 50’15

(5.49) =

< —Kméan(s,l).

REMARK 5.1. We remark that

1) condition (5.16) is also necessary for the asymptotic stability;
i) (5.17) imply the exponential asymptotic stability;

S. RIONERO

iii) theorem 5.1 shows that the linear instability captures completely the physics
of the onset of convection since the absence of subcritical instability, together
with the property of the linear stability to guarantee also the global nonlinear

stability, has been obtained.

6. CRITICAL RAYLEIGH NUMBERS

m)

The equation governing the eigenvalues of 5,””( can be written

m+2

(61) ]‘_[(;L - Am’) = 0,

r=1

(62) ;uerz — Inl;um+l + Inzl‘{m + -+ <_1>m+21n(m+2) - 07
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with I, r € {1,2,...,m + 2}, characteristic values (invariants) of L”n(’”) given by
m+2 m+2 m-+2

(63) I,= Z inra Iy, = Z inr;{nw In(m+2) = H /lnm
r=1 r#s=1 r=1

where, in terms of the entries of 3,1(’”), I, is obtained by adding the principal
minors of order r. Introducing the Hurwitz matrix {see [35] and [36]}

Iy =TIz —Ips - 0
1 I Inr e 0
(6.4) 0 I —-I,z --- 0
0 0 0 t In(m+2)
and the principal minors
—In —In

yoee aAn(n1+2) = In(m+2) ’ A11(n1+1)a

6.5 A = —I A n —
( ) nl nls 2 ‘ 1 I,

the following well known Routh-Hurwitz conditions hold [35]-[36]

1) in order for all the roots of (6.2) to have negative real parts, it is necessary that
all the coefficients of (6.2) are positive, while the necessary and sufficient condi-
tion is that all the principle diagonal minors (6.5) be positive

(66) An > 0, Ap > 0, ... ,A”(erz) > 0;

ii) either if one of the coefficients of (6.2) is negative or one of the inequalities (6.6)
is reversed, then some roots will have positive real parts.

By virtue of theorems 4.1-5.1 and i)—ii), the following theorem of absence of
subcritical instabilities and nonlinear global asymptotic stability (via the Routh-
Hurwitz conditions) holds.

THEOREM 6.1. If and only if (6.6) hold for any (n,a*) € N x R, the onset of
convection is not allowed and the global nonlinear asymptotic stability is guaran-
teed. If (6.6) does not hold for any (n,a*) € N x R and (i1, a@*) is the first couple
Sfor which one of (6.6) holds reversed, then convection arises along the ni-th Fourier

component of perturbation, for a*> = a>.

REMARK 6.1. By virtue of the linearization principle (theorems 4.1-6.1) the
conditions necessary and sufficient for the linear stability obtained in the past in
the case at stake, become necessary and sufficient for the global nonlinear asymp-
totic energy stability in the L?(Q)-norm. In the sequel we will be concentrated to
the case m > 2 and especially in obtaining stability conditions in algebraic closed
form. In this section, for the sake of completeness, we confine ourselves to the
cases (m=0,m=1).
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6.1. Layer heated from below ( Bénard problem)

One has

-pP.&, Pmn,R
o o (“He PR
(67) o= (e

the Hurwitz matrix reduces to

(6.8) (_f”l I(iz)

and the spectral equation is given by

(6.9) 22— T+ I =0.
In view of
62
(6.10) Iy =—(1+P)E <0, Ip= P,;y,,(—" _ Rz),

n

(6.6) reduces to

2
(6.11) —InIn>0 < R2<§".
On the other hand

éz
(6.12) min 2=
(n,a®)eNxR* 17,

37 (=1)
(a® + n*n?) ] 27 4

and one recovers immediately the celebrated condition of linear and global non
linear stability {[1], [38]}:

(6.13) R < 24—7714 ~ 675.5.

We remark that (6.13) can be obtained immediately also by each one of the follow-
ing observations
1) in view of

(6.14) 12, — 41, = (1 — P)* +4Py,R> >0, Y(n,d?)

the roots of (6.9) are real numbers and hence the “‘strong principle of exchange
of stability” holds (i.e. convection arises via a stationary state);
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i) since cfn(o) is symmetrizable then the eigenvalues are real numbers, the strong

principle of exchange of stability holds and the stability condition is given by
I, >0.

6.2. Double diffusive-convection in a layer heated and salted from below

In the sub-case (m = 1, H; = 1) one obtains

_Prfn Pl‘r]nR _P)',]an

(6.15) KADES R o 0 ,
Ry _Sn
P, P,

the spectral equation and the Hurwitz matrix are respectively given by

(6.16) 2P = Ind’ + Liph— Ly =0,
_Inl _In3 O
(617) 1 In 0
O _Inl _In3
with
I ——(1+P +L)é <0
nl — r Pl n )
1 1 \& R?
In=Pun,|(1+— 2y 1 R?
(6.18) =P, ( +5 +P1P,,) " :
Py, ROE
In3 — F] (R - P_l - n_n)nnéna
Setting

R¢ fR—lz+(1+i+ 1 )gn“

(6.19) Lp P, PP,/ 4
| Re = RE 20w g
=P Ty G

it follows that the Hurwitz conditions reduce to

[AnZ] (n=1) N\ — (Inl Ip— InS)(nfl) 2 < 05
(6.20) ( ~ ) () .
[An3]((n_ ) 2) = [_In3(_Inl Ip+ In3)]((r;; )

> 0.
)

=
2
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Since
(6.21) RP<Re, = (I,>0,1,3<0)
one has to require (6.20); which is equivalent to

Re, — Rce

2

6.22 R*> < R¢, = R, + ————=2.
(6.22) < Re =R TR,

Therefore, in view of (6.21)—(6.22), it follows that, if and only if

R} 27
2 2 _ By 2l 4
(6.23) R° <R _RCZ_P+4
the thermal conduction solution is nonlinearly globally asymptotically stable when
L is heated and salted from below.
We remark that also in the case at stake the prmczple of exchange of stability
holds. In fact R? = R2 gives I,3=0 at (n =1,a*>= —) to which is associated

the zero solution of (6 16)at (n=1,a>=12).

6.3. Double diffusive-convection in a layer salted above and heated below

In the subcase (m = 1, H; = —1), one obtains

_Prén Prr]nR _Pr’//an

(6.24) KR R —en 0 ,
R &
P, P

while the spectral equation, the Hurwitz matrix and I, are still given by (6.16)—
(6.17) and (6.18);, but with

1 I NG R,
Io=Pn,|(1 - R
2= ( +P1+P1Pr> P
(6.25) , o
R
“r( R2 4=
In3 — Pl (R Pl nn)ﬂnén-
Setting
1 1 \27 R?
Re, =1 A
( +P1+P1Pr> 47 TP
(6.26) ) &
RC2 = Zﬂf4 P] RC1

the Hurwitz conditions require
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R?> < min(R¢,, Rc,) = Re,
Re, — Re,
(1 + Pr)P] '

6.27
( ) R? < RC1 +

Therefore, in view of (6.26)—(6.27), it follows that
1) if and only if

27 R?
6.28 R*<R.=""rn*--1
( ) C 4 n Pl
the thermal conduction solution is nonlinearly globally asymptotically stable
when L is heated from below and salted from above;
ii) since R* = R% & (I,,g)(("jl) ) = 0, the marginal state is stationary.
a’=t
iil) the Rayleigh critical value of the salt for the onset of the cold convection [37],
is

27
(6.29) R = Tﬁpl,
Le.
(6.30) R} > Ryc,

implies the instability of the thermal conduction solution irrespective of the tem-
perature gradient (instability named cold convection [37]).

We recall that both the cases (6.21)—(6.22) have been deeply studied (with differ-
ent procedures) and a good account of the results obtained can be found in {[3],
[6]-18], [38] and the references therein}.

7. TERNARY DIFFUSION-CONVECTION IN A LAYER HEATED FROM BELOW AND
SALTED FROM ABOVE AND BELOW
The case (m =2, H; = 1, H, = —1) is a prototype case of diffusion-convection in
layers heated from below and salted from above and below. Since 3,7(2) in this

case is given by

_Prén Pl‘nnR _PV”HRl _Pri/]nRz

R —¢, 0 0
R ¢
7.1 @ = =L 0 _Gn 0 ,
(7.1) f Pl 2
R
20 0 S

P, P,
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the spectral equation and the Hurwitz matrix are respectively given by

(7.2) T P+ 102 = Tph+ T =0,
—In —In 0 0
1 I, I, 0
(7.3) oo ,
0 —In —In 0
0 1 In T4
with
T = (145t 4 B)E
nl — Pl P2 r|Sn
R} R 1 1
I =n,P< =t — 241 +—+—
2= {Pl P2+{ Jr1”1+Pz
1,1 1 1 e
Bl (I n R
(74) +Pr(P1+P2+P1P2):| ", ’
) Pr ¥
Ing:ﬂ ~(1+P)R? + R3(1 + Py) + (P + P)R* +
PP,
P\P,+ P +P)| &
—[1+P1+P2+( 2l 2)}@},
P, M
Pr 2 52
Ty = P1P2 én;//n (Rl2 - R% +_:ll - Rz)
We set
R —R7%7R7%+ 1+i+i+i(i i+ ! ) 2 4
a=p P P, P, P \P P, PP 4T
1+ P 1+ P
RC7—( + 2)R12_( + P1) 2
(75) - Py + P, P+ P>
1 _ PP, 27
1 )+ (1 )
+{< +P1+P2 t +P1+P2 47[
27
RCB:Rlz—Rg—i—Zn“
and notice that the Hurwitz determinants are given by
Anl = —TIu, An2 =Ip3 — InIn,
(7.6) A= —Tp3An — I3 Tu=—I5+InTols — Iy Tu,

An4 =TIy An3 .
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Since
(7.7) I, <0, VY(n,a*)eNxR",
it follows that

LeMMA 7.1. If and only if

I,,>0 T5<0, Tp>0,
(7.8) { 2> 3 < 4>

Ay > 0,
all the roots of (7.2) have negative real parts.

PrOOF. In fact (A3 >0,I,4>0)=Au>0; (A3>0I,;3<0,I,4>0) =
Ay > 0.

REMARK 7.1. Since (7.8) have to be verified ¥(n,a?) € N x R*, in VZiCW of (7.4)-
(7.5), it is necessary and sufficient that are verified for (n = 1,4> =%).

2
Setting

(7.9) A=AV 0 L=V, 2=1,2,3,4,

(-2) (-2)

then the following theorem is immediately implied by Lemma 7.1.

THEOREM 7.1. If and only if

(7.10) R?> <min(R¢,, Ry, Rey), Az >0,

the thermal conduction solution is globally nonlinearly asymptotically stable.

LEMMA 7.2. The spectral equation

(7.11) T P4+ 107 - 1344+ 14 =0,

admits the root

(7.12) A=1Y, Y eR,

if and only if

(7.13) A3=0 & Y*—1,Y*4+1,=0,

with Y given by

I3

7.14 Y?=22.
(7.14) I

PROOF. In fact, inserting 4 = 7Y in (7.11), one obtains

(7.15) (Y= 1,Y? +14) +i(1;Y? - 13) Y = 0.
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Obviously the consistency of (7.13)—(7.14) requires

I
(7.16) 12 > 414, I—3 > 0.
1

Since the roots of (7.12) are continuous functions of R?, convection occurs or via
a null root (stationary convection) or via an imaginary root (oscillatory convec-
tion, Hopf bifurcation). The following theorem holds.

THEOREM 7.2. If and only if

min(Rcl s RCZ, RQ) > 0,

(7.17) R
RC3 < I—(zjz<|Il|RC1 - RCz)v
1

exists a critical Rayleigh number RZ. such that
(7.18) R? < R,

inhibits the onset of convection and guarantees the global nonlinear asymptotic
stability of the thermal conduction. Then, denoting by R* the lowest positive root
of (7.13), it follows that

(7.19) R% = min(Rc,, R?)
and convection occurs:

1) via a stationary state at ch = Re¢,,
ii) via an oscillatory state at R% = R>.

PRrROOF. In fact (7.17) are obtained requiring the validity of (7.8) at R =0.
Therefore—for continuity—(7.17) guarantee the existence of RZ such that (7.18)
implies (7.8). As concerns (7.19) and i)-ii) we underline that for R> = Rc,, (7.11)
reduces to

(7.20) IO =T 410 —13) =0

and admits the solution 4 = 0 to which is associate a stationary state. On the
other hand—in view of Lemma 7.2, to (7.13) are associated imaginary solution,
hence the proof is completely reached.

THEOREM 7.3. The condition

27
(7.21) R? <Z7z4—R§,

guarantees the global nonlinear asymptotic stability of the thermal conduction
solution.
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PROOF. 1In fact the linear evolution system associated to (7.1) is

Wy, Wy,
0 0, 0
7.22 < _ )| On
( ) ot CDIn " (Dln
(I)Zn (I)2n
Setting
On = Ky ;7 D,y = /uocnq);n?
(7.23)

1 1
Hy = —F——> [y —
V Pl"//n V PO!PVrln

(7.22)—omitting the stars—becomes

Wy W
o 0 0
7.24 —| " =L "
( ) ot q)ln . (Dln ’
(1)2;1 (D2n
with
Prﬂn Prﬂn
—PE, RJPm, —RiyJ— Ry, [
é M 1 P1 2 P2
R Prnn _én 0 0
(7.25) LY =
R Pr;?n 0 —é 0
P, P,
Py n
— Ry, [—LIn 0 0 _5n
2 P2 P2
In view of (7.24)—(7.25), one obtains
1d 2 2 2 NS 2 d
(7.26) 5 = (Iwall” + 104]] + [|@1al|” + [[@2a]|") = = Z=[Puall” + | 00 d,
2.dt P, Q

where Q, is the quadratic form in (w,, ,, ®,,) given by

1 [P,
(7.27) O, = —¢, (P,wﬁ + 92 +E®§") + 2R\/Pyy,wnb0, — 2R, PZ"wn(I)zm

which is negative definite when (7.21) holds.

REMARK 7.2. We remark that (7.21) does not contain any contribution of the
stabilizing effect of the salt salting L from below.
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8. TERNARY DIFFUSION-CONVECTION IN A LAYER HEATED FROM
BELOW AND SALTED FROM ABOVE

THEOREM 8.1. In the case (m =2, H, = H, = —1), if and only if
27
(8.1) R* < R} :T#—Rf—Rg,

it follows that

1) convection cannot occur;
il) the thermal conduction solution is nonlinearly globally asymptotically stable;
iii) convection arises via a stationary state at R* = RZ.

PRrOOF. The linear evolution system is given by (7.22) with

_Pré’n Pr77nR _Prrlan _Pf'”nRz

R =¢, 0 0
R ¢
8.2 7@ = =L 0 _sn 0
(8.2) n 2 2
R2 én
= 0 0 _ =
P2 PZ

and, via (7.23), is given by (7.24) with L given by the symmetric operator

Py Py
—-P¢, R\/Pn, —Ri\/—— —Ro/—+"
9 " " p, 2\ 5,

0 0

R Prﬂn _én
2) _
(8.3) LY = r P, 0 & 0
! Pl Pl
Py En
R, | n 0 0 _on
VP, Vi)

. . 2 . . .
Since the eigenvalues of Lf, ) are real, convection occurs via a stationary state,
i.e., in view of (7.2), for

(8.4) T4 =detL® =0.
One easily obtains

P, 2
PP, 5’7n(_R12 —R§+—n)

n

(85) Iu=

and (8.1) immediately follows.
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9. TERNARY DIFFUSION-CONVECTION IN A LAYER HEATED AND
SALTED FROM BELOW

In this case (m =2, H; = H, = 1), cs,ﬂ,}” is given by (7.1) with R, at the place of
—R,. Further I,,, («=1,2,3,4), is given by I,, of (7.4) with R3 at the place of
(—R3) and Rc,, (2 = 1,2,3), is given analogously by Rc, of (7.5) with R3 at the
place of (—R3). Therefore, taking into account these substitutions, the stability
conditions becomes

2
(9.1) R? <Z77z4

REMARK 9.1. We remark that (9.1) does not contain any stabilizing effect of the
two salts salting L from below.

10. DIFFICULTIES OF HANDLING THE STABILITY CONDITIONS FOR
LARGE NUMBER OF SALTS DISSOLVED IN
Relevant can become the difficulties of handling (6.6) for large m. As concerns
(6.6) and the analogous of (7.19) (when L is salted from below by S}, S>,..., S,
(r <m) and from above by S,.i,...,S),), the following general remarks can be
done:
1) one verifies that the necessary stability condition

(10.1) (=D)L 012 > 0, V(an) e RT x N,

is equivalent to

(10.2) R* <> R - Z R2 4+ Y(a®n) e RT x N
o=1 o=r+1
2
and gives, for (az =5n= 1), the necessary stability condition
2 . 2y 27 .
(10.3) R? < Rypms) ZR > R
o=r+1

2) for the stability of the thermal conduction solution it is necessary and sufficient

2
to satisfy (6.6) only for (n =1,a*>= %)
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3) (7.19)—with Re(ns1) at the place of Re, and R* lowest value of R* for which
(6.2) admits a pure imaginary root, continues to give the global non linear
asymptotic stability condition and also the properties 1)—ii) of Section 7 continue
to hold;

4) in the case (m = 3,r = 2), (10.3) gives

27
(10.4) R =Re, = Ri + R — R, + ',
72
(6.2) reduces (for n = 1,a*> = 7) to
(10.5) P T+ 102 — 1302 4+ T4h— Is =0,
with
(10.6) Is=R>— Re,

and, the looking for imaginary roots, is equivalent to solve the system

4 2 _
(10.7) {Y(Y4 —IZY2 +1I4) =0,
1YY" —I3Y° +1I5=0.
Since (Y = 0, R* = R¢,) is a solution of (10.7), when R, is the lowest positive
root of (10.7) then R* < R, is necessary and sufficient for the global stability
and convection occurs at R* = Rc, via a stationary state. This happens, for in-
stance, when

(10.8) I3 <414, I3<4IIs.

11. GLOBAL NONLINEAR ASYMPTOTIC STABILITY VIA HIDDEN SYMMETRIES
AND SKEW-SYMMETRIES

In view of the difficulties remarked previously, it appears of notable interest to
guarantee the global nonlinear asymptotic stability of the thermal conduction
solution via simple algebraic conditions, in closed form. To this scope we
introduce—at the place of 6,, ®,,—new fields. In fact, the diffusion-convection
in L has symmetries and skew-symmetries which are hidden in (5.9) and can be
seen only introducing—at the place of 4,, ®,,—new fields. Let

1 =1,2,...
(11.1) H“:{ 71 o = 7V7

ao=r+1,...,m.

Then (5.9) becomes
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ow, n
o1 = _énPrWn + 77nPr <R6n - Z Rocq)m)a
a=1
00,
- an - éngm
(11.2) at
Ry < ) =1,2
a@{xn B Pa( ‘/Vn Pa oy a - b 7""r7
ot ) —R,
Pa'wn —%(DW,, ao=r+1,...m
Setting
R0, — P,R®,,, o=1,...,r,
11.3 =
(11.3) - {RXH,,+P“RCDM, a=r+1,....m,

(11.2) imply

o —&u R0, + RS, Dy, =1,2,...,r,
(11.4) Wm:{ Euoln + RE, @, o ’

ot —¢,R,0, — RE,D,,, o=r+1,...,m

and, by virtue of (11.3), one obtains

0
(11.5) P, gt = &+ (1= PYRED, a=1,2,...,m.
Since
m r R
11.6 RO, — Y R,®,, = RO, + o — RaO,) —
(11.6) ; ;((p ) PR
m R“
- Z ([ )
o<=r+1P°‘R !
U/ R &R
gz |(®- >, 2 7)o
o= oa=r+1
r RO( m R“
+ZE¢M_ Z Po' an |
=1 oa=r+1

(11.2) become

ot R oa=r+1
(11.7) On _ Ry

% Rwy, éngm

W __ny _oRaip g 0 m,

ot P, P,

aWVl Pl"?n * - RIX - RIX
=—-¢,Pw, + (R 0, + ZFWW, — Z FWW
a=1"* *

399
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under the boundary conditions

(11.8) Wy =0, =0,,=0, z=0,1, a=1,2,...
with

11.9 RF=R*-) =2 —

( ) o=l P“+a;1PO‘

S. RIONERO

7m7

For the sake of simplicity and concreteness, in this paper, we confine ourselves to

the prototype case (m = 2,r = 1). Setting
(11.10) ¢, = Rw, + P,£,0,,

it follows that

o9 &2 R Ry
11.11 n_ p, (R*—J>Hn P, Lo — P 2.
( ) 5 My Py + P o1 = Pty 02
In view of
Oy — Rw,
(11.12) 0, —7])’45”
and (11.7), (11.11), one obtains
Oy ?n
a1 wy, Wy,
(1113) Y - Ln )
a[ (pln ¢ln
Pon Pon
with
2 2
My * é Rnn * f Rl R2
In (R _>n — =" (R* =21} Py, — —Pu,—
fn< ﬂn) n ( ’7,1) P P,
R* 2 R R
ﬂ_ _<Pr§_n+R*>ﬂ Pl n_l _Prnn_2
(11.14) L, = ¢ R un En P Py
(1-P)R  (I-P)RR ¢ 0
Py P Py P, Py
(I-P) R (1-P) RR 0 &
P2 Pr P2 Pr P2
REMARK 11.1. Setting
R} R 27
11.1 Ar="L_2 ==z
( 5) Pl P27 4 T )
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it follows that
(11.16) R =

and the consistency of

2
(11.17) R>>0; —P§<R*
My
requires
2 2
(11.18)  A* — P,,é—" <R*< A" +f—",
My My
and hence
(11.19) —y < A" < Py,
THEOREM 11.1. Let
(11.20) P <1,
Then for
RZ
11.21 RP<—L_R
(1121) <7

401

A*

52

My

. Y(a®n) e RT x N,

VR> >0, Y(n,a*) e N x R*

P,

2 T

1+ P,

convection cannot occur and the thermal conduction solution is globally nonlinearly

asymptotically stable.

PRrOOF. We give the proof in the case (P; < 1, P, > 1). In fact, by continuity,
(11.21) continues to hold either for Py =1 or P, = 1.

Setting (« = 1,2)

(11.22)

_ W |R|
TR — &/,

_ P IL = P
P, My

and omitting the stars, one obtains (11.13) with L, given by

(11.23)
én (R ’7_n> 5_\/ én/ \/1_P1 _Fz (P2_1)’7n
RAR = &/, ,(P ) &w “Pn, 2P
L, = é*’l " én P 8 Py . ,
R R &n
P, (1= Pi)n, ~ P (1= Pi)n, ~p 0
R, Ry &
5 (P —1)n, 7 (P, — D), 0 5
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with
(11.24) e=1, for R* >0, e=—1, for R* <0.

Introducing the quadratic form

.G T NN oY 7
(R —n—n)¢5—<Pr’7_+R)lVg—’7—n;?a
(1125) Q.= +(1+e qonwn\/lR =&/l
&én“ _2_611 (ﬂn 2n>

one obtains

1d 2 RS 2"
| 1d n _M [ o do.

R, &2 R} 1 &
270 (1 - py)Sn s—(l P) — gl
Pl ( 1)7]"|¢n¢ln| Pl 1 (on +P (oln

In view of

(11.27)
R, | & R; 1é,
24 (P, —1)22 < —=(P,—1 S—
P2 ( 2 >’7n|¢n¢2l’l| — P2( 2 )gon—'_Pz 17” ¢2n’
for R* < 0 & ¢ = —1 one obtains
RZ RZ 62
11.28 < |[RF+=L (1 =P ) +22(P,— 1) = 22| ¢?
( ) On < +P1( 1)+P2(2 ) 7, (7

and—in view of (11.9)—it follows that

2

2
(11.29) 0, < R2—<Rf—R§+9) 92

n

Therefore (11.21) guarantees {Q, < 0,V(n,a?) € N x R*} and hence the validity
of the theorem for {4* > 0, R?> < A*}. In the case R* > 0 < & = 1, by virtue of
(11.27) one obtains
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- & &
(1130) 0,20, = |~ (R + )| 02 +2 /R (2= R g,
M M
2
(R
with
R? R
11.31 A=—"L1-P)+-2(P,—1)>0.
( ) Pl( 1)+P2(2 )=
0, is negative definite if and only if
& S &
(11.32) R (n—n—R) o (R A) ( n+R),
which is equivalent to
& & &
11.33 A+ P22 )R < (22— 4)P,20
(153 L L
1.e. to
A+ P,En,) — A1+ P,) £
(11.34) <! )~ AAE P

and hence to

11.35 R* <
(11.35) Py
Since (11.35) has to hold V(n,a?) € N

2

n

A + P’fz/”n 77’1

& _ A+ PG /0,

A+ PEn,

x R™, one obtains

A1+ P,) 5_2

(11.36) R*< min - max ———"
(n,a%)eNxR™ 1, (n,al)eNXRAA—FPrén/]’]n ",
and hence
1+ P,
(11.37) R+ A <y

We end by remarking that (11.37) is implied by (11.21).

REMARK 11.2. We remark that by virtue of (11.29), (11.20) together with

R?> R?
yP, > A" =L 2>

(11.38) T

R? _R yP,
P 2t 1+ P,

>0,
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imply that

(11.39) R?> <min(4*, Re, = R} — R3 + ),

guarantees:

1) the global nonlinear asymptotic stability of the thermal conduction solution;
ii) for Rc, < A the onset of convection at R> = R, via a stationary state.

THEOREM 11.2. Let

RZ
(11.40) P <1, P, <1, Fl R3 < P,y.
1
Then for
R? P
11.41 R*< R} -2 !
(11.41) SN Tiep

convection cannot occur and the thermal conduction solution is globally non line-
arly asymptotically stable.

PROOF. Tt is easily verified that (11.26) continues to hold with

(R*§)¢g+<1+g> re(r )

n n

Wn®y,

(11.42) 0, =1 —(P §2+R>w+ 5222:(”“" %Rll( 177”1)1)@%(/)1"

2R2( 1—-P,

P2 ) én Wn®op-

n

For ¢ = —1, it follows that

0, < R*—é—5+R—12(1—P) 2+ 0
n —= I’In Pl 1 ¢n n?
(11.43)
~ & Ry [1—P, & (02
== —+R) 2— )fnw,, = =
Q ( n Py < My & My P2
Hence Q, is negative definite if
éz R2 5 52
11.44 R -4 L (1-P)<0 & R? < R} ——+ .
( ) M Pl( ! Py,

V(a*,n) e RT x N,
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together with the negative definiteness of Qn ie. if

(11.45)

R &, (P §E+R*)55.

1-P 7<7
PZ( 2)77;1 P2 My

Since (11.44) is implied by (11.41) and (11.45) is implied by (11.40)s, the theorem
is proved in the case ¢ = —1. In the case ¢ = 1, (11.42) implies

2 * 62 *
v, +2¢/R (77__R )gonwn—i—
n

&
— (P, 4+ R+ A )w,

n

- &2
(11.46) Qn<Qn:—ll—(R*+A1)

n

with

R? R;
114 A 1—-P A P—1
(11.47) 1= P1( 1) 2= Pz( »—1).

2 2

Since S (R*+4,)>0 and P2 < + R"+ A, > 0 are implied respectively by
M - My

(11.41) and (11.40),, Q, is negative definite if and only if

(11.48) R*(?—R*) (iz R — A)(P §2+R*+A2)
i.e. if and only if

(11.49) R*é—’2'<(é—’2’—A1)<Pé—2+R +A2) R( 52+A2)

l/ln ’7}1 n ’7}1

and hence by

2 2 2 P
(1150) R < (én/ﬁn_Al)<Pl'én/77n+A2) :é—n—A _w

1
A+ P&/, My A+ P&/,
which is equivalent to
2 2 2

A A

(11.51) R 4+ 4, <1 L Siy L,
M A+Prén/77n M A+Prén/77n

implied by

2 2

A

(11.52) R4 Ay <0 - LS

Ny A+ PEn, Ty
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Requiring the consistency of (11.52) V(n,a*) e N x R™ one has

A 1+ P)A
(11.53) Ri+d4<y-2 & R*—I—M<y,
P, P,
which is implied by
14 P,
(11.54) R A <y

r

and hence by (11.41).

REMARK 11.3. We remark that, when (11.40) hold together with

R? P
11. A* >R - 24~
(11.55) > R P2+1+P,.y>0’

then, by virtue of (11.44), the stability condition is given by

2
(11.56) R < min(A*,Rlz —%H).

2
THEOREM 11.3. Let

(11.57) Pi>1, P,<1, RI+R5<Py.

Then convection cannot occur for

R? R?
11.58 R <L "2

S. RIONERO

and (11.58) guarantees the global nonlinear asymptotic stability of the thermal

conduction solution.

PROOF. In the case (11.57), Q, is given by

& &
(R =22) g2 + (1 +2)y [ [R*(R* =22 ) g,
Mn Mn
2 2 2
R P -1
(11.59) Q,= —(Prf—"—kR*)wfl —i—" %+2P_i( ln—)fnwn%n
Ry s |1 =P,
22 B,
Py M ”
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In the case (4* > 0, R> < A*,¢ = —1), one obtains

& 52
(11.60) Qnan:(R*——")(pg— 1R 4 Ay Ay | w2
7, 7,
and being
Rl R2 2 2
(11.61) P-4 g 4>0 & RE-RI< Py,

P P

P, is negative definite by virtue of (11.57)—(11.58).
In the case ¢ = 1, one obtains

(11.62) Qnsﬁn:(R*—i—'z)coﬁJrz\/R*(i—’z—R*)wncon

L4 R + A+ A w

n

and P, is negative definite for

(11.63) R*(i—s—R*)<(§—5—R)

52
LR Y+ A+ A

n

)

i.e. if and only if

P —1) (1 - Py) &
11.64 R\ R3 P,
( ) 1 Pl + 2 PZ < n, )
which is implied by (11.57);.
THEOREM 11.4. Let
2
(11.65) Pi>1, P>, Rf—%<P,,y.
2
Then convection cannot occur for
(11.66) R2<R—12—R2+ P
' P, 2T P,

407

and (11.66) guarantees the global nonlinear asymptotic stability of the thermal

conduction solution.
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PROOF. 1In the case at stake for ¢ = —1, one obtains that (11.27) holds with

62 2 52 2 éz 2 (/’2
R* __n) _ (pr_n R*) _on N Pon
( P LR, > P

n n nog=1

(11.67) Q, =

R P, —1 -1
B (D 2R (P,
P2 My My

which implies

& R
Qn ; + P2 (P 1) wn + Qn7
(11.68)
P (pn P —1 & o,
0, = ( ) ) +2—fn< ) )wn(pln "y
Hence Q, is negative definite if
& 2R G
11.69 R - P, —1 0 R <——Ry+
( ) +&(2 >< & <Pl 2+%,

V(az,n) e Rt x N,
together with the negative definiteness of QO i.e.

R2 2 1 & 2
2(P]—l)é—< é (P,,é—”+R*).
P My P M M

Obviously (11.69) is implied by (11.66) and (11.70) is implied by (11.65);. Passing

to the case ¢ = 1, one has
52
(pn +2 R*( R*)gonwn
M

- (P 52+R*+A1)

n

(11.70)

52

n

(11.71) Q,,<Q,,—l (R*+A)

2 2
Since %— (R* + A4;) >0 and P,.i—” + R*+ Ay > 0 are implied respectively by

(11.66) and (11.65)s, O, is negative definite if and only if

(11.72) R*(f—i—R*)<(f—5—R*—A2) (P,.é—'3+R*+A1).

77]1 ’7}7 n

Since (11.72), via the substitution

Ay Ay
(11.73) (5
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can be obtained from (11.48), then following step by the step the procedure of
theorem 11.2 in the case ¢ = 1, one obtains

1+ P,
(11.74) +T(R* +45) <y,

which is implied by (11.66).
REMARK 11.4. We remark that, when (11.65) hold together with

yPy

R} 5
11.75 A > L _R24
( ) > 2+1+Pr7

Py

then, by virtue of (11.69)—(11.70), the stability condition is given by

2

R
(11.76) R2<71—R§+y.

12. FINAL REMARKS

The paper is concerned with mass and heat transfer by convection in horizontal
layers filled by Navier-Stokes fluid mixtures with any number of chemicals (salts)
dissolved in. It is shown that:

1) for each Fourier component of the perturbations to the thermal conduction
solution, there exists an own nonlinear admissible system of equations named
auxiliary system (Section 3);

ii) subcritical instabilities do not exist and the global nonlinear asymptotic L>-
stability is guaranteed by the condition of linear stability (Sections 4-5);

iii) via the Routh-Hurwitz conditions applied to the spectral equation governing
the eigenvalues of the linearized associated problem, rigorous stability condi-
tions are characterized for any number of salts (Sections 5-10);

iv) the symmetries and skew-symmetries hidden in the ordinary Navier-Stokes
equations governing the fluid mixtures, are put in evidence by substituting
the temperature and salts concentrations via new suitable unknown fields
(Section 11);

v) in the case of layers heated from below and salted from above and below by
only one salt, via hidden symmetries and skew-symmetries, the global non-
linear asymptotic stability is guaranteed by simple algebraic conditions in
closed form which appear to be useful not only for theoreticians but also for
experimentalists in the research fields of physics of fluid (Section 11);

vi) the Auxiliary System Method, introduced in [32]-[34] for the Darcy-
Boussinesq fluid mixtures, continues to hold also for the Navier-Stokes fluid
mixtures’.

! Other applications of the Auxiliary System Method can be found in [39]-[43].
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